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Abstract

In [1], the spectrum (eigenvalues and eigenstates) ofiadattgularizations of the Sine-
Gordon model has been completely characterized in termslghpmial solutions with
certain properties of the Baxter equation. This charazaéion for cyclic representations
has been derived by the use of the Separation of Variableg)(®®thod of Sklyanin and
by the direct construction of the BaxtQroperator family. Here, we reconstruct the Baxter
Q-operator and the same characterization of the spectrumlgysing the SOV method.
This analysis allows us to deduce the main features reqfmrethe extension to cyclic
representations of other integrable quantum models okthisof spectrum characteriza-
tion.
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1. Introduction

The integrability of a quantum model is by definition relatedhe existence of a mutually commu-
tative family O of self-adjoint operator$ such that

(A) [T, T']=0, VT, Te€Q,
B) [T,U]=0, VTeQ, (1.1)
(C) if [T,0] =0, YVT€Q, then O =0(Q),

whereU is the unitary operator defining the time-evolution in thed®lp note that the property (C)
stays for the completeness of the fam@y In the framework of the quantum inverse scattering
method [2[ 3] 4] the Lax operatdn()\) is the mathematical tool which allows to define the transfer
matrix:

TO) = M), M) = (’é&; 583) = L)L), (12)
a one parameter family of mutual commutative self-adjopgrators. The integrability of the model
follows from T(\) if the properties (B) and (C) of definitioi (1.1) can be pro¥enit. In some
guantum model the integrability is derived by proving thestence of a further one-parameter family
of self-adjoint operators th@-operator which by definition satisfies the following projpes:

[QN), Q] =0, [TV, Q] =0, VApueC, (1.3)
plus the Baxter equation with the transfer matrix:
TQRM) = a(N)Q(a™'A) +d(N)Q(gN) - (1.4)

This is in particular the case for those models (like Sined®ao [1]) for which the time-evolution
operatoiU is expressed in terms . A natural question arises: Is the integrable structuréesé
quantum models completely characterized by the transfeimBe(\)?

Note that a standard procedﬂnte prove the existence d()\) is by a direct construction of an
operator solution of the Baxter equatifn {1.4). Moreover doefficienta()) andd()) as well as the
analytic and asymptotics properties@f)) are some model dependent features which are derived
by the construction. Let us recall that the general strafiédly12, 13} 14, 15] of this construction is

to find agaugetransformatioB such that the action of each gauge transformed Lax matri(ov)
becomes upper-triangular. Then Reoperator assumes a factorizedal form and the problem of

its existence in such a form is reduced to the problem of tlitence of some model dependent
specialfunctiorﬁ.

11t is worth recalling that there are also others construstiof theQ-operator. An interesting example is presented in the
series of works [H,16.17] by V.V. Bazhanov, S.L. Lukyanov ané@AZamolodchikov on the integrable structure of conformal
field theories. Inl[B.17] th&@-operator is obtained as a transfer-matrix by a trace proeeaf a fundamental-operator with
g-oscillator representation for the auxiliary space (sse &,[9]). This construction can be extended to massiveiaktge
quantum field theories as it was argued by the same authdt€fn [

2|t leaves unchanged the transfer matrix while modifies theadeomy matrixM(\) defined in[ZR) .

3Thequantum dilogarithnfunctions [16[ 17, 18. 19. 20. P1.122.123] 24} 25] for exampleear in the Sinh-Gordon model
[26], in their non-compacform, and in the Sine-Gordon modgl [1], in thejclic form.
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It is worth pointing out that on the one hand the constructibthese special functions for general
models can represent a concrete technical prcﬂ)imd that on the other hand the existence of such
functions is only a sufficient criterion for the existencedf\). It is then a relevant question if it is
possible to bypass this kind of construction providing &dént proof of the existence Gf()\).

Given an integrable quantum model the first fundamental taslolve is the exact solution of its
spectral problemi.e. the determination of the eigenvalues and the simetias eigenstates of the
operator familyQ, defined in[(1.11). There are several methods to analyze pleistisl problem as
the coordinateBethe ansatZ [27, 28, 29], thEQ method [28], thealgebraicBethe ansatz (ABA)
[2][3,[4], theanalytic Bethe ansatz [30] and the separation of variables (SOV) odetti Sklyanin
[31,[32,[33]; this last one seems to be more promising. Inderdhe one hand it resolves the
problems related to the reduced applicability of other rod¢h(like ABA) and on the other hand
it directly implies the completeness of the characteraratf the spectrum which instead for other
methods has to be proven.

For cyclic representations [34] of integrable quantum nietlee SOV method should lead to the
characterization of the eigenvalues and the simultanegesstates of the transfer matfix\) by a
finiteﬁ system of Baxter-like equations. However, it is worth pimigtout that such a characterization
of the spectrum is not the most efficient; this is in particutae in view of the analysis of the
continuum limit. Here the main question reads: Is it possibl define a set of conditions under
which the SOV characterization of the spectrum can be raitatad in terms of a functional Baxter
equation? In fact, this is equivalent to ask if we can reauoicstthe Q-operator from the finite
system of Baxter-like equations. In this case the solutiotm® spectral problem is reduced to the
classification of the solutions of the Baxter equation wtsalisfy some analytic and asymptotic
properties fixed by the operatofsandQ.

The lattice Sine-Gordon model is used as a concrete exanfeathese questions about quantum
integrability find a complete and affirmative answer. Indaadsection 3, we show that the SOV
characterization of the transfer matrix spectrum is eyaetjuivalent to a functional equation of
the formdet D(A) = 0, whereD()) (see[(3.211)) is a one-parameter familycpfasi-tridiagonal
matrices. In section 4, we show that this functional equaifindeed equivalent to the Baxter
functional equation and, in section 5, we use these resultedonstruct the BaxteR-operator
with the same level of accuracy obtained by the direct canstin presented iri [1]. It is worth
pointing out that these results allow us to prove that thesfier matrixT () (plus the©-charge for
even chain) describes the famiy of complete commuting self-adjoint charges which implies t
quantum integrability of the model according to definitifind)). So that in the Sine-Gordon model
the BaxterQ-operator plays only the role of a useful auxiliary object.

Let us point out that one of the main advantages of the spactharacterization derived for the
Sine-Gordon model is the possibility to prove an exact mefdation in terms of non-linear integral

4The Sine-Gordon model at irrational values of the coupBidds a simple case where this kind of problem emerges.
5The number of equations in the system is finite and relatedetalimension of the cyclic representation.
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equatior@(NLIE). This will be the subject of a future publication wieethe NLIE characterization
will lead us by the implementation of the continuum limit teetdescription of the Sine-Gordon
spectrum in all the interesting regimes. These results lvéllshown to be consistent with those
obtained previously in the literatir¢37,[38,[39/ 40, 41, 42] (sek [43,]44] for reviews). Note that
the method based on the reformulation of the spectral pnobiderms of NLIE has been also used
recently [49] to derive the Sinh-Gordon spectrum in finitéumoe and to characterize the spectrum
in the infrared and ultraviolet limits.

The analysis of the Sine-Gordon model allows us to infer tlhénrfeatures required to extend this
kind of spectrum characterization to cyclic representetiof other integrable quantum models. This
is particularly relevant for those models for which a direohstruction of the BaxteR-operator
encounters technical difficulties.

Acknowledgmentd.would like to thank J. Teschner for stimulating discussiamd suggestions on a prelimi-
nary version of this work and J.-M. Maillet for the interelbsg/n.

| gratefully acknowledge support from the EC by the Mariei€xcellence Grant MEXT-CT-2006-042695.

2. The Sine-Gordon model

We use this section to recall the main results derivedlin filfhe@ description in terms of SOV of the
lattice Sine-Gordon model. This will be used as the stapioigt to introduce a characterization of
the spectrum of the transfer matfiX A) which will lead to the construction of th@-operator from
SOV.

2.1 Definitions

The lattice Sine-Gordon model can be characterized by fl@vimg Lax matriﬁ:

. —1 _ y—1 R R S| -1 -1

; -1 +3,.-1,-1 _\—1,,—1
LZG()\) = H_" < Zun(q 2RV T @ 2K, Yy ) )‘nvn /\n Vn ) ), (25)

where),, = A/, foranyn € {1,...,N} with &, andx,, parameters of the model. For anyc
{1, ...,N} the couple of operatorsi{,v,,) define a Weyl algebray,,:

UnVin = @2Vl where ¢ = e~ (2.6)

We will restrict our attention to the case in whiglis a root of unity,

52 = pvp/ € Z>07 (27)

6This type of equations were before introduced in a diffefemhework in [35[ 35]

"See[[45[ 45] for a related model analyzed in the framework BAAnd [47[48] for the corresponding finite volume
continuum limit.

8The lattice regularization of the Sine-Gordon model thacwesider here goes back [d [4]50] and is related to formula-
tions which have more recently been studied_ in [51[52, 53].
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with p = 21 + 1 odd andp’ even so that? = 1. In this case each Weyl algeby#®,, admits a
finite-dimensional representation of dimensjorin fact, we can represent the operatossv,, on
the space of complex-valued functions SpN — Cas

Un'w(zlv"'va) = Un2n¢(21,---,2n,---,ZN),

o (2.8)
Vo s (21,0, 2N) = Unth(21, - Q7 Zny ..y 2N) -

whereS, = {¢*";n = 0,..., 2} is a subset of the unit circle; note tht = {¢";n = 0, ..., 2}
sinceg?*? = q.

The monodromy matrif(\) defined in[(Z.R) in terms of the Lax-matr[x (2.5) satisfiesqbadratic
relations:

RA/p) (M) @ 1) (1o M) = (1@ M(u) (M) @ DR/ 1), (2.9)

where the auxiliaryR-matrix is given by

q/\ _ qfl/\fl
R(\) = . (2.10)

q)\ _ q—l/\—l

The elements oM()\) generate a representati@®y of the so-called Yang-Baxter algebra char-
acterized by thelN parameters: = (%1,...,6n), & = (&1,...,én), v = (u1,...,uN) and

v = (v1,...,vN); in the present paper we will restrict to the case= 1, v, = 1,n =1,...,N.
The commutation relation§ (2.9) are at the basis of the pobdfie mutual commutativity of the
T-operators.

In the case of a lattice witll even quantum sites, we have also to introduce the operator:

N
o=J]v"", (2.11)
n=1

which plays the role of grading operatoiin the Yang-Baxter algebra:

Proposition 6 of [1] © commutes with the transfer matrix and satisfies the follgwipmmutation
relations with the entries of the monodromy matrix:

OC(\) = ¢C(NO, [A(N),0] =0, (2.12)
B(NO = ¢OB()\), [D()),8]=0. (2.13)

Moreover, thed-charge allows to express the asymptotics of the transfénxees:

N

. +N Kagil -1
i AT = 1;[1T (©+071). (2.14)
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Let us denote wittEt the spectrum (the set of the eigenvalue functigng) of the transfer matrix
T(A). By the definitions[(1]2) and(2.5), thély is containedin C A%, A72] (Nten—1)/2, Where we
have used the notation;e= 0 for N odd andl for N even.

Note that in the case df even, the®-charge naturally induces the gradibg = U;ZO ¥k, where:

N P gil
vk = {t(/\) eYr: lim AN\ = <H “%) (¢" + q_k)} . (2.15)

log A= F oo
a=1

This simply follows by the asymptotics @f(A) and by its commutativity witt9. In particular,
anyt(\) € Xk is a T-eigenvalue corresponding to simultaneous eigenstatdg of and © with
O-eigenvalueg™*

2.2 Cyclic SOV representations

The separation of variables method of Sklyanin is based@nliservation that the spectral problem
for T()\) simplifies considerably if one works in an auxiliary represgion where the commutative
family of operator€88()\) is diagonal.

In the case of the Sine-Gordon model the vector @d&@ underlying the SOV representation can
be identified with the space of functiofign) defined for, taken from the discrete set

By = {(¢" ¢, ™) (Ry. . k) €ZY (2.16)

on these functionB(\) acts as a multiplication operator,

N [N]
BN(A) W(n) = 1 by(N) (), = H - H (M1ha =1/ ) 5 (2.17)
where[N] = N — ey andns, . ..., 7y, are the zeros df, (). In the case of eveN it turns out that

we need a supplementary variablein order to be able to parameterize the spectrurd(of).

In [1] we have proven that for general values of the parametand¢ of the original representation
it is possible to construct these SOV representations andawer we have defined the map which
fixes the SOV parameterin terms of the parametersand¢.

In these SOV representations the spectral problemT{or) is reduced to the following discrete
system of Baxter-like equations in the wave-functipfin) = (7|t ) of a T-eigenstatét ):

t(nr)\lj(n) = a(nr)Tr_\Il(n) + d(nr)T:_\Ij(n) Vr € {17 ) [N]}’ (2.18)

9Here withC[z, 2~ 1] s we are denoting the linear space of the Laurent polynomfadegree)M in the variablex € C.

101t is always possible to provide the structure of Hilbertagpto this finite-dimensional linear space. In particulbg t
scalar product in the SOV space is naturally introduced byr¢lgquirement that the transfer matrix is self-adjoint im 8OV
representation. Appendix B addresses this issue.




whereT* are the operators defined by

TEC(, o) = O, g e, )

while the coefficienta()\) andd()) are defined by:
N
Kn

(=g 2 (1 - iq’l/Qi—"), d(A) = ¢"a(=Aqg). (2.19)
=1 7" n

a(\) =

n

In the case oN even we have to add to the systém (2.18) the following eguatithe variable)y:
TEVLe(n) = ¢ Tsi(n), (2.20)

fort(\) € Tk with k € {0, ...,1}. Note that the cyclicity of these SOV representations is esged
by the identification o(TjE)P with the identity for anyj € {1, ...,N}.

3. SOV characterization of T-eigenvalues

Let us introduce the one parameter family\) of p x p matrix:

t)  —d(\) 0 o 0 —a())
—a(gA)  t(gA)  —d(g)) 0 - 0
0 ' :
D()\) = o (3.21)
: . 0
0 .. 0 —a(@@ ) t(¢® ) —d(¢®? N
—d(¢*\) 0 ... 0 —a(g®)) t(g*'\)

where for nowt()\) is just an even Laurent polynomial of degi€e-ex — 1 in .

Lemma 1. The determinandet, D is an even Laurent polynomial of maximal degieeey — 1 in
A= )P,

Proof. Let us start observing thd®(\g) is obtained byD(\) exchanging the first angtth column
and after the first angb-th row, so that

det D(\q) = det D(\) ¥\ € C, (3.22)
p p

which implies thatlet,, D is function ofA. Let us develop the determinant:

P

p
_ h h N
dst D) = }E a(Ag") + }1;[1 a(—=Aq") —q a(Na(=X) Qc}gtl D(1,2l+1),(1,21+1)(/\)

—qMa(Ag)a(—Aq) det D), (1.2)(A) +t(\) det D11 (), (3.23)
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where D, 1), (nk) (M) denotes thé2l — 1) x (21 — 1) sub-matrix of D()\) obtained removing the
rows and columna andk while Dy, ,(\) denotes thel x 2 sub-matrix ofD() obtained removing
the rowh and columrk. The interest toward this decompositiondef, D(A) is due to the fact that
the matricesD 1 2),(1,2)(A), D(1,2141),(1,2141)(A) @nd Dy 1 () aretridiagonal matrices. Following
the same reasoning used in Lenima 4 to provedbai D; 1 () is an even function ok we can also
show that this is true fatetz; 1 D1 2y,(1,2)(A) anddeta; 1 D1 2141),(1,21+1)(A). From the parity of
these functions the parity dit, D(A) follows by using[(3.2B).

Beinga(A), d(A) andt(A) Laurent polynomial of degred in ), in the case oN even the statement
of the lemma is already proven; so we have just to show that:

lim  A*Ndet D(A) =0 (3.24)
log A= F oo p

for N odd which follows observing that:

N
logleiLmR0 AN dgt D(A) = ity H mﬁﬁf” dst Hq_(ljFl)N/ZKSh,kH - q(1¢1)N/25h7k_1 H .
n=1

(3.25)
O

The interest toward the functiatet, D(A) is due to the fact that it allows the following characteri-
zation of theT-spectrum:

Lemma 2. X7 is the set of all the functiong\) € C[A%, A™?](ney—1),2 Which satisfy the system
of equations:

det D(n%) =0 Va € {1,..,[N]} and (n,...,nnN)) € By, (3.26)
p
plus in the case dR even:
lim  A*Ndet D(A) = 0. (3.27)
log A= F oo P

Proof. The requirement that the system of equatigns {2.18) adnmitseazero solution leads to the
equations[(3.26), while the equatidn (3.27) for edesimply follows by observing that:

N
x (=1) [T (irn&)" = 0. (3.28)

n=1

log[lxiglp)o AEN dgt D(A) = dgt Hq(ljFl)N/Q&,jq + q7(1$1)N/25¢,j+1 — (¢ + qik)&,j

O

Note that the above characterization of thepectrum®t requires as input the knowledge B,
i.e. the lattice of zeros of the operatBf\). It is so interesting to notice that this characterization
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has in fact a reformulation which is independent from thevidedge ofBy. To explain this let us
note that Lemmal1 allows to introduce the following map:

Dy t(A) € CIA, A (npex—1)/2 = DpN(t(N)) = dst D(A) € CIA?, A7 (nrex—1)/2-
(3.29)

In terms of this map we can introduce a further characteomaif the spectrum of the transfer matrix
T(N).

Theorem 1. The spectrunit of the transfer matrixT (\) coincides with the kerneNp, , C
C[»?, )\_2](N+eNf1)/2 of the maD,, x.

Proof. The inclusion/\/pva C Xt is trivial thanks to Lemmal2, vice-versaiifA) € Xt then
the functiondet, D(A) is zero inN+ey different values ofA? which thanks to Lemmil 1 implies
detpD(A) =0,i.e.31 C NDp,N' O

That is the set of eigenvalues of the transfer mairi) is exactly characterized as the subset of
C[A?, A7 %] (ntex—1)/2 Which contains all the solutions of the functional equatiet}, D(A) = 0. In
the next section we will show that this functional equat®naothing else that the Baxter equation.

Remark 1. Let us note that the same kind of functional equatien D(A) = 0 also appears

in [54,[55,/56]. There it recasts, in a compact form, the fiomal relations which result from the
truncated fusions of transfer matrix eigenvalues. It isstevant to point out that for trﬁBS—mod@

in the SOV representation the non-triviality condition bétsolutions of the system of Baxter-like
equations has been shown|[60] to be equivalent to the triamcatentity in the fusion of transfer

matrix eigenvalues.

4. Baxter functional equation

The main consequence of the previous analysis is that italjtleads to the complete character-
ization of the transfer matrix spectrum in terms of polynahsiolutions of the Baxter functional
equation.

Theorem 2. Lett(\) € X thent(\) defines uniquely up to normalization a polynongjal ) that
satisfies the Baxter functional equation:

tNQ:(N) = a(N)Qe(Ag™ ") +d(N)Q:(Ag) VA€ C. (4.30)

Proof. The fact that given &(\) € C[A\*, A\"?](x ey —1)/2 there exists up to normalization at most
one polynomial),(\) that satisfies the Baxter functional equation has been prioveemma 2 of
[1]. So we have to prove only the existence@fA) € C[)A]. An interesting point about the proof
given here is that it is a constructive proof.

11The BBS-model[14. 57. 58.59] has been analyzed in the SOxbaph in a series of works [60. 61.162].
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Let us notice that the conditiati\) € ¥t = Np, , implies that thep x p matrix D(A) has rankl
for any\ € C\{0}. Let us denote with

Ciyj(A) = (—1)i+j d26lt DZJ(A) (431)

the (4, j) cofactorof the matrixD()\); then the matrix formed out of these cofactors has rarile.
all the vectors:

Vi(A) = (Ci1(N),Ci2(N), o, Ciip1 (V)T € CP Wi € {1,..., 21 + 1} (4.32)
are proportional:
Vi(A)/Cii(N) =V,;(N)/Cj1(\) Vi,je{l,..,.21+1}, VA e C. (4.33)
The proportionality[(4.33) of the eigenvectorg(X) implies:
C2,2(A)/C2,1(A) = C1,2(A)/C11(N) (4.34)
which, by using the propert{/ (A.69), can be rewritten as:
C1,1(Aq)/Cr2141(Aq) = C1,2(A)/C1,1(A). (4.35)
Moreover, the first element in the vectorial conditibig)\)V (A) =Qreads:
t(AN)C11(A) = a(A)Cq 2141 (A) +dA(N)Cq 2(N). (4.36)

Let us note that from the form caf()), d(A) and¢(\) € Xt it follows that all the cofactors are
Laurent polynomial of maximal degige2/N in A:

4le(ai,]‘+bi)j) o
Cij(\) = cipa™resTT (7 - ). (4.37)
h=1

In Lemma[5, we show that the equatiohs (4.35) dnd {4.36) irtty if C, 1(\) has a common
zero with G »(\) then this is also a zero ofG;+1(A) and that the same statement holds ex-
changing G 2(\) with C; 541(A\). So we can denote witly; 1C; 1()\), C1.2:41C1241(N) and
C1,2C12()\) the polynomials of maximal degregN obtained simplifying the common factors in
C1,1(N\), Ci2141(A) and G 2(A). Then, by equatiori(4.35), they have to satisfy the relation

Cra+1(N) = QN1’161,1()\Q71), Ci2(\) = (J*NI’ICLl(/\‘J) and Cy 241 = ¢C11,  (4.38)

wherep =C;1/C1 2 andNy ; is the degree of the polynomid; ;(\). So that equatior (4.36)
assumes the form of a Baxter equation in the polynof@ijal(\):

t(ANC11(\) =a(\)Cra(Ag ™) +d(V)Cri(Ng), (4.39)

12Theai,j andb; ; are non-negative integers ahéf’j) # 0foranyh € {1,...,4IN — (a;; + b;,j)}.
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with coefficientsa(\) = ¢~ pa()) andd()) = ¢ N1 1o 1d()). Note that the consistence of the
above equation implies thatis ap-root of the unity. Indeed, denoting with(A ) the matrix defined
as in [3.:211) but with coefficients(\) andd()\), equation[(4.39) implies:

0 = det D(A) = (¢ — 1) (H a(A\") — o7 ] a(—)\qh)> . (4.40)
h=1 h=1

The expénsion fodet, D(A) in (4.40) is derived by using the expansién (3.23)det, D(A), the
formulag:

d26lt ﬁlyl(A) = d26lt Dlyl(A), (441)
ggtl D1,2),1,2)(A) = ggtl D1,2),1,2)(N), (4.42)
det D1,2141),1,2041)(A) = det D1 gy, 1,204 (V) (4.43)

and the condition(\) € X. Finally, if we define:
Q:(A) = A"Cia(N), (4.44)

whereg—* = ¢N1p with a € {0, .., 21}, we get the statement of the theorem. O

Remark 2. The previous theorem implies that for at{\) € X1 the polynomial solutior); () of
the Baxter equation can be related to the determinant adiagonal matrix of finite size — 1. Note
that the spectrum of the Sine-Gordon model in the case didnal coupling5? should be deduced
from 32 = p//p rational in the limit3? — 52. In particular, this implies that under this limit (-
+00) the dimension of the representation diverges as well asizhef the tridiagonal matrix whose
determinant is associated to the solut@n(\) of the Baxter equation. It is then relevant to point
out that in the case of the quantum periodic Toda chain thetieak of the corresponding Baxter
equation are expressed in terms of determinants of semitmfridiagonal matrices$ [63, 13, 64].

It is worth noticing that the set of polynomiadg. (), introduced in the previous theorem, admits a
more precise characterization:

Theorem 3. Let¢(\) € Xt thent¢()\) defines uniquely up to normalization a polynomial solution
Q+()\) of the Baxter functional equation (4130) of maximal deg®é.

In the caseN odd, it results:
Q+(0) = Qo #0, and Jim ATINQL(N) = Qan # 0. (4.45)

In the caseN even, the conditio (Z.#5) sele¢ts\) € % while fort(\) € S5 with k € {1,...,1}
we have the characterizatiapy = Qo = 0 and:

QM) e QX))
Mo, T Mo, T (449

13They follow from thetridiagonality of these matrices and by using Lemiia 3.
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Proof. Thanks to formula{A.74), the cofactor G(A\) € C[\, A~!]ay is even in) and so it admits
the expansions:

} 2[N7((~11,1+51,1)
Cri(\) = Cy A 2N+20 AP =00 4 ). (4.47)

7
i=1

Let us note now that by using the properties (A.69) and (A.#8 relation[(4.34) can be rewritten
as:
Cl,l()\Q)Cl,l(/\) = qNCLQ(A)Cl,Q(_A). (448)

Using that and the general representation (4.37) for thectof G »()\), we get:
a2 = 2&171 = 2a, b172 = 251,1 = 2b, Ciz = Cilq_Q(Nﬁ_b) (449)

and: ) ) 5
(W) = () =% (M) = (ifa)” (4.50)

with \; # 0 foranyi € {1,...,2IN — (a + b)} with @ andb € Z=°. Note that the equation (4.49)
and the fact thap =c, 1/C; 2 is ap-root of the unity implyy = ¢**N. Then we can write:

2IN—(a+b)

Cia(\) = e TT (L + M) - ), (4.51)
1=1
2IN—(a+b)

Cia(\) = g cA NP2 T (N + X (-1)7EIX; = Ag), (4.52)

i=1

wherec=c; ; andH(n) = {0 forn <0, 1 forn > 0} is the Heaviside step function. Here,
is a non-negative integer which is fixed to zero thanks to fdenf4.38). Then the solutio, () of
the Baxter equation (4.B0) belongs@p\]+;n and has the form:

—

2IN—(a+b)
Qi(\) = \° (A — ). (4.53)

=1

Let us show now the remaining statements of the theorem coingethe asymptotics ap.(A). To
this aim we compute the limits:

logyglmo AEANG, () = dﬁt Hq_(lq:UN/Q(Si,jJrl 4 qUFONS (R 4 M) Seu 160

‘i;ﬁl,j;ﬁl

N +1 N !
y H(%)ﬂ = (Gou 1 (14 (21 + 1)30) — 1) H(ﬁ)”v (4.54)
h=1 h=1

which imply:
a=>b=0, (4.55)
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for N odd andN even witht(\) € X9, i.e. the condition{4.45). In the remaining cas§sven and
t(\) ¢ Y, the same formula implies:

a0, b#0, (4.56)

sothat)y = Qon = 0, while the asymptotics behaviols (4.46) simply follow takthe asymptotics
of the Baxter equation satisfied 3 (). O

5. Q-operator: Existence and characterization
Let us denote witt®, the eigenspace of the transfer maffig\) corresponding to the eigenvalue
t(A\) € X7, then:
Definition 1. LetQ(\) be the operator family defined by:
QN)t) = Qc(N)|t) V|t) € 3, and Vi(\) € X, (5.57)

with Q;()\) the element ofC[\]2;n corresponding tat(\) € Yt by the injection defined in the
previous theorem.

Under the assumptiorsandx real or imaginary numbers, which assure the self-adjogginé the
transfer matrixT () for A € R, the following theorem holds:

Theorem 4. The operator familyQ(\) is a BaxterQ-operator:

(A) Q(A) satisfies withT (\) the commutation relations:
QM) T()] = [QM), Q)] =0 YA € C, (5.58)
plus the Baxter equation:
T(NQA) =a(A)QAg™H) +d(N)Q(Ag) YA€ C. (5.59)

(B) Q(X) is a polynomial of degreIN in A:
2IN
QN =D Qu",
n=0
with coefficientR,, self-adjoint operators.
(C) Inthe caseN odd, the operatoQ,;x =id andQy is an invertible operator.

(D) Inthe caseN evenQ(\) commutes with th®-charge and the operatd®sy is the orthogonal
projection onto thed-eigenspace with eigenvalue Qg has non-trivial kernel coinciding with
the orthogonal complement to tkeeigenspace with eigenvalue 1.
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Proof. Note that the self-adjointness of the transfer matr{x) implies thatQ(\) is well defined,
indeed its action is defined on a basis. The property (A) isvaatrconsequence of Definition 1.
Note that the injectivity of the mag{\) € 1 — Q;()\) € C[\]2n implies:

(Qe(N)" = Q¢(X*) YAeC (5.60)

being (a(A\))* = d(A*) and (¢(\))" = t(\*). So we get the Hermitian conjugation property
(Q()\))Jr = Q(X*), i.e. the self-adjointness of the operat@s. The properties (C) and (D) of
the operatorf, andQqn directly follow from the asymptotics of the eigenfuncti@h(\) while
the commutativity ofQ(\) and® is a direct consequence of the commutativityigh) and®. O

6. Conclusion

In the previous section we have shown that by only using tlagatiterization of the spectrum of the
transfer matrix obtained by the SOV method we were able torrstcuct theQ-operator. It is also
interesting to point out as the results derived in [1] togethith those of the present article yield:

Theorem 5. The familyQ which characterizes the quantum integrability of the ttSine-Gordon
model (see definitiofi (1.1)) is described by the transferimdt(\) for a chain withN odd number
of sites while byl ()\) plus the©-charge for a chain wittN even number of sites.

Proof. Let us start noticing that Proposition 3 and Theorem 4 of fé]derived only using the SOV
method (i.e. without any assumption about the existenca@ftoperator). So only using SOV
analysis we have derived that for odd the transfer matriX (\) has simple spectrum while for
N even this is true foif (\) plus the©-charge; i.e. they define a complete family of commuting
observables and so satisfy the properties (A) and (C) of dfi@itlon (I.1). In this article we have
moreover shown that th@-operator is defined as a function of the transfer matrix Wihiaplies
the property (B) of[(Z11) recalling that inl[1] the time-ewtbn operatot) has been expressed as a
function of theQ-operator. O

Let us shortly point out the main features required in albst@mextend to cyclic representations of
other integrable quantum models the same kind of spectraracterization derived here for the
lattice Sine-Gordon model.

R1. The model admits an SOV description and the spectrum of #mester matrix can be charac-
terized by a system of Baxter-like equations in Thevave-function¥ (n) = (n|t):

tn)¥(n) = a(n) ¥y, q ey ynN) +d) (1, gy, N) . (6.61)

where(ny, ...,mn) € By with By the set of zeros of th8-operator in the SOV representation.
Here, the parameteris a root of unity defined as i (2.6) aid (2.7).
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Note that for cyclic representations of an integrable quiemniodel the seBy is a finite subset of
CN. So the coefficients(n,.) andd(n,.) are specified only in a finite number of points where they
satisfy the following average value relati

p p
H a(¢*n,), H (@"nr) - (6.62)

Here A(A) andD(A) are the average values of the operator entdés) and D(\) of the mon-
odromy matrix. Let us recall that the operator entries ofrtttmodromy matrix are expected to be
polynomials (or Laurent polynomials) in the spectral pagten\ so the corresponding average val-
ues are polynomials (or Laurent polynomialshire AP. Itis then natural to introduce the functions
a(\) andd()) as polynomial (or Laurent polynomial) solutions of the éwling average relations:

P p
A(A) 4+ yB(A H D(A) + 0B(A H (6.63)

whereB(A) is the average value of the operaf®f\) and~ ands are constant to be fixed.

R2. Let us denote witlZ; ) the set of the zeros of the functiofi§\), then:

JXo € Zao\) Ao ¢ U2l ! Zd()\qh) (664)

R3. The average values of the functionandd are not coinciding in all the zeros of ti& operator:
A(ng) #D(ng) Va € {1,...[N]} and (n1,...,nn)) € B (6.65)

The requiremenR1 yields the introduction of the x p matrix D()), defined as in[{3.21), by
the functionsa()) andd(\) solutions of [(6.68). This should allow us to reformulate sipectral
problem for the transfer matrix as the problem to classifytta solutionst(\) to the functional
equationdet, D(A) = 0 in a model dependent class of functions.

The requiremenR2 implies that the rank of the matriR()\) is almost everywhergl. Indeed, the
condition [6.64) implies €,(\o) # 0, independently from the functiot{)\). Being the cofactor
C1,,()) a continuous function of the spectral parameter the abaversent on the rank of the matrix
D(\) follows. Under this condition we can follow the proceduregented in Theorehi 2 to construct
the solutions of the Baxter equation. Then the self-adj@ss$ of the transfer matrik allows us to
proceed as in sectidi 5 to show the existence of¥fuperator as a function af.

The requiremenR3 is a sufficient criteridE to show the simplicity of the spectrum @f which
should imply that the full integrable structure of the quantmodel should be described by the

14The equations if(6.62) are trivial consequences of the Sxésentation and of the cyclicity.

15 It is worth noticing that in the case of the Sine-Gordon mdtel criterionR3 does not apply to the representations
with v, = v, = 1. Nevertheless, we have shown the simplicityToby using some model dependent properties of the
coefficientsa(\) andd(\), see section 5 of [1].
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transfer matrix as soon as the property (B) in definition)( & hown for the model under consider-
ation.

Following the schema here presented, in a future publicatie will address the analysis of the
spectrum for the so-callegt sectorsof the Sine-Gordon model (se€ [1]). The use of this approgch i
in particular relevant in these sectors of the Sine-Gordodehbecause a direct construction of the
Q-operator leads to some technical difficulty.

A. Properties of the cofactors G ;(\)

Let us consider aif x M tridiagonalmatrix O:

zZ1 Y1 0 R 0 0
X1 z9 y2 O e O
0 i) z3 Y3
0= (A.66)
0
0 SN 0 TN —2 ZM—1 YM -1
0 0o ... 0 Ta—1 ZM

i.e. a matrix with non-zero entries only along the princigidgonal and the next upper and lower
diagonals.

Lemma 3. The determinant of a tridiagonal matrix is invariant undbettransformatiorp,, which
multiplies fora the entries above the diagonal and fer! the entries below the diagonal leaving
the entries on the diagonal unchanged.

Proof. Let us note that the determinant of a tridiagonal matrix aslhie following expansion:
C%St O=2xn Ac}(itl O11+ 711 ]\(}e_tg O(1,2),(1,2) (A.67)

where we have used the same notations introduced after l@@@3). By using it, we get that the
action ofp,, reads:

C%e{t 0a(0) = 21 Ac}e_tl 0a(0)1,1 + 2191 AC}G_tQ 0a(0)(1,2),(1,2)- (A.68)

Then the statement follows by induction noticing that thensformationg,, leaves always un-
changed the determinant oRax 2 matrix. O

16An interesting analysis of the eigenvalue problem for &giinal matrices is presented[in [65].
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Lemma 4. The following properties hold:
Chrinri(N) = Chr(\g") Vi, h, k€ {1,...,20 + 1}, (A.69)
and:

Cia(\) = Cia(=A) and Ca1(\) = ¢NCia(—N). (A.70)

Proof. Note that by the definitior (4.31) of the cofactors ,C\) the equationd{A.89) are simple
consequences @f = 1 and are proven exchanging rows and columns in the deterisinan

Let us prove now that the cofactor G(A) = det2,D; 1(A) is an even function of. The tridiago-
nality of the matrixD; 1 () allows us to use the previous lemma:

5h=k*1"h>1,k>1
= dgezt Hf()\qh)%,k — Na(Ag")on ki1 — a(_)\qh+1)6h,k—l"h>1yk>l
= d2elt ||t()\qh)5h7k — d(—/\q’“)ék,h_l — a(—)\qk)ékﬁﬂ Hh>1,k>1

= det (D1,1(=A))" = Cr1(-2). (A71)

Cii(N) = d;zt Ht()\qh)5h7k —a(A\")on ki1 — Na(= ")

To prove now the second relation [0 (Al70) we expand the ¢ofac

20+1

Coa(N) =[] a(rd")+d(N) det Daoya)(N), (A72)
h=2
21

Ci2(N) = []a(Ag")+a(rg) det Doy a2)(N)- (A.73)
h=1

By using the same steps shown[in (A.71), the tridiagonafithe matrix O, 2y (1,2) () implies that
its determinant is an even function affrom which the statementG () = ¢NCy 2(—)) follows
recalling thad(\) = ¢Na(—\q). O

Remark 3. In this article we need only the propertié€s (A.70); howeités, worth pointing out that
they are special cases of the following properties of thaatofs:

Ci;(N) =NIC (=) Vi,je{l,..,20+1}. (A.74)
The proof of [A.7#) can be done similarly to that bf (Al 70) bxet omit it for simplicity.

Let us use once again the notatigp for the set of the zeros of a functigif), then:
Lemma 5. The equation${4.35) and (4136) imply:

ZC1,1 N ZC1,2 = ZC1,1 N ZC1,21+1' (A75)
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Proof. The inclusions(Zc, , N Zc, ,) \Za C Zc,, N Zc, 5,, and (Zc,, N Zc, ,,,) \Za C
Zc, , N Zc, , trivially follow by equation [4.35).
Let us observe now thati;G(\¢~') has no common zero witha()\) and that G 5;41()\g) has no
common zero withd()\). These statements simply follow froin (A]73). (Al69)and(®). when we
recall thata(\) has no common zero Witﬁ[ilgol d(A\¢") and thatd()\) has no common zero with
2 a(Agh). So,if(Ze,, N Zc, ,)NZais notempty and € (Zc, , N Zc, ,) NZa, the equation
(4.35) computed i\ = ¢~ 1) implies G o+1(Xo) = 0 being G 2(Xog™t) # 0, i.e. X\o €
Zc, \NZc, 5, Similarly, if (Zc, , N Zc, ,,,,)NZais notempty andg € (Zc, , N Zc, 4, )N Za,
the equation[(4.35) computed in= ), implies G 2(A\o) = 0 being G 21+1(Xog) # 0, i.€. \g €
Zc,, N Zg, ,. So that[[4.35) implies the inclusiof€c, , N Zc, ,) N Za C Zc,, N Zc, ,,,, and
(Ze,, N Zc, 441 ) N Za C Zc,, N Ze, , in this way completing the proof of the lemma. O

B. Scalar product in the SOV space

Here is described as a natural structure of Hilbert spacédeagrovided to the linear space of the
SOV representation by preserving the self-adjointnesBefransfer matrix.

B.1 Cyclic representations of the Weyl algebra

Here, we consider the cyclic representations of the Weyzllm@Wq(") in the case:
uP =vP = 1for 8% = p//p with p’ even anch = 21 + 1 odd. (B.76)

At any siten of the chain, we introduce the quantum spagewith v,,-eigenbasis:
Valk,n) = ¢k, n) V|k,n) € B, = {|k,n),Vk € {~1,...,1}}. (B.77)

Note that the eigenvalues of describe the unit circls, = {¢* : k € {—1,...,l}}, indeedg' ! =
q¢~'. OnR,, is defined a-dimensional representation of the Weyl algebra by setting

unlk,n) = [k +1,n) Vk € {—1,...,1} (B.78)

with the cyclicity condition:
|k +p,n) = |k, n). (B.79)

B.2 Representation in the SOV basis

The analysis developed inl[1] define recursively the eigsisb@ ¢", ..., ing"™)} of the B-
operator in the original representation, i.e. as linear wioations of the elements of the basis
{|h1, ..., An) = ®S:1 |hn,m)}, where|h,,n) are the elements of the,-eigenbasis defined in
(B.Z14). To write this change of basis in a matrix form let usaduce the following notations:

ly;) = |771qh1, ...,ﬁthN> and |z;) = |hq, ..., Ax) (B.80)
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where:

N
jr=hi+ Y 2+ 1)V (he —1) € {1,..., (21 + DN}, (B.81)
a=2
note that this defines a one to one correspondence betueaples(h, ..., hx) € {1,...,20 + 1}N
and integerg € {1, ..., (21 + 1)V}, which just amounts to chose an ordering in the elementseof th
two basis. Under this notation, we have:

2i+1)N
ly;) = Wlz) = > W), (B.82)
=1

where we are representitg;) as the vectof;) in the natural basis i£2HDY andw = [1W; ;|
is a(2l + 1)N x (21 + 1)N matrix. The matrixWV is defined by recursion in terms of the kerdél
constructed in appendix C afl[1], let us use the notation:

K((hy st b fkanobn ) = B3 X0)s (B.83)
where we are considering the cdée- M = 1. Then the recursion reads:

20+1

(N) _ (N—1)
Wit = D Kl dn@hm 00z s DWaGs otk )’ (B.84)
ka2,....,kn=1

where we have introduced the indéX) and (N — 1) in the matricesV to make clear the step
of the recursion. Hergihq(j),...,.an(7)) is the uniqueN-tuples corresponding to the integgre
{1,...(2l + 1)N} and hy (i) is the first entry in the uniqu&-tuples corresponding to the integer
i € {1,...(2 + 1)N}. Moreover, we have defined:

. . N
i—ha(2) (N—1) _ (a—2)
N1 e{1,...,(20+1) } and a(ks, ..., kn) = k2+a§:3(2l+1) (ka—1),

h(i) == 1+

(B.85)
Remarks:

a) Under the change of badis:;)} — {|y,)} the generic operator X transforms for similarity:
Xsov = WIXW, (B.86)
so from the action of the zero operatarsand the shift operatofE; on the B-eigenbasisy; ):

Nalys) = ﬁaqh“(j)|yj> and TfIyﬁ = |yji(2l+1)<a*1)> (B.87)

we have that:

(Ma)sov = ﬁa“qha(j)&i,jH and (Ti:)sov = [16; j+ 2141y |- (B.88)
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From the above expression we f@re
f * t
(Ma)sov = (Ma) 50y and (Tf)sov = (T3 sov - (B.89)

b) The known transformation properties of the entries of tienodromy matrix in the original
representation imply:

( Dsov(\) Csov(A) ) _( 6! (Asov(A)' G =G~ (Bsov(3))' G (B.90)
Bsov(A)  Asov(A) —G L (Csov(M)'G G 1 (Dsov(\)'G ) '
with G is a positive self-adjoint matrix defined I&/:= WTW.

¢) The quantum determinant relation is invariant underlsirity transformations and so we have:
a(A)d(Ag™") = Asov(M)Dsov (Mg ~!) = Bsov (M) Csov (Mg ™), (B.91)

Lemma 6. The basig{|y;)} is not an orthogonal basis w.r.t. the natural scalar prodant{|z;)}.

Proof. Note that the conditio{]y;)} is an orthogonal basis is equivalent to the statenteid
a diagonal matrix (with positive diagonal entries). Let esall that the Hermitian conjugation
property of B(\) together with the Yang-Baxter commutation relations imply

B1(3: B0 = (B, CV)] = 1= (A)D() — AGIDI) £0 (B92)
that is the operatoB(\) is not a normal operator. Now let us show that the non-notynafiB()\)
implies thatG is not diagonal. Indeed, we can write:

B'(V), B(w)] = (W)™ (Bsov(\)' GBsov (1W ™" = WBsov (16~ (Bsov (V)T W'
= W(G™ (Bsov (\)'GBsov (1) — Bsov ()G~ (Bsov (V) G)W™".  (B.93)
Note now that if we assum@diagonal, theic commutes both witB 5oy (A) and with(Bsoy (1)1

being all diagonal matrices in the SOV representation, Wimigplies the absurdB’(\), B(x)]
0.

o .

B.3 Scalar product in the SOV space

The self-adjointness of the family(\) implies that the transfer matrix eigenstates are ortholgona
under the original scalar product:

dij = ([ta), [t5)), (B.94)
we have chosen the orthonormal ones. Note that the abovei@gueaturally induces a scalar
product in the SOV representation obtained under changasi$b

(Ib), la))sov = (G|b), |a)) (B.95)

17Here, we are using the standard notation for the adj§iht= (X *)*.
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that is a scalar product for which the adjoint of a vectoris the natural adjoint times the mati&

)10V = (4G with (b] = ((|b>)t)*, (B.96)
and so for the generic operat&rwe have:
XTfsov = G71XTG. (B.97)

It is trivial to notice that:

Lemma 7. The family of operatorsTsov(A) is self-adjoint w.r.t. tsoy and the eigenstates
ltj)sov = WTt;) are orthonormal w.r.t. the scalar product defined In(B.9%)loreover, it
results:

(Asov (A*)T59V  (Bsov (A*))Tov [ Dsov(A)  —Csov())
< (CSOV()\*))TSOV (DSOV(/\*))TSOV ) = ( “Bsov(\)  Asov(\) > (B.98)
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