
ar
X

iv
:1

00
1.

00
35

v2
  [

he
p-

th
]  

25
 M

ar
 2

01
0

Reconstruction of BaxterQ-operator from Sklyanin SOV
for cyclic representations of integrable quantum models

G. Niccoli

DESY, Notkestr. 85, 22603 Hamburg, Germany

DESY 09-227

Abstract

In [1], the spectrum (eigenvalues and eigenstates) of a lattice regularizations of the Sine-
Gordon model has been completely characterized in terms of polynomial solutions with
certain properties of the Baxter equation. This characterization for cyclic representations
has been derived by the use of the Separation of Variables (SOV) method of Sklyanin and
by the direct construction of the BaxterQ-operator family. Here, we reconstruct the Baxter
Q-operator and the same characterization of the spectrum by only using the SOV method.
This analysis allows us to deduce the main features requiredfor the extension to cyclic
representations of other integrable quantum models of thiskind of spectrum characteriza-
tion.
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1. Introduction

The integrability of a quantum model is by definition relatedto the existence of a mutually commu-
tative familyQ of self-adjoint operatorsT such that

(A) [T , T′ ] = 0,

(B) [T , U ] = 0,

(C) if [T , O ] = 0 ,

∀T,T′ ∈ Q ,

∀T ∈ Q ,

∀T ∈ Q, then O = O(Q) ,

(1.1)

whereU is the unitary operator defining the time-evolution in the model; note that the property (C)
stays for the completeness of the familyQ. In the framework of the quantum inverse scattering
method [2, 3, 4] the Lax operatorL(λ) is the mathematical tool which allows to define the transfer
matrix:

T(λ) = tr
C2M(λ) , M(λ) ≡

(

A(λ) B(λ)

C(λ) D(λ)

)

≡ LN(λ) . . . L1(λ) , (1.2)

a one parameter family of mutual commutative self-adjoint operators. The integrability of the model
follows from T(λ) if the properties (B) and (C) of definition (1.1) can be provenfor it. In some
quantum model the integrability is derived by proving the existence of a further one-parameter family
of self-adjoint operators theQ-operator which by definition satisfies the following properties:

[Q(λ) , Q(µ) ] = 0 , [T(λ) , Q(µ) ] = 0 , ∀λ, µ ∈ C, (1.3)

plus the Baxter equation with the transfer matrix:

T(λ)Q(λ) = a(λ)Q(q−1λ) + d(λ)Q(qλ) . (1.4)

This is in particular the case for those models (like Sine-Gordon [1]) for which the time-evolution
operatorU is expressed in terms ofQ. A natural question arises: Is the integrable structure of these
quantum models completely characterized by the transfer matrix T(λ)?

Note that a standard procedure1 to prove the existence ofQ(λ) is by a direct construction of an
operator solution of the Baxter equation (1.4). Moreover, the coefficientsa(λ) andd(λ) as well as the
analytic and asymptotics properties ofQ(λ) are some model dependent features which are derived
by the construction. Let us recall that the general strategy[11, 12, 13, 14, 15] of this construction is
to find agaugetransformation2 such that the action of each gauge transformed Lax matrix onQ(λ)

becomes upper-triangular. Then theQ-operator assumes a factorizedlocal form and the problem of
its existence in such a form is reduced to the problem of the existence of some model dependent
specialfunction3.

1It is worth recalling that there are also others constructions of theQ-operator. An interesting example is presented in the
series of works [5, 6, 7] by V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov on the integrable structure of conformal
field theories. In [6, 7] theQ-operator is obtained as a transfer-matrix by a trace procedure of a fundamentalL-operator with
q-oscillator representation for the auxiliary space (see also [8, 9]). This construction can be extended to massive integrable
quantum field theories as it was argued by the same authors in [10].

2It leaves unchanged the transfer matrix while modifies the monodromy matrixM(λ) defined in (1.2) .
3Thequantum dilogarithmfunctions [16, 17, 18, 19, 20, 21, 22, 23, 24, 25] for example appear in the Sinh-Gordon model

[26], in their non-compactform, and in the Sine-Gordon model [1], in theircyclic form.
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It is worth pointing out that on the one hand the constructionof these special functions for general
models can represent a concrete technical problem4 and that on the other hand the existence of such
functions is only a sufficient criterion for the existence ofQ(λ). It is then a relevant question if it is
possible to bypass this kind of construction providing a different proof of the existence ofQ(λ).

Given an integrable quantum model the first fundamental taskto solve is the exact solution of its
spectral problem, i.e. the determination of the eigenvalues and the simultaneous eigenstates of the
operator familyQ, defined in (1.1). There are several methods to analyze this spectral problem as
the coordinateBethe ansatz [27, 28, 29], theTQ method [28], thealgebraicBethe ansatz (ABA)
[2, 3, 4], theanalyticBethe ansatz [30] and the separation of variables (SOV) method of Sklyanin
[31, 32, 33]; this last one seems to be more promising. Indeed, on the one hand it resolves the
problems related to the reduced applicability of other methods (like ABA) and on the other hand
it directly implies the completeness of the characterization of the spectrum which instead for other
methods has to be proven.

For cyclic representations [34] of integrable quantum models the SOV method should lead to the
characterization of the eigenvalues and the simultaneous eigenstates of the transfer matrixT(λ) by a
finite5 system of Baxter-like equations. However, it is worth pointing out that such a characterization
of the spectrum is not the most efficient; this is in particular true in view of the analysis of the
continuum limit. Here the main question reads: Is it possible to define a set of conditions under
which the SOV characterization of the spectrum can be reformulated in terms of a functional Baxter
equation? In fact, this is equivalent to ask if we can reconstruct theQ-operator from the finite
system of Baxter-like equations. In this case the solution of the spectral problem is reduced to the
classification of the solutions of the Baxter equation whichsatisfy some analytic and asymptotic
properties fixed by the operatorsT andQ.

The lattice Sine-Gordon model is used as a concrete example where these questions about quantum
integrability find a complete and affirmative answer. Indeed, in section 3, we show that the SOV
characterization of the transfer matrix spectrum is exactly equivalent to a functional equation of
the formdetD(Λ) = 0, whereD(λ) (see (3.21)) is a one-parameter family ofquasi-tridiagonal
matrices. In section 4, we show that this functional equation is indeed equivalent to the Baxter
functional equation and, in section 5, we use these results to reconstruct the BaxterQ-operator
with the same level of accuracy obtained by the direct construction presented in [1]. It is worth
pointing out that these results allow us to prove that the transfer matrixT(λ) (plus theΘ-charge for
even chain) describes the familyQ of complete commuting self-adjoint charges which implies the
quantum integrability of the model according to definition (1.1). So that in the Sine-Gordon model
the BaxterQ-operator plays only the role of a useful auxiliary object.

Let us point out that one of the main advantages of the spectrum characterization derived for the
Sine-Gordon model is the possibility to prove an exact reformulation in terms of non-linear integral

4The Sine-Gordon model at irrational values of the couplingβ2 is a simple case where this kind of problem emerges.
5The number of equations in the system is finite and related to the dimension of the cyclic representation.
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equations6 (NLIE). This will be the subject of a future publication where the NLIE characterization
will lead us by the implementation of the continuum limit to the description of the Sine-Gordon
spectrum in all the interesting regimes. These results willbe shown to be consistent with those
obtained previously in the literature7 [37, 38, 39, 40, 41, 42] (see [43, 44] for reviews). Note that
the method based on the reformulation of the spectral problem in terms of NLIE has been also used
recently [49] to derive the Sinh-Gordon spectrum in finite volume and to characterize the spectrum
in the infrared and ultraviolet limits.

The analysis of the Sine-Gordon model allows us to infer the main features required to extend this
kind of spectrum characterization to cyclic representations of other integrable quantum models. This
is particularly relevant for those models for which a directconstruction of the BaxterQ-operator
encounters technical difficulties.

Acknowledgments.I would like to thank J. Teschner for stimulating discussions and suggestions on a prelimi-
nary version of this work and J.-M. Maillet for the interest shown.

I gratefully acknowledge support from the EC by the Marie Curie Excellence Grant MEXT-CT-2006-042695.

2. The Sine-Gordon model

We use this section to recall the main results derived in [1] on the description in terms of SOV of the
lattice Sine-Gordon model. This will be used as the startingpoint to introduce a characterization of
the spectrum of the transfer matrixT(λ) which will lead to the construction of theQ-operator from
SOV.

2.1 Definitions

The lattice Sine-Gordon model can be characterized by the following Lax matrix8:

LSG

n (λ) =
κn
i

(

i un(q
− 1

2κnvn + q+
1
2κ−1

n v−1
n ) λnvn − λ−1

n v−1
n

λnv
−1
n − λ−1

n vn i u−1
n (q+

1
2κ−1

n vn + q−
1
2 κnv

−1
n )

)

, (2.5)

whereλn ≡ λ/ξn for anyn ∈ {1, ...,N} with ξn andκn parameters of the model. For anyn ∈

{1, ...,N} the couple of operators (un,vn) define a Weyl algebraWn:

unvm = qδnmvmun , where q = e−πiβ2

. (2.6)

We will restrict our attention to the case in whichq is a root of unity,

β2 =
p′

p
, p, p′ ∈ Z

>0 , (2.7)

6This type of equations were before introduced in a differentframework in [35, 36]
7See [45, 46] for a related model analyzed in the framework of ABA and [47, 48] for the corresponding finite volume

continuum limit.
8The lattice regularization of the Sine-Gordon model that weconsider here goes back to [4, 50] and is related to formula-

tions which have more recently been studied in [51, 52, 53].
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with p ≡ 2l + 1 odd andp′ even so thatqp = 1. In this case each Weyl algebraWn admits a
finite-dimensional representation of dimensionp. In fact, we can represent the operatorsun, vn on
the space of complex-valued functionsψ : SNp → C as

un · ψ(z1, . . . , zN) = unznψ(z1, . . . , zn, . . . , zN) ,

vn · ψ(z1, . . . , zN) = vnψ(z1, . . . , q
−1zn, . . . , zN) .

(2.8)

whereSp = {q2n;n = 0, . . . , 2l} is a subset of the unit circle; note thatSp = {qn;n = 0, . . . , 2l}

sinceq2l+2 = q.

The monodromy matrixM(λ) defined in (1.2) in terms of the Lax-matrix (2.5) satisfies thequadratic
relations:

R(λ/µ) (M(λ) ⊗ 1) (1⊗M(µ)) = (1 ⊗M(µ)) (M(λ)⊗ 1)R(λ/µ) , (2.9)

where the auxiliaryR-matrix is given by

R(λ) =







qλ− q−1λ−1

λ− λ−1 q − q−1

q − q−1 λ− λ−1

qλ− q−1λ−1






. (2.10)

The elements ofM(λ) generate a representationRN of the so-called Yang-Baxter algebra char-
acterized by the4N parametersκ = (κ1, . . . , κN), ξ = (ξ1, . . . , ξN), u = (u1, . . . , uN) and
v = (v1, . . . , vN); in the present paper we will restrict to the caseun = 1, vn = 1, n = 1, . . . ,N.
The commutation relations (2.9) are at the basis of the proofof the mutual commutativity of the
T-operators.

In the case of a lattice withN even quantum sites, we have also to introduce the operator:

Θ =

N
∏

n=1

v
(−1)1+n

n , (2.11)

which plays the role of agrading operatorin the Yang-Baxter algebra:

Proposition 6 of [1] Θ commutes with the transfer matrix and satisfies the following commutation
relations with the entries of the monodromy matrix:

ΘC(λ) = qC(λ)Θ, [A(λ),Θ] = 0, (2.12)

B(λ)Θ = qΘB(λ), [D(λ),Θ] = 0. (2.13)

Moreover, theΘ-charge allows to express the asymptotics of the transfer matrix as:

lim
log λ→∓∞

λ±NT(λ) =

(

N
∏

a=1

κaξ
±1
a

i

)

(

Θ+Θ−1
)

. (2.14)
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Let us denote withΣT the spectrum (the set of the eigenvalue functionst(λ)) of the transfer matrix
T(λ). By the definitions (1.2) and (2.5), thenΣT is contained9 in C[λ2, λ−2](N+eN−1)/2, where we
have used the notation eN = 0 for N odd and1 for N even.

Note that in the case ofN even, theΘ-charge naturally induces the gradingΣT =
⋃l

k=0 Σ
k
T, where:

Σk
T ≡

{

t(λ) ∈ ΣT : lim
log λ→∓∞

λ±Nt(λ) =

(

N
∏

a=1

κaξ
±1
a

i

)

(qk + q−k)

}

. (2.15)

This simply follows by the asymptotics ofT(λ) and by its commutativity withΘ. In particular,
any t(λ) ∈ Σk

T is aT-eigenvalue corresponding to simultaneous eigenstates ofT(λ) andΘ with
Θ-eigenvaluesq±k.

2.2 Cyclic SOV representations

The separation of variables method of Sklyanin is based on the observation that the spectral problem
for T(λ) simplifies considerably if one works in an auxiliary representation where the commutative
family of operatorsB(λ) is diagonal.

In the case of the Sine-Gordon model the vector space10 CpN

underlying the SOV representation can
be identified with the space of functionsΨ(η) defined forη taken from the discrete set

BN ≡
{

(qk1ζ1, . . . , q
kNζN) ; (k1, . . . , kN) ∈ Z

N
p

}

, (2.16)

on these functionsB(λ) acts as a multiplication operator,

BN(λ)Ψ(η) = ηeNN bη(λ)Ψ(η) , bη(λ) ≡
N
∏

n=1

κn
i

[N]
∏

a=1

(λ/ηa − ηa/λ) ; (2.17)

where[N] ≡ N− eN andη1, . . . , η[N] are the zeros ofbη(λ). In the case of evenN it turns out that
we need a supplementary variableηN in order to be able to parameterize the spectrum ofB(λ).

In [1] we have proven that for general values of the parametersκ andξ of the original representation
it is possible to construct these SOV representations and moreover we have defined the map which
fixes the SOV parameterη in terms of the parametersκ andξ.

In these SOV representations the spectral problem forT(λ) is reduced to the following discrete
system of Baxter-like equations in the wave-functionΨt(η) = 〈 η | t 〉 of aT-eigenstate| t 〉:

t(ηr)Ψ(η) = a(ηr)T
−
r Ψ(η) + d(ηr)T

+
r Ψ(η) ∀r ∈ {1, ..., [N]}, (2.18)

9Here withC[x, x−1]M we are denoting the linear space of the Laurent polynomials of degreeM in the variablex ∈ C.
10It is always possible to provide the structure of Hilbert space to this finite-dimensional linear space. In particular, the

scalar product in the SOV space is naturally introduced by the requirement that the transfer matrix is self-adjoint in the SOV
representation. Appendix B addresses this issue.
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whereT±
r are the operators defined by

T±
r Ψ(η1, . . . , ηN) = Ψ(η1, . . . , q

±1ηr, . . . , ηN) ,

while the coefficientsa(λ) andd(λ) are defined by:

a(λ) =

N
∏

n=1

κn
iλn

(1 − iq−1/2λnκn)(1 − iq−1/2λn
κn

), d(λ) = qNa(−λq). (2.19)

In the case ofN even we have to add to the system (2.18) the following equation in the variableηN:

T
+
NΨ±k(η) = q±kΨ±k(η), (2.20)

for t(λ) ∈ Σk
T with k ∈ {0, ..., l}. Note that the cyclicity of these SOV representations is expressed

by the identification of(T±
j )

p with the identity for anyj ∈ {1, ...,N}.

3. SOV characterization ofT-eigenvalues

Let us introduce the one parameter familyD(λ) of p× p matrix:

D(λ) ≡



































t(λ) −d(λ) 0 · · · 0 −a(λ)

−a(qλ) t(qλ) −d(qλ) 0 · · · 0

0
. . .

...
... · · ·

...
... · · ·

...
...

. . . 0

0 . . . 0 −a(q2l−1λ) t(q2l−1λ) −d(q2l−1λ)

−d(q2lλ) 0 . . . 0 −a(q2lλ) t(q2lλ)



































(3.21)

where for nowt(λ) is just an even Laurent polynomial of degreeN+eN − 1 in λ.

Lemma 1. The determinantdetpD is an even Laurent polynomial of maximal degreeN+eN − 1 in
Λ ≡ λp.

Proof. Let us start observing thatD(λq) is obtained byD(λ) exchanging the first andp-th column
and after the first andp-th row, so that

det
p
D(λq) = det

p
D(λ) ∀λ ∈ C, (3.22)

which implies thatdetpD is function ofΛ. Let us develop the determinant:

det
p
D(Λ) =

p
∏

h=1

a(λqh) +

p
∏

h=1

a(−λqh)− qNa(λ)a(−λ) det
2l−1

D(1,2l+1),(1,2l+1)(λ)

−qNa(λq)a(−λq) det
2l−1

D(1,2),(1,2)(λ) + t(λ) det
2l
D1,1(λ), (3.23)
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whereD(h,k),(h,k)(λ) denotes the(2l − 1) × (2l − 1) sub-matrix ofD(λ) obtained removing the
rows and columnsh andk whileDh,k(λ) denotes the2l×2l sub-matrix ofD(λ) obtained removing
the rowh and columnk. The interest toward this decomposition ofdetpD(Λ) is due to the fact that
the matricesD(1,2),(1,2)(λ), D(1,2l+1),(1,2l+1)(λ) andD1,1(λ) aretridiagonal matrices. Following
the same reasoning used in Lemma 4 to prove thatdet2lD1,1(λ) is an even function ofλwe can also
show that this is true fordet2l−1D(1,2),(1,2)(λ) anddet2l−1D(1,2l+1),(1,2l+1)(λ). From the parity of
these functions the parity ofdetpD(Λ) follows by using (3.23).

Beinga(λ), d(λ) andt(λ) Laurent polynomial of degreeN in λ, in the case ofN even the statement
of the lemma is already proven; so we have just to show that:

lim
log Λ→∓∞

Λ±N det
p
D(Λ) = 0 (3.24)

for N odd which follows observing that:

lim
log Λ→∓∞

Λ±N det
p
D(Λ) = i±pN

N
∏

n=1

κpnξ
±p
n det

p

∥

∥

∥
q−(1∓1)N/2δh,k+1 − q(1∓1)N/2δh,k−1

∥

∥

∥
.

(3.25)

The interest toward the functiondetpD(Λ) is due to the fact that it allows the following characteri-
zation of theT-spectrum:

Lemma 2. ΣT is the set of all the functionst(λ) ∈ C[λ2, λ−2](N+eN−1)/2 which satisfy the system
of equations:

det
p
D(ηpa) = 0 ∀a ∈ {1, ..., [N]} and (η1, ..., η[N]) ∈ BN, (3.26)

plus in the case ofN even:

lim
log Λ→∓∞

Λ±N det
p
D(Λ) = 0. (3.27)

Proof. The requirement that the system of equations (2.18) admits anon-zero solution leads to the
equations (3.26), while the equation (3.27) for evenN simply follows by observing that:

lim
log Λ→∓∞

Λ±N det
p
D(Λ) = det

p

∥

∥

∥q(1∓1)N/2δi,j−1 + q−(1∓1)N/2δi,j+1 − (qk + q−k)δi,j

∥

∥

∥

× (−1)

N
∏

n=1

(

iκnξ
±
n

)p
= 0. (3.28)

Note that the above characterization of theT-spectrumΣT requires as input the knowledge ofBN,
i.e. the lattice of zeros of the operatorB(λ). It is so interesting to notice that this characterization
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has in fact a reformulation which is independent from the knowledge ofBN. To explain this let us
note that Lemma 1 allows to introduce the following map:

Dp,N : t(λ) ∈ C[λ2, λ−2](N+eN−1)/2 → Dp,N(t(λ)) ≡ det
p
D(Λ) ∈ C[Λ2,Λ−2](N+eN−1)/2.

(3.29)
In terms of this map we can introduce a further characterization of the spectrum of the transfer matrix
T(λ).

Theorem 1. The spectrumΣT of the transfer matrixT(λ) coincides with the kernelNDp,N ⊂

C[λ2, λ−2](N+eN−1)/2 of the mapDp,N.

Proof. The inclusionNDp,N ⊂ ΣT is trivial thanks to Lemma 2, vice-versa ift(λ) ∈ ΣT then
the functiondetpD(Λ) is zero inN+eN different values ofΛ2 which thanks to Lemma 1 implies
detpD(Λ) ≡ 0, i.e.ΣT ⊂ NDp,N .

That is the set of eigenvalues of the transfer matrixT(λ) is exactly characterized as the subset of
C[λ2, λ−2](N+eN−1)/2 which contains all the solutions of the functional equationdetpD(Λ) = 0. In
the next section we will show that this functional equation is nothing else that the Baxter equation.

Remark 1. Let us note that the same kind of functional equationdetD(Λ) = 0 also appears
in [54, 55, 56]. There it recasts, in a compact form, the functional relations which result from the
truncated fusions of transfer matrix eigenvalues. It is so relevant to point out that for theBBS-model11

in the SOV representation the non-triviality condition of the solutions of the system of Baxter-like
equations has been shown [60] to be equivalent to the truncation identity in the fusion of transfer
matrix eigenvalues.

4. Baxter functional equation

The main consequence of the previous analysis is that it naturally leads to the complete character-
ization of the transfer matrix spectrum in terms of polynomial solutions of the Baxter functional
equation.

Theorem 2. Let t(λ) ∈ ΣT thent(λ) defines uniquely up to normalization a polynomialQt(λ) that
satisfies the Baxter functional equation:

t(λ)Qt(λ) = a(λ)Qt(λq
−1) + d(λ)Qt(λq) ∀λ ∈ C. (4.30)

Proof. The fact that given at(λ) ∈ C[λ2, λ−2](N+eN−1)/2 there exists up to normalization at most
one polynomialQt(λ) that satisfies the Baxter functional equation has been proven in Lemma 2 of
[1]. So we have to prove only the existence ofQt(λ) ∈ C[λ]. An interesting point about the proof
given here is that it is a constructive proof.

11The BBS-model [12, 57, 58, 59] has been analyzed in the SOV approach in a series of works [60, 61, 62].
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Let us notice that the conditiont(λ) ∈ ΣT ≡ NDp,N implies that thep× p matrixD(λ) has rank2l
for anyλ ∈ C\{0}. Let us denote with

Ci,j(λ) = (−1)i+j det
2l
Di,j(λ) (4.31)

the(i, j) cofactorof the matrixD(λ); then the matrix formed out of these cofactors has rank1, i.e.
all the vectors:

Vi(λ) ≡ (Ci,1(λ),Ci,2(λ), ...,Ci,2l+1(λ))
T ∈ C

p ∀i ∈ {1, ..., 2l+ 1} (4.32)

are proportional:

Vi(λ)/Ci,1(λ) = Vj(λ)/Cj,1(λ) ∀i, j ∈ {1, ..., 2l+ 1}, ∀λ ∈ C. (4.33)

The proportionality (4.33) of the eigenvectors Vi(λ) implies:

C2,2(λ)/C2,1(λ) = C1,2(λ)/C1,1(λ) (4.34)

which, by using the property (A.69), can be rewritten as:

C1,1(λq)/C1,2l+1(λq) = C1,2(λ)/C1,1(λ). (4.35)

Moreover, the first element in the vectorial conditionD(λ)V1(λ) =0
¯

reads:

t(λ)C1,1(λ) = a(λ)C1,2l+1(λ) + d(λ)C1,2(λ). (4.36)

Let us note that from the form ofa(λ), d(λ) andt(λ) ∈ ΣT it follows that all the cofactors are
Laurent polynomial of maximal degree12 2lN in λ:

Ci,j(λ) = Ci,jλ
−2lN+ai,j

4lN−(ai,j+bi,j)
∏

h=1

(λ
(i,j)
h − λ). (4.37)

In Lemma 5, we show that the equations (4.35) and (4.36) implythat if C1,1(λ) has a common
zero with C1,2(λ) then this is also a zero of C1,2l+1(λ) and that the same statement holds ex-
changing C1,2(λ) with C1,2l+1(λ). So we can denote withC1,1C1,1(λ), C1,2l+1C1,2l+1(λ) and
C1,2C1,2(λ) the polynomials of maximal degree4lN obtained simplifying the common factors in
C1,1(λ), C1,2l+1(λ) and C1,2(λ). Then, by equation (4.35), they have to satisfy the relations:

C1,2l+1(λ) = qN̄1,1C1,1(λq
−1), C1,2(λ) = q−N̄1,1C1,1(λq) and C1,2l+1 = ϕC1,1, (4.38)

whereϕ ≡C1,1/C1,2 and N̄1,1 is the degree of the polynomialC1,1(λ). So that equation (4.36)
assumes the form of a Baxter equation in the polynomialC1,1(λ):

t(λ)C1,1(λ) = ā(λ)C1,1(λq
−1) + d̄(λ)C1,1(λq), (4.39)

12Theai,j andbi,j are non-negative integers andλ(i,j)
h

6= 0 for anyh ∈ {1, ...,4lN− (ai,j + bi,j)}.
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with coefficients̄a(λ) ≡ qN̄1,1ϕa(λ) andd̄(λ) ≡ q−N̄1,1ϕ−1
d(λ). Note that the consistence of the

above equation implies thatϕ is ap-root of the unity. Indeed, denoting with̄D(Λ) the matrix defined
as in (3.21) but with coefficients̄a(λ) andd̄(λ), equation (4.39) implies:

0 = det
p
D̄(Λ) ≡ (ϕp − 1)

(

p
∏

h=1

a(λqh)− ϕ−p

p
∏

h=1

a(−λqh)

)

. (4.40)

The expansion fordetp D̄(Λ) in (4.40) is derived by using the expansion (3.23) fordetp D̄(Λ), the
formulae13:

det
2l
D1,1(λ) = det

2l
D1,1(λ), (4.41)

det
2l−1

D(1,2),(1,2)(λ) = det
2l−1

D(1,2),(1,2)(λ), (4.42)

det
2l−1

D(1,2l+1),(1,2l+1)(λ) = det
2l−1

D(1,2l+1),(1,2l+1)(λ), (4.43)

and the conditiont(λ) ∈ ΣT . Finally, if we define:

Qt(λ) ≡ λaC1,1(λ), (4.44)

whereq−a = qN̄1,1ϕ with a ∈ {0, .., 2l}, we get the statement of the theorem.

Remark 2. The previous theorem implies that for anyt(λ) ∈ ΣT the polynomial solutionQt(λ) of
the Baxter equation can be related to the determinant of a tridiagonal matrix of finite sizep−1. Note
that the spectrum of the Sine-Gordon model in the case of irrational couplingβ̄2 should be deduced
from β2 = p′/p rational in the limitβ2 → β̄2. In particular, this implies that under this limit (p →

+∞) the dimension of the representation diverges as well as thesize of the tridiagonal matrix whose
determinant is associated to the solutionQt(λ) of the Baxter equation. It is then relevant to point
out that in the case of the quantum periodic Toda chain the solutions of the corresponding Baxter
equation are expressed in terms of determinants of semi-infinite tridiagonal matrices [63, 13, 64].

It is worth noticing that the set of polynomialsQt(λ), introduced in the previous theorem, admits a
more precise characterization:

Theorem 3. Let t(λ) ∈ ΣT thent(λ) defines uniquely up to normalization a polynomial solution
Qt(λ) of the Baxter functional equation (4.30) of maximal degree2lN.

In the caseN odd, it results:

Qt(0) ≡ Q0 6= 0, and lim
λ→∞

λ−2lNQt(λ) ≡ Q2lN 6= 0. (4.45)

In the caseN even, the condition (4.45) selectst(λ) ∈ Σ0
T while for t(λ) ∈ Σk

T with k ∈ {1, ..., l}

we have the characterizationQ0 = Q2lN = 0 and:

lim
λ→0

Qt(λq)

Qt(λ)
= q±k, lim

λ→∞

Qt(λq)

Qt(λ)
= q−(N±k). (4.46)

13They follow from thetridiagonality of these matrices and by using Lemma 3.
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Proof. Thanks to formula (A.74), the cofactor C1,1(λ) ∈ C[λ, λ−1]2lN is even inλ and so it admits
the expansions:

C1,1(λ) = C1,1λ
−2lN+2ã1,1

2lN−(ã1,1+b̃1,1)
∏

i=1

(λ
(1,1)
i − λ)(λ

(1,1)
i + λ). (4.47)

Let us note now that by using the properties (A.69) and (A.74), the relation (4.34) can be rewritten
as:

C1,1(λq)C1,1(λ) = qNC1,2(λ)C1,2(−λ). (4.48)

Using that and the general representation (4.37) for the cofactor C1,2(λ), we get:

a1,2 = 2ã1,1 ≡ 2a, b1,2 = 2b̃1,1 ≡ 2b, C2
1,2 = C2

1,1q
−2(N+b) (4.49)

and:
(

λ
(1,1)
i

)2

=
(

λ
(1,2)
i

)2

≡ λ̄2i ,
(

λ
(1,2)
i+2lN−(a+b)

)2

=
(

λ̄i/q
)2

(4.50)

with λ̄i 6= 0 for anyi ∈ {1, ..., 2lN− (a + b)} with a andb ∈ Z≥0. Note that the equation (4.49)
and the fact thatϕ ≡C1,1/C1,2 is ap-root of the unity implyϕ = qb+N. Then we can write:

C1,1(λ) = Cλ−2lN+2a

2lN−(a+b)
∏

i=1

(λ̄i + λ)(λ̄i − λ), (4.51)

C1,2(λ) = qaCλ−2lN+2a

2lN−(a+b)
∏

i=1

(λ̄i + λ)((−1)H(x−i)λ̄i − λq), (4.52)

whereC≡C1,1 andH(n) ≡ {0 for n < 0, 1 for n ≥ 0} is the Heaviside step function. Here,x
is a non-negative integer which is fixed to zero thanks to formula (4.38). Then the solutionQt(λ) of
the Baxter equation (4.30) belongs toC[λ]2lN and has the form:

Qt(λ) ≡ λa
2lN−(a+b)
∏

i=1

(λ̄i − λ). (4.53)

Let us show now the remaining statements of the theorem concerning the asymptotics ofQt(λ). To
this aim we compute the limits:

lim
log λ→∓∞

λ±2lNC1,1(λ) = det
2l

∥

∥

∥q−(1∓1)N/2δi,j+1 + q(1∓1)N/2δi,j−1 − (qk + q−k)δeN,1δi,j

∥

∥

∥

i6=1,j 6=1

×
N
∏

h=1

(
κhξ

±1
h

i
)2l = (δeN,1(1 + (2l+ 1)δk,0)− 1)

N
∏

h=1

(
κhξ

∓1
h

i
)2l, (4.54)

which imply:
a = b = 0, (4.55)
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for N odd andN even witht(λ) ∈ Σ0
T, i.e. the condition (4.45). In the remaining cases,N even and

t(λ) /∈ Σ0
T, the same formula implies:

a 6= 0, b 6= 0, (4.56)

so thatQ0 = Q2lN = 0, while the asymptotics behaviors (4.46) simply follow taking the asymptotics
of the Baxter equation satisfied byQt(λ).

5. Q-operator: Existence and characterization

Let us denote withΣt the eigenspace of the transfer matrixT(λ) corresponding to the eigenvalue
t(λ) ∈ ΣT, then:

Definition 1. LetQ(λ) be the operator family defined by:

Q(λ)|t〉 ≡ Qt(λ)|t〉 ∀|t〉 ∈ Σt and ∀t(λ) ∈ ΣT, (5.57)

with Qt(λ) the element ofC[λ]2lN corresponding tot(λ) ∈ ΣT by the injection defined in the
previous theorem.

Under the assumptionsξ andκ real or imaginary numbers, which assure the self-adjointness of the
transfer matrixT(λ) for λ ∈ R, the following theorem holds:

Theorem 4. The operator familyQ(λ) is a BaxterQ-operator:

(A) Q(λ) satisfies withT(λ) the commutation relations:

[Q(λ),T(µ)] = [Q(λ),Q(µ)] = 0 ∀λ, µ ∈ C, (5.58)

plus the Baxter equation:

T(λ)Q(λ) = a(λ)Q(λq−1) + d(λ)Q(λq) ∀λ ∈ C. (5.59)

(B) Q(λ) is a polynomial of degree2lN in λ:

Q(λ) ≡
2lN
∑

n=0

Qnλ
n,

with coefficientsQn self-adjoint operators.

(C) In the caseN odd, the operatorQ2lN =id andQ0 is an invertible operator.

(D) In the caseN even,Q(λ) commutes with theΘ-charge and the operatorQ2lN is the orthogonal
projection onto theΘ-eigenspace with eigenvalue 1.Q0 has non-trivial kernel coinciding with
the orthogonal complement to theΘ-eigenspace with eigenvalue 1.
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Proof. Note that the self-adjointness of the transfer matrixT(λ) implies thatQ(λ) is well defined,
indeed its action is defined on a basis. The property (A) is a trivial consequence of Definition 1.
Note that the injectivity of the mapt(λ) ∈ ΣT → Qt(λ) ∈ C[λ]2lN implies:

(Qt(λ))
∗
= Qt(λ

∗) ∀λ ∈ C (5.60)

being (a(λ))∗ = d(λ∗) and (t(λ))∗ = t(λ∗). So we get the Hermitian conjugation property
(Q(λ))

†
= Q(λ∗), i.e. the self-adjointness of the operatorsQn. The properties (C) and (D) of

the operatorsQ0 andQ2lN directly follow from the asymptotics of the eigenfunctionQt(λ) while
the commutativity ofQ(λ) andΘ is a direct consequence of the commutativity ofT(λ) andΘ.

6. Conclusion

In the previous section we have shown that by only using the characterization of the spectrum of the
transfer matrix obtained by the SOV method we were able to reconstruct theQ-operator. It is also
interesting to point out as the results derived in [1] together with those of the present article yield:

Theorem 5. The familyQ which characterizes the quantum integrability of the lattice Sine-Gordon
model (see definition (1.1)) is described by the transfer matrix T(λ) for a chain withN odd number
of sites while byT(λ) plus theΘ-charge for a chain withN even number of sites.

Proof. Let us start noticing that Proposition 3 and Theorem 4 of [1] are derived only using the SOV
method (i.e. without any assumption about the existence of theQ-operator). So only using SOV
analysis we have derived that forN odd the transfer matrixT(λ) has simple spectrum while for
N even this is true forT(λ) plus theΘ-charge; i.e. they define a complete family of commuting
observables and so satisfy the properties (A) and (C) of the definition (1.1). In this article we have
moreover shown that theQ-operator is defined as a function of the transfer matrix which implies
the property (B) of (1.1) recalling that in [1] the time-evolution operatorU has been expressed as a
function of theQ-operator.

Let us shortly point out the main features required in abstract to extend to cyclic representations of
other integrable quantum models the same kind of spectrum characterization derived here for the
lattice Sine-Gordon model.

R1. The model admits an SOV description and the spectrum of the transfer matrix can be charac-
terized by a system of Baxter-like equations in theT-wave-functionΨ(η) = 〈 η | t 〉:

t(ηr)Ψ(η) = a(ηr)Ψ(η1, . . . , q
−1ηr, . . . , ηN) + d(ηr)Ψ(η1, . . . , qηr, . . . , ηN) , (6.61)

where(η1, ..., ηN) ∈ BN with BN the set of zeros of theB-operator in the SOV representation.
Here, the parameterq is a root of unity defined as in (2.6) and (2.7).
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Note that for cyclic representations of an integrable quantum model the setBN is a finite subset of
CN. So the coefficientsa(ηr) andd(ηr) are specified only in a finite number of points where they
satisfy the following average value relations14:

A(ηpr ) =

p
∏

k=1

a(qkηr) , D(ηpr ) =

p
∏

k=1

d(qkηr) . (6.62)

HereA(Λ) andD(Λ) are the average values of the operator entriesA(λ) andD(λ) of the mon-
odromy matrix. Let us recall that the operator entries of themonodromy matrix are expected to be
polynomials (or Laurent polynomials) in the spectral parameterλ so the corresponding average val-
ues are polynomials (or Laurent polynomials) inΛ ≡ λp. It is then natural to introduce the functions
a(λ) andd(λ) as polynomial (or Laurent polynomial) solutions of the following average relations:

A(Λ) + γB(Λ) =

p
∏

k=1

a(qkλ) , D(Λ) + δB(Λ) =

p
∏

k=1

d(qkλ) , (6.63)

whereB(Λ) is the average value of the operatorB(λ) andγ andδ are constant to be fixed.

R2. Let us denote withZf(λ) the set of the zeros of the functionsf(λ), then:

∃ λ0 ∈ Za(λ) : λ0 /∈ ∪2l−1
h=0 Zd(λqh). (6.64)

R3. The average values of the functionsa andd are not coinciding in all the zeros of theB-operator:

A(ηpa) 6= D(ηpa) ∀a ∈ {1, ..., [N]} and (η1, ..., η[N]) ∈ BN. (6.65)

The requirementR1 yields the introduction of thep × p matrix D(λ), defined as in (3.21), by
the functionsa(λ) andd(λ) solutions of (6.63). This should allow us to reformulate thespectral
problem for the transfer matrix as the problem to classify all the solutionst(λ) to the functional
equationdetpD(Λ) = 0 in a model dependent class of functions.

The requirementR2 implies that the rank of the matrixD(λ) is almost everywhere2l. Indeed, the
condition (6.64) implies C1,p(λ0) 6= 0, independently from the functiont(λ). Being the cofactor
C1,p(λ) a continuous function of the spectral parameter the above statement on the rank of the matrix
D(λ) follows. Under this condition we can follow the procedure presented in Theorem 2 to construct
the solutions of the Baxter equation. Then the self-adjointness of the transfer matrixT allows us to
proceed as in section 5 to show the existence of theQ-operator as a function ofT.

The requirementR3 is a sufficient criterion15 to show the simplicity of the spectrum ofT which
should imply that the full integrable structure of the quantum model should be described by the

14The equations in (6.62) are trivial consequences of the SOV representation and of the cyclicity.
15 It is worth noticing that in the case of the Sine-Gordon modelthe criterionR3 does not apply to the representations

with un = vn = 1. Nevertheless, we have shown the simplicity ofT by using some model dependent properties of the
coefficientsa(λ) andd(λ), see section 5 of [1].
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transfer matrix as soon as the property (B) in definition (1.1) is shown for the model under consider-
ation.

Following the schema here presented, in a future publication we will address the analysis of the
spectrum for the so-calledα-sectorsof the Sine-Gordon model (see [1]). The use of this approach is
in particular relevant in these sectors of the Sine-Gordon model because a direct construction of the
Q-operator leads to some technical difficulty.

A. Properties of the cofactors Ci,j(λ)

Let us consider anM ×M tridiagonalmatrix 16 O:

O ≡





























z1 y1 0 · · · 0 0

x1 z2 y2 0 · · · 0

0 x2 z3 y3
...

...
. . .

...
...

. . . 0

0 . . . 0 xM−2 zM−1 yM−1

0 0 . . . 0 xM−1 zM





























(A.66)

i.e. a matrix with non-zero entries only along the principaldiagonal and the next upper and lower
diagonals.

Lemma 3. The determinant of a tridiagonal matrix is invariant under the transformation̺ α which
multiplies forα the entries above the diagonal and forα−1 the entries below the diagonal leaving
the entries on the diagonal unchanged.

Proof. Let us note that the determinant of a tridiagonal matrix admits the following expansion:

det
M
O = z1 det

M−1
O1,1 + x1y1 det

M−2
O(1,2),(1,2), (A.67)

where we have used the same notations introduced after formula (3.23). By using it, we get that the
action of̺α reads:

det
M
̺α(O) = z1 det

M−1
̺α(O)1,1 + x1y1 det

M−2
̺α(O)(1,2),(1,2). (A.68)

Then the statement follows by induction noticing that the transformation̺ α leaves always un-
changed the determinant of a2× 2 matrix.

16An interesting analysis of the eigenvalue problem for tridiagonal matrices is presented in [65].
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Lemma 4. The following properties hold:

Ch+i,k+i(λ) = Ch,k(λq
i) ∀i, h, k ∈ {1, ..., 2l+ 1}, (A.69)

and:
C1,1(λ) = C1,1(−λ) and C2,1(λ) = qNC1,2(−λ). (A.70)

Proof. Note that by the definition (4.31) of the cofactors Ci,j(λ) the equations (A.69) are simple
consequences ofqp = 1 and are proven exchanging rows and columns in the determinants.

Let us prove now that the cofactor C1,1(λ) = det2lD1,1(λ) is an even function ofλ. The tridiago-
nality of the matrixD1,1(λ) allows us to use the previous lemma:

C1,1(λ) ≡ det
2l

∥

∥t(λqh)δh,k − a(λqh)δh,k+1 − qNa(−λqh+1)δh,k−1

∥

∥

h>1,k>1

= det
2l

∥

∥t(λqh)δh,k − qNa(λqh)δh,k+1 − a(−λqh+1)δh,k−1

∥

∥

h>1,k>1

= det
2l

∥

∥t(λqh)δh,k − d(−λqk)δk,h−1 − a(−λqk)δk,h+1

∥

∥

h>1,k>1

≡ det
2l

(D1,1(−λ))
T = C1,1(−λ). (A.71)

To prove now the second relation in (A.70) we expand the cofactors:

C2,1(λ) =

2l+1
∏

h=2

a(λqh) + d(λ) det
2l−1

D(1,2),(1,2)(λ), (A.72)

C1,2(λ) =

2l
∏

h=1

d(λqh) + a(λq) det
2l−1

D(1,2),(1,2)(λ). (A.73)

By using the same steps shown in (A.71), the tridiagonality of the matrix D(1,2),(1,2)(λ) implies that
its determinant is an even function ofλ from which the statement C2,1(λ) = qNC1,2(−λ) follows
recalling thatd(λ) = qNa(−λq).

Remark 3. In this article we need only the properties (A.70); however,it is worth pointing out that
they are special cases of the following properties of the cofactors:

Ci,j(λ) = qN(i−j)Cj,i(−λ) ∀i, j ∈ {1, ..., 2l+ 1}. (A.74)

The proof of (A.74) can be done similarly to that of (A.70) butwe omit it for simplicity.

Let us use once again the notationZf for the set of the zeros of a functionf(λ), then:

Lemma 5. The equations (4.35) and (4.36) imply:

ZC1,1
∩ ZC1,2

≡ ZC1,1
∩ ZC1,2l+1

. (A.75)
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Proof. The inclusions
(

ZC1,1 ∩ ZC1,2

)

\Za ⊂ ZC1,1 ∩ ZC1,2l+1
and

(

ZC1,1 ∩ ZC1,2l+1

)

\Zd ⊂

ZC1,1
∩ ZC1,2

trivially follow by equation (4.36).

Let us observe now that C1,2(λq−1) has no common zero witha(λ) and that C1,2l+1(λq) has no
common zero withd(λ). These statements simply follow from (A.73), (A.69)and(A.72) when we
recall thata(λ) has no common zero with

∏2l−1
h=0 d(λqh) and thatd(λ) has no common zero with

∏2l+1
h=2 a(λqh). So, if

(

ZC1,1
∩ ZC1,2

)

∩Za is not empty andλ0 ∈
(

ZC1,1
∩ ZC1,2

)

∩Za, the equation
(4.35) computed inλ = q−1λ0 implies C1,2l+1(λ0) = 0 being C1,2(λ0q−1) 6= 0, i.e. λ0 ∈

ZC1,1
∩ZC1,2l+1

. Similarly, if
(

ZC1,1
∩ ZC1,2l+1

)

∩Zd is not empty andλ0 ∈
(

ZC1,1
∩ ZC1,2l+1

)

∩Zd,
the equation (4.35) computed inλ = λ0 implies C1,2(λ0) = 0 being C1,2l+1(λ0q) 6= 0, i.e. λ0 ∈

ZC1,1 ∩ ZC1,2 . So that (4.35) implies the inclusions
(

ZC1,1 ∩ ZC1,2

)

∩ Za ⊂ ZC1,1 ∩ ZC1,2l+1
and

(

ZC1,1
∩ ZC1,2l+1

)

∩ Zd ⊂ ZC1,1
∩ ZC1,2

in this way completing the proof of the lemma.

B. Scalar product in the SOV space

Here is described as a natural structure of Hilbert space canbe provided to the linear space of the
SOV representation by preserving the self-adjointness of the transfer matrix.

B.1 Cyclic representations of the Weyl algebra

Here, we consider the cyclic representations of the Weyl algebraW (n)
q in the case:

upn = vpn = 1 for β2 = p′/p with p′ even andp = 2l+ 1 odd. (B.76)

At any siten of the chain, we introduce the quantum spaceRn with vn-eigenbasis:

vn|k, n〉 = qk|k, n〉 ∀|k, n〉 ∈ Bn = {|k, n〉, ∀k ∈ {−l, ..., l}}. (B.77)

Note that the eigenvalues ofvn describe the unit circleSp = {qk : k ∈ {−l, ..., l}}, indeedql+1 =

q−l. OnRn is defined ap-dimensional representation of the Weyl algebra by setting:

un|k, n〉 = |k + 1, n〉 ∀k ∈ {−l, ..., l} (B.78)

with the cyclicity condition:
|k + p, n〉 = |k, n〉. (B.79)

B.2 Representation in the SOV basis

The analysis developed in [1] define recursively the eigenbasis {|η̄1qh1 , ..., η̄Nq
hN〉} of the B-

operator in the original representation, i.e. as linear combinations of the elements of the basis
{|h1, ..., hN〉 ≡

⊗N
n=1 |hn, n〉}, where|hn, n〉 are the elements of thevn-eigenbasis defined in

(B.77). To write this change of basis in a matrix form let us introduce the following notations:

|yj〉 ≡ |η̄1q
h1 , ..., η̄Nq

hN〉 and |xj〉 ≡ |h1, ..., hN〉 (B.80)
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where:

j := h1 +
N
∑

a=2

(2l + 1)(a−1)(ha − 1) ∈ {1, ..., (2l+ 1)N}, (B.81)

note that this defines a one to one correspondence betweenN-tuples(h1, ..., hN) ∈ {1, ..., 2l+ 1}N

and integersj ∈ {1, ..., (2l + 1)N}, which just amounts to chose an ordering in the elements of the
two basis. Under this notation, we have:

|yj〉 = W|xj〉 =

(2l+1)N
∑

i=1

Wi,j |xi〉, (B.82)

where we are representing|xj〉 as the vector|j〉 in the natural basis inC(2l+1)N andW = ||Wi,j ||

is a(2l + 1)N × (2l + 1)N matrix. The matrixW is defined by recursion in terms of the kernelK

constructed in appendix C of [1], let us use the notation:

K({h1,...,hN},k1,{k2,...,kN}) ≡ KN( η |χ2
;χ

1
), (B.83)

where we are considering the caseN−M = 1. Then the recursion reads:

W
(N)
i,j =

2l+1
∑

k2,...,kN=1

K({h1(j),...,hN(j)},h1(i),{k2,...,kN})W
(N−1)

h̄(i),a(k2,...,kN)
, (B.84)

where we have introduced the index(N) and (N − 1) in the matricesW to make clear the step
of the recursion. Here,(h1(j),...,hN(j)) is the uniqueN-tuples corresponding to the integerj ∈

{1,...,(2l + 1)N} andh1(i) is the first entry in the uniqueN-tuples corresponding to the integer
i ∈ {1,...,(2l+ 1)N}. Moreover, we have defined:

h̄(i) := 1+
i− h1(i)

2l+ 1
∈ {1, ..., (2l+1)(N−1)} and a(k2, ..., kN) = k2+

N
∑

a=3

(2l+1)(a−2)(ka−1),

(B.85)
Remarks:

a) Under the change of basis{|xj〉} → {|yj〉} the generic operator X transforms for similarity:

XSOV ≡ W
−1XW, (B.86)

so from the action of the zero operatorsηa and the shift operatorsT±
a on theB-eigenbasis|yj〉:

ηa|yj〉 = η̄aq
ha(j)|yj〉 and T±

a |yj〉 = |yj±(2l+1)(a−1) 〉 (B.87)

we have that:

(ηa)SOV = η̄a||q
ha(j)δi,j || and

(

T±
a

)

SOV
= ||δi,j±(2l+1)(a−1) ||. (B.88)
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From the above expression we have17:

(ηa)
†
SOV = (ηa)

∗
SOV and

(

T±
a

)†

SOV
=
(

T∓
a

)

SOV
. (B.89)

b) The known transformation properties of the entries of themonodromy matrix in the original
representation imply:

(

DSOV (λ) CSOV (λ)

BSOV (λ) ASOV (λ)

)

=

(

G−1 (ASOV (λ
∗))

†
G −G−1 (BSOV (λ

∗))
†
G

−G−1 (CSOV (λ
∗))

†
G G−1 (DSOV (λ

∗))
†
G

)

, (B.90)

with G is a positive self-adjoint matrix defined byG := W†W.

c) The quantum determinant relation is invariant under similarity transformations and so we have:

a(λ)d(λq−1) = ASOV (λ)DSOV (λq
−1)− BSOV (λ)CSOV (λq

−1), (B.91)

Lemma 6. The basis{|yj〉} is not an orthogonal basis w.r.t. the natural scalar producton{|xj〉}.

Proof. Note that the condition{|yj〉} is an orthogonal basis is equivalent to the statementG is
a diagonal matrix (with positive diagonal entries). Let us recall that the Hermitian conjugation
property ofB(λ) together with the Yang-Baxter commutation relations imply:

[B†(λ),B(µ)] = [B(µ),C(λ∗)] =
q − q−1

λ∗/µ− µ/λ∗
(A(λ∗)D(µ)− A(µ)D(λ∗)) 6= 0 (B.92)

that is the operatorB(λ) is not a normal operator. Now let us show that the non-normality of B(λ)

implies thatG is not diagonal. Indeed, we can write:

[B†(λ),B(µ)] =
(

W
†
)−1

(BSOV (λ))
†
GBSOV (µ)W

−1 −WBSOV (µ)G
−1 (BSOV (λ))

†
W

†

= W(G−1(BSOV (λ))
†GBSOV (µ)− BSOV (µ)G

−1 (BSOV (λ))
†
G)W−1. (B.93)

Note now that if we assumeG diagonal, thenG commutes both withBSOV (λ) and with(BSOV (λ))
†,

being all diagonal matrices in the SOV representation, which implies the absurd[B†(λ),B(µ)] =

0.

B.3 Scalar product in the SOV space

The self-adjointness of the familyT(λ) implies that the transfer matrix eigenstates are orthogonal
under the original scalar product:

δi,j = (|ti〉, |tj〉), (B.94)

we have chosen the orthonormal ones. Note that the above equation naturally induces a scalar
product in the SOV representation obtained under change of basis:

(|b〉, |a〉)SOV ≡ (G|b〉, |a〉) (B.95)

17Here, we are using the standard notation for the adjointX† ≡ (X∗)t.
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that is a scalar product for which the adjoint of a vector|a〉 is the natural adjoint times the matrixG:

|b〉†SOV ≡ 〈b|G with 〈b| =
(

(|b〉)t
)∗

, (B.96)

and so for the generic operatorX we have:

X†SOV ≡ G−1X†G. (B.97)

It is trivial to notice that:

Lemma 7. The family of operatorsTSOV (λ) is self-adjoint w.r.t. †SOV and the eigenstates
|tj〉SOV ≡ W−1|tj〉 are orthonormal w.r.t. the scalar product defined in (B.95).Moreover, it
results:

(

(ASOV (λ
∗))†SOV (BSOV (λ

∗))†SOV

(CSOV (λ
∗))†SOV (DSOV (λ

∗))†SOV

)

=

(

DSOV (λ) −CSOV (λ)

−BSOV (λ) ASOV (λ)

)

. (B.98)
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