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Non-perturbative improvement of the axial 
urrent withthree dynami
al 
avors and the Iwasaki gauge a
tionT. Kaneko 1;2, S. Aoki 3;4, M. Della Morte 5, S. Hashimoto 1;2,R. Ho�mann 6 and R. Sommer 7(CP-PACS/JLQCD and ALPHA Collaborations)1 High Energy A

elerator Resear
h Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan2 Graduate University for Advan
ed Studies, Tsukuba, Ibaraki 305-0801, Japan3 Graduate S
hool of Pure and Applied S
ien
es,University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan4 Riken BNL Resera
h Center, Brookhaven National Laboratory, Upton, NY 11973, USA5 CERN, Physi
s Department, TH Unit, CH-1211 Geneva 23, Switzerland6 Department of Physi
s, University of Colorado, Boulder, CO 80309, USA7 DESY, Platanenallee 6, 15738 Zeuthen, Germany9 Mar
h 2007Abstra
tWe perform a non-perturbative determination of the improvement 
oeÆ
ient 
Ato remove O(a) dis
retization errors in the axial ve
tor 
urrent in three-
avor latti
eQCD with the Iwasaki gauge a
tion and the standard O(a)-improved Wilson quarka
tion. An improvement 
ondition with a good sensitivity to 
A is imposed at 
onstantphysi
s. Combining our results with the perturbative expansion, 
A is now knownrather pre
isely for a�1&1:6 GeV.
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1 Introdu
tionVarious dis
retizations of QCD on a latti
e are presently used in the large s
ale e�ortsaiming at non-perturbative results in the theory of strong intera
tions (see [1, 2, 3, 4, 5, 6,7, 8, 9, 10℄ and referen
es therein). Wilson's original formulation [11℄ is theoreti
ally verywell founded [12, 13℄ and rather simple to implement in numeri
al simulations. The 
avorsymmetries are exa
t and with modern algorithms [14, 15, 16, 17, 18℄ the regime of smallquark masses and small latti
e spa
ings 
an be rea
hed [1, 19℄. On the other hand it iswell known that sin
e the 
hiral symmetries are broken by the Wilson term, latti
e artifa
tslinear in the latti
e spa
ing are present. It has long been understood how these 
an beremoved by applying Symanzik's improvement programme [20, 21, 22, 23, 24℄. One has toadd dimension �ve �elds to the latti
e Lagrangian and (for example) dimension four �eldsto the quark bilinears. In parti
ular the bare 
avor axial 
urrentAa�(x) =  (x)T a 
�
5  (x) (1)(the SU(Nf) generator T a a
ts in 
avor spa
e) is improved by(AI)a�(x) = Aa�(x) + a 
A 12(�� + ���)P a(x) ; P a(x) =  (x)T a 
5  (x) ; (2)with �� f(x) = 1a [f(x+ a�̂)� f(x)℄ ; ��� f(x) = 1a [f(x)� f(x� a�̂)℄ : (3)The 
oeÆ
ients of these 
orre
tion terms, su
h as 
A, 
an be determined non-perturbativelyby requiring spe
i�
 
ontinuum 
hiral Ward-Takahashi identities to be valid at �nite latti
espa
ing [25℄. One is then sure that the O(a) e�e
ts are entirely removed. Details of thisprogramme as well as the present status have re
ently been reviewed [26℄. Here we justmention that the 
oeÆ
ient 
sw of the Sheikholeslami-Wohlert term [21℄, the only dimension�ve 
orre
tion to the a
tion1, has been determined non-perturbatively for di�erent gaugea
tions and numbers of 
avors [25, 27, 28, 29℄.Next to 
sw, the axial 
urrent improvement 
oeÆ
ient 
A is of parti
ular relevan
e { forexample in the determination of weak leptoni
 de
ay 
onstants su
h as F� or the quarkmasses. Non-perturbative determinations of 
A have been studied for Nf = 0 and 2 inrefs.[25, 30, 31, 32, 33℄. It turned out that they need spe
ial 
are sin
e the spread between
A-values 
omputed from di�erent improvement 
onditions is signi�
ant around a � 0:1 fm.There is nothing fundamentally wrong with this fa
t. However, as explained in some detailin refs. [26, 28, 33, 34℄, in su
h a situation it is important to impose improvement 
onditionson a line of 
onstant physi
s. This means that as the latti
e spa
ing a is varied, all otherphysi
al s
ales are kept �xed. The remaining e�e
ts (after improvement) are then smoothO(a2) terms.Here we apply this strategy to the theory withNf = 3 
avors and the Iwasaki gauge a
tion[35℄, whi
h is of immediate interest to the large s
ale 
omputations of the CP-PACS/JLQCD1We negle
t small O(am) modi�
ations of the gauge 
ouplings and quark masses [22, 24℄, as they are notso relevant in pra
ti
e [26℄. Here m stands for any of the quark masses.2



Collaborations [3℄. All known pra
ti
al methods for a 
omputation of 
A start from the fa
tthat in the 
ontinuum limit the (PCAC) quark massm = h�0j12 ��� + ���� (AI)a0j�i2h�0jP aj�i (4)does not depend on the 
hoi
e of the external states j�i ; j�0i. This is just a rephrasingof the PCAC (operator) identity. On the latti
e an O(a) dependen
e will exist in general.It is redu
ed to O(a2) by improvement. Requiring m to be the same for two di�erent
hoi
es of j�i ; j�0i, or as we will say later \two di�erent kinemati
al 
onditions", allows adetermination of 
A when 
sw is already known.As in ref. [33℄, we use the S
hr�odinger fun
tional de�ned in a Eu
lidean L3 � T world to
onstru
t suitable states with a large sensitivity to 
A. In the following se
tion we de�ne theexa
t 
hoi
es of kinemati
al 
onditions. The reader who is familiar with ref. [33℄ may skipthis se
tion and pro
eed dire
tly to the des
ription of the simulation details, se
t. 3, and theresults, se
t. 4. We �nish with some 
on
lusions.2 Improvement 
onditionWe introdu
e the following S
hr�odinger fun
tional [36, 37℄ 
orrelation fun
tions [32, 33℄f (n)A (x0) = �a33 Xx hAa0(x)Oa;(n)i ; f (n)P (x0) = �a33 Xx hP a(x)Oa;(n)i and (5)f (n;m)1 = �13hO0 a;(n)Oa;(m)i; (6)with Oa;(n) = a6L3 Xy;z !(n)(y� z) ��(y)T a 
5 �(z): (7)where � and �� are the fermioni
 boundary �elds on the x0 = 0 timesli
e (O0 is de�ned inthe same way in terms of the boundary �elds at x0 = T ). The 
orrelators depend on thesmooth fun
tions !(n). Here, as in ref. [33℄, we use three wave fun
tions!(n) = 1N (n) Xk2Z3 �!(n)(jr� kLj) (n=1; 2; 3); (8)�!(1)(r) / e�jrj=a0 ; �!(2)(r) / (jrj=r0) e�jrj=a0 ; �!(3)(r) / e�jrj=(2a0) ; (9)with a0=L=6. The normalization fa
tors N (n) are �xed by a3Px(!(n))2=1.By suitably 
ombining the operators Oa;(n), the resulting 
orrelation fun
tions get 
ontri-butions from di�erent states in the pseudos
alar 
hannel. In fa
t we 
onstru
t the boundary3



operators O0 and O1, whi
h mainly 
ouple to the ground and �rst ex
ited states respe
tively,by using the eigenve
tors of the 3� 3 symmetri
 matrix f (n;m)1Oa0 =Xn �(n)0 Oa;(n); Oa1 =Xn �(n)1 Oa;(n); (10)where �0 (�1) represents the eigenve
tor asso
iated with the largest (2nd largest) eigenvalue.The 
orresponding 
orrelators fX;i = Pn �(n)i f (n)X with i = 0; 1 and X=A,P are eventuallyused to de�ne the improvement 
ondition, whi
h readsm0(x0) = m1(x0); (11)wheremi(x0) = ri(x0) + 
A a si(x0); (12)ri(x0) = (�0 + ��0) fA;i(x0)4fP;i(x0) and si(x0) = �0��0 fP;i(x0)2 fP;i(x0) : (13)Solving eq. (11) for 
A yields
A(x0) = �1a�r(x0)�s(x0) ; �r(x0) = r1(x0)� r0(x0); �s(x0) = s1(x0)� s0(x0) : (14)The sensitivity of the improvement 
ondition to 
A is given by a j�s(x0)j. In the ideal 
ase ofexa
t proje
tion on the ground (�) and �rst ex
ited (�1) states (and large T�x0) that wouldbe given by a (m2�1 �m2�). As dis
ussed in ref. [33℄ however the ve
tors �(n)i do not a
hieveperfe
t proje
tion and the 
orrelator fA;1(x0) for example gets some 
ontribution from theground state. Anyway what is really needed is that at intermediate times x0 ' T=2 wherewe extra
t 
A, the 
orrelation fun
tions are dominated by states with di�erent energies, su
hthat the sensitivity is high. We will see in se
t. 4 that in our setup this is indeed the 
ase.3 Simulation detailsWe work in the theory with three (dynami
al) degenerate 
avors of non-perturbatively im-proved Wilson-fermions and the Iwasaki gauge a
tion [21, 29, 35℄. The latter readsSg = �( Xx; �<�wP��(x0)13 ReTr[1�P��(x)℄ + Xx; �; �wR��(x0)13 ReTr[1�R��(x)℄) ; (15)where �=6=g20, and P�� and R�� are the 1 � 1 and 1 � 2 Wilson loops in the (�; �) plane.Their weights are wP��=3:648 and wR��=�0:331 on periodi
 latti
es.4



The S
hr�odinger fun
tional formalism is implemented on a L3 � T latti
e with L= T .The ba
kground �eld is set to zero and the �elds are 
hosen to be periodi
 in spa
e. Theweights in the gauge a
tion are modi�ed to the following 
hoi
e [38℄wP��(x0) = � 1=2 at x0=0 or T , and �; � 6=43:648 otherwise (16)wR��(x0) = 8<: 0 at x0=0 or T , and �; � 6=4�0:331� (3=2) at x0=0 or T , and �=4�0:331 otherwise (17)whi
h entails tree level O(a) improvement \at the boundaries" [22℄. The 
oeÆ
ients of theO(a) boundary 
ounterterms for the fermions are also set to their tree level value [22℄. Notethat this is not at all essential. Irrespe
tive of whether the boundary improvement termsare implemented, eq. (11) is a 
orre
t improvement 
ondition [22℄.We simulate at three points in the (�; L=a; �) spa
e on a line of 
onstant physi
s de�nedby keeping the volume and the quark mass �xed. S
ales are �xed through r0 [39℄ and we willuse r0 = 0:5 fm to quote physi
al units. For our a
tion, the ratio r0=a has been 
omputedin the region 1:83 � � � 2:05 [3℄2. With a slight interpolation of the data of ref. [3℄ we�xed L=r0 � 3, somewhat larger than the physi
al size used in ref. [33℄. The resulting pairs(�; L=a), together with some algorithmi
 details are 
olle
ted in table 1.� L=a � NMD Npoly Ntraj PPHMC PNMT1.83 12 0.13852 90 200 3800 0.90 0.971.83 12 0.13867 90 220 3800 0.89 0.951.95 16 0.13685 125 230 3000 0.91 0.961.95 16 0.13697 140 260 3000 0.94 0.942.05 20 0.13604 130 350 3000 0.87 0.97Table 1: Simulation parameters. We denote the number of the Mole
ular Dynami
s steps by NMD,the order of the polynomial approximation by Npoly and the number of unit length traje
tories byNtraj. The a

eptan
e rates for the PHMC updating and for the noisy Metropolis test in the PHMCalgorithm are denoted by PPHMC and PNMT respe
tively.The hopping parameter � is tuned in order to give a bare quark mass mref of about15 MeV. At � =1:83 and 1:95, two quark masses around 10 and 20 MeV are simulated sothat we 
an interpolate 
A to mref . Noti
e that we are ignoring presumably small 
hangesof the renormalization fa
tors in our range of � and we just keep the bare quark mass �xed.Also, the 1-loop value of 
A [38, 40℄ is used at this point in the de�nition of the quark mass.The algorithm has been des
ribed in ref. [15℄. It is a 
ombination of HMC [41℄ andPHMC [42, 43℄. Non-Hermitian Chebyshev polynomials P [D℄ are used to approximate theinverse square root of the Dira
 operator D required for the third 
avor, whereas the other2In ref. [3℄ r0=a is extrapolated to the physi
al point, with the strange quark mass determined from thephysi
al mass of the Kaon. 5



two 
avors are treated using the usual HMC pseudo-fermion a
tion. The number of mole
ulardynami
s steps is 
hosen su
h that the a

eptan
e rate PPHMC is about 90%. In order tomake this algorithm exa
t, the 
orre
tion fa
torP
orr = det [W [D℄℄ ; W [D℄ = P [D℄D (18)is taken into a

ount by a noisy Metropolis test [44℄. The order of the polynomial approxi-mation is 
hosen su
h that the a

eptan
e rate of the noisy Metropolis test is around 95%.Throughout all the 
omputation the symmetri
ally even-odd pre
onditioned version of theDira
 operator [15, 45℄ is used.The 
orrelators in eqs. (5, 6) are measured ea
h 5th traje
tory and residual auto
orrela-tions are estimated by binning the ja
k-knife samples. For 
A(x0) the errors 
atten out forbin-sizes larger than four, whi
h is what we �nally use in our analysis.4 Numeri
al results4.1 Wave fun
tion proje
tionAs dis
ussed above, the analysis starts with the determination of the eigenve
tors of the
orrelator matrix f (n;m)1 (n;m = 1; 2; 3). The results at the lightest quark mass for ea
h �value are given in table 2. The errors on the 
omponents of the eigenve
tors are less than10�3 and 10�2 for �0 and �1, respe
tively.The entries of the (normalized) eigenve
tors are ratios of 
orrelation fun
tions for whi
hthe Z-fa
tors of the boundary �elds 
an
el. They will thus have a well de�ned 
ontinuumlimit along a line of 
onstant physi
s as long as the wave fun
tions !(n) are de�ned onlythrough physi
al length s
ales. Indeed, we observe only a small latti
e spa
ing dependen
eand also note that the values we obtain are 
lose to those in ref.[33℄, where slightly smallervalues of a0 (�0:2 fm) and L are used in two-
avor QCD with the plaquette gauge a
tion.Using the measured eigenve
tors, we now 
onstru
t the pseudos
alar 
orrelators fX;0 andfX;1 (X=P;A). Fig. 1 shows the e�e
tive masses in units of the box size for the proje
ted
orrelators fP;i at � = 1:83 and 1.95. Clearly, the 
orrelators are dominated by di�erentstates and the e�e
tive masses are well separated even for large times. The data at the two
oarser latti
e spa
ings are obtained at physi
al quark masses similar to ea
h other and we� � �0 �11.83 0.13867 ( 0.5459, 0.5920, 0.5929 ) ( 0.8323, -0.3019, -0.4649 )1.95 0.13697 ( 0.5415, 0.5942, 0.5948 ) ( 0.8367, -0.312 , -0.4500 )2.05 0.13604 ( 0.5360, 0.5962, 0.5976 ) ( 0.8371, -0.2836, -0.4679 )Table 2: Example of eigenve
tors �0 and �1 in three-
avor QCD at ea
h �.6



observe good agreement also for the e�e
tive masses in the pseudos
alar 
hannel (mP;0 L�3and mP;1 L � 11). In table 3 we have in
luded also the 
ombination L2�s, whi
h has a
ontinuum limit when all quantities are 
omputed on a line of 
onstant physi
s. While ana-dependen
e appears to be present in this 
ombination, this is small. We 
an take itssmallness as good eviden
e that our improvement 
ondition does not su�er from large O(a2)
ontributions.
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Figure 1: E�e
tive mass mP;e� = 12a log(fP;i(x0�a)=fP;i(x0+a)) for fP;0 and fP;1 res
aled by L.The dotted line shows where the e�e
tive mass is equal to a�1.Note, however, that the e�e
tive mass mP;1 at our smallest � is already 
lose to the
uto� (i.e. mP;1 L � L=a in �g. 1). This implies that a rapid in
rease of the residual O(a2)e�e
ts might o

ur if one were to evaluate the improvement 
ondition at even 
oarser latti
espa
ings.4.2 The improvement 
oeÆ
ientWith the proje
ted 
orrelation fun
tions we 
an pro
eed to the extra
tion of 
A itself. Table 3lists the di�eren
es �r and �s for the lightest quark mass at ea
h �. In all 
ases we see agood signal for �s and thus have a large sensitivity to 
A.� � a�r a2�s L2�s1.83 0.13867 0.0229(14) 0.429(22) 62(3)1.95 0.13697 0.0072( 7) 0.236(14) 60(4)2.05 0.13604 0.0036( 3) 0.133( 6) 53(2)Table 3: Examples of �r and �s at x0=T=2.In �g. 2, we plot the e�e
tive 
A(x0), 
f. eq. (14), from the �nest and 
oarsest latti
es.The value of 
A(x0) stabilizes after only a few latti
e spa
ings from the lower temporal7



boundary where higher exited states 
ontribute. In all 
ases x0 = T=2 is already in theregion, where these e�e
ts are small and we use this 
hoi
e to 
omplete the de�nition of 
A.Results for the improvement 
oeÆ
ient and the PCAC quark mass from all simulations are
olle
ted in table 4.
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Figure 2: E�e
tive value of 
A as a fun
tion of x0 at � = 1:83 (left panel) and � = 2:05 (rightpanel). The data at �=1:83 and �=0:13867 are slightly shifted along the verti
al axis for 
larity.� � am 
A2.05 0.13604 0.00554(14) -0.0272(18)1.95 0.13685 0.01020(29) -0.0348(25)[interp.℄ amref -0.0319(18)0.13697 0.00508(28) -0.0303(24)1.83 0.13852 0.01406(54) -0.0519(23)[interp.℄ amref -0.0528(17)0.13867 0.00614(63) -0.0534(24)Table 4: Numeri
al results for am and 
A. Also shown are the results of the interpolation to mrefat the two 
oarser latti
e spa
ings.
4.3 Interpolation of 
AAs dis
ussed above, we aim at evaluating the improvement 
ondition on a line of 
onstantphysi
s in order to avoid potentially large O(a) ambiguities in 
A itself. To this end weinterpolate the results for 
A at � = 1:83 and 1.95 to a quark mass mref that is mat
hed tothe one measured on the �nest latti
e. The quark mass dependen
e seems to be very smalland thus the un
ertainties in the quark masses be
ome unimportant and we obtain 
A atmref with a small statisti
al error. 8



For future use we summarize the present results for the improvement 
oeÆ
ient in aninterpolating formula (19), whi
h by 
onstru
tion redu
es to the one-loop result from refs. [38,40℄ in the perturbative limit
A(g20) = �0:0038 g20 � 1� 0:195 g201� 0:279 g20 : (19)It is plotted in �g 3, where one 
an verify that this formula reprodu
es the data well andgives a smooth interpolation in the range of � values we simulated. As was the 
ase withthe plaquette gauge a
tion and two quark 
avors [33℄, the non{perturbative result is quitedi�erent from the one-loop estimate for pra
ti
ally relevant latti
e spa
ings.
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Figure 3: Non-perturbative estimate of 
A as a fun
tion of g20.4.4 Systemati
 un
ertaintiesThe 
omputation of 
A on a line of 
onstant physi
s redu
es the intrinsi
 ambiguity on theimprovement 
oeÆ
ient to a smooth O(a) form. Deviations from this 
ondition will leadto systemati
 e�e
ts and we should therefore 
he
k the 
onsequen
es of variations of thephysi
al volume and quark mass for our improvement 
ondition.All simulations, on whi
h we report here, are performed at �xed physi
al volume andwe thus have no dire
t 
he
k of the volume e�e
ts on 
A from this improvement 
ondition.From [33℄ we know that those 
an be large, but we know that our 
ondition guarantees thatthey disappear smoothly as we approa
h the 
ontinuum limit, espe
ially sin
e our volumes
aling is based on a
tual measurements of r0=a.From the data at the two 
oarser latti
e spa
ings in table 4 it is evident that the quarkmass dependen
e of 
A is very weak in our setup. This implies that no �ne tuning ofm is required and also a posteriori justi�es the fa
t that we ignore small 
hanges of the9



renormalization fa
tor in our range of � and use the bare quark mass in our de�nition of aline of 
onstant physi
s.As mentioned above, the energy of the �rst ex
ited state at our lowest �=1:83 is 
lose toa�1. Consequently, enfor
ing the present improvement 
ondition at �.1:83 may indu
e largeO(a2) s
aling violations in the axial 
urrent. While larger volumes might help in loweringthis energy, the observation shows that even with improved gauge a
tions, one should notpush the simulations too mu
h towards 
oarse latti
e spa
ings. On the other hand it is usefulto repeat our earlier observation: within the range of latti
e spa
ings 
overed here, we see areasonable s
aling of L2�s; this is a good hint that the 
onsidered matrix elements do notsu�er from large a-e�e
ts. In retrospe
t the same statement 
an be made about the Nf = 2
omputation with plaquette gauge a
tion [33℄.5 Con
lusionsWe have 
omputed the O(a)-improvement 
oeÆ
ient 
A(g0) of the axial 
urrent non-per-turbatively in three-
avor QCD with the Iwasaki gauge a
tion and non-perturbative 
sw(g0)[29℄. The improvement 
oeÆ
ient 
A is parametrized as a fun
tion of g0. Sin
e the results
onne
t smoothly to the one-loop formula at weak 
oupling, a simple interpolation formula(19) 
ould be given in the range of a�1 > 1:6 GeV.We note that at the largest latti
e spa
ing 
overed, the 
orre
tion term amounts to 10 {15% in de
ay 
onstants F�; FK and then also in the renormalized quark masses evaluatedfrom the PCAC relation. As a next step, a full non-perturbative evaluation of these quan-tities now requires the 
omputation of the renormalization fa
tor ZA and for interestingappli
ations of ve
tor form fa
tors also the 
orresponding quantities ZV and 
V are veryrelevant. On the other hand, improvement terms proportional to the light quark masses aresuppressed by the smallness of am. It then appears suÆ
ient to approximate the asso
iated
oeÆ
ient by one-loop perturbation theory [38, 40℄.A
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