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DESY 07-004New Constraints on Osillations in the Primordial Spetrum of InationaryPerturbationsJan Hamann,1 Laura Covi,1 Alessandro Melhiorri,2 and An�ze Slosar3, 41Deutshes Elektronen-Synhrotron DESY, Notkestr. 85, 22607 Hamburg, Germany2Dipartimento di Fisia and Sezione INFN, Universit�a di Roma \La Sapienza", Ple Aldo Moro 2, 00185, Italy3Oxford Astrophysis, Denys Wilkinson Building, Keble Road, OX13RH, Oxford, United Kingdom4Faulty of Mathematis and Physis, University of Ljubljana, Slovenia(Dated: January 12, 2007)We revisit the problem of onstraining steps in the inationary potential with osmologial data.We argue that a step in the inationary potential produes qualitatively similar osillations in theprimordial power spetrum, independently of the details of the inationary model. We proposea phenomenologial desription of these osillations and onstrain these features using a seletionof osmologial data inluding the baryoni peak data from the orrelation funtion of luminousred galaxies in the Sloan Digital Sky Survey. Our results show that degeneraies of the osillationwith standard osmologial parameters are virtually non-existent. The inlusion of new data severelytightens the onstraints on the parameter spae of osillation parameters with respet to older work.This on�rms that extensions to the simplest inationary models an be suessfully onstrainedusing osmologial data.PACS numbers: 98.80.CqI. INTRODUCTIONReent data from the Wilkinson Mirowave AnisotropyProbe (WMAP) [1, 2, 3, 4℄ observations of theanisotropies of the Cosmi Mirowave Bakground(CMB) are in exellent agreement with the preditionsof inationary osmology. In its simplest implementa-tion, ination is driven by the potential energy of a singlesalar �eld slowly rolling down the potential towards thereal vauum. Under the assumption that the potentialis suÆiently at and smooth, the resulting spetrum ofdensity perturbations is almost sale-invariant and anbe desribed with a power-law. In the ontext of thisslow-roll paradigm, a number of authors have used theWMAP data and various other omplementary data setsto derive bounds on the inationary parameter spae.These inlude onstraints on spei� inationary models[5, 6, 7, 8℄, the Hubble dynamis during ination [9, 10℄,or, in a more empirial fashion, the parameters hara-terising the primordial power spetrum [11, 12, 13, 14℄.In more general lasses of inationary models, however,slow roll may be violated for a brief instant [15, 16℄. Insingle-�eld ination models, suh an e�et an be mod-elled by introduing a feature suh as a kink, bump orstep [17℄ to the inaton potential. A step, in partiular,an be regarded as an e�etive �eld theory desriptionof a phase transition in more realisti multi-�eld models[18℄, whih may arise naturally in, e.g., supergravity- [19℄or M-theory-inspired ination models [20℄.This interruption of slow-roll will leave possibly de-tetable traes in the primordial power spetrum. Speif-ially, wavelengths rossing the horizon during this fast-roll phase will be a�eted [21, 22℄, leading to a devia-tion from the usual power-law behaviour at these sales.Suh non-standard power spetra have been brought for-ward to explain the peuliar glithes in the temperature

anisotropies [23℄ as well as the observed low power at thelargest sales [24, 25℄.Step-like features in the inaton potential will lead to aburst of osillations in the primordial power spetrum. Apartiular realisation of a step potential was onfrontedwith the data in Ref. [26℄ for �xed osmologial parame-ters and more generally in Ref. [27℄.In the present work, we extend the analysis of [27℄in several important aspets. Firstly, we generalise ourmethod to spetra orresponding to a whole lass of step-ination models with arbitrary (slow-roll) bakground in-aton potentials. This allows us to derive onstraints onparameters haraterising the feature in a more model-independent way. Seondly, we address the question ofparameter degeneraies: ould the presene of a featurebias our estimates for the values and errors of the os-mologial parameters, suh as the baryon or dark matterdensity, in any way? Thirdly, we onsider new data-sets: apart from CMB and matter power spetrum datasets, we onsider also the measurements of the position ofaousti peak in the real spae two-point galaxy orrela-tion funtion data (BAO) from the luminous red galaxy(LRG) sample of the Sloan Digital Sky Survey (SDSS)[28℄. This data is, in priniple, espeially well suited toonstraining (or deteting) small amplitude osillationsin the power spetrum whih would show up as a peakin the orrelation funtion. However, due to biasing andweakly non-linear struture formation, this data is dif-�ult to interpret and we pay speial attention to do itarefully.The paper is organised as follows: In Se. II, we brieyremind the reader of the exat formalism of alulatingthe power spetrum from a given inaton potential andompare it with the slow-roll approximation. In Se. III,we disuss the dynamis of the inaton �eld rolling over astep and introdue a generalised step model. Setion IV
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2is dediated to our analysis methods with an emphasison the determination of the likelihood for the BAO dataset. We present our results in Se. V, and, �nally, drawour onlusions in Se. VI.II. INFLATIONARY PERTURBATIONSLet us start this setion with a brief reapitulation ofhow to alulate the primordial spetrum of urvatureperturbations PR, using the formalism of Stewart andLyth [29℄.In the following, we will set  = �h = 8�G = 1. Weonsider the gauge invariant Mukhanov variable u [30, 31℄given in terms of the urvature perturbation R:u � �zR: (1)Here, z � a _�=H , where a is the sale fator, � the ina-ton �eld, H the Hubble parameter and the dot representsa derivative with respet to time t. The Fourier ompo-nents of u obey the equationu00k +�k2 � z00z �uk = 0; (2)with a prime denoting a derivative with respet to on-formal time � .Finally, we an de�ne the primordial power spetrumof urvature perturbations PR(k) via the two-point or-relation funtionhRk1R�k2i = 2�2k3 PR(k) Æ(3)(k1 � k2): (3)Assuming gaussianity and adiabatiity, this quantity on-tains all the neessary information for a omplete statis-tial desription of the utuations. It is related to ukand z via PR(k) = k32�2 ���ukz ���2 : (4)A. Bakground Equations of MotionIn order to �nd a solution to Equation (2), one needsto know the behaviour of the term z00=z. Its evolution isdetermined by the dynamis of the Hubble parameter andthe unperturbed inaton �eld, governed by Friedmann'sequation H2 = 13 (V + 12 _�2); (5)and the Klein-Gordon equation for ���+ 3H _�+ dVd� = 0: (6)

For our purposes, it is onvenient to introdue anothertime parameter, the number of e-foldings, de�ned byN � ln a. In terms of N , Equations (2), (5) and (6) readH;N = � 12H�2;N ; (7)�;NN +�H;NH + 3��;N + 1H2 dVd� = 0; (8)uk;NN +�H;NH + 1�uk;N + " k2e2(N�N0)H2  2� (9)4 H;NH �;NN�;N � 2�H;NH �2 � 5 H;NH � 1H2 d2Vd�2 !#uk = 0;with N0 determining the normalisation of the sale fa-tor. This oupled system of di�erential equations aneasily be solved numerially, one a suitable set of initialonditions has been hosen.B. Initial ConditionsSupposing that at a time Nsr the system has reahedthe inationary attrator solution��� 3H _�; (10)and is rolling slowly, _�2 � V (�); (11)the initial onditions for � and H will be given by�(Nsr) = �sr (12)�;N (Nsr) = � 1V (�sr) dVd� �����sr (13)H(�sr) =rV (�sr)3 : (14)The initial onditions for uk an be obtained by requiringthe late time solution of (2) to math the solution of a�eld in the Bunh-Davies vauum of de Sitter spae, givenby uk(�) = e�ik�p2k �1 + ik� � ; (15)at early times, well before the observationally relevantsales leave the horizon. For k � z00=z (or, equivalently,k� � 1) this an be approximated by the free �eld solu-tion in at spae uk = 1p2k e�ik� : (16)Fixing the irrelevant phase, we obtain the initial ondi-tions for a mode k uk(�0) = 1p2k ; (17)u0k(�0) = �irk2 (18)at a time �0 satisfying k � z00=zj�0 .



3C. Slow RollFollowing Ref. [33℄, we de�ne the Hubble slow rollparameters byn�H � ( nYi=1 ��d lnH(i)d ln a �)1=n = 2�(H(1))n�1H(n+1)Hn �1=n(19)for n � 1, with a supersript \(n)" denoting the nthderivative with respet to �. In addition to that, wede�ne 0�H � 2(H(1)=H)2. The �rst three parameters ofthe Hubble slow roll hierarhy read�H � 0�H = 2�H(1)(�)H(�) �2 = � _HH2 ; (20)�H � 1�H = H(2)(�)H(�) = � ��_�H ; (21)�2H � (2�H)2 = 2 H(1)(�)H(3)(�)H2(�) = :::�2H2 _� � 12�2H :(22)Using these de�nitions it an be shown that the modeequation (2) an be written asu00k +�k2 � 2a2H2 �1 + �H � 32�H + �2H � (23)2�H�H + 12�2H + �2H��uk = 0:Note that this expression is exat : it does not assumethe slow roll parameters to be small.From a model-building point of view, where one re-gards the Lagrangian (or the salar potential) of the the-ory as the fundamental quantity, the alulation of theHubble slow roll parameters an be quite involved. Inthis sense it may be more onvenient to work with thepotential slow roll parameters instead, whih use deriva-tives of the potential instead of derivatives of the Hubbleparameter. The �rst three potential slow roll parametersare de�ned by � � 12 �V (1)V �2 ; (24)� � V (2)V ; (25)�2 � V (1)V (3)V 2 : (26)If the attrator ondition (Eq. (10)) is satis�ed, the twoare approximately related via [33℄�H = �� 43�2 + 23�� +O(3); (27)�H = � � �+ 83�2 + 13�� + 13�2 +O(3); (28)�2H = �2 � 3�� + 3�2 +O(3); (29)

up to orretions of third and higher orders. Expressedin terms of the potential slow roll parameters, z00=z isgiven by z00z =2a2H2 �1 + 52�� 32� + 76�2� (30)356 �� + 12�2 + 12�2 +O(3)�It is ommonly assumed that the �rst two slow rollparameters vary slowly with time (i.e., �2(H) � 1). Thenit follows that, if one wants to sustain ination for longenough to solve the horizon and atness problems, �(H)and j�(H)j will also have to be muh smaller than unity.In this (\slow roll") limit, we have z00=z � 2a2H2, _H � 0and a / exp[Ht℄.Let us now turn bak to Eq. (2), whih is basiallythe equation of an osillator with a time dependent massterm, and disuss its solutions. The initial onditionsimply that for wavenumbers withka � H; (31)i.e., with wavelengths muh smaller than the horizon, thesolution is given by Equation (16) and uk desribes a ir-ular motion in the omplex plane. Due to the exponen-tial growth of the sale fator, the physial wavelenghtswill be blown up and leave the horizon, eventually sat-isfying k=a� H . In this limit, the growing solution foruk is given by uk / z: (32)Hene, the spetrum PR will onverge to a onstantvalue for super-Hubble modes, i.e., the perturbations\freeze in". We an also onlude that the fate of a per-turbation with wavelength k is deided when k=a � Hand the spetrum will have its �nal shape imprinted onhorizon exit. It is not until muh later, when the modesreenter the horizon during radiation or matter domina-tion, that they will exhibit dynamial behaviour again.Generially, the power spetrum will not be sale inde-pendent, with a sale dependene being indued by thevariation of, e.g., the potential energy and the Hubbleparameter as the inaton �eld rolls down the potential.In the slow roll regime, however, the sale dependene israther weak and PR an be reasonably well approximatedby a power law:PR(k) ' AS� kk0�nS�1 ; (33)with the normalisation AS given byAS ' 124�2 V� ����k0=aH ; (34)and the spetral indexnS ' 1� 6�+ 2�: (35)Before we talk about relaxing some of the assumptionsthat went into this analysis, let us quikly mention ina-tionary tensor perturbations.



4D. Tensor PerturbationsApart from the salar perturbations desribed above,ination also generates tensor perturbations, with a spe-trum given by Pgrav(k) = k32�2 ���vka ���2 (36)and the mode equationv00k +�k2 � a00a � vk = 0: (37)This equation is very similar to the salar one. Thissimilarity an be readily seen if we express the \massterm" a00=a in terms of the slow roll parameters:a00a = 2a2H2 �1� 12�H� (38)' 2a2H2 �1� 12�+ 23�2 � 13�� +O(3)� :Just like the salar modes, tensor perturbations willalso freeze in at horizon exit. In the slow roll ase theirspetrum is approximatelyPgrav(k) ' AT � kk0�nT ; (39)with the tensor spetral indexnT ' �2�; (40)and normalisationAT ' 23�2V ����k0=aH : (41)III. SLOW ROLL INTERRUPTEDThe validity of the power-law parameterisation of theprimordial spetra rests on the assumptions that theslow-roll parameters are small and hange slowly withtime. Let us relax the latter and allow � and � to hangesigni�antly on a timesale �N <� 1. This has the on-sequene that we an also allow � and/or � to beome oforder unity momentarily, provided that at a later time,the system returns to the slow roll regime. We also as-sume here that the system starts in a state where the slowroll onditions are ful�lled, in order to give it enough timeto reah the inationary attrator solution.This e�et an be modelled by adding a loal feature,suh as a step or a bump, to an otherwise at inatonpotential.A. Chaoti Ination Step ModelLet us examine the onsequenes of suh a feature us-ing as an example the same model potential as in [27℄V (�) = 12 m2�2 �1 +  tanh��� bd �� : (42)
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NFIG. 1: Top: z00=z divided by a2H2 for b = 14,  = 10�3 andd = 2�10�2 versus the number of e-foldings. N is set to zerofor � = b. It takes the inaton �eld roughly half an e-foldingto roll over the step.Bottom: Hubble slow roll parameters at the step, �H (dottedgreen line) remains negligible throughout, while �H (solid redline) and �2H (dashed blue line) violate the slow roll onditions.This potential desribes standard m2�2 haoti ination[34℄ with a step entered around � = b. The height ofthe step is determined by , its gradient by d. We donot want ination to be interrupted by the step, so westipulate jj � 1 to ensure that the potential energy willalways dominate over the kineti one.As pointed out above, the eventual spetrum ruiallydepends on the dynamis of z00=z, whih an easily be de-dued from the solution of Equations (7) and (8). For atypial hoie of parameters, we plot the numerial solu-tion in Figure 1(a). Generially, we �nd that z00=(za2H2)has a maximum before the inaton �eld reahes b, a min-imum shortly afterwards and it will return to the asymp-toti slow roll value of � 2 after O(1) e-folding. Com-parison with the Hubble slow roll parameters (Fig. 1(b))shows that this behaviour is mainly aused by �H and�2H, while �H remains small. This is a onsequene of theondition  � 1. Beware that the potential slow rollapproximation Eq. (30) will in general not work for thispotential sine the ontribution of higher derivative termsan be large. The smallness of �H (and hene �) also im-plies that there will not be any sizable deviations from apower law for the spetrum of tensor perturbations.



5So, how will this partiular behaviour of z00=z inuenethe solution for uk and eventually the spetrum omparedto a model with no step? It is obvious that modes withk2 � Maxjz00=zj, i.e., modes that are well within thehorizon at the time of the step, will not be a�eted at alland uk will remain in the osillatory regime. For k2 <�Maxjz00=zj, the maximum in z00=z will result in a boost ofexponential growth for uk, reverting to osillations whenz00=z goes negative and eventually return to the growingsolution. We depit the motion of uk in the omplexplane in Fig. 2.
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negligible.Hene, a loalised feature in the potential will lead toa loalised \burst" of osillations in the spetrum (seealso Ref. [35℄), while large and small sales will remainunhanged with respet to the spetra of the asymptotibakground models. This is shown in Fig. 3. Note that
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6B. Model DependeneHaving analysed a spei� example in the previous sub-setion, let us now address the question of model depen-dene: Will we arrive at di�erent onlusions if we modifythe bakground inationary model (e.g., ��4 instead ofm2�2) or the parameterisation of the step?We will argue that a more general potentialV (�) = V0 + f(�) S(�� b) (44)leads to a qualitatively similar spetrum as the potential(42). Here, Vbg(�) � V0 + f(�) is the bakground po-tential, whih should ful�l the slow roll onditions withf and V0 positive de�nite. The funtion S(�) parame-terises the step, and should monotonially asymptote to1 �  ( � 1) for � � b and � � b, respetively, withS(0) = 1.As we have seen above, the derivatives of the potentialare ruial to determining the spetrum. In general, thederivatives of V are given byV (n)(�) = nXi=0 �ni�f (i)(�) S(n�i)(�): (45)Far away from the step, the derivatives of S will benegligible and the potential and its derivatives are ap-proximatelyV (�) ' V0 + f(�)(1� ) ' Vbg(�); (46)V (n)(�) ' f (n)(�)(1� ) ' V (n)bg (�): (47)Sine the slow roll onditions hold here, the spetrumwill be given by Eq. (33) withAS ' AbgS �1� � 3fV0 + f � 2�+O(2)� ; (48)nS ' nbgS � � 2V0V0 + f ��bg � 6�bg��+O(2): (49)In the speial ase V0 = 0, we have exatlyAS = AbgS (1� ) and nS = nbgS . If V0 6= 0, there are addi-tional orretions of order  to the normalisation and alsoorretions to the tilt, whih are suppressed by  and theslow-roll parameters of the bakground model. In bothases, one asymptotially reovers the spetrum of thebakground model in the limit � 1.Near the step, however, the derivatives of V will have aontribution from the derivatives of S. If the step is sharpenough, the nth derivative of V will be dominated by thenth derivative of S, sine the other terms are suppressedwith fators of the order of the slow roll parameters ofthe bakground model. Hene, the dynamis of z00=z nearthe step hardly depends on the bakground, but is deter-mined by the form of S. On the other hand, any S thatgives a z00=z whih roughly shows a behaviour like theone depited in Fig. 1(a), will lead to a burst of osil-lations in the power spetrum. The similarities between

spetra of di�erent bakground models are illustrated inFig. 4, where we plot the spetra of a hybrid inationtype potentialV (�) = V0 + 12 m2�2 �1 +  tanh��� bd �� ; (50)and another monomial potential with a di�erent form ofthe step funtionV (�) = ��4 �1 +  artan��� bd �� : (51)Note that despite the di�erene in bakground modelsand step funtions, the maxima and minima of the osil-lations our at the same wavelengths.
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7of osillations is largely independent of the bakgroundmodel. Minor di�erenes would likely be washed out inthe angular power spetrum of the CMB anyway [36℄.The asymptoti behaviour of models with V0 = 0 will bereprodued exatly; for V0 > 0 it will be approximate,with errors of order .There is a ath however: in this analysis the parame-ters b,  and d will be bereaved of their meaning as param-eters of the potential. Instead, they should be interpretedas phenomenologial parameters whih desribe the spe-trum. This does not prelude us from deriving meaning-ful onstraints, though. We argued that the shape of themodulation of the spetrum is largely independent of thebakground, so similar modulations should be the on-sequene of similar step dynamis. A useful quantity inthis ontext is the maximum value the slow roll parame-ters �, � and �2 an reah at the step. For the potential(42), we an estimate �max, �max and �2max in terms of b, and d: �max ' �bg + 22d2 + 2bd ; (53)�max ' �bg + 0:77 d2 ; (54)j�2maxj ' 2 2d4 + 4 bd3 ; (55)assuming  < 1, d < 1 and b > 1. Note that �2 = 0 forthe bakground model.Along the same lines, one an an replae b with ks,orresponding to today's wavenumber of the perturba-tions that left the horizon during ination when � = b.IV. DATA ANALYSISWe ompare the theoretial preditions of three the-oretial models (A, B and C) with observational data.We use the Markov hain Monte Carlo (MCMC) pak-age osmom [37℄ to reonstrut the likelihood funtionin the spae of model parameters and infer onstraintson these parameters. A. ModelsThe three models have four parameters in ommon:!b (baryon density), ! (CDM density), � (optial depthto reionisation) and �s (sound horizon/angular diameterdistane at deoupling). The di�erene lies in the pri-mordial power spetrum.A. Vanilla power-law �CDM model: the initial spe-trum is parameterised with AS and nS.B. Step model (Eq. (42)) with parameters AS, b,  andd.

C. Generalised step model, whih uses an e�etive tiltnS in addition to the parameters of model B. Con-straints on �max � �bg, �max � �bg and �2max arederived using Eqns. (53)-(55).We limit our analysis to salar perturbations. While ten-sor perturbations may, in priniple, give a subdominantontribution, their spetrum will be smooth in the lassof models studied here, so we do not expet any majordegeneraies with the step parameters.B. Data SetsTo assess the inuene of di�erent data on the on-straints, we perform the analysis for eah of the modelsusing three di�erent sets of data:1. WMAP three year temperature and polarisationanisotropy data[1, 2, 3, 4℄ (WMAP3). The like-lihood is determined using the Otober 2006 ver-sion of the WMAP likelihood ode available at theLAMBDA website [38℄.2. WMAP3 plus small sale CMB tempera-ture anisotropy data from the ACBAR [39℄,BOOMERANG [40℄ and CBI [41℄ experiments,plus the power spetrum data of the luminous redgalaxy sample from the Sloan Digital Sky Survey(SDSS), data release 4 [42℄. To avoid a dependeneof our results on nonlinear modelling, we only usethe �rst 13 k-bands (k=h < 0:09 Mp�1).3. Same as data set 2, plus two-point orrelation fun-tion data from the SDSS LRG [28℄.C. AnalysisOur onstraints are derived from eight parallel hainsgenerated using the Metropolis algorithm [43℄. We usethe Gelman and Rubin R parameter [44℄ to keep trakof onvergene of the hains, stopping the hains atR� 1 < 0:05. Sine the likelihood funtion is highly non-gaussian in some parameter diretions and even multi-modal in ertain ases, we double-hek our results byomparing with hains generated with a variation of themultianonial sampling algorithm [45℄.D. PriorsApart from the hard-oded priors of osmom on H0(40 km/s/Mp < H0 < 100 km/s/Mp) and the ageof the Universe (1010 a < A < 2 � 1010 a), we imposeat priors on the other osmologial parameters. Forthe parameters of the potential we hoose a at prioron b 2 [14; 15℄ and logarithmi priors on ; d and =d2(log  2 [�6;�1℄, log d 2 [�2:5;�0:5℄, log =d2 2 [�5; 3℄).



8E. Baryon Aousti PeakOsillations in the dark matter power spetrum dueto aousti osillations in the plasma prior to deouplingresult in an single peak in the two-point orrelation fun-tion of the distribution of galaxies �(r). In Ref. [28℄, theauthors laim the detetion of suh a peak and identify itas orresponding to the baryoni osillations of the mat-ter power spetrum.Sine any osillation of the spetrum, regardless of itsorigin, will lead to a feature in the orrelation funtion,this data set is partiularly well suited to onstraining os-illations in the initial power spetrum as well, providedthat the features are not ompletely washed out throughsubsequent evolution.The orrelation funtion is related to the matter powerspetrum P (k) via a Fourier transform:�(r) / Z 10 dk k2P (k) sin krkr : (56)Tehnially, the upper limit of the integral would be someultraviolet uto� kUV , hosen suh that the error in � issmall (� 1%). For the sales overed by the SDSS data,i.e., omoving separations between 12 and 175 h�1Mp,this requires a momentum uto� kUV > 1h=Mp. Atthese wavenumbers, however, nonlinear e�ets annot benegleted anymore, whih makes the theoretial predi-tion of � somewhat triky.The standard proedure is outlined in setion 4.2 ofRef. [28℄ and involves orretions for redshift spae dis-tortion, nonlinear lustering, sale dependent bias, and asmoothing of features on small sales due to mode ou-pling. All of these methods were alibrated with nonlin-ear simulations in a vanilla osmology setting and it isnot obvious that they should be appliable to our ase.With the exeption of the smoothing, however, the e�etof these orretions on the orrelation funtion is smallerthan 10% and will only be notiable at sales < 40h�1Mp (see Figure 5 of [28℄). So even if we assume a largeunertainty in the nonlinear orretions, the auray ofthe theoretial orrelation funtion will still be of ordera few per ent, that is smaller than the error bars of thedata.Let us look at the smoothing proedure in a bit moredetail. In the usual ase, the dewiggled transfer funtionTdw is a weighted interpolation between the linear trans-fer funtion Tlin and the Eisenstein-Hu [46℄ no-wiggletransfer funtion TnwTdw(k) = w(k)Tlin(k) + (1� w(k)) Tnw; (57)with a weight funtion w(k) = exp ��(ak)2� anda = 7h�1 Mp. This is related to the dewiggled spe-trum by Pdw(k) = k T 2dw(k)PR(k): (58)In the ase of a non-smooth primordial power spetrumPR(k), one should of ourse also dewiggle the initial fea-tures. In order to reover the standard proedure for

power-law spetra, we will instead smooth the quantityT̂ (k) � (P (k)=k)1=2 = T (k)pPR(k): (59)The use of the no-wiggle transfer funtion rests on theassumption that at small sales, mode oupling will to-tally erase all struture, whih is reasonable as long asthe amplitude of features is of the same order as thatof the baryon osillations. For muh larger osillations,mode oupling might not be eÆient enough to erase allstruture; it is likely that some residual osillations willremain. So instead of a no-wiggle T̂nw, we will use asmoothed T̂s de�ned byT̂s(k; q) = exp"1q Z lnk+q=2lnk�q=2 dlnk0 ln hT̂lin(k0)i# ; (60)i.e., a onvolution of T̂lin with a top hat funtion of widthq in log-log spae. The dewiggled power spetrum is thengiven byPdw(k; q) = k �w(k) T̂lin(k) + (1� w(k)) T̂s(k; q)�2 :(61)Without turning to N -body simulations it would behard to estimate how muh the spetrum will have tobe smoothed, though. Therefore, we will determine theBAO likelihood LBAO by marginalising over q:LBAO = Z dqL(q)�(q): (62)V. RESULTSAn important question in the ontext of a model-dependent analysis is how the hoie of model will a�etthe estimates of the parameters, partiularly if the mod-els are nested. Possible degeneraies between \standard"and newly introdued parameters an bias means as wellas errors. In Fig. 5, we plot the marginalised likelihooddistributions for the vanilla parameters for all three mod-els with data set 1. There are small di�erenes betweenmodels A and B for 
bh2, � and the normalisation. Thesearise due to the fat that in model B, the tilt of the spe-trum is �xed. There is a well-known degeneray betweenthese parameters and the spetral index. Fixing the tiltnear the best �t value will redue the errors on the pa-rameters it is degenerate with, whih is preisely what ishappening here.The distributions for models A and C show a remark-able similarity whih leads us to onlude that the pres-ene of a feature will not have any statistially signi�antinuene on the results for the parameters of the vanillamodel. This onlusion remains unhanged if we onsiderthe other data sets.Another interesting question is whether the data preferthe presene of a feature over a smooth spetrum. How
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bh2 = 0:0216,
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step), and, for � >� 1, not only �2, but also higher orderpotential slow roll parameters will be non-negligible.
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11The vanilla model is a subset of the lass of gener-alised step models for ! 0. If  <� O(10�5), the result-ing spetrum will be virtually indestiguishable from thevanilla spetrum. With our hoie of priors, ontours ofgreater than � 20% on�dene level will ontain parts ofthis vanilla region of parameter spae. Hene, we annotexlude the vanilla model at more than 20% on�denelevel. Reversing the argument, the present data do notshow ompelling evidene for requiring a spetrum withan osillatory feature of the type disussed above. Weexpet that a more sophistiated model seletion analy-sis along the lines of Refs. [48, 49, 50℄ would lead to asimilar onlusion.The best �t region of parameter spae onsists of mod-els whih show osillations at wavelengths orrespond-ing to multipoles ` ' O(10), where the temperature-temperature orrelation data of the CMB shows someglithes. Interestingly, the time it would take the ina-ton �eld to traverse the step in these models is of theorder of an e-folding, whih is what one would expet forthe time of a phase transition in more realisti multi-�eldmodels.
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