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O(G2Fm4t ) two-loop eletroweak orretion toHiggs-boson deay to bottom quarksMathias Butensh�on, Frank Fugel, Bernd A. KniehlII. Institut f�ur Theoretishe Physik, Universit�at Hamburg,Luruper Chaussee 149, 22761 Hamburg, GermanyAbstratWe analytially alulate the dominant two-loop eletroweak orretion, ofO(G2Fm4t ), to the partial width of the deay of a Higgs boson, with massMH � mt,into a bottom-quark pair, and desribe the most important oneptual and teh-nial details of our alulation. As a by-produt of our analysis, we also reoverthe O(�sGFm2t ) orretion. Relative to the Born result, the O(G2Fm4t ) orretionturns out to be approximately +0:047% and, thus, more than ompensates theO(�sGFm2t ) one, whih amounts to approximately �0:022%.PACS numbers: 11.10.Gh, 12.15.Ji, 12.15. Lk, 14.80.Bn
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1 IntrodutionThe standard model (SM) of elementary partile physis predits the existene of a lastundisovered partile, the Higgs boson, whose mass MH is a free parameter of the theory.The diret searh for the Higgs boson at the CERN Large Eletron-Positron ColliderLEP 2 only led to a lower bound of MH > 114 GeV at 95% on�dene level [1℄. Onthe other hand, high-preision measurements, espeially at LEP and the SLAC LinearCollider SLC, were sensitive to the Higgs-boson mass via eletroweak radiative orretions.These indiret measurements yielded the value MH = �85+39�28� GeV and an upper limit ofMH < 166 GeV at 95% on�dene level [2℄. The vauum-stability and triviality boundssuggest that 130�<MH�<180 GeV if the SM is valid up to the grand-uni�ation sale (fora review, see Ref. [3℄). For these reasons, one hopes to disover the Higgs boson at theCERN Large Hadron Collider (LHC), whih will be apable of produing partiles withmasses up to 1 TeV. The �rst question after disovering a new salar partile will be ifit atually is the Higgs boson of the SM, or possibly some partile of an extended Higgssetor. Therefore, it is neessary to know the SM preditions for the prodution and deayrates of the SM Higgs boson with high preision. Its deay into a bottom-quark pair isof speial interest, as it is by far the dominant deay hannel for MH�<140 GeV (see, forinstane, Ref. [4℄).At this point, we wish to summarise the urrent status of the alulations of radiativeorretions to the H ! bb deay width in the so-alled intermediate mass range, de�nedby MW � MH � 2MW . The orretion of order O(�s) was �rst alulated in Ref. [5℄.The omplete one-loop eletroweak orretion was found in Ref. [6℄. As for the O(�2s)orretion, the leading [7℄ and next-to-leading [8℄ terms of the expansion in m2b=M2H ofthe diagrams without top quarks are known. The diagrams ontaining a top quark anbe divided into two lasses. The diagrams ontaining gluon self-energy insertions werealulated exatly [9℄, while for the double-triangle ontributions the four leading terms ofthe expansion in M2H=m2t are known [10℄. In Ref. [11℄, the O(�3s) orretion without top-quark ontributions was alulated in the massless limit. The orretion indued by th topquark was subsequently found in Ref. [12℄ using an appropriate e�etive �eld theory. Asfor the orretion of order O(�sGFm2t ), the universal part, whih appears for any Higgs-boson deay to a fermion pair, was alulated in Ref. [13℄ and the non-universal one, usinga low-energy theorem, in Ref. [14℄. The latter result was independently found in Ref. [15℄.Apart from the Higgs-boson deay into a tt pair, only the one into a bb pair has suhnon-universal top-quark-indued ontributions, as bottom is the weak-isospin partner oftop. The universal and non-universal orretions of order O(�2sGFm2t ) were alulated inRefs. [16℄ and [17℄, respetively. Finally, also a result for the universal orretion of orderO(G2Fm4t ) was published [18℄.In this paper, we alulate the omplete orretion of order O(G2Fm4t ), inluding boththe universal and non-universal ontributions. To this end, we formally assume thatMH � mt. This inludes the intermediate mass range of the Higgs boson. Our resultfor the universal ontribution in the on-mass-shell sheme agrees with the one found inRef. [18℄, after orreting an obvious mistake in the latter paper. The key results of our2



alulation were already presented in a brief ommuniation [19℄. Here, the full detailsare exhibited.Our alulations are performed in 't Hooft-Feynman gauge. We adopt the on-mass-shell sheme and regularise the ultraviolet divergenes by means of dimensional regular-isation, with D = 4 � 2� spae-time dimensions and 't Hooft mass sale �. We use theanti-ommuting de�nition of 5. As a simpli�ation, we take the Cabibbo-Kobayashi-Maskawa quark mixing matrix to be unity. The Feynman diagrams are generated anddrawn using the program FeynArts [20℄ and evaluated using the program MATAD [21℄,whih is written in the programming language FORM [22℄.In order to hek our alulations, we also rederive the orretion of order O(�sGFm2t ).Our result agrees with Refs. [13,14,15℄. Sine this alulation follows the lines of the oneleading to the O(G2Fm4t ) orretion, being atually simpler, we refrain from going intodetails with it.This paper is organised as follows. In Setion 2, we desribe in detail the renormal-isation proedure underlying our analysis. In Setion 3, we present the details of ourdiagrammati alulations. In Setion 4, we explain how a part of our alulations anbe heked through the appliation of a low-energy theorem. In Setion 5, we evaluatethe O(G2Fm4t ) orretions numerially and ompare them with the O(�sGFm2t ) ones. Weonlude with a summary in Setion 6.2 Renormalisation proedureFor the reader's onveniene, we present in this setion the details of the renormalisationproedure whih has to be arried out. We derive general expressions for the mass oun-terterms and wave-funtion renormalisation onstants in the on-shell sheme, valid forany number of loops. Furthermore, we derive the tadpole renormalisation ountertermsand desribe the treatment of the orretions due to external legs. In our alulations, wedo not need to onsider eletri-harge renormalisation onstants, beause, to the orderswe onsider here, there are no suh ontributions.Before going into details, we would like to mention that the expressions for the massand wave-funtion renormalisation onstants to be derived here are only valid for sta-ble partiles. Instable partiles do have omplex self-energy amplitudes, so that theirresummed propagators have omplex poles. In that ase, the renormalisation onditionsare more ompliated (see, for instane, Ref. [23℄). Sine all self-energy amplitudes ap-pearing in the alulations of this paper are real, we an restrit ourselves to the ase ofstable partiles.2.1 Mass and wave-funtion renormalisationWe write the bare masses in the Lagrangian as sums of the renormalised ones and the massounterterms. In the on-shell sheme, we �x this splitting by the requirement that therenormalised masses are idential to the poles of the propagators inluding all radiative3



orretions. Furthermore, the wave-funtion renormalisation onstants are obtained asthe residues of the propagators at their poles.2.1.1 Higgs-boson mass and wave-funtion renormalisationFor the amputated one-partile-irreduible self-energy of the Higgs boson, we write1-PI HHq = i�H(q2): (1)Thus, the dressed propagator, inluding all radiative orretions, beomesS�1H (q2) = + 1-PI + 1-PI 1-PI + : : := iq2 �M2H;0 1Xn=0 i�H(q2) iq2 �M2H;0!n= iq2 �M2H;0 + �H(q2) : (2)The on-shell renormalisation ondition readsSH(M2H) != 0: (3)Writing the bare mass of the Higgs boson as the sum of the renormalised mass and aounterterm, M2H;0 = M2H + ÆM2H , we haveÆM2H = �H(M2H): (4)Here and in the following, it is understood that, in the expression for a ounterterm, allbare quantities have to be replaed by the renormalised ones plus the respetive ounter-terms. In the ase of the Higgs-boson mass ounterterm, this means that �H(M2H) has tobe expressed in terms of renormalised quantities. For higher-order expressions, this hasto be done iteratively.Expanding Eq. (2) about q2 =M2H and taking the limit q2 !M2H ,S�1H (q2) = iq2 �M2H 11 + �0H (M2H) +O (q2 �M2H)q2!M2H����! iZHq2 �M2H ; (5)we read o� the Higgs-boson wave-funtion renormalisation onstant asZH = 11 + �0H(M2H) : (6)4



Writing ZH = 1 + ÆZH and performing a loop expansion of Eq. (6), we haveÆZ(1)H = ��(1)0H (M2H); (7)ÆZ(2)H = ��(2)0H (M2H) + ��(1)0H (M2H)�2 : (8)Here and in the following, numbers plaed in parentheses as supersripts speify the looporder of the perturbative expression.2.1.2 Fermion mass and wave-funtion renormalisationThe amputated one-partile-irreduible self-energy of fermion f has the form1-PI ffq = i�f (q) = i=q!��f;L(q2) + i=q!+�f;R(q2) + imf;0�f;S(q2); (9)where mf;0 is the bare mass of fermion f and !� = (1� 5)=2 are the projetors onto theheliity eigenstates.The fermion �eld f is omposed of left- and right-handed omponents, l and r, re-spetively, as f = l + r; l = !�f; r = !+f: (10)In the eletroweak theory, l and r interat di�erently, whih has to be aounted for inthe renormalisation proedure. In terms of these omponents, the purely fermioni partof the SM Lagrangian reads:L = f(i=� �mf;0)f = il =�l + ir=�r �mf;0rl �mf;0lr: (11)We see that l and r are massless fermion �elds with propagatorslq = rq = i=q : (12)In addition, we have the following r-l transition verties:l r = r l = �imf;0: (13)From Eq. (9), we read o� the amputated one-partile-irreduible self-energies pertainingto the four di�erent heliity ombinations as1-PI llq = i=q�f;L(q2);1-PI rrq = i=q�f;R(q2);1-PI rlq = 1-PI lrq = imf;0�f;S(q2): (14)5



Note that above expressions do not yet inlude the tree-level ontributions from Eqs. (12)and (13). Equations (12){(14) are the ingredients out of whih we onstrut the propa-gators of the left- and right-handed �elds inluding all radiative orretions. This is donein lose analogy to the ase of -Z-mixing (see, e.g., Ref. [24℄). To this end, we introduethe propagator-type symbolsl : = l + 1-PI ll + l 1-PI l 1-PI l + : : := i=q 1Xn=0 �i=q�f;L(q2) i=q�n = i=q (1 + �f;L(q2)) ;r : = r + 1-PI rr + r 1-PI r 1-PI r + : : := i=q 1Xn=0 �i=q�f;R(q2) i=q�n = i=q (1 + �f;R(q2)) ; (15)and the vertex-type symbolsrl : = l r + 1-PI rl = imf;0 ��f;S(q2)� 1� ;lr : = r l + 1-PI lr = imf;0 ��f;S(q2)� 1� : (16)Next, we evaluate the dressed propagator of the left-handed fermion �eld, inluding allradiative orretions, asS�1ll (q) = l + l r l + l r l r l + : : := i=q (1 + �f;L(q2)) 1Xn=0 �imf;0 ��f;S(q2)� 1� i=q (1 + �f;R(q2)) imf;0 ��f;S(q2)� 1�� i=q (1 + �f;L(q2))�n= i=q1 + �f;L(q2) 1q2 �m2f;0f(q2) ; (17)where f(q2) = (1� �f;S(q2))2(1 + �f;L(q2))(1 + �f;R(q2)) : (18)In a similar way, we �nd the dressed propagator of the right-handed fermion �eld, inlud-ing all radiative orretions, to beS�1rr (q) = i=q1 + �f;R(q2) 1q2 �m2f;0f(q2) : (19)6



For ompleteness, we also resum the loop ontributions by whih a left-handed �eld on-verts into a right-handed one and vie versa. Proeeding similarly as in Eq. (17), weobtain S�1lr (q) = l r + l r l r + : : := i=q (1 + �f;L(q2)) imf;0 ��f;S(q2)� 1� i=q (1 + �f;R(q2))� 1Xn=0 �imf;0 ��f;S(q2)� 1� i=q (1 + �f;L(q2)) imf;0 ��f;S(q2)� 1�� i=q (1 + �f;R(q2))�n= imf;0(1� �f;S(q2))(1 + �f;L(q2))(1 + �f;R(q2)) 1q2 �m2f;0f(q2) : (20)Sine Eq. (20) is symmetri under the interhange of the indies L and R, we also haveS�1rl (q) = S�1lr (q): (21)We now derive the fermion mass ounterterm. Writing mf;0 = mf + Æmf , where mfis the renormalised mass and Æmf is the mass ounterterm, and imposing the on-shellrenormalisation ondition, Sij(q)uf(q)jq2=m2f != 0; (22)where ij = ll; rr; lr; rl and uf(q) is the spinor of the inoming fermion f , we obtainÆmfmf = 1qf �m2f� � 1: (23)Expanding Eq. (23), we �nd the expliit one- and two-loop expressions,Æm(1)fmf = 12�(1)f;L(m2f ) + 12�(1)f;R(m2f ) + �(1)f;S(m2f ); (24)Æm(2)fmf = 12�(2)f;L(m2f ) + 12�(2)f;R(m2f ) + �(2)f;S(m2f )� 18 ��(1)f;L(m2f )� �(1)f;R(m2f )�2+ �(1)f;S(m2f )Æm(1)fmf : (25)The one-loop expression of Eq. (24) is well known (see, e.g., Ref. [6℄). The two-loopexpression of Eq. (25) agrees with the one obtained in Ref. [25℄ using an alternativeproedure. 7



Finally, we derive the wave-funtion renormalisation onstants for the left-handed andright-handed �elds. Expanding Eqs. (17) and (19){(21) about =q = mf and taking thelimit =q ! mf , we haveS�1ll=rr(q) = i=qq2 �m2f 1�1 + �f;L=R(m2f )� �1�m2f f 0(m2f )f(m2f ) � +O �q2 �m2f�q2!m2f����! i=qZf;L=Rq2 �m2f ;S�1lr=rl(q) = imfq2 �m2f 1q�1 + �f;L(m2f )� �1 + �f;R(m2f )� �1�m2f f 0(m2f )f(m2f ) �+O �q2 �m2f�q2!m2f����! imfpZf;LZf;Rq2 �m2f ; (26)where Zf;L=R = 1�1 + �f;L=R(m2f)� �1�m2f f 0(m2f )f(m2f ) � : (27)Writing Zf;L=R = 1 + ÆZf;L=R and performing a loop expansion of Eq. (27), we haveÆZ(1)f;L = ��(1)L � �(1)0L � �(1)0R � 2�(1)0S ; (28)ÆZ(1)f;R = ��(1)R � �(1)0L � �(1)0R � 2�(1)0S ; (29)ÆZ(2)f;L = ��(2)L � �(2)0L � �(2)0R � 2�(2)0S + �(1)L ��(1)L + 2�(1)0L + �(1)0R + 2�(1)0S �+ �(1)R �(1)0R � 2�(1)S �(1)0S + ��(1)0L + �(1)0R + 2�(1)0S �2 ; (30)ÆZ(2)f;R = ��(2)R � �(2)0L � �(2)0R � 2�(2)0S + �(1)R ��(1)R + �(1)0L + 2�(1)0R + 2�(1)0S �+ �(1)L �(1)0L � 2�(1)S �(1)0S + ��(1)0L + �(1)0R + 2�(1)0S �2 : (31)Here, we used the abbreviations�(n)X = �(n)f;X(m2f );�(n)0X =m2f ��q2�(n)f;X(q2)���q2=m2f ; (32)where X = L;R; S. These expressions again agree with Refs. [6,25℄.If parity was onserved, we would have �fL(q2) = �fR(q2) and thus reover the strutureS�1f (q) q2!m2f����! iZf=q �mf ; (33)whih is familiar from quantum eletrodynamis.8



2.1.3 W -boson mass renormalisationThe amputated one-partile-irreduible self-energy of the W boson an be deomposedinto a transverse and a longitudinal part as1-PI W�W�q = �i���W (q) = �i �����W;T (q2) + q���W;L(q2)� ; (34)where ��� = g�� � q�q�q2 ;q�� = q�q�q2 : (35)Owing to the loop-indued mixing of theW boson with the harged Higgs-Kibble ghost �,we must also take into aount the one-partile-irreduible W $ � transition amplitudesand the one-partile-irreduible �-boson self-energy,1-PI �W�q = iq��W�(q2);1-PI W��q = �iq��W�(q2);1-PI ��q = i��(q2): (36)In 't Hooft-Feynman gauge, the bare propagators of the W and � bosons are given byG��W (q2) = �ig��q2 �M2W;0 ; (37)G�(q2) = iq2 �M2W;0 ; (38)with a ommon bare mass MW;0. In order to obtain the dressed W -boson propagator, weproeed in two steps. In the �rst step, we resum the one-partile irreduible self-energiesof the W and � bosons separately. In the seond step, we systematially ombine theseresults by aommodating all possible W $ � transitions.The resummation of the one-partile irreduible W -boson self-energy leads toW : = W + 1-PI WW + W 1-PI W 1-PI W + : : :=GW;��(q2) +GW;��(q2)��i���W (q)�GW;��(q2)+GW;��(q2)��i���W (q)�GW;�(q2)��i�ÆW (q)�GW;Æ�(q2) + : : : : (39)9



The series in Eq. (39) may be resummed by inserting Eqs. (34) and (37) and exploitingthe identities ������ =���;���q�� = 0;q��q�� = q��; (40)as followsW = GW;��(q2)"g�� � ����W;T (q2) + q���W;L(q2)q2 �M2W;0+ ��� (�W;T (q2))2 + q�� (�W;L(q2))2(q2 �M2W;0)2 � : : :#= GW;��(q2)"g�� +��� 1Xn=1 ��W;T (q2)q2 �M2W;0 !n + q�� 1Xn=1 ��W;L(q2)q2 �M2W;0 !n#
= GW;��(q2)24g�� +���0� 11 + �W;T (q2)q2�M2W;0 � 11A+ q��0� 11 + �W;L(q2)q2�M2W;0 � 11A35= �i ���q2 �M2W;0 + �W;T (q2) � i q��q2 �M2W;0 + �W;L(q2)= �S�1W;pure��� (q): (41)The resummation of the one-partile-irreduible �-boson self-energy proeeds in analogyto the Higgs-boson ase disussed in Setion 2.1.1 and yields� : = � + 1-PI �� + � 1-PI � 1-PI � + : : := iq2 �M2W;0 + ��(q2) : (42)The ontribution of unmixed W -boson propagation in Eq. (41) needs to be omple-mented by the ontribution that emerges by ombining it with the ontribution of un-mixed �-boson propagation of Eq. (42) via the one-partile-irreduibleW $ � transition
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amplitudes in all possible ways. This additional ontribution is given by�S�1W;mix��� (q) = W 1PI � 1PI W + W 1PI � 1PI W 1PI � 1PI W + : : := q��W�(q2)q2 �M2W;0 + �W;L(q2) iq2 �M2W;0 + ��(q2)� 1Xn=0 q2(�W�(q2))2�q2 �M2W;0 + �W;L(q2)� �q2 �M2W;0 + ��(q2)�!n� �q��W�(q2)q2 �M2W;0 + �W;L(q2)= �iq��q2 �M2W;0 + �W;L(q2) �q2q2 � (q2�M2W;0+�W;L(q2))(q2�M2W;0+��(q2))(�W�(q2))2 : (43)Adding Eqs. (41) and (43), we obtain the fully dressed W -boson propagator as�S�1W ��� (q) = �S�1W;pure��� (q) + �S�1W;mix��� (q): (44)Its inverse is found to beS��W (q) = ig��(q2 �M2W;0) + i����W;T (q2) + iq��  �W;L(q2)� q2 (�W�(q2))2q2 �M2W;0 + ��(q2)! : (45)The on-shell renormalisation ondition readsS��W (q2)�W;�(q)��q2=M2W != 0; (46)where ��W (q) is the polarisation four-vetor of an external W boson. Writing M2W;0 =M2W + ÆM2W and exploiting the transversality property q��W;�(q) = 0, we �nally haveÆM2W = �W;T (M2W ): (47)We note in passing that Eq. (47) is not inuened by W $ � mixing.2.2 External-leg orretionsIn this setion, we disuss the struture of the amputated matrix element A for the deayproess H ! bb and explain how to obtain from it the transition matrix element T byinorporating the wave-funtion renormalisation onstants.The general form of A readsAmp.H bbq1+q2 q2q1 = iA= i�A1 + =q1A2 + =q2A3 + =q2=q1A4 + 5A5 + 5=q1A6 + 5=q2A7 + 5=q2=q1A8� ; (48)11



where q1 and q2 are the four-momenta of the outgoing b and b quarks, respetively, andAi (i = 1; : : : ; 8) are salar form fators. Projeting onto eah of these form fators, weobserve that, to the orders we onsider in this paper, only two of them are independent.In fat, we have A2 = �A3 = A6 = �A7;A4 =A5 = A8 = 0; (49)so that A ollapses to the simple formA = AA +AB �=q2 � =q1�!�; (50)where AA = A1 and AB = �2A2.Then, T is obtained by dressingA with the renormalised wave funtions of the externallegs asT =pZH �pZb;Rur(q2; r2) +pZb;Lul(q2; r2)�A�pZb;Rvr(q1; r1) +pZb;Lvl(q1; r1)�=pZHub(q2; r2)�pZb;R!� +pZb;L!+�A�pZb;R!+ +pZb;L!�� vb(q1; r1); (51)where vb(q1; r1) and ub(q2; r2) denote the spinors of the outgoing b and b quarks with spinsr1 and r2, respetively. Inserting Eq. (50) into Eq. (51), we obtain the master formulaT =pZH �pZb;LZb;RAA +mbZb;LAB� ub(q2; r2)vb(q1; r1): (52)Note, that the terms involving 5 vanish upon appliation of the Dira equation.2.3 Tadpole renormalisationAs is well known (see, for instane, Ref. [26℄), one an introdue a so-alled tadpolerenormalisation in order to avoid the alulation of diagrams ontaining tadpoles. Forthe reader's onveniene, in this setion, we rederive the ounterterm verties of thetadpole renormalisation along with the ounterterm verties of the Higgs-boson massrenormalisation.The tadpole renormalisation onerns only the Higgs part of the SM Lagrangian,LHiggs = (D��)y(D��) + �2�y�� �4 (�y�)2; (53)where � is a weak-isospin doublet of two omplex salar �elds. The free parameters, �and �, are hosen in suh a way that one stays with a non-vanishing vauum expetationvalue v, whih is de�ned by v22 = jh0j�(x)j0ij2 = 2�2� : (54)12



If we parameterise �(x) = � �+(x)1p2 (v +H(x) + i�(x))� (55)and substitute � and � by t = v��2 � �v24 � ;M2H = ��2 + 3�v24 ; (56)Eq. (53) takes the formLHiggs = 12(D�H)(D�H) + 12(D��)(D��) + (D���)(D��+) + tH � M2H2 H2+ t2v ��2 + 2���+�� 12v � tv +M2H�H �H2 + �2 + 2���+�� 18v2 � tv +M2H��H2 + �2 + 2���+�2 ; (57)where �� = (�+)y. We see that MH has the physial meaning of the Higgs-boson mass.In this step, we did not exploit Eq. (54), whih implies that t = 0, so that we ould justhave emitted all terms ontaining t. However, as was argued above, it is useful to keepthem and to renormalise t along with M2H by substitutingt! t0 = 0 + Æt;M2H !M2H;0 = M2H + ÆM2H (58)in Eq. (57). Notie that Eq. (57) represents a bare Lagrangian, so that v, t, and MH areatually bare parameters. For onsisteny, we thus also substitute v ! v0. Then, Eq. (57)beomesLHiggs = 12(D�H)(D�H) + 12(D��)(D��) + (D���)(D��+)� M2H2 H2� M2H2v0 H �H2 + �2 + 2���+�� M2H8v20 �H2 + �2 + 2���+�2+ ÆtH � ÆM2H2 H2 + Æt2v0 ��2 + 2���+�� 12v0 �Ætv0 + ÆM2H�H� �H2 + �2 + 2���+�� 18v20 �Ætv0 + ÆM2H��H2 + �2 + 2���+�2 : (59)From the terms proportional to Æt and ÆM2H , we an read o� the desired ountertermverties, whih we list in Table 1. 13



Table 1: Counterterm verties related to the Higgs-boson tadpole and mass renormalisa-tion. H: iÆt HHHH:�i 3v20 � Ætv0 + ÆM2H�HH: �iÆM2H ����: �i 3v20 � Ætv0 + ÆM2H���: i Ætv0 HH��: �i 1v20 � Ætv0 + ÆM2H���: i Ætv0 HH��: �i 1v20 � Ætv0 + ÆM2H�HHH:�i 3v0 � Ætv0 + ÆM2H� ����: �i 1v20 � Ætv0 + ÆM2H�H��: �i 1v0 � Ætv0 + ÆM2H� ����: �i 2v20 � Ætv0 + ÆM2H�H��: �i 1v0 �Ætv0 + ÆM2H�
The Higgs-boson mass renormalisation ondition was already disussed in Setion 2.1.1.As a renormalisation ondition for Æt, we setÆt != �T; (60)where T stands for the sum of all amputated one-partile-irreduible tadpole diagrams,1-PIH = iT: (61)As an be seen from Table 1, there is a one-point Higgs-boson ounterterm vertex, iÆt,that fores a anellation with all diagrams having a tadpole at its plae. Therefore,upon tadpole renormalisation, one does not have to onsider tadpole diagrams anymore.However, now one has to take into aount all the tadpole ounterterm verties in Table 1,exept for the one mentioned above.3 ResultsIn this setion, we present the details of our atual alulations. After making somegeneral remarks, we desribe in Setions 3.1, 3.2, and 3.3 the expliit omputation ofthe deay rate at tree level, at the one-loop order O(GFm2t ), and at the two-loop order14



O(G2Fm4t ), respetively. Setion 3.1 also ontains the expressions for the renormalisationonstants at order O(GFm2t ), whih are needed in the one-loop and two-loop alulations.In order to ompute the leading large-mt ontributions of the various two-loop dia-grams, we apply the asymptoti-expansion tehnique (for a areful introdution, seeRef. [27℄). However, it turns out that all non-trivial ontributions of the self-energyand Hbb vertex diagrams (see Figs. 4, 5, and 6), whih are of leading order in mt, anelamong themselves or, in ase of the W -boson self-energy, in ombination with ompleteounterterm diagrams arising form the Higgs-boson tadpole and mass renormalisations.Spei�ally, in Fig. 4, there are non-naive ontributions due to the asymptoti expansionof diagrams (i){(o) that anel against diagrams (p){(v); in Fig. 5, the non-naive ontri-butions of diagrams (a) and (t) anel; and in Fig. 6 those of the diagrams (e) and (i)anel. After these anellations, only naive ontributions due to diagrams involving top-quark propagators remain. Therefore, we an naively expand in all masses and momentaexept for the top-quark mass and retain only the leading terms. Obviously, this requiresthe Higgs-boson mass to be smaller than the top-quark mass, whih is ompatible withthe intermediate-mass range of the Higgs boson, as mentioned in the Introdution.The ultraviolet divergenes whih have to disappear in the �nal expression for thedeay rate are anelled through the appliation of the renormalisation proedure, whihwe arry out in the on-mass-shell renormalisation sheme. This provides a non-trivialhek for our alulations. As explained in Setion 2.3, we use the ounterterm vertiesof Table 1 for the Higgs-boson tadpole and mass renormalisations. However, while werenormalise the Higgs-boson mass already at the Lagrangian level, we replae all other bareparameters at the end of the alulations without reourse to any ounterterm verties.This proedure turns out to be most onvenient for our purposes.As a further hek on our alulations, we also rederive the orretion of orderO(�sGFm2t ). This result is presented in Setion 3.4. Finally, we apply a Higgs-bosonlow-energy theorem [28℄, whih allows for an independent alulation of the various Hbbdiagrams at order O(G2Fm4t ). This is explained in Setion 4.3.1 Tree-level result and O(GFm2t ) renormalisation onstantsThe tree-level diagram is depited in Fig. 1(a). Using the notation introdued in Eq. (50),the orresponding amputated matrix element is in bare form written asA(0)0 = A(0)A;0 = �mb;0v0 : (62)The tree-level transition matrix element isT (0) = A(0)0 ub(q2; r2)vb(q1; r1); (63)and the deay rate is �(0) = p2NGFMHm2b8� �1� 4m2bM2H �3=2 ; (64)15
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Figure 1: Diagrams ontributing to H ! bb at (a) tree level and (b) order O(GFm2t ).where N = 3 is the number of quark olours. Furthermore, we have introdued Fermi'sonstant GF via the Born relation 1v = 21=4G1=2F : (65)In the following, we have to renormalise the vauum expetation value. Through theorder of our alulations, this an be ahieved by writing [29℄1v0 = 21=4G1=2F;0; (66)with GF;0 = GF M2WM2W;0 : (67)Thus, the renormalisation of the vauum expetation value is redued to the one of theW -boson mass.In the remainder of this subsetion, we list all relevant renormalisation onstants oforder O(GFm2t ). They are derived by evaluating the diagrams of Fig. 2 and applyingEqs. (4), (7), (24), (28), (29), (47), and (60). Sine we shall ompute the orretion oforder O(G2Fm4t ), these renormalisation onstants are needed through order O(�) in the
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expansion in �. The results readÆt(1) = C�;0xt;0m2t;0v0N �4� + 4 + (4 + 2�(2))�+O(�2)� ; (68)ÆM2(1)H = C�;0xt;0m2t;0N ��12� � 4 + (�4� 6�(2))�+O(�2)� ; (69)ÆZ(1)H = C�;0xt;0N ��2� + 43 � �(2)�+O(�2)� ; (70)Æm(1)bmb = C�;0xt;0 �� 32� � 54 + ��98 � 34�(2)� �+O(�2)� ; (71)ÆZ(1)b;L = C�;0xt;0 ��1� � 32 + ��74 � 12�(2)� �+O(�2)� ; (72)ÆZ(1)b;R = 0; (73)Æm(1)tmt = C�;0xt;0 � 32� + 4 + �9� 54�(2)� �+O(�2)� ; (74)ÆM2(1)W = C�;0xt;0M2W;0N ��2� � 1 + ��12 � �(2)� �+O(�2)� ; (75)where we use the abbreviations C� = �4��2m2t e�E�� ;xt = GFm2t8�2p2 ; (76)with E being Euler's onstant.3.2 Corretion of order O(GFm2t )At order O(GFm2t ), only the one diagram depited in Fig. 1(b) ontributes. Using thenotation of Eq. (50), we obtain for the expansion in � through order O(�):A(1)A;0 = C�;0xt;0mb;0v0 ��2� + 2 + (2� �(2))�+O(�2)�A(1)B;0 = C�;0xt;0 1v0 ��1� 32�+O(�2)� : (77)Expanding Eq. (52) and replaing the bare masses by the renormalised ones plus theirounterterms in Eq. (62), we �nd the transition matrix element to beT (1) = A(1)A;0 +mbA(1)B;0 +A(0)0  Æ(1)u + Æm(1)bmb + 12ÆZ(1)b;L + 12ÆZ(1)b;R! ; (78)17
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Figure 2: One-loop self-energy and tadpole diagrams ontributing at order O(GFm2t ).where A(0) is the amputated matrix element of Eq. (62) andÆ(1)u = 12ÆZ(1)H � 12 ÆM2(1)WM2W (79)is the one-loop ontribution to the universal ounterterm Æu, whih exhausts the fullO(GFm2t ) orretions for Higgs-boson deays to fermion-antifermion pairs, exept forthose into tt and bb pairs. For simpliity, we omitted the spinors on the right-hand sideof Eq. (78); we shall also do this in the following. Æ(1)u and T (1) are ultraviolet �nite andread Æ(1)u = xtN76= xt 72 ; (80)T (1) = T (0)xt ��3 +N76� : (81)The O(GFm2t ) orretion to the deay rate thus beomes�(1)�(0) = xt ��6 +N73�= xt; (82)where �(0) is given in Eq. (64). The results of this subsetion are in aordane withRef. [6℄. 18



3.3 Corretion of order O(G2Fm4t )Expanding Eq. (52) up to the two-loop order and replaing all bare masses in the tree-leveland one-loop amputated matrix elements by the renormalised masses plus the orrespond-ing ounterterms, we �nd the following master formula for the transition matrix elementT (2) =A(2)A;0 +mbA(2)B;0 +A(1)A;0 Æm(1)bmb + 12ÆZ(1)b;L + 12ÆZ(1)b;R!+mbA(1)B;0ÆZ(1)b;L+ �A(1)A;0 +mbA(1)B;0�"Æ(1)u + 2(1� �)Æm(1)tmt � ÆM2(1)WM2W #
+A(0)0 "Æ(2)u + Æm(2)bmb + 12ÆZ(2)b;L + 12ÆZ(2)b;R + Æ(1)u  Æm(1)bmb + 12ÆZ(1)b;L + 12ÆZ(1)b;R!+ 12 Æm(1)bmb �ÆZ(1)b;L + ÆZ(1)b;R�� 18 �ÆZ(1)b;L � ÆZ(1)b;R�2# ; (83)where Æ(2)u = 12ÆZ(2)H � 12 ÆM2(2)WM2W � 18 �ÆZ(1)H �2 � 14ÆZ(1)H ÆM2(1)WM2W + 38  ÆM2(1)WM2W !2 (84)is the universal ounterterm.3.3.1 Universal ountertermLet us �rst alulate the universal ounterterm. To this end, we need the two-loop ex-pressions for ÆZH and ÆM2W . The unrenormalised expressions are obtained by evaluatingthe diagrams in Figs. 3 and 4 and applying Eqs. (8) and (47), the results beingÆZ(2)H;0 = C2�;0x2t;0N � 3�2 � 112� � 1712 + 5�(2) +N� 4�2 � 163� + 169 + 4�(2)�+O(�)� ;ÆM2(2)W;0 = C2�;0x2t;0M2W;0N� 3�2 + 32� � 694 + 17�(2) +O(�)� ; (85)in aordane with Ref. [18℄. In addition, there are ontributions from the renormalisationsof the bare parameters in Eqs. (70) and (75), so thatÆZ(2)H = ÆZ(2)H;0 + ÆZ(1)H "2(1� �)Æm(1)tmt � ÆM2(1)WM2W # ;ÆM2(2)W = ÆM2(2)W;0 + 2(1� �)Æm(1)tmt ÆM2(1)W : (86)19
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simpli�es as one passes from order O(G2Fm4t ) to order O(�sGFm2t ). Using our tools, weindeed reover the well-known O(�sGFm2t ) results for the universal orretion [13℄ andthe orretion to the H ! bb deay width [14,15℄,Æ(Xt�s)u =Xt�s� CFN��34 � �(2)2 � ;�(Xt�s)�(0) =Xt�s� CF ��12 + 9 lnM2HM2b +N�154 � �(2)� 72 lnM2HM2b �� ; (93)respetively, where Xt = GFM2t = �8�2p2� and CF = (N2 � 1)=(2N). In Eq. (93), thebottom- and top-quark masses are denoted with apital letters, Mb and Mt, respetively,to indiate that they are pure on-shell masses, i.e. they are de�ned in the on-shell shemealso with regard to quantum hromodynamis (QCD). The obvious disadvantage of thishoie is the appearane of large logarithms of the type ln (M2H=m2b) starting already inorder O(�s), whih spoil the onvergene behaviour of the perturbation expansion. As iswell known [5℄, these logarithms an be resummed into the running bottom-quark mass,if mb appearing in Eq. (64) is QCD-renormalised in the MS sheme at sale � = MH , bysubstituting mb = mb(MH). For onsisteny with the O(GFm2t ) and O(G2Fm4t ) resultspresented above, whih all refer to the eletroweak on-shell sheme, we ontinue ourdisussion in a mixed renormalisation sheme where the on-shell de�nition of bottom-quark mass is adopted for eletroweak orretions and the MS one for QCD orretions.Sine we wish to treat the masses of the top and bottom quarks on the same footing,we adopt this mixed sheme for the top-quark mass as well. Furthermore, the analysisat order O(�2sGFm2t ) [16,17℄ reveals that Eq. (93) is further improved aording to therenormalisation group if mt and �s are taken to be mt = mt(mt) and �s = �(nf )s (mt) withnf = 6 quark avours, respetively. In this improved renormalisation sheme, Eq. (93)takes the form Æ(xt�s)u = xt�s� CFN�1912 � �(2)2 �= xt�s� �193 � �23 � ;�(xt�s)�(0) = xt�s� CF ��36 +N�15712 � �(2)��= xt�s� �133 � 23�2� : (94)To the order onsidered here, we havemt = Mt 1� �(6)s (Mt)� CF! : (95)
24



4 Low-energy theoremIn this setion, we present an alternative way of alulating all but one of theHbb diagramsat order O(G2Fm4t ) whih is based on the Higgs-boson low-energy theorem [28℄. In fat,the Hbb diagrams of Fig. 5, with the exeption of diagram (t), an be generated from thebottom-quark self-energy diagrams of Fig. 6 by in turn attahing an external Higgs-bosonline to eah of the top-quark lines. Diagrammatially, this an be represented as follows:t(q) �! t(q) t(q)Hi=q �mt;0 �! i=q �mt;0 �imt;0v0 i=q �mt;0 : (96)Here, we also made use of the fat that, in the large-mt approximation, the external Higgsboson does not arry any four-momentum into the respetive diagram. Thanks to theidentity i=q �mt;0 �imt;0v0 i=q �mt;0 = mt;0v0 ��mt;0 � i=q �mt;0� ; (97)the amputated matrix element of H ! bb is in the large-mt limit related to the bottom-quark self-energy as A0 = mt;0v0 ��mt;0�b; (98)where it is understood that the di�erential operator only ats on masses whih stem frompropagators, not to those ourring in verties, and that all quantities in Eq. (98) aretaken to be bare. Exploiting the strutures underlying Eqs. (9) and (50), Eq. (98) an bedeomposed into two salar equations. Identifying the four-momentum q in Eq. (9) withq2 in Eq. (50) and notiing that q2 = �q1 in the soft-Higgs limit, we haveAA;0 =mb;0mt;0v0 ��mt;0�b;S;AB;0 = 12 mt;0v0 ��mt;0�b;L: (99)The fat that the H ! bb amplitude does not ontain a term proportional to (=q2� =q1)!+is reeted by the fat that the right-handed part of the bottom-quark self-energy, �b;R,vanishes to the orders onsidered in this paper.The results for AA;0 and AB;0 obtained through Eq. (99) indeed agree with the diretevaluation of the respetive diagrams in Fig. 5.5 Numerial resultsFinally, we explore the phenomenologial impliations of our results. Adopting fromRef. [30℄ the values GF = 1:16637�10�5 GeV�2, �(5)s (MZ) = 0:1176, MZ = 91:1876 GeV,25



Table 2: Numerial values of the relative orretions �(x)l , �(x)q , and �(x)=�(0) to theH ! l+l�, H ! qq, and H ! bb deay widths, respetively, at orders x = GFm2t , G2Fm4t ,and �sGFm2t . Order x �(x)l �(x)q �(x)=�(0)O(GFm2t ) +2:021% +2:021% +0:289%O(G2Fm4t ) +0:064% +0:064% +0:047%O(�sGFm2t ) +0:060% +0:452% �0:022%and Mt = 174:2 GeV for our input parameters, so that �(6)s (mt) = 0:1076 and mt =166:2 GeV, we evaluate the relative orretions �(x)=�(0) to the H ! bb deay width toorders x = GFm2t , G2Fm4t , and �sGFm2t . For omparison, we also evaluate the relativeorretions to the H ! l+l� and H ! qq deay widths, where l = e; �; � and q = u; d; s; ,whih, to the orders onsidered here, are given by�l = (1 + Æu)2 � 1= 2Æ(1)u + 2Æ(2)u + �Æ(1)u �2 + 2Æ(xt�s)u ;�q = (1 + �QCD)(1 + Æu)2 � 1= �QCD + 2Æ(1)u + 2Æ(2)u + �Æ(1)u �2 + 2Æ(xt�s)u + 2�QCDÆ(1)u ; (100)where [5℄ �QCD = �s� CF 174 (101)is the O(�s) orretion in the limit mq �MH , with mq = mq(MH).The results are listed in Table 2. We observe that the O(G2Fm4t ) orretion to �(0)inreases the enhanement due to the O(GFm2t ) one by about 16% and has more thantwie the magnitude of the negative O(�sGFm2t ) one.6 ConlusionsWe analytially alulated the dominant eletroweak two-loop orretion, of orderO(G2Fm4t ), to the H ! bb deay width of an intermediate-mass Higgs boson, withMH � mt.We performed various heks for our analysis. The ultraviolet divergenes anelledthrough genuine two-loop renormalisation. Our �nal result is devoid of infrared diver-genes related to in�nitesimal salar-boson masses. We reprodued those Hbb trianglediagrams where the external Higgs boson is oupled to an internal top-quark line, whihwe had omputed diretly, through appliation of a low-energy theorem. After swithingto a hybrid renormalisation sheme, our O(G2Fm4t ) result for the universal orretion Æuagrees with Ref. [18℄. Using our tehniques, we also reovered the O(�sGFm2t ) orretionto the H ! bb deay width as well as the universal orretion Æu in this order.26
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