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Contents1 Introdution 12 The ation of B=L 42.1 Solving the equation of motion in the Shnabl gauge . . . . . . . . . . . . . . . . . . . 42.2 Algebrai preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.3 The ation of B=L and its geometri interpretation . . . . . . . . . . . . . . . . . . . . 63 Solutions for marginal operators with regular operator produts 93.1 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93.2 Rolling tahyon marginal deformation to all orders . . . . . . . . . . . . . . . . . . . . 133.3 Lightone-like deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Solutions for marginal operators with singular operator produts 224.1 Constrution of 	(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224.2 Gauge ondition, L eigenstates, and divergene struture . . . . . . . . . . . . . . . . . 244.3 Constrution of 	(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 IntrodutionMapping the landsape of vaua is one of the outstanding hallenges in string theory. A simplerversion of the problem is to haraterize the \open string landsape," the set of possible D-braneon�gurations in a �xed losed string bakground. In reent years evidene has aumulated thatlassial open string �eld theory (OSFT) gives an aurate desription of the open string landsape.See [1, 2, 3℄ for reviews. Muh of this evidene is based on numerial work in level trunation, andthere remain many interesting questions. Is the orrespondene between boundary onformal �eldtheories and lassial OSFT solutions one-to-one? Is the OSFT ation of a single D-brane apable ofdesribing on�gurations of multiple D-branes? Answering these questions is likely to require analytitools. Important analyti progress was made by Shnabl [4℄. He found the exat solution orrespondingto the tahyon vauum by exploiting the simpli�ations oming from the lever gauge �xing onditionB	 = 0 ; (1.1)where B is the antighost zero mode in the onformal frame of the sliver. Various aspets of Shnabl'sonstrution have been studied in [5℄{[12℄.In this paper we desribe new analyti solutions of OSFT orresponding to exatly marginal de-formations of the boundary onformal �eld theory (CFT). Previous work on exatly marginal defor-mations in OSFT [13℄ was based on solving the level-trunated equations of motion in Siegel gauge.The level-trunated string �eld was determined as a funtion of the vauum expetation value of the1



exatly marginal mode �xed to an arbitrary �nite value. Level trunation lifts the at diretion, butit was seen that as the level is inreased the at diretion is reovered with better and better auray.Instead, our approah is to expand the solution as 	� = P1n=1 �n	(n), where � parameterizes theexat at diretion. We solve the equation of motion reursively to �nd an analyti expression for	(n). Our results are exat in that we are solving the full OSFT equation of motion, but they areperturbative in �; by ontrast, the results of [13℄ are approximate sine the equation of motion hasbeen level-trunated, but they are non-perturbative in the deformation parameter.The perturbative approah of this paper has ertainly been attempted earlier using the Siegel gauge.Analyti work, however, is out of the question beause in the Siegel gauge the Riemann surfaesassoiated with 	(n), with n > 2, are very ompliated. The new insight that makes the problemtratable is to use, as in [4℄, the remarkable properties of wedge states with insertions [14, 15, 16℄.We �nd qualitatively di�erent results, aording to whether the matter vertex operator V thatgenerates the deformation has regular or singular operator produts. Setions 2 and 3 of the paper aredevoted to the ase of regular operator produts, and the ase of singular operator produts is disussedin setion 4. A key tehnial point is the alulation of the ation of B=L, where L = fQB ; B g, onproduts of string �elds.If V has regular operator produts, the equation of motion an be systematially solved in theShnabl gauge (1.1). The solution takes a strikingly ompat form given in the CFT language by(3.3), and its geometri piture is presented in Figure 1. The solution 	(n) is made of a wedge statewith n insertions of V on its boundary. The relative separations of the boundary insertions arespei�ed by n � 1 moduli ftig, with 0 � ti � 1, whih are to be integrated over. Eah modulus isaompanied by an antighost line integral B. The expliit evaluation of 	(n) in the level expansion isstraightforward for a spei� hoie of V .In x3.2 we apply this general result to the operator V = e 1p�0X0 [17℄{[23℄. This deformationdesribes a time-dependent tahyon solution that starts at the perturbative vauum in the in�nite pastand (if � < 0) begins to roll toward the non-perturbative vauum. The parameter � an be resaledby a shift of the origin of time, so the solutions are physially equivalent. The time-dependent tahyon�eld takes the form T (x0) = � e 1p�0 x0 + 1Xn=2 �n �n e 1p�0 nx0 : (1.2)We derive a losed-form integral expression for the oeÆients �n and evaluate them numerially.We �nd that the oeÆients deay so rapidly as n inreases that it is plausible that the solution isabsolutely onvergent for any value of x0. Our exat result on�rms the surprising osillatory behaviorfound in the p-adi model [19℄ and in level-trunation studies of OSFT [19, 23℄. The tahyon (1.2)overshoots the non-perturbative vauum and osillates with ever-growing amplitude. It has beenargued that a �eld rede�nition to the variables of boundary SFT would map this osillating tahyonto a tahyon �eld monotonially relaxing to the non-perturbative vauum [23℄. It would be very2



interesting to alulate the pressure of our exat solution and hek whether it tends to zero in thein�nite future, as would be expeted from Sen's analysis of tahyon matter [24, 1℄.In x3.3 we onsider the lightone vertex operator �X+, another example of a marginal vertexoperator with regular operator produts. Following [25℄, we onstrut the string �eld solution inspiredby the Born-Infeld solution that desribes a fundamental string ending on a D-brane [26℄. The lightonediretion X+ is a linear ombination of the time diretion and a diretion normal to the brane, andthe vertex operator is dressed by A(ki) eikiXi and integrated over the momenta ki along the spatialdiretions on the brane. The solution is not fully self-ontained within open string �eld theory: itrequires soures, whih makes the analysis deliate. Soures are also required in the Born-Infelddesription of the solution.If the operator produt expansion (OPE) of V with itself is V (z)V (0) � 1=z2, the solution presentedin Figure 1 is not well de�ned beause divergenes arise as the separations ti of the boundary insertionsgo to zero. We study the required modi�ations in setion 4. An important example is the Wilson-linedeformation �X. We regularize the divergenes by imposing a ut-o� in the integration region of themoduli. It turns out that ounterterms an be added to obtain 	(2) that is �nite and satis�es theequation of motion. Surprisingly, the result neessarily violates the gauge ondition (1.1)! The naivesolution 	(2) = �BL (	(1) �	(1)) breaks down beause the string �eld 	(1) �	(1) ontains a omponentin the kernel of L. This phenomenon is a peuliar quirk of Shnabl gauge that has no ounterpartin Siegel gauge. Due to this tehnial ompliation, the onstrution of the higher 	(n) beomesquite umbersome, though still simpler than in Siegel gauge. We argue that for all n, appropriateounterterms an be added to ahieve a �nite 	(n) that solves the equation of motion. We disussin detail the ase of 	(3) and verify the nontrivial anellations that must our for the onstrutionto sueed. We leave it for future work to ahieve simpler losed-form expressions for 	(n). Suhexpressions will be needed to investigate the nature of the perturbative series in � and to makeontat with the non-perturbative, but approximate, level-trunation results of [13℄. It will also beinteresting to understand better the relation between the onditions for exat marginality of boundaryCFT [27℄ and the absene of obstrutions in solving the equation of motion of string �eld theory. Thetehnology developed in this paper will be also useful in open superstring �eld theory [28℄.Independent work by M. Shnabl on the subjet of marginal deformations in string �eld theoryappears in [29℄.
3



2 The ation of B=L2.1 Solving the equation of motion in the Shnabl gaugeFor any matter primary �eld V of dimension one, the state 	(1) orresponding to the operator V (0)is BRST losed: QB	(1) = 0 : (2.1)In the ontext of string �eld theory, this implies that the linearized equation of motion of string �eldtheory is satis�ed. When the marginal deformation assoiated with V is exatly marginal, we expetthat a solution of the form 	� = 1Xn=1�n	(n) ; (2.2)where � is a parameter, solves the nonlinear equation of motionQB	� +	� �	� = 0 : (2.3)The equation that determines 	(n) for n > 1 isQB	(n) = �(n) with �(n) = � n�1Xk=1	(n�k) �	(k) : (2.4)For this equation to be onsistent, �(n) must be BRST losed. This is easily shown using the equationsof motion at lower orders. For example,QB�(2) = �QB (	(1) �	(1) ) = �QB	(1) �	(1) +	(1) �QB	(1) = 0 (2.5)when QB	(1) = 0 . It is ruial that �(n) be BRST exat for all n > 1, or else we would enounter anobstrution in solving the equations of motion. No suh obstrution is expeted to arise if the matteroperator V is exatly marginal, so we an determine 	(n) reursively by solving QB	(n) = �(n) . Thisproedure is ambiguous as we an add any BRST-losed term to 	(n), so we need to hoose somepresription. A traditional hoie would be to work in Siegel gauge. The solution 	(n) is then givenby ating with b0=L0 on �(n). In pratie this is umbersome sine the ombination of star produtsand operators b0=L0 in the Shwinger representation generates ompliated Riemann surfaes in theCFT formulation.Inspired by Shnabl's suess in �nding an analyti solution for tahyon ondensation, it is naturalto look for a solution 	� in the Shnabl gauge:B	� = 0 : (2.6)
4



Our notation is the same as in [5, 7, 8℄. In partiular the operators B and L are the zero modes of theantighost and of the energy-momentum tensor T , respetively, in the onformal frame of the sliver,1B � I d�2�i f(�)f 0(�) b(�) ; L � I d�2�i f(�)f 0(�) T (�) ; f(�) � 2� artan(�) : (2.7)We de�ne L� � L � L? and B� � B � B?, where the supersript ? indiates BPZ onjugation, andwe denote with subsripts L and R the left and right parts, respetively, of these operators. Formally,a solution of (2.4) obeying (2.6) an be onstruted as follows:	(n) = BL�(n) : (2.8)This an also be written as 	(n) = Z 10 dT Be�TL�(n) ; (2.9)if the ation of e�TL on �(n) vanishes in the limit T ! 1. It turns out that the ation of B=L on�(n) is not always well de�ned. As we disuss in detail in setion 4, if the matter primary �eld V hasa singular OPE with itself, the formal solution breaks down and the required modi�ation neessarilyviolates the gauge ondition (2.6). On the other hand, if operator produts of the matter primary �eldare regular, the formal solution is well de�ned, as we will on�rm later. In the rest of this setion, westudy the expression (2.9) for n = 2 in detail.2.2 Algebrai preliminariesWe prepare for our work by reviewing and deriving some useful algebrai identities. For further detailsand onventions the reader an refer to [7, 8℄.An important role will be played by the operator L�L+L and the antighost analog B�B+L . Theseoperators are derivations of the star algebra. This is seen by writing the �rst one, for example, as asum of two familiar derivations in the following way:L� L+L = 12L� + 12(L+R + L+L )� L+L = 12L� + 12(L+R � L+L ) = 12(L� +K) : (2.10)We therefore have (L� L+L ) (�1 � �2) = (L� L+L )�1 � �2 + �1 � (L� L+L )�2 : (2.11)Noting that L+L (�1 � �2) = L+L �1 � �2, we �ndL(�1 � �2) = L�1 � �2 + �1 � (L� L+L )�2 ; (2.12)B(�1 � �2) = B�1 � �2 + (�1)�1�1 � (B �B+L )�2 : (2.13)1 Using reparameterizations, as in [8℄, it should be straightforward to generalize the disussion to general projetors.In this paper we restrit ourselves to the simplest ase of the sliver.5



Here and in what follows, a string �eld in the exponent of �1 denotes its Grassmann property: it is 0mod 2 for a Grassmann-even string �eld and 1 mod 2 for a Grassmann-odd string �eld. From (2.12)and (2.13) we immediately dedue formulas for produts of multiple string �elds. For B, for example,we haveB(�1 � �2 � : : : �n) = (B�1) � : : : � �n + nXm=2(�1)Pm�1k=1 �k �1 � : : : � (B �B+L )�m � : : : � �n : (2.14)Exponentiation of (2.12) gives e�TL(�1 � �2) = e�TL�1 � e�T (L�L+L )�2 : (2.15)From the familiar ommutators [L;L+℄ = L+ ; [B;L+℄ = B+ ; (2.16)we dedue [L;L+L ℄ = L+L ; [B;L+L ℄ = B+L : (2.17)See setion 2 of [7℄ for a areful analysis of this type of manipulations. We will need to reorderexponentials of the derivation L� L+L . We laim thate�T (L�L+L ) = e(1�e�T )L+L e�TL : (2.18)The above is a partiular ase of the Baker-Campbell-Hausdor� formula for a two-dimensional Liealgebra with generators x and y and ommutation relation [x; y ℄ = y. In the adjoint representationwe an write x = �0 10 1� ; y = ��1 1�1 1� : (2.19)It follows that as two-by-two matries, x2 = x, xy = y, yx = 0, and y2 = 0. One then veri�es thate�x+�y = e �� (e��1)y e�x when [x; y ℄ = y : (2.20)With � = �� = �T , x = L, and y = L+L , (2.20) reprodues (2.18).2.3 The ation of B=L and its geometri interpretationWe are now ready to solve the equation for 	(2). The state 	(1) satis�esQB	(1) = 0 ; B	(1) = 0 ; L	(1) = 0 : (2.21)We will use orrelators in the sliver frame to represent states made of wedge states and operatorinsertions. The state 	(1) an be desribed as follows:h�;	(1) i = h f Æ �(0) V (1) iW1 : (2.22)6



Note that V is a primary �eld of dimension zero so that there is no assoiated onformal fator.Here and in what follows we use � to denote a generi state in the Fok spae and �(0) to denote itsorresponding operator. The surfae W� is the one assoiated with the wedge state W� in the sliveronformal frame. We use the doubling trik in alulating orrelators. We de�ne the oriented straightlines V �� by V �� = n z ���Re(z) = � 12 (1 + �)o ;orientation : � 12 (1 + �)� i1! � 12 (1 + �) + i1 : (2.23)The surfaeW� an be represented as the region between V �0 and V +2�, where V �0 and V +2� are identi�edby translation.A formal solution to the equation QB	(2) = �	(1) �	(1) is	(2) = �Z 10 dT Be�TL�	(1) �	(1)� : (2.24)By onstrution, B	(2) = 0. Using the identities (2.15) and (2.13), we have	(2) = �Z 10 dT hB e�TL	(1) � e�T (L�L+L )	(1) � e�TL	(1) � (B �B+L ) e�T (L�L+L )	(1) i : (2.25)Beause of the properties of 	(1) in (2.21), the �rst term vanishes and the seond redues to	(2) = Z 10 dT 	(1) � (B �B+L ) e�T (L�L+L )	(1) : (2.26)We further use the identity (2.18) together with L	(1) = 0 to �nd	(2) = Z 10 dT 	(1) � (B �B+L ) e(1�e�T )L+L 	(1) : (2.27)It follows from [B;L+L ℄ = B+L that [B; g(L+L ) ℄ = B+L g0(L+L ) for any analyti funtion g. Using thisformula with B	(1) = 0 , we �nd	(2) = �Z 10 dT e�T 	(1) � e(1�e�T )L+L B+L	(1) : (2.28)Using the hange of variables t = e�T , we obtain the following �nal expression of 	(2):	(2) = Z 10 dt	(1) � e�(t�1)L+L (�B+L )	(1) : (2.29)There is a simple geometri piture for 	(2). Let us represent h�;	(2) i in the CFT formulation.The exponential ation of L+L on a generi string �eld A an be written ase��L+LA = e��L+L (I �A) = e��L+LI � A =W� �A : (2.30)7



Here we have realled the familiar expression of the wedge state W� = e��2 L+I = e��L+LI [4℄, whereI is the identity string �eld. We thus learn that e��L+L with � > 0 reates a semi-in�nite strip witha width of � in the sliver frame, while e��L+L with � < 0 deletes a semi-in�nite strip with a width ofj�j. The inner produt h�;	(2) i is thus represented by a orrelator on W2�jt�1j = W1+t. In otherwords, the integrand in (2.29) is made of the wedge state W1+t with operator insertions. The state � isrepresented by the region between V �0 and V +0 with the operator insertion f Æ �(0) at the origin. Theleft fator of 	(1) in (2.29) an be represented by the region between V +0 and V +2 with an insertionof V at z = 1. For t = 1 the right fator of 	(1) an be represented by the region between V +2and V +4 with an insertion of V at z = 2. For 0 < t < 1, the region is shifted to the one betweenV +2�2jt�1j = V +2t and V +4�2jt�1j = V +2+2t, and the insertion of V is at z = 2� jt� 1j = 1+ t. Finally, theoperator (�B+L ) is represented by an insertion of B [8℄ de�ned byB = Z dz2�i b(z) ; (2.31)where the ontour of the integral an be taken to be �V +� with 1 < � < 1 + 2t. We thus haveh�;	(2) i = Z 10 dt h f Æ �(0) V (1)B V (1 + t) iW1+t : (2.32)As t! 0 the pair of V 's ollide, and at t = 1 they attain the maximum separation.The state 	(2) should formally solve the equation of motion by onstrution. Let us examine theBRST transformation of 	(2) more arefully based on the expression (2.32). The BRST operator inh�;QB	 i an be represented as an integral of the BRST urrent on V +2(1+t) � V +0 :2h�;QB	(2) i = Z 10 dtD f Æ �(0) Z�V +0 +V+2(1+t)dz2�i jB(z) V (1)B V (1 + t)EW1+t ; (2.33)where jB is the BRST urrent. Sine V is BRST losed, the only nontrivial ation of the BRSToperator is to hange the insertion of the antighost to that of the energy-momentum tensor:h�;QB	(2) i = � Z 10 dt h f Æ �(0) V (1)L V (1 + t) iW1+t ; (2.34)where L = Z dz2�i T (z) ; (2.35)and the ontour of the integral an be taken to be �V +� with 1 < � < 1 + 2t. The minus signon the right-hand side of (2.34) is from antiommuting the BRST urrent with the left V . Sine2 To derive this we �rst use the relation h�;QB	(2) i = �(�1)� hQB�;	(2) i, where QB on the right-hand side is anintegral of the BRST urrent jB over a ontour that enirles the origin ounterlokwise, with the operator jB plaedto the left of f Æ �(0) in the orrelator. Using the identi�ation of the surfae W1+t, the ontour an be deformed to�V +2(1+t) + V +0 . In the orrelator, we move the BRST urrent from the left of f Æ �(0) to the right of it. This anels(�1)�, and the additional minus sign is aneled by reversing the orientation of the ontour.8



�t e�tL+L = �L+L e�tL+L and �L+L orresponds to L in the orrelator, an insertion of L is equivalent totaking a derivative with respet to t [5℄. We thus �ndh�;QB	(2) i = � Z 10 dt ��t h f Æ �(0) V (1) V (1 + t) iW1+t : (2.36)The surfae term from t = 1 gives �	(1) � 	(1). The equation of motion is therefore satis�ed if thesurfae term from t = 0 vanishes. The surfae term from t = 0 vanishes iflimt!0 V (0) V (t) = 0 : (2.37)Therefore, 	(2) de�ned by (2.32) does solve the equation QB	(2) + 	(1) � 	(1) = 0 when V satis�es(2.37). Sine 	(1) �	(1) is a �nite state, the equation guarantees that QB	(2) is also �nite. However,it is still possible that 	(2) has a divergent term whih is BRST losed. The ghost part of 	(2) is �nitesine it is given by an integral of  t over t from t = 0 to t = 1, where  n is the key ingredient in thetahyon vauum solution [4℄: h�;  n i = h f Æ �(0) (1)B (1 + n) iW1+n ; (2.38)and the ontour of the integral for B an be taken to be �V� with 1 < � < 2n + 1 . When theoperator produt of V with itself is regular, the ondition (2.37) is satis�ed and 	(2) itself is �nite.Note that V (0)V (t) in the limit t ! 0 an be �nite or an be vanishing. We onstrut 	(n) formarginal operators with regular operator produts in the next setion. When the operator produt ofV with itself is singular, the formal solution 	(2) is not well de�ned. We disuss this ase in setion 4.3 Solutions for marginal operators with regular operator produtsIn the previous setion we onstruted a well-de�ned solution to the equation QB	(2)+	(1) �	(1) = 0when V has a regular operator produt. In this setion we generalize it to 	(n) for any n. Wethen present the solution that orresponds to the deay of an unstable D-brane in x3.2. In x3.3 westudy marginal deformations in the lightone diretion and disuss the appliation to the solution thatrepresents a string ending on a D-brane.3.1 SolutionOne we understand how 	(2) in the form of (2.32) satis�es the equation of motion, it is easy toonstrut 	(n) satisfying QB	(n) = �(n). It is given byh�;	(n) i = Z 10 dt1 Z 10 dt2 : : : Z 10 dtn�1 h f Æ �(0) V (1)B V (1 + t1)B V (1 + t1 + t2) : : :� B V (1 + t1 + t2 + : : :+ tn�1) iW1+t1+t2+:::+tn�1 : (3.1)9



Figure 1: The surfae W1+`n�1 with the operator insertions used to onstrut the solution 	(n) givenin (3.3). The parameters t1; t2; : : : ; tn�1 must all be integrated from zero to one. The leftmost andrightmost vertial lines with double arrows are identi�ed.Introduing the length parameters `i � iXk=1 tk ; (3.2)the solution an be written more ompatly ash�;	(n) i = Z 10 dt1 Z 10 dt2 : : : Z 10 dtn�1 D f Æ �(0) V (1) n�1Yi=1hB V (1 + `i) i EW1+`n�1 : (3.3)See Figure 1. The solution obeys the Shnabl gauge ondition. It is remarkably simple ontrastedwith the expression one would obtain in Siegel gauge.Let us now prove that the equation of motion is satis�ed for (3.3). It is straightforward to generalizethe alulation of h�;QB	(2) i in the previous setion to that of h�;QB	(n) i . The BRST operatorin h�;QB	(n) i an be represented as an integral of the BRST urrent on V +2(1+`n�1) � V +0 . Sine Vis BRST losed, the BRST operator ats only on the insertions of B's:h�;QB	(n) i = � n�1Xj=1 Z 10 dt1 Z 10 dt2 : : : Z 10 dtn�1 D f Æ �(0) V (1) j�1Yi=1hB V (1 + `i) i�L V (1 + `j) n�1Yk=j+1hB V (1 + `k) i EW1+`n�1 : (3.4)An insertion of L between V (1+ `j�1) and V (1+ `j) orresponds to taking a derivative with respet10



to tj . When operator produts of V are regular, we haveh�;QB	(n) i = � n�1Xj=1 Z 10 dt1 Z 10 dt2 : : : Z 10 dtn�1 �tj D f Æ �(0) V (1) j�1Yi=1hB V (1 + `i) i� V (1 + `j) n�1Yk=j+1hB V (1 + `k) i EW1+`n�1= � n�1Xj=1 Z 10 dt1 Z 10 dt2 : : : Z 10 dtj�1 Z 10 dtj+1 : : : Z 10 dtn�1 D f Æ �(0) V (1)� j�1Yi=1hB V (1 + `i) i V (1 + `j) n�1Yk=j+1hB V (1 + `k) i EW1+`n�1 ����tj=1= � n�1Xj=1 h�;	(j) �	(n�j) i :
(3.5)

The equation of motion is thus satis�ed.3We an also derive this expression of 	(n) by ating with B=L on �(n). It is in fat interestingto see how the region of the integrals over t1; t2; : : : ; tn�1 is reprodued. Let us demonstrate it takingthe ase of 	(3) as an example. Using the Shwinger representation of B=L, the expression (2.26) for	(2), and the identities (2.15) and (2.14), we have	(3) = �Z 10 dT2B e�T2L [ 	(1) �	(2) +	(2) �	(1) ℄= �Z 10 dT2 Z 10 dT1B e�T2L [ 	(1) �	(1) � (B �B+L ) e�T1(L�L+L )	(1)+	(1) � (B �B+L ) e�T1(L�L+L )	(1) �	(1) ℄= Z 10 dT1 Z 10 dT2 [ 	(1) � (B �B+L ) e�T2(L�L+L )	(1) � (B �B+L ) e�(T1+T2)(L�L+L )	(1)+	(1) � (B �B+L ) e�(T1+T2)(L�L+L )	(1) � (B �B+L ) e�T2(L�L+L )	(1) ℄ : (3.6)
By hanging variables as �1 = T2 and �2 = T1 + T2 for the �rst term and as �2 = T2 and �1 = T1 + T2for the seond term, the two terms ombine into	(3) = Z 10 d�1 Z 10 d�2	(1) � (B �B+L ) e��1(L�L+L )	(1) � (B �B+L ) e��2(L�L+L )	(1) : (3.7)The same manipulations we performed with 	(2) give	(3) = Z 10 dt1 Z 10 dt2	(1) � e�(t1�1)L+L (�B+L )	(1) � e�(t2�1)L+L (�B+L )	(1) (3.8)3 We assume that operator produts of more than two V 's are also regular in order for the surfae term from tj = 0to vanish. This additional regularity ondition was overlooked in the �rst version of the paper on arXiv.11



and the following expression in the CFT formulation:h�;	(3) i = Z 10 dt1 Z 10 dt2 h f Æ �(0) V (1)B V (1 + t1)B V (1 + t1 + t2) iW1+t1+t2 (3.9)in agreement with (3.3). It is not diÆult to use indution to prove that for all n (3.3) follows fromthe ation of B=L on �(n).We onlude the subsetion by writing other forms of the solution that are suitable for expliitalulations. We represent the surfae W� as the region between V �2 and V +2(��1). The operatorV (1 + `n�1) in (3.3) is then mapped to V (�1). We further transform h�;	(n+1) i in the followingway:h�;	(n+1) i = Z 10 dt1 : : : Z 10 dtn DV (�1) f Æ �(0) V (1) n�1Yi=1hB V (1 + `i) iB EW1+`n= Z 10 dt1 : : : Z 10 dtn DV (�1) f Æ �(0) V (1) n�1Yi=1hV (1 + `i) iB EW1+`n= � Z 10 dt1 : : : Z 10 dtn 12 + `n� DZV +2`n�V �2 dz2�i z b(z) h V (�1) f Æ �(0) V (1) i n�1Yi=1hV (1 + `i) i EW1+`n :
(3.10)

First we reursively used the relation B (z)B = B , whih follows from fB; (z) g = 1 and B2 = 0 . Inthe last step, we used the identityZV +2(��1)�V �2 dz2�i z b(z) = (�+ 1)ZV +2(��1) dz2�i b(z) on W� : (3.11)This follows fromZV �2 dz�2�i z� b(z�) = ZV +2(��1) dz+2�i n z+ � (�+ 1)o b(z+) on W� ; (3.12)where the oordinate z� for V �2 and the oordinate z+ for V +2(��1) are identi�ed by z+ = z� + �+ 1 .The ontour V +2`n � V �2 an be deformed to enirle V (�1), f Æ �(0), and V (1), and we obtainh�;	(n+1) i = Z 10 dt1 : : : Z 10 dtn 12 + `n D nV (�1) f Æ �(0) V (1) + V (�1) f Æ �(0)V (1)+ V (�1) h I dz2�i z b(z) f Æ �(0) i V (1)o n�1Yi=1 V (1 + `i)EW1+`n ; (3.13)where the ontour in the last line enirles the origin ounterlokwise.12



When �(0) fatorizes into a matter part �m(0) and a ghost part �g(0), we an use the matter-ghostfatorization of the orrelator to give an alternative form of (3.3):h�;	(n) i = Z 10 dt1 Z 10 dt2 : : : Z 10 dtn�1 D f Æ �m(0) n�1Yi=0 V (1 + `i)EW1+`n�1 ;m� D f Æ �g(0) (1)B (1 + `n�1)EW1+`n�1 ; g ; (3.14)where `0 � 0 and we denoted matter and ghost orrelators by subsripts m and g, respetively. Theghost orrelator in the above expression is h�g;  `n�1 i in (2.38). The algorithm for its alulation hasbeen developed in [4, 8℄.3.2 Rolling tahyon marginal deformation to all ordersWe an now apply the general solution (3.13) to the speial ase of a marginal deformation orre-sponding to a rolling tahyon. For this purpose we pik the operatorV (z; �z) = e 1p�0X0(z;�z) (3.15)restrited to the boundary z = �z = y of the upper-half plane H , where we write it as4V (y) = e 1p�0X0(y) ; X0(y) � X0(y; y) : (3.16)The operator eik�X(y) has dimension �0k2 and we an writeV (y) = eik�X(y) with k� = ip�0 �1;~0 � ! �0k2 = 1 ; (3.17)showing that V is a matter primary �eld of dimension one. We also haveV (y)V (0) � jyj2V (0)2 ; (3.18)and the matter operator satis�es the requisite regularity ondition.We will also use exponential operators of X0 with di�erent exponents. We thus reord the followingtransformation law and ordering results:f Æ e 1p�0 nX0(y) = ��� dfdy ���n2e 1p�0 nX0(f(y)) ; (3.19)e 1p�0 mX0(y)e 1p�0 nX0(y0) = jy � y0j2mn : e 1p�0 mX0(y)e 1p�0 nX0(y0) : : (3.20)4We use the signature (�;+;+; : : : ;+). For a point z = �z = y on the boundary of H we write X�(y) � X�(y; y). Thesingular part of X�(y)X�(y0) is given by �2�0��� ln jy � y0j, and the mode expansion for a Neumann oordinate readsi�yX�(y) = p2�0Pm ��mym+1 . The basi orrelator is heik�X(y)eik0�X(y0)i = (2�)DÆ(D)(k+k0)jy�y0j2�0k�k0 , where D is thespaetime dimension. The operator eik�X(y) has dimension �0k2 and transforms as f Æ eik�X(y) = j dfdy j�0k2eik�X(f(y)). Wedo not use the doubling trik for the matter setor in x3.2 and x3.3. In these subsetions, �X� � �zX� + ��zX� when �is a diretion along the D-brane and �X� � �zX� � ��zX� when � is a diretion transverse to the D-brane.13



Physially, deformation by V represents a rolling tahyon solution in whih the state of the systemat time x0 = �1 is the perturbative vauum. We set 	(1) to be	(1) = e 1p�0X0(0) 1j0i (3.21)and alulate 	(n) with n � 2 whih, by momentum onservation, must take the form	(n) = e 1p�0 nX0(0)h�n 1j0i + : : :i ; n � 2 : (3.22)In the above we have separated out the tahyon omponent, and higher-level �elds are indiated bydots. The pro�le of the tahyon �eld T is determined by the oeÆients �n that we aim to alulate:T (x0) = � e 1p�0 x0 + 1Xn=2�n �ne 1p�0 nx0 : (3.23)Sine the solution (for every omponent �eld) depends on � and x0 only through the ombination�e 1p�0 x0 , a saling of � an be absorbed by a shift of x0. We an therefore fous on the ase � = �1.The sign of � makes a physial di�erene. In our onventions the tahyon vauum lies at some T < 0,so � = �1 orresponds to the tahyon rolling in the diretion of the tahyon vauum, whih we aremostly interested in. For � = +1 the tahyon begins to roll towards the unbounded region of thepotential. After setting � = �1, we writeT (x0) = � e 1p�0 x0 + 1Xn=2(�1)n�n e 1p�0 nx0 : (3.24)In order to extrat the oeÆients �n from the solution we introdue test states �n and their BPZduals: j�ni = e� 1p�0 nX0(0) 01j0i ; h�nj = limy!1h0j�10e� 1p�0 nX0(y) 1jyj2n2 : (3.25)The state �n has dimension n2 � 1. Using (3.22) we �ndh�n;	(n)i = h�nj	(n)i = �n � (vol) ; vol = (2�)DÆ(D)(0) : (3.26)The spaetime volume (vol) always fators out, so we will simply use vol= 1 in the following. We nowuse (3.13) to write �n+1 = h�n+1;	(n+1)i as�n+1 = Z 10 dt1 : : : Z 10 dtn 12 + `nD ne 1p�0X0(�1) f Æ (�)e� 1p�0 (n+1)X0(0) e 1p�0X0(1)+ e 1p�0X0(�1) f Æ (�)e� 1p�0 (n+1)X0(0) e 1p�0X0(1)+ e 1p�0X0(�1) f Æ e� 1p�0 (n+1)X0(0) e 1p�0X0(1)o n�1Yi=1 e 1p�0X0(1+`i) EW1+`n : (3.27)
14



In the last term, due to the simple struture of �n+1, the antighost line integral ats as b0 and simplyremoves the 0 part of the state. We must now evaluate the orrelator on the right-hand side.This alulation requires the map from the surfae W1+`n to the upper-half plane. We reall thatthe surfae W0 of unit width an be mapped to the upper-half plane by the funtiong(z) = 12 tan(�z) : (3.28)Due to the periodiity g(z + 1) = g(z), this map works independent of the position of the surfae W0in the diretion of the real axis. Consequently, we merely need to resale W1+`n to W0 by z ! z2+`nand then map it to the upper-half plane by g(z). The overall onformal transformation on the teststates is therefore the map h given by h(�) � g� 12 + `n f(�)� : (3.29)All other vertex operators are mapped with g� 12+`n z�. It is therefore natural to de�negi � g� 1 + `i2 + `n� ; g0i � g0� 1 + `i2 + `n� ; i = 0; 1; : : : ; n ; `0 � 0 : (3.30)With these abbreviations, the orrelator on the upper-half plane reads�n+1 = Z dnt h0(0)(n+1)2�12 + `n �n g002 + `n�e 1p�0X0(�g0) (�)e� 1p�0 (n+1)X0(0) e 1p�0X0(g0)+ e 1p�0X0(�g0) (�)e� 1p�0 (n+1)X0(0) e 1p�0X0(g0)�+ e 1p�0X0(�g0) e� 1p�0 (n+1)X0(0) e 1p�0X0(g0)o n�1Yi=1 g0i2 + `n e 1p�0X0(gi) �H ; (3.31)
where h0(0) = 12+`n and we have de�ned R dnt � R 10 dt1 : : : R 10 dtn. We an now fator this into matterand ghost orrelators:�n+1 = Z dnt (2 + `n)�(n+1)2De 1p�0X0(�g0) e� 1p�0 (n+1)X0(0) e 1p�0X0(g0) n�1Yi=1 g0i2 + `n e 1p�0X0(gi) Em� D g002 + `n �(�)(0) (g0) + (�g0) (�)(0)� + (�g0) (0) (g0)Eg: (3.32)The ghost orrelator an be evaluated using 
(�z)(0)(z)�g = �2z3 and 
� (0) (z)�g = z2. Usingalso �g0 = gn and g00 = g0n, we �nd�n+1 = 2Z dnt (2 + `n)�n(n+3)� g002 + `n � g0� g20g002 nYi=0hg0iiD e� 1p�0 (n+1)X0(0) nYi=0 e 1p�0X(gi) Em : (3.33)Evaluating the matter orrelator, we obtain our �nal result for the oeÆients of the rolling tahyonsolution:�n+1 = 2Z dnt (2 + `n)�n(n+3)� g002 + `n � g0� g20g002 h nYi=0 g0ig2(n+1)i i Y0�i<j�n�gi � gj�2: (3.34)15



Another way to derive (3.34) is to use (3.14). The ghost orrelator, whih gives the tahyon oeÆientof  `n , has been alulated in [4, 8℄:h f Æ (�)(0) (1)B (1 + `n) iW1+`n ;g = 2 + `n� � 1� 2 + `n2� sin 2�2 + `n � sin2 �2 + `n= 2 (2 + `n) g20g00 �1� (2 + `n) g0g00 � : (3.35)The alulation of the matter orrelator is straightforward:D f Æ e� 1p�0 (n+1)X0(0) nYi=0 e 1p�0 X0(1+`i) �W1+`n ;m= � 2��(n+1)2 � nYi=0 (2 + `n)�2(n+1)��2(n+1) sin�2(n+1) �(1 + `i)2 + `n � Y0�i<j�n (2 + `n)2�2 sin2 �(`i � `j)2 + `n= (2 + `n)�(n+1)(n+2)� nYi=0 g0ig2(n+1)i � Y0�i<j�n (gi � gj)2 : (3.36)
It is easy to see that (3.34) is reprodued.The integrand in (3.34) is manifestly positive sine g0(z) > 0 and g002+`n � g0 > 0. It follows that all�n+1 oeÆients are positive. For n = 1 we �nd�2 = 8Z 10 dt g002+t � g0(2 + t)4g40 = 8Z 10 dt�2 ot� �2+t�2 + t �4� �2(2 + t) os2� �2+t� � 12 tan� �2 + t�� : (3.37)Surprisingly, analyti evaluation of the integral is possible using Mathematia:�2 = 64243p3 : (3.38)This oeÆient is the same as that of the Siegel-gauge solution [23℄. For n = 2 the �nal integral anbe evaluated numerially:�3 = 8Z 10 dt1 Z 10 dt2 � g002+t1+t2 � g0�g01�g20 � g21�2(2 + t1 + t2)10g80g61 ' 2:14766 � 10�3 : (3.39)The results for the �rst few �n are summarized in Table 1. The resulting tahyon pro�le (3.24) takesthe form T (x0) =� e 1p�0 x0 + 0:15206 e 1p�0 2x0 � 2:148 � 10�3 e 1p�0 3x0+ 2:619 � 10�6 e 1p�0 4x0 � 2:791 � 10�10 e 1p�0 5x0+ 2:801 � 10�15 e 1p�0 6x0 � 2:729 � 10�21 e 1p�0 7x0 + : : : (3.40)The top sign gives us the physial solution: the tahyon rolls towards the tahyon vauum, overshootsit, and then begins to develop larger and larger osillations. The oeÆients in the solution derease16



n �n2 64243p3 � 0:1520593 2:14766 � 10�34 2:61925 � 10�65 2:79123 � 10�106 2:80109 � 10�157 2:72865 � 10�21Table 1: Numerial values of the rolling tahyon pro�le oeÆients.so rapidly that the series seems to be absolutely onvergent for any value of x0p�0 . Indeed, the n-thterm Tn in the above series appears to take the formjTnj � 2:7 � 10� 12n(n�1) e 1p�0 nx0 : (3.41)One then �nds that the ratio of onseutive oeÆients is���Tn+1Tn ��� � 10�ne 1p�0 x0 ' e�2:303ne 1p�0 x0 : (3.42)For any value of x0p�0 the ratio beomes smaller than one for suÆiently large n, suggesting absoluteonvergene. It would be useful to do analyti estimates of �n using (3.34) to on�rm the abovespeulation.It is interesting to ompare the results with those of the p-adi model [19℄. The relevant solution isdisussed in x4.2.2 of that paper and has the same qualitative behavior as the solution presented here:the tahyon rolls towards the minimum, overshoots it, and then develops ever-growing osillations.The solution is of the form �(t) = 1� 1Xn=1 an ep2nt ; a1 = 1 : (3.43)The oeÆients an an be alulated exatly with a simple reursion and fall o� very rapidly, but ananalyti expression for their large n behavior is not known. A �t of the values of an for n = 3; : : : ; 13gives lnan ' �0:1625 + 1:506n � 1:389n2. (A �t with an n3 term returns a very small oeÆient forthis term.) The �t implies that the ratio of two onseutive terms in the solution is���an+1an ���ep2 t � e�2:778 n+0:117ep2 t ' 1:125 � 16�nep2 t : (3.44)This result suggests that the p-adi rolling solution is also absolutely onvergent.17



A low-level solution of the string theory rolling tahyon in Siegel gauge was also obtained in [19℄,where signi�ant similarities with the p-adi solution were noted. The higher-level Siegel gauge analysisof the rolling tahyon in [23℄ on�rmed the earlier analysis and added muh on�dene to the validityof the osillatory solution. We believe that the exat analyti solution presented here has settled theissue onviningly.3.3 Lightone-like deformationsAnother simple example of a marginal operator with regular operator produts is provided by thelightone-like operator V (z) = ip2�0 �X+ ; (3.45)as usual, inserted at z = �z = y. Here X+ = 1p2 (X0 +X1) is a lightone oordinate. (We ould havealso hosen X� = 1p2(X0 � X1).) The OPE of V with itself is regular: limz!0 V (z)V (0) = V (0)2.The operator is dimension one and V is BRST losed. We an onstrut a solution using the aboveV (z) and our general result (3.13). If we onsider some Dp-brane with p < D� 1, we an hoose x1 tobe a diretion normal to the brane and the above matter deformation orresponds to giving onstantexpetation values to the time omponent of the gauge �eld on the brane and to the salar �eld onthe brane that represents the position of the brane.To make the analysis a bit more nontrivial we onsider the disussion of Mihishita [25℄ on theCallan-Maldaena solution [26℄ for a string ending on a brane in the framework of OSFT. We hooseV (y) = Z dkiA(ki) ip2�0 �X+eikiXi(y) ; (3.46)where Xi's are the spatial diretions on the brane. This operator has regular operator produts: theexponentials eikiXi(y) give positive powers of distanes sine ki is spaelike. The operator �X+eikiXi ,however, has dimension �0k2, so unless ki = 0 it is not BRST losed and the expression in (3.13) doesnot provide a solution. But it is not too far from a solution: if one hooses A(k) � 1=k2, the ation ofQB on V gives a delta funtion in position spae.We thus take 	(1)A = V (0)1j0i and, following [25℄, take its failure to be annihilated by QB to de�nethe soure term J (1) that hopefully would arise independently in a omplete theory: QB	(1)A = J (1).We an then alulate 	(2)A whih satis�es QB	(2)A +	(1)A �	(1)A = J (2) for some J (2). While BJ (1) 6= 0,we demand BJ (n) = 0 for n � 2 following the approah of [25℄ in the Siegel-gauge ase. Ating withB on the above equation for 	(2)A , we �ndL	(2)A +B(	(1)A �	(1)A ) = 0 ! 	(2)A = �BL (	(1)A �	(1)A ) : (3.47)Ating with QB on the solution, one on�rms thatQB	(2)A = �	(1)A �	(1)A + BL�J (1) �	(1)A �	(1)A � J (1)� (3.48)18



so that the soure term J (2) is indeed annihilated by B.In alulating 	(2)A in (3.47) with L	(1)A 6= 0, we need to generalize our results in x2.3 and �nd theation of B=L on a string �eld produt � � �0 where � and �0 are not annihilated by L but insteadsatisfy B� = B�0 = 0 ; L� = l� � ; L�0 = l�0 �0 : (3.49)The steps leading to (2.29) an be arried out analogously for this ase with extra fators dependingon l� and l�0 : BL (� � �0) = (�1)� Z 10 dt t(l�+l�0 ) � � e�(t�1)L+L (�B+L )�0 : (3.50)To onstrut 	(2)A , we need to express states of the type BL (� � �0) as CFT orrelators. As � and�0 are primary �elds of nonvanishing dimension, there are extra onformal fators in the sliver-frameexpression for these states. De�ning a shift funtion sl(z) = z + l, we an express the generalizationof (2.32) that aounts for these extra fators ash�; BL (� � �0) i = (�1)� Z 10 dt t(l�+l�0) h f Æ �(0) s1 Æ f Æ �(0) B s1+t Æ f Æ �0(0) iW1+t= (�1)� Z 10 dt �tf 0(0)�(l�+l�0) h f Æ �(0) �(1) B �0(1 + t) iW1+t : (3.51)Here we have expliitly arried out the onformal maps of � and �0 to the sliver frame and useds0l(z) = 1. It is now straightforward to arry out the onstrution of 	(2)A by generalizing (3.13). Thisyieldsh�;	(2)A i = Z dkidk0iA(ki)A(k0i)Z 10 dt ��tf 0(0)��0(k2+k02)(2 + t)2�0 D n�X+eikiXi(�1) f Æ �(0) �X+eik0iXi(1)+ �X+eikiXi(�1) hI dz2�izb(z)f Æ �(0)i �X+eik0iXi(1)+ �X+eik0iXi(�1) f Æ �(0) �X+eikiXi(1)oEW1+t : (3.52)To obtain a Fok-spae expression of 	(2)A , we follow the same steps leading to (5.50) of [8℄. The mapwe need to perform on the orrelator is I Æ g, so the total map on the test state � is I Æ h. Here wehave used g and h de�ned in (3.28) and (3.29), and I(z) = �1z . Let us further de�neB̂ = I dz2�i g�1(z)(g�1)0(z)b(z): (3.53)Then we an start by mapping the orrelator to the upper-half plane through g. Again, we willsuppress all arguments of g and abbreviateg � g� 12 + t� = �g�� 12 + t� ; g0 � g0� 12 + t� = g0�� 12 + t�: (3.54)19



We �nd h�;	(2)A i =Z dkidk0iA(ki)A(k0i)Z 10 dt �1(2 + t)2�0� tf 0(0)g02 + t ��0(k2+k02)� D g02 + tn�X+eikiXi(�g)h Æ �(0) �X+eik0iXi(g)+ �X+eik0iXi(�g)h Æ �(0) �X+eikiXi(g)o+ �X+eikiXi(�g) hB̂ h Æ �(0)i �X+eik0iXi(g)EH : (3.55)
Here we used the fat that the operator �X+eikiXi has onformal dimension �0k2. We notie thatthe two terms in parenthesis an be transformed into eah other through the map g ! �g. Therefore,we an drop one of them and simply take the g-even part of the other. We an now perform theremaining transformation with I to obtain an operator expression for 	(2)A :	(2)A = Z dkidk0iA(ki)A(k0i)Z 10 dt �1(2 + t)2�0� tf 0(0)g0(2 + t)g2��0(k2+k02)� U?h�n 2g0(2 + t)g2 �X+eikiXi��1=g� �X+eik0iXi�1=g�og-even+ B̂? �X+eikiXi��1=g� �X+eik0iXi�1=g� �j0i� Z dkidk0iA(ki)A(k0i)	(2)k;k0 : (3.56)
We would now like to determine the level expansion of 	(2)A , or equivalently, of its momentum deom-position 	(2)k;k0. We an either attempt a diret level expansion of the operator result (3.56) or use thetest state formalism that we arried out in x3.2. It is straightforward to arry out the �rst methodfor the ase of vanishing momentum k = k0 = 0, so we will start with this approah. We will then usethe test state method to �nd the level expansion with full momentum dependene.Let us start by the level expansion of 	(2)k;k0 in (3.56). We use the results in x6.1 of [8℄ to obtainthe following useful expansions:B̂? = b0 + 83b�2 + : : : ; U?h = (2 + t)�L0 + : : : (3.57)Here the dots denote higher-level orretions. We notie that self-ontrations of �X+ vanish as�++ = 0. We end up with the following mode expansions for the matter and ghost �elds:� 12�0 �X+(�1=g)�X+(1=g)j0i = Xi<0;j<0(�1)i+1(�+i �+j )gi+j+2j0i ;(�1=g) = 1Xm=�1 m��g�m�1 ; �(�1=g) = � 1Xm=�1(m� 1)m��g�m : (3.58)

20



The leading term in the level expansion of 	(2)(k;k0) in (3.56) for k = k0 = 0 is given byZ 10 dt(2 + t)�L0�1" 2g0(2 + t)g2 (�+�1)21 � b0(�+�1)2 2g 01#j0i= 2Z 10 dt g02+t � g(2 + t)2g2 (�+�1)21j0i = 43p3(�+�1)21j0i : (3.59)The above omponent of the solution is exat to all orders in �, as it annot reeive ontributions from	(n) with n > 2. The oeÆient was determined analytially using Mathematia.Let us now use the test state approah to determine this oeÆient for general k and k0. In otherwords, we are trying to determine �k;k0 in	(2)k;k0 = �k;k0ei(ki+k0i)Xi(0)(�+�1)21j0i + : : : (3.60)As always, the dots denote higher-level ontributions. The appropriate test state �k;k0 suh thath�k;k0 ;	(2)k;k0i = �k;k0 � (vol) and its BPZ onjugate are given byj�k;k0i = 12e�i(ki+k0i)Xi(0) (���1)201j0i = 12 ��12�0� (�)�X��X�e�i(ki+k0i)Xi(0) j0i ;h�k;k0j = 12 limy!1h0j(��1 )2�10e�i(ki+k0i)Xi(y) 1jyj2�0(k+k0)2 : (3.61)The state �k;k0 has dimension �0(k+ k0)2 +1. We an now evaluate �k;k0 as in the alulation of �n+1in x3.2:�k;k0 =Z 10 dt �1(2 + t)2�0� tf 0(0)g02 + t ��0(k2+k02)D g02 + tn�X+eikiXi(�g)h Æ �k;k0(0) �X+eik0iXi(g)+ �X+eikiXi(�g)h Æ �k;k0(0) �X+eik0iXi(g)o+ �X+eikiXi(�g) hB̂ h Æ �k;k0(0)i �X+eik0iXi(g)EH= 12� 12�0�2 Z 10 dt h0(0)�0(k+k0)2+12 + t � tf 0(0)g02 + t ��0(k2+k02)� D�X+eikiXi(�g) �X��X�e�i(ki+k0i)Xi(0) �X+eik0iXi(g)Em� D g02 + t �(�)(0) (g) + (�g) (�)(0)� + (�g) (0) (g)Eg ;
(3.62)

where we have again fatored the orrelator into the matter and ghost setors. The matter ontributionvanishes unless eah �X+ ontrats with �X�, and the ghost orrelator has been alulated in x3.2.We therefore have�k;k0 =� 12�0�2 Z 10 dt h0(0)�0(k+k0)2+12 + t � tf 0(0)g02 + t ��0(k2+k02)2� g02 + t � g�g2� DeikiXi(�g) e�i(ki+k0i)Xi(0) eik0iXi(g)Em�(2�0)�+�g2 �2: (3.63)21



We evaluate the remaining matter orrelator and use h0(0) = 12+t and f 0(0) = 2� to obtain�k;k0 = 2Z 10 dt (2 + t)��0(k+k0)2�2� 2tg0�(2 + t)��0(k2+k02)� g02 + t � g� (2g)2�0k�k0g2+2�0(k+k0)2 : (3.64)For general momenta the integral is ompliated, but for k = k0 = 0 we reover the result from theoperator expansion: �k=0;k0=0 = 43p3 : To summarize, our solution is	 = �Z dkiA(ki)eikiXi(0)�+�11j0i+ �2�Z dkidk0iA(ki)A(k0i)�k;k0ei(ki+k0i)Xi(0)(�+�1)21j0i+ : : :�+O(�3) (3.65)with �k;k0 given in (3.64).4 Solutions for marginal operators with singular operator produtsIn the previous setion, we onstruted analyti solutions for marginal deformations when the operatorV has regular operator produts. In this setion we generalize the onstrution to the ase where Vhas the following singular OPE with itself:V (z)V (w) � 1(z � w)2 + regular: (4.1)4.1 Constrution of 	(2)The string �eld 	(2) in (2.32) is not well de�ned when V has the OPE (4.1). Let us de�ne a regularizedstring �eld 	(2)0 as follows:h�;	(2)0 i = Z 12� dt h f Æ �(0) V (1)B V (1 + t) iW1+t : (4.2)The equation of motion is no longer satis�ed by 	(2)0 beause the surfae term at t = 2� in (2.36) isnonvanishing. The BRST transformation of 	(2)0 is given byh�;QB	(2)0 i = � h�;	(1) �	(1) i+ h f Æ �(0) V (1) V (1 + 2�) iW1+2� ; (4.3)and we see that the seond term on the right-hand side violates the equation of motion. Using theOPE V (��) V (�) = 12� �(0) +O(�) ; (4.4)the term violating the equation of motion an be written ash f Æ �(0) V (1) V (1 + 2�) iW1+2� = 12� h f Æ �(0) �(1 + �) iW1+2� +O(�) : (4.5)22



Sine the operator � is the BRST transformation of , we reognize that the term (4.5) is BRSTexat up to ontributions whih vanish as � ! 0. This ruial property makes it possible to satisfythe equation of motion by adding a ounterterm to the regularized string �eld 	(2)0 . We de�ne theounterterm 	(2)1 by h�;	(2)1 i = � 12� h f Æ �(0) (1 + �) iW1+2� : (4.6)The sum of 	(2)0 and 	(2)1 then solves the equation of motion in the limit �! 0:lim�!0 h�;QB (	(2)0 +	(2)1 ) + 	(1) �	(1) i = 0 : (4.7)This is not yet the end of the story, as we must also require that the solution be �nite as �! 0. Sine	(1) �	(1) is a �nite state, QB (	(2)0 +	(2)1 ) is also �nite in the limit � ! 0. This implies that whilethe state 	(2)0 + 	(2)1 an be divergent, the divergent terms must be BRST losed. It follows that a�nite solution an be obtained by simply subtrating the divergent terms from 	(2)0 + 	(2)1 . Let usisolate the divergent terms in 	(2)0 . Using the antiommutation relation fB; (z) g = 1, the operatorinsertions in 	(2)0 an be written asV (1)B V (1 + t) = V (1)V (1 + t)� V (1) V (1 + t)B= 1t2 (1) � 1t �(1)B +O(t0) : (4.8)Using the formulahO1(z1)O2(z2) : : : On(zn) iW�+Æ� = hO1(z1)O2(z2) : : : On(zn) iW�+ Æ� hO1(z1)O2(z2) : : : On(zn)L iW� +O(Æ�2) ; (4.9)valid for any set of operators Oi, we �ndhf Æ �(0) V (1)B V (1 + t)iW1+t = 1t2 hf Æ �(0) (1)iW1 + 1t hf Æ �(0)�(1)L � �(1)B�iW1 +O(t0)= 1t2 h f Æ �(0) (1) iW1 + 1t h�;  00 i+O(t0) ; (4.10)where in the last equality we have used the expression for  00 [5, 8℄. The �rst term on the right-handside is not BRST losed. After integration over t, it gives a divergent term of O(1=�) whih is preiselyaneled by the divergent term from 	(2)1 , as expeted. The integral over t of the seond term gives adivergent term of O(ln �) whih is not aneled but, as expeted, is BRST losed. (It is in fat BRSTexat.) If we de�ne the ounterterm 	(2)2 by	(2)2 = ln(2�) 00 ; (4.11)we �nally assemble a string �eld 	(2) that is �nite and satis�es the equation of motion as follows:	(2) = lim�!0 h	(2)0 +	(2)1 +	(2)2 i : (4.12)23



We an also write the solution as	(2) = lim�!0 �	(2)0 � 1�� 1j0i+ ln(2�) 00 + 1� L+ 1j0i � ; (4.13)using the following operator expression for 	(2)1 :	(2)1 = � 1�� e��L+1j0i = � 1�� 1j0i + 1� L+ 1j0i +O(�) : (4.14)Our onstrution of 	(2) did not rely on any property of V other than the OPE (4.1). The OPE(4.1) is more restritive than the generi OPE of a dimension-one primary �eld. For example, we mayhave V (z)V (w) � 1(z � w)2 + 1z �w U(w) ; (4.15)where U(w) is some matter primary �eld of dimension one. In this ase, V would not be exatlymarginal. Indeed, there must be a dimension-one primary �eld �U suh that h �U(z)U(0)i = 1=z2. TheOPE (4.15) then implies that the three-point funtion hV V �Ui is nonvanishing, while a neessaryondition for the exat marginality of V is the vanishing of hV VW i for all dimension-one primary�eldsW . (See, for example, [27℄.) Thus we expet that our onstrution of 	(2) should not go throughif the OPE takes the form (4.15). Let us see this expliitly. In this ase (4.5) is replaed byh f Æ �(0) V (1) V (1 + 2�) iW1+2� = 12� h f Æ �(0) �(1 + �) iW1+2�+ h f Æ �(0) �U(1 + �) iW1+2� +O(�) : (4.16)The seond term on the right-hand side is �nite in the limit � ! 0 . The operator �U is BRSTlosed, but it is not BRST exat. Therefore the equation of motion annot be satis�ed by adding aounterterm.4.2 Gauge ondition, L eigenstates, and divergene strutureAll the terms of 	(2) in (4.13) are annihilated by B exept L+1j0i:BL+1j0i = [B;L+℄1j0i = B+1j0i 6= 0 : (4.17)Thus, rather uriously, 	(2) violates the Shnabl gauge ondition. It appears that this violation isintrinsi. While we an add an arbitrary BRST losed state Z to 	(2), we believe that no hoie of Zan restore the Shnabl gauge ondition. Indeed, assume that suh a state Z exists:B(L+1j0i + Z) = 0 ; QBZ = 0 : (4.18)Ating with QB on this equation, we �nd that Z must satisfyLZ = �QBBL+1j0i : (4.19)24



Note that while the left-hand side is in the image of L, the right-hand side is in the kernel of L beause[L;QB ℄ = [L;B℄ = 0 and LL+1j0i = 0 . We believe that (4.19) has no solution for Z, though we donot have a proof.5This obstrution in preserving the Shnabl gauge ondition when V has the singular OPE (4.1)is rather unexpeted. To gain some insight, let us reonsider the situation in Siegel gauge. In Siegelgauge the equations of motion (2.4) are solved by setting	(n) = b0L0�(n) : (4.20)It turns out that the right-hand side is well de�ned and thus manifestly obeys the gauge onditionbeause �(n) has no overlap with states in the kernel of L0. When the equations of motion havea solution, �(n) is a BRST-exat state of ghost number two. The only BRST-exat state of ghostnumber two in the kernel of L0 is QB0j0i = 21�1j0i. We are laiming that �(n) has no overlap with1�1j0i. This is shown using twist symmetry in the ghost setor. For a generi state in the Fokspae j�i = fmatter osillatorsg b�mj � � � b�m1�nk � � � �n1 j0i ; mi � 2 ; ni � �1 ; (4.21)the ghost-twist eigenvalue is de�ned to be1 + jXi=1 mi + kXi=1 ni (mod 2) : (4.22)The linearized solution 	(1) is even under ghost twist, whih implies that �(2) = �	(1) � 	(1) isalso even. On the other hand, the problemati state 1�1j0i is odd. This shows that �(2) has nooverlap with it. A little indutive argument an be used to extend this result to �(n) with n > 2.Assuming that all the states 	(k) with k < n are even, we see that �(n), whih onsists of symmetrizedstar produts of the states 	(k) with k < n, is also even. Hene there is no obstrution in �nding	(n) = b0L0�(n). The operator b0=L0 preserves twist, so 	(n) is even, and the indution an proeed tothe next step.We now perform a similar analysis for the ase of Shnabl gauge. The formal solution	(n) = BL�(n) (4.23)is well de�ned if and only if �(n) has no overlap with states in the kernel of L. While we do not have aomplete understanding of the spetrum of L, we will �nd a onsistent piture by assuming that �(n)an be expanded in a sum of eigenstates of L with integer eigenvalues L � �1.6 We an systematially5If an operator is diagonalizable, its kernel and its image have no nontrivial overlap. Sine L is non-hermitian, it isnot a priori lear if it an be diagonalized. In priniple a state Z solving (4.19) may exist if L has a suitable Jordanstruture, but we �nd this unlikely.6Here and in what follows we use L to denote the eigenvalue of L as well.25



enumerate the L eigenstates that have ghost number two and are BRST exat within a subspae ofstates whih an appear in the expansion of �(n). It will be suÆient to fous on states with L � 0.We believe that the only suh states are as follows.� L = �1: the state 10j0i = QB1j0i.� L = 0: the state 1�1j0i = 12QB0j0i.� L = 0: the state L+10j0i = QBL+1j0i.Contrasting the kernel of L with the kernel of L0, we see the surprising appearane of the extra stateL+10j0i. Sine this state is even under ghost twist, it an a priori appear in �(n). The �rst state1�1j0i with L = 0 annot appear, as we have argued before. We an write the following ansatz fora �nite �(n): �(n) = �(n)10j0i+ �(n)L+10j0i+�(n)> ; (4.24)where �(n)> only ontains terms with positive eigenvalues of L. The most general 	(n) that satis�esthe equation QB	(n) = �(n) is the manifestly �nite string �eld	(n) = �(n)1j0i + �(n)L+1j0i+ BL�(n)> + (BRST losed) : (4.25)If �(n) 6= 0, the term L+1j0i violates the gauge ondition. In the following we will not write theBRST-losed term that plays no role.We are now going to establish a preise relationship between the violation of the gauge onditionand the divergenes that an arise in the Shwinger representation of the ation of B=L when thematter operator has singular operator produts. When B=L ats on �(n)> , we an use its Shwingerrepresentation BL = lim�!1Z �0 dtBe�tL = BL � lim�!1 e��LBL ; (4.26)sine the boundary term vanishes in the limit. Thus we rewrite (4.25) as	(n) = �(n)1j0i+ �(n)L+1j0i+ lim�!1Z �0 dtBe�tL(�(n) � �(n)10j0i � �(n)L+10j0i)= lim�!1��Z �0 dtBe�tL�(n)�+ e��(n)1j0i � ��(n)BL+10j0i�+ �(n)L+1j0i : (4.27)Note that we have BL+10j0i = � 00 : (4.28)Sine the string �eld 	(n) is �nite, we see thatZ �0 dtBe�tL�(n) = �e��(n)1j0i +���(n)  00 + �nite : (4.29)26



We have thus learned that the divergenes of the integral on the left-hand side, whih performs thenaive inversion of QB on �(n), are diretly related to the L = �1 and L = 0 eigenstates in thedeomposition of �(n). Moreover, the oeÆient of the divergene of O(�) is orrelated with theoeÆient of the Shnabl-gauge violating term L+1j0i.The divergenes in (4.29) an only arise from the ollision of the V insertions on the boundary ofthe world-sheet. If V has regular operator produts, all integrals are manifestly �nite, �(n) = �(n) = 0for any n, 	(n) satis�es the Shnabl gauge ondition, and the naive presriptionQ�1B = B=L is adequateto handle this ase, as disussed in setion 3. On the other hand, if V has a singular OPE with itself,(4.27) severely onstrains the struture of the result. Let us look at the ase of 	(2). To begin with,note that the integral Z �0 dtBe�tL�(2) (4.30)is in fat the regularized 	(2)0 with the identi�ation � = � ln(2�). Substituting this in (4.27), ourgeneral analysis predits	(2) = lim�!0 "	(2)0 + �(2)2� 1j0i+ ln(2�)� �(2)  00 + �(2) L+ 1j0i# (4.31)in omplete agreement with the expliit result (4.13) with �(2) = �2=� and �(2) = 1=�.The analysis an be extended to 	(n) with n > 2. An interesting simpli�ation ours if V =iq 2�0�X. Sine the number of �X is onserved mod 2 under Wik ontrations, the oeÆients �(n)and �(n) are zero for odd n. It follows that for odd n the integral (4.29) is �nite. In partiular, weexpet that for V = iq 2�0 �X the most general 	(3) is given by	(3) = � lim�!1Z �0 dtBe�tL �	(1) �	(2) +	(2) �	(1)�+ (BRST losed) ; (4.32)where the �!1 limit is guaranteed to be �nite.While 	(3) may be obtained this way (setting the arbitrary BRST losed terms to zero and per-forming the integral by brute fore), in the following subsetion we will follow a route analogous tothe one in x4.1. We will start with a regularized 	(3)0 and systematially look for ounterterms suhthat the �nal state 	(3) satis�es the equation of motion and is �nite. The arguments in this setionstrongly suggest that a �nite string �eld 	(n) satisfying the equation of motion exists for all n and itan be written as a regularized string �eld plus ounterterms.4.3 Constrution of 	(3)In this subsetion we perform an expliit onstrution of 	(3) for V with the OPE (4.1). The �rststep is to regularize (3.3) and de�ne 	(3)0 byh�;	(3)0 i = Z 12� dt1 Z 12� dt2 h f Æ �(0) V (1)B V (1 + t1)B V (1 + t1 + t2) iW1+t1+t2 : (4.33)27



The BRST transformation of 	(3)0 is given byh�;QB	(3)0 i = � h�;	(1) �	(2)0 +	(2)0 �	(1) i+R1 +R2 ; (4.34)where R1 = Z 12� dt2 h f Æ �(0) V (1) V (1 + 2�)B V (1 + 2�+ t2) iW1+t2+2� ;R2 = Z 12� dt1 h f Æ �(0) V (1)B V (1 + t1) V (1 + t1 + 2�) iW1+t1+2� : (4.35)As in the ase of QB	(2)0 , the ontributions R1 and R2 from the surfae terms at t1 = 2� and att2 = 2�, respetively, are nonvanishing. We also need to reprodue � 	(1) � 	(2)1 � 	(2)1 � 	(1) and�	(1) �	(2)2 �	(2)2 �	(1) to satisfy the equation of motion. It is not diÆult to realize that the BRSTtransformation of 	(3)1 de�ned by	(3)1 = � Z 12� dt1	(1) �B+L e(1�t1)L+L 	(2)1 � Z 12� dt2	(2)1 � B+L e(1�t2)L+L 	(1) (4.36)anels the divergent terms from the OPE's of V (1) V (1+2�) in R1 and of V (1+ t1) V (1+ t1+2�)in R2 and reprodues �	(1) �	(2)1 �	(2)1 �	(1). We also introdue 	(3)2 de�ned by	(3)2 = � Z 12� dt1	(1) �B+L e(1�t1)L+L 	(2)2 � Z 12� dt2	(2)2 � B+L e(1�t2)L+L 	(1) (4.37)so that its BRST transformation reprodues �	(1) �	(2)2 �	(2)2 �	(1).However, this is not the whole story. First, when t2 in R1 is of O(�), three V 's are simultaneouslylose so that we annot simply replae two of them by the most singular term of the OPE. The sameremark applies to R2 when t1 is of O(�). Seondly, while the ontributions from the surfae termsat t1 = 2� or at t2 = 2� in the alulation of QB	(3)2 turn out to vanish in the limit � ! 0, theorresponding ontributions in the alulation of QB	(3)1 turn out to be �nite and not BRST exat.These ontributions have to be aneled in order for the equation of motion to be satis�ed.We thus need to alulate R1, R2, QB	(3)1 , and QB	(3)2 . The alulations of QB	(3)1 and QB	(3)2are universal for any V whih has the OPE (4.1), while those of R1 and R2 are not. Let us begin withQB	(3)1 . It is onvenient to use the CFT desription of 	(3)1 given byh�;	(3)1 i =� 12� Z 12� dt1 h f Æ �(0) V (1)B (1 + t1 + �) iW1+t1+2�� 12� Z 12� dt2 h f Æ �(0) (1 + �)B V (1 + t2 + 2�) iW1+t2+2� : (4.38)The BRST transformation of 	(3)1 ish�;QB	(3)1 i = � h�;	(1) �	(2)1 +	(2)1 �	(1) i+ eR1 + eR2 + eR3 ; (4.39)28



where eR1 = � 12� Z 12� dt2 h f Æ �(0) �(1 + �)B V (1 + t2 + 2�) iW1+t2+2� ;eR2 = � 12� Z 12� dt1 h f Æ �(0) V (1)B �(1 + t1 + �) iW1+t1+2� ;eR3 = � 12� h f Æ �(0) V (1) (1 + 3�) iW1+4� � 12� h f Æ �(0) (1 + �) V (1 + 4�) iW1+4� : (4.40)
As we mentioned earlier, the BRST transformation of 	(3)1 reprodues �	(1) �	(2)1 �	(2)1 �	(1), andeR1 and eR2 anel part of R1 and R2, respetively. The last term eR3 is �nite in the limit � ! 0 andnot BRST exat: eR3 = � 3 h f Æ �(0) �V (1) iW1 +O(�) : (4.41)Let us next alulate QB	(3)2 . It is again onvenient to use the CFT desription of 	(3)2 :h�;	(3)2 i = ln(2�)Z 12� dt1 h f Æ �(0) V (1)B QB � [B (1 + t1) ℄ iW1+t1+ ln(2�)Z 12� dt2 h f Æ �(0) QB � [B (1) ℄ B V (1 + t2) iW1+t2 : (4.42)The BRST transformation of 	(3)2 is given byh�;QB	(3)2 i =� h�; 	(1) �	(2)2 +	(2)2 �	(1) i� ln(2�) h f Æ �(0) QB � [ V (1)B (1 + 2�) ℄ iW1+2�+ ln(2�) h f Æ �(0) QB � [B (1) V (1 + 2�) ℄ iW1+2� : (4.43)Sine the BRST transformations of V (1)B (1 + 2�) and B (1) V (1 + 2�) are both of O(�), the lasttwo terms vanish in the limit �! 0. We have thus shown thatlim�!0 h�;QB	(3)2 +	(1) �	(2)2 +	(2)2 �	(1) i = 0 : (4.44)To summarize, we have seen that the BRST transformation of 	(3)0 + 	(3)1 + 	(3)2 reprodues�	(1) �	(2) �	(2) �	(1) with 	(2) = 	(2)0 +	(2)1 +	(2)2 , and there are remaining terms R1, R2, eR1,eR2, and eR3. We now alulate R1 and R2. These terms involve a triple operator produt of V 's andthe results depend on V . We hoose V (z) = ir 2�0 �X(z) ; (4.45)whih is exatly marginal. With this hoie of V , the triple operator produt of V 's on Wn�1 isV (z1)V (z2)V (z3) = Gn�1(z1 � z2)V (z3) +Gn�1(z1 � z3)V (z2) +Gn�1(z2 � z3)V (z1)+ :V (z1)V (z2)V (z3) : ; (4.46)29



where Gn�1 is the propagator on Wn�1:Gn�1(z) = �2n2 h sin �zn i�2 = 1z2 +O(z0) : (4.47)The normal-ordered term in (4.46) does not ontribute in the alulations of R1 and R2 in the limit�! 0 . The term with V (1) and V (1 + 2�) ontrated in R1 anels eR1:lim�!0 � Z 12� dt2G1+t2+2�(2�) h f Æ �(0) (1) (1 + 2�)B V (1 + 2�+ t2) iW1+t2+2� + eR1 � = 0 : (4.48)The remaining two terms are �nite in the limit �! 0:lim�!0� Z 12� dt2G1+t2+2�(t2) h f Æ �(0) V (1) (1 + 2�)B (1 + 2�+ t2) iW1+t2+2�+ Z 12� dt2G1+t2+2�(t2 + 2�) h f Æ �(0) (1) V (1 + 2�)B (1 + 2�+ t2) iW1+t2+2� �= 32 h f Æ �(0) �V (1) iW1 : (4.49)We therefore have lim�!0 hR1 + eR1 i = 32 h f Æ �(0) �V (1) iW1 : (4.50)The alulation of R2 is parallel, and we obtainlim�!0 hR2 + eR2 i = 32 h f Æ �(0) �V (1) iW1 : (4.51)The sum of the �ve remaining terms vanishes in the limit �! 0:lim�!0 hR1 +R2 + eR1 + eR2 + eR3 i = 0 : (4.52)We have thus shownlim�!0 h�;QB [ 	(3)0 +	(3)1 ℄ + 	(1) � [ 	(2)0 +	(2)1 ℄ + [	(2)0 +	(2)1 ℄ �	(1) i = 0 (4.53)and lim�!0 h�;QB [ 	(3)0 +	(3)1 +	(3)2 ℄ + 	(1) �	(2) +	(2) �	(1) i = 0 : (4.54)The sum of the �ve terms did not have to vanish in the limit � ! 0 , but it had to be BRST exatto satisfy the equation of motion by adding a ounterterm. In partiular, the oeÆient in frontof h f Æ �(0) �V (1) iW1 had to vanish. We found that eR3 from 	(3)1 is nontrivially aneled byontributions from 	(3)0 .Let us next study the divergent terms of 	(3)0 . The triple operator produt of V 's in (4.33) an bewritten as follows:V (1)V (1 + t1)V (1 + t1 + t2)= G1+t1+t2(t2)V (1) +G1+t1+t2(t1)V (1 + t1 + t2)+G1+t1+t2(t1 + t2)V (1 + t1)+ : V (1)V (1 + t1)V (1 + t1 + t2) : : (4.55)30



Note that no further divergene appears when remaining operators ollide. The ontribution fromthe normal-ordered produt in the last line is obviously �nite. The divergent terms from the �rst twoterms on the right-hand side are aneled by the divergent terms from 	(3)1 and 	(3)2 . The ontributionfrom the third term on the right-hand side isZ 12� dt1 Z 12� dt2 � �t1 + t2 + 2 �2 � sin � (t1 + t2)t1 + t2 + 2 ��2� h f Æ �(0) (1)B V (1 + t1)B (1 + t1 + t2) iW1+t1+t2 : (4.56)This ontains a divergent term � ln(4�) h f Æ�(0) V (1) iW1 , whih omes from the most singular term1=(t1 + t2)2 in the region where t1 and t2 are simultaneously of O(�). Note that the divergent term isproportional to 	(1) and thus BRST losed, as expeted. Therefore, if we de�ne	(3) = lim�!0 �	(3)0 +	(3)1 +	(3)2 +	(3)3 � ; (4.57)where 	(3)3 = ln(4�)	(1) ; (4.58)	(3) is �nite and satis�es the equation of motion:h�; QB	(3) +	(1) �	(2) +	(2) �	(1) i = 0 : (4.59)An expliit form of 	(3) is given byh�;	(3) i = lim�!0 � Z 12� dt1 Z 12� dt2 h f Æ �(0) V (1)B V (1 + t1)B V (1 + t1 + t2) iW1+t1+t2� 12� Z 12� dt1 h f Æ �(0) V (1)B (1 + t1 + �) iW1+t1+2�� 12� Z 12� dt2 h f Æ �(0) (1 + �)B V (1 + t2 + 2�) iW1+t2+2�+ ln(2�)Z 12� dt1 h f Æ �(0) V (1)B QB � [B (1 + t1) ℄ iW1+t1+ ln(2�)Z 12� dt2 h f Æ �(0) QB � [B (1) ℄ B V (1 + t2) iW1+t2+ ln(4�) h f Æ �(0) V (1) iW1 � :
(4.60)
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