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Non-perturbative improvement of the axial urrent withthree dynamial avors and the Iwasaki gauge ationT. Kaneko 1;2, S. Aoki 3;4, M. Della Morte 5, S. Hashimoto 1;2,R. Ho�mann 6 and R. Sommer 7(CP-PACS/JLQCD and ALPHA Collaborations)1 High Energy Aelerator Researh Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan2 Graduate University for Advaned Studies, Tsukuba, Ibaraki 305-0801, Japan3 Graduate Shool of Pure and Applied Sienes,University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan4 Riken BNL Reserah Center, Brookhaven National Laboratory, Upton, NY 11973, USA5 CERN, Physis Department, TH Unit, CH-1211 Geneva 23, Switzerland6 Department of Physis, University of Colorado, Boulder, CO 80309, USA7 DESY, Platanenallee 6, 15738 Zeuthen, Germany9 Marh 2007AbstratWe perform a non-perturbative determination of the improvement oeÆient Ato remove O(a) disretization errors in the axial vetor urrent in three-avor lattieQCD with the Iwasaki gauge ation and the standard O(a)-improved Wilson quarkation. An improvement ondition with a good sensitivity to A is imposed at onstantphysis. Combining our results with the perturbative expansion, A is now knownrather preisely for a�1&1:6 GeV.
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1 IntrodutionVarious disretizations of QCD on a lattie are presently used in the large sale e�ortsaiming at non-perturbative results in the theory of strong interations (see [1, 2, 3, 4, 5, 6,7, 8, 9, 10℄ and referenes therein). Wilson's original formulation [11℄ is theoretially verywell founded [12, 13℄ and rather simple to implement in numerial simulations. The avorsymmetries are exat and with modern algorithms [14, 15, 16, 17, 18℄ the regime of smallquark masses and small lattie spaings an be reahed [1, 19℄. On the other hand it iswell known that sine the hiral symmetries are broken by the Wilson term, lattie artifatslinear in the lattie spaing are present. It has long been understood how these an beremoved by applying Symanzik's improvement programme [20, 21, 22, 23, 24℄. One has toadd dimension �ve �elds to the lattie Lagrangian and (for example) dimension four �eldsto the quark bilinears. In partiular the bare avor axial urrentAa�(x) =  (x)T a �5  (x) (1)(the SU(Nf) generator T a ats in avor spae) is improved by(AI)a�(x) = Aa�(x) + a A 12(�� + ���)P a(x) ; P a(x) =  (x)T a 5  (x) ; (2)with �� f(x) = 1a [f(x+ a�̂)� f(x)℄ ; ��� f(x) = 1a [f(x)� f(x� a�̂)℄ : (3)The oeÆients of these orretion terms, suh as A, an be determined non-perturbativelyby requiring spei� ontinuum hiral Ward-Takahashi identities to be valid at �nite lattiespaing [25℄. One is then sure that the O(a) e�ets are entirely removed. Details of thisprogramme as well as the present status have reently been reviewed [26℄. Here we justmention that the oeÆient sw of the Sheikholeslami-Wohlert term [21℄, the only dimension�ve orretion to the ation1, has been determined non-perturbatively for di�erent gaugeations and numbers of avors [25, 27, 28, 29℄.Next to sw, the axial urrent improvement oeÆient A is of partiular relevane { forexample in the determination of weak leptoni deay onstants suh as F� or the quarkmasses. Non-perturbative determinations of A have been studied for Nf = 0 and 2 inrefs.[25, 30, 31, 32, 33℄. It turned out that they need speial are sine the spread betweenA-values omputed from di�erent improvement onditions is signi�ant around a � 0:1 fm.There is nothing fundamentally wrong with this fat. However, as explained in some detailin refs. [26, 28, 33, 34℄, in suh a situation it is important to impose improvement onditionson a line of onstant physis. This means that as the lattie spaing a is varied, all otherphysial sales are kept �xed. The remaining e�ets (after improvement) are then smoothO(a2) terms.Here we apply this strategy to the theory withNf = 3 avors and the Iwasaki gauge ation[35℄, whih is of immediate interest to the large sale omputations of the CP-PACS/JLQCD1We neglet small O(am) modi�ations of the gauge ouplings and quark masses [22, 24℄, as they are notso relevant in pratie [26℄. Here m stands for any of the quark masses.2



Collaborations [3℄. All known pratial methods for a omputation of A start from the fatthat in the ontinuum limit the (PCAC) quark massm = h�0j12 ��� + ���� (AI)a0j�i2h�0jP aj�i (4)does not depend on the hoie of the external states j�i ; j�0i. This is just a rephrasingof the PCAC (operator) identity. On the lattie an O(a) dependene will exist in general.It is redued to O(a2) by improvement. Requiring m to be the same for two di�erenthoies of j�i ; j�0i, or as we will say later \two di�erent kinematial onditions", allows adetermination of A when sw is already known.As in ref. [33℄, we use the Shr�odinger funtional de�ned in a Eulidean L3 � T world toonstrut suitable states with a large sensitivity to A. In the following setion we de�ne theexat hoies of kinematial onditions. The reader who is familiar with ref. [33℄ may skipthis setion and proeed diretly to the desription of the simulation details, set. 3, and theresults, set. 4. We �nish with some onlusions.2 Improvement onditionWe introdue the following Shr�odinger funtional [36, 37℄ orrelation funtions [32, 33℄f (n)A (x0) = �a33 Xx hAa0(x)Oa;(n)i ; f (n)P (x0) = �a33 Xx hP a(x)Oa;(n)i and (5)f (n;m)1 = �13hO0 a;(n)Oa;(m)i; (6)with Oa;(n) = a6L3 Xy;z !(n)(y� z) ��(y)T a 5 �(z): (7)where � and �� are the fermioni boundary �elds on the x0 = 0 timeslie (O0 is de�ned inthe same way in terms of the boundary �elds at x0 = T ). The orrelators depend on thesmooth funtions !(n). Here, as in ref. [33℄, we use three wave funtions!(n) = 1N (n) Xk2Z3 �!(n)(jr� kLj) (n=1; 2; 3); (8)�!(1)(r) / e�jrj=a0 ; �!(2)(r) / (jrj=r0) e�jrj=a0 ; �!(3)(r) / e�jrj=(2a0) ; (9)with a0=L=6. The normalization fators N (n) are �xed by a3Px(!(n))2=1.By suitably ombining the operators Oa;(n), the resulting orrelation funtions get ontri-butions from di�erent states in the pseudosalar hannel. In fat we onstrut the boundary3



operators O0 and O1, whih mainly ouple to the ground and �rst exited states respetively,by using the eigenvetors of the 3� 3 symmetri matrix f (n;m)1Oa0 =Xn �(n)0 Oa;(n); Oa1 =Xn �(n)1 Oa;(n); (10)where �0 (�1) represents the eigenvetor assoiated with the largest (2nd largest) eigenvalue.The orresponding orrelators fX;i = Pn �(n)i f (n)X with i = 0; 1 and X=A,P are eventuallyused to de�ne the improvement ondition, whih readsm0(x0) = m1(x0); (11)wheremi(x0) = ri(x0) + A a si(x0); (12)ri(x0) = (�0 + ��0) fA;i(x0)4fP;i(x0) and si(x0) = �0��0 fP;i(x0)2 fP;i(x0) : (13)Solving eq. (11) for A yieldsA(x0) = �1a�r(x0)�s(x0) ; �r(x0) = r1(x0)� r0(x0); �s(x0) = s1(x0)� s0(x0) : (14)The sensitivity of the improvement ondition to A is given by a j�s(x0)j. In the ideal ase ofexat projetion on the ground (�) and �rst exited (�1) states (and large T�x0) that wouldbe given by a (m2�1 �m2�). As disussed in ref. [33℄ however the vetors �(n)i do not ahieveperfet projetion and the orrelator fA;1(x0) for example gets some ontribution from theground state. Anyway what is really needed is that at intermediate times x0 ' T=2 wherewe extrat A, the orrelation funtions are dominated by states with di�erent energies, suhthat the sensitivity is high. We will see in set. 4 that in our setup this is indeed the ase.3 Simulation detailsWe work in the theory with three (dynamial) degenerate avors of non-perturbatively im-proved Wilson-fermions and the Iwasaki gauge ation [21, 29, 35℄. The latter readsSg = �( Xx; �<�wP��(x0)13 ReTr[1�P��(x)℄ + Xx; �; �wR��(x0)13 ReTr[1�R��(x)℄) ; (15)where �=6=g20, and P�� and R�� are the 1 � 1 and 1 � 2 Wilson loops in the (�; �) plane.Their weights are wP��=3:648 and wR��=�0:331 on periodi latties.4



The Shr�odinger funtional formalism is implemented on a L3 � T lattie with L= T .The bakground �eld is set to zero and the �elds are hosen to be periodi in spae. Theweights in the gauge ation are modi�ed to the following hoie [38℄wP��(x0) = � 1=2 at x0=0 or T , and �; � 6=43:648 otherwise (16)wR��(x0) = 8<: 0 at x0=0 or T , and �; � 6=4�0:331� (3=2) at x0=0 or T , and �=4�0:331 otherwise (17)whih entails tree level O(a) improvement \at the boundaries" [22℄. The oeÆients of theO(a) boundary ounterterms for the fermions are also set to their tree level value [22℄. Notethat this is not at all essential. Irrespetive of whether the boundary improvement termsare implemented, eq. (11) is a orret improvement ondition [22℄.We simulate at three points in the (�; L=a; �) spae on a line of onstant physis de�nedby keeping the volume and the quark mass �xed. Sales are �xed through r0 [39℄ and we willuse r0 = 0:5 fm to quote physial units. For our ation, the ratio r0=a has been omputedin the region 1:83 � � � 2:05 [3℄2. With a slight interpolation of the data of ref. [3℄ we�xed L=r0 � 3, somewhat larger than the physial size used in ref. [33℄. The resulting pairs(�; L=a), together with some algorithmi details are olleted in table 1.� L=a � NMD Npoly Ntraj PPHMC PNMT1.83 12 0.13852 90 200 3800 0.90 0.971.83 12 0.13867 90 220 3800 0.89 0.951.95 16 0.13685 125 230 3000 0.91 0.961.95 16 0.13697 140 260 3000 0.94 0.942.05 20 0.13604 130 350 3000 0.87 0.97Table 1: Simulation parameters. We denote the number of the Moleular Dynamis steps by NMD,the order of the polynomial approximation by Npoly and the number of unit length trajetories byNtraj. The aeptane rates for the PHMC updating and for the noisy Metropolis test in the PHMCalgorithm are denoted by PPHMC and PNMT respetively.The hopping parameter � is tuned in order to give a bare quark mass mref of about15 MeV. At � =1:83 and 1:95, two quark masses around 10 and 20 MeV are simulated sothat we an interpolate A to mref . Notie that we are ignoring presumably small hangesof the renormalization fators in our range of � and we just keep the bare quark mass �xed.Also, the 1-loop value of A [38, 40℄ is used at this point in the de�nition of the quark mass.The algorithm has been desribed in ref. [15℄. It is a ombination of HMC [41℄ andPHMC [42, 43℄. Non-Hermitian Chebyshev polynomials P [D℄ are used to approximate theinverse square root of the Dira operator D required for the third avor, whereas the other2In ref. [3℄ r0=a is extrapolated to the physial point, with the strange quark mass determined from thephysial mass of the Kaon. 5



two avors are treated using the usual HMC pseudo-fermion ation. The number of moleulardynamis steps is hosen suh that the aeptane rate PPHMC is about 90%. In order tomake this algorithm exat, the orretion fatorPorr = det [W [D℄℄ ; W [D℄ = P [D℄D (18)is taken into aount by a noisy Metropolis test [44℄. The order of the polynomial approxi-mation is hosen suh that the aeptane rate of the noisy Metropolis test is around 95%.Throughout all the omputation the symmetrially even-odd preonditioned version of theDira operator [15, 45℄ is used.The orrelators in eqs. (5, 6) are measured eah 5th trajetory and residual autoorrela-tions are estimated by binning the jak-knife samples. For A(x0) the errors atten out forbin-sizes larger than four, whih is what we �nally use in our analysis.4 Numerial results4.1 Wave funtion projetionAs disussed above, the analysis starts with the determination of the eigenvetors of theorrelator matrix f (n;m)1 (n;m = 1; 2; 3). The results at the lightest quark mass for eah �value are given in table 2. The errors on the omponents of the eigenvetors are less than10�3 and 10�2 for �0 and �1, respetively.The entries of the (normalized) eigenvetors are ratios of orrelation funtions for whihthe Z-fators of the boundary �elds anel. They will thus have a well de�ned ontinuumlimit along a line of onstant physis as long as the wave funtions !(n) are de�ned onlythrough physial length sales. Indeed, we observe only a small lattie spaing dependeneand also note that the values we obtain are lose to those in ref.[33℄, where slightly smallervalues of a0 (�0:2 fm) and L are used in two-avor QCD with the plaquette gauge ation.Using the measured eigenvetors, we now onstrut the pseudosalar orrelators fX;0 andfX;1 (X=P;A). Fig. 1 shows the e�etive masses in units of the box size for the projetedorrelators fP;i at � = 1:83 and 1.95. Clearly, the orrelators are dominated by di�erentstates and the e�etive masses are well separated even for large times. The data at the twooarser lattie spaings are obtained at physial quark masses similar to eah other and we� � �0 �11.83 0.13867 ( 0.5459, 0.5920, 0.5929 ) ( 0.8323, -0.3019, -0.4649 )1.95 0.13697 ( 0.5415, 0.5942, 0.5948 ) ( 0.8367, -0.312 , -0.4500 )2.05 0.13604 ( 0.5360, 0.5962, 0.5976 ) ( 0.8371, -0.2836, -0.4679 )Table 2: Example of eigenvetors �0 and �1 in three-avor QCD at eah �.6



observe good agreement also for the e�etive masses in the pseudosalar hannel (mP;0 L�3and mP;1 L � 11). In table 3 we have inluded also the ombination L2�s, whih has aontinuum limit when all quantities are omputed on a line of onstant physis. While ana-dependene appears to be present in this ombination, this is small. We an take itssmallness as good evidene that our improvement ondition does not su�er from large O(a2)ontributions.
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Figure 1: E�etive mass mP;e� = 12a log(fP;i(x0�a)=fP;i(x0+a)) for fP;0 and fP;1 resaled by L.The dotted line shows where the e�etive mass is equal to a�1.Note, however, that the e�etive mass mP;1 at our smallest � is already lose to theuto� (i.e. mP;1 L � L=a in �g. 1). This implies that a rapid inrease of the residual O(a2)e�ets might our if one were to evaluate the improvement ondition at even oarser lattiespaings.4.2 The improvement oeÆientWith the projeted orrelation funtions we an proeed to the extration of A itself. Table 3lists the di�erenes �r and �s for the lightest quark mass at eah �. In all ases we see agood signal for �s and thus have a large sensitivity to A.� � a�r a2�s L2�s1.83 0.13867 0.0229(14) 0.429(22) 62(3)1.95 0.13697 0.0072( 7) 0.236(14) 60(4)2.05 0.13604 0.0036( 3) 0.133( 6) 53(2)Table 3: Examples of �r and �s at x0=T=2.In �g. 2, we plot the e�etive A(x0), f. eq. (14), from the �nest and oarsest latties.The value of A(x0) stabilizes after only a few lattie spaings from the lower temporal7



boundary where higher exited states ontribute. In all ases x0 = T=2 is already in theregion, where these e�ets are small and we use this hoie to omplete the de�nition of A.Results for the improvement oeÆient and the PCAC quark mass from all simulations areolleted in table 4.
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4.3 Interpolation of AAs disussed above, we aim at evaluating the improvement ondition on a line of onstantphysis in order to avoid potentially large O(a) ambiguities in A itself. To this end weinterpolate the results for A at � = 1:83 and 1.95 to a quark mass mref that is mathed tothe one measured on the �nest lattie. The quark mass dependene seems to be very smalland thus the unertainties in the quark masses beome unimportant and we obtain A atmref with a small statistial error. 8



For future use we summarize the present results for the improvement oeÆient in aninterpolating formula (19), whih by onstrution redues to the one-loop result from refs. [38,40℄ in the perturbative limitA(g20) = �0:0038 g20 � 1� 0:195 g201� 0:279 g20 : (19)It is plotted in �g 3, where one an verify that this formula reprodues the data well andgives a smooth interpolation in the range of � values we simulated. As was the ase withthe plaquette gauge ation and two quark avors [33℄, the non{perturbative result is quitedi�erent from the one-loop estimate for pratially relevant lattie spaings.
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Figure 3: Non-perturbative estimate of A as a funtion of g20.4.4 Systemati unertaintiesThe omputation of A on a line of onstant physis redues the intrinsi ambiguity on theimprovement oeÆient to a smooth O(a) form. Deviations from this ondition will leadto systemati e�ets and we should therefore hek the onsequenes of variations of thephysial volume and quark mass for our improvement ondition.All simulations, on whih we report here, are performed at �xed physial volume andwe thus have no diret hek of the volume e�ets on A from this improvement ondition.From [33℄ we know that those an be large, but we know that our ondition guarantees thatthey disappear smoothly as we approah the ontinuum limit, espeially sine our volumesaling is based on atual measurements of r0=a.From the data at the two oarser lattie spaings in table 4 it is evident that the quarkmass dependene of A is very weak in our setup. This implies that no �ne tuning ofm is required and also a posteriori justi�es the fat that we ignore small hanges of the9



renormalization fator in our range of � and use the bare quark mass in our de�nition of aline of onstant physis.As mentioned above, the energy of the �rst exited state at our lowest �=1:83 is lose toa�1. Consequently, enforing the present improvement ondition at �.1:83 may indue largeO(a2) saling violations in the axial urrent. While larger volumes might help in loweringthis energy, the observation shows that even with improved gauge ations, one should notpush the simulations too muh towards oarse lattie spaings. On the other hand it is usefulto repeat our earlier observation: within the range of lattie spaings overed here, we see areasonable saling of L2�s; this is a good hint that the onsidered matrix elements do notsu�er from large a-e�ets. In retrospet the same statement an be made about the Nf = 2omputation with plaquette gauge ation [33℄.5 ConlusionsWe have omputed the O(a)-improvement oeÆient A(g0) of the axial urrent non-per-turbatively in three-avor QCD with the Iwasaki gauge ation and non-perturbative sw(g0)[29℄. The improvement oeÆient A is parametrized as a funtion of g0. Sine the resultsonnet smoothly to the one-loop formula at weak oupling, a simple interpolation formula(19) ould be given in the range of a�1 > 1:6 GeV.We note that at the largest lattie spaing overed, the orretion term amounts to 10 {15% in deay onstants F�; FK and then also in the renormalized quark masses evaluatedfrom the PCAC relation. As a next step, a full non-perturbative evaluation of these quan-tities now requires the omputation of the renormalization fator ZA and for interestingappliations of vetor form fators also the orresponding quantities ZV and V are veryrelevant. On the other hand, improvement terms proportional to the light quark masses aresuppressed by the smallness of am. It then appears suÆient to approximate the assoiatedoeÆient by one-loop perturbation theory [38, 40℄.AknowledgmentWe thank Stephan D�urr for useful disussions. Numerial simulations are performed onHitahi SR8000 at High Energy Aelerator Researh Organization (KEK) under a sup-port of its Large Sale Simulation Program (No. 05-132). This work is supported by theGrant-in-Aid of the Ministry of Eduation, Culture, Sports, Siene and Tehnology of Japan(No. 13135204, 15540251, 17740171, 18034011, 18340075) and the JSPS Core-to-Core Pro-gram. TK is grateful to the Theory Group in DESY Zeuthen for kind hospitality during hisstay.
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