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1. Introduction

While the Minimal Supersymmetric Standard Model (MSSM) addresses various

short-comings of the Standard Model (SM), such as solving the hierarchy problem,

providing a natural dark matter candidate (i.e. the lightest supersymmetric parti-

cle, LSP) and gauge coupling unification, it exhibits some severe phenomenological

problems, among them the issue of proton stability. The SM guarantees proton

stability, whereas the MSSM allows renormalizable R-parity breaking operators con-

sistent with supersymmetry and gauge invariance of the superpotential that do lead

to a disastrous high proton decay rate.
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The renormalizable SM gauge invariant superpotential terms read

WMSSM = YU QLURHu + YD QLDRHd + YL LERHd + µHuHd

+ λ1 URDRDR + λ2QLLDR + λ3 LLER + αLHu , (1.1)

where the terms in the first line are the Yukawa couplings giving mass to quarks and

leptons after electroweak symmetry breaking as well as the µ-term. On the other

hand, the second line contains terms that do not conserve baryon and lepton number,

so called R-parity violating terms. They can lead to rapid proton decay, rendering

the LSP unstable and thus eliminating the possibility of any SUSY particle being the

dark matter candidate. Moreover, SM gauge invariance allows also for the dimension

5 proton decay operators

QLQLQLL URURDRER , (1.2)

which if not suppressed lead to a disastrous high proton decay rate.

Generically, discrete symmetries such as R-parity or Baryon triality are invoked

to forbid the presence of those superpotential terms. Despite the fact that those

discrete symmetries ensure the absence of such undesired terms their origin remains

unclear. There exist strong arguments implying that in a consistent quantum gravity

global symmetries, continuous or discrete, are broken by quantum gravity corrections

[1–5]. An exception are discrete symmetries that have a gauge symmetric origin, so

called discrete gauge symmetries. For instance abelian discrete symmetries ZN are

remnants of continuous U(1) symmetries that are broken by scalars with charge

N under the respective U(1) acquiring vev’s. However, the presence of a discrete

symmetry seems fine-tuned unless there is a dynamical reason for the scalar field

with charge N to acquire an appropriate vev.

This might find an explanation within string theory. For example, as has been re-

cently shown in [6], in type II compactifications discrete symmetries naturally appear

as subgroups of anomalous U(1) gauge factors broken by Stückelberg type couplings.

More concretely, D-brane compactifications exhibit multiple U(1)’s which generi-

cally appear anomalous whereas the anomalies are cancelled by the Green-Schwarz

mechanism [7–15]. The U(1)’s become massive and are broken to a discrete abelian

subgroup via the presence of a B ∧ F coupling, where B denotes the Ramond Ra-

mond 2-form. In the low energy effective theory the massive U(1)’s survive as global

symmetries that are preserved by all perturbative quantities while D-instantons can

break them inducing perturbatively absent couplings [16–18]. On the other hand the

discrete symmetry, the remnant of the U(1) after the Green-Schwarz mechanism, is

respected by all perturbative and non-perturbative quantities [6, 19].

Inspired by the work of [6] we want to investigate the presence of discrete sym-

metries in (semi-)realistic D-brane models. In a series of publications [20–22] the

authors analysed so-called D-brane quivers, i.e. local D-brane configurations, with
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respect to their phenomenology. They performed a systematic search for local D-

brane setups that exhibit (semi-)realistic features using the bottom-up approach.

More concretely, they specified the chiral spectrum to be the MSSM or the MSSM

with three right-handed neutrinos and imposed the presence of quark and lepton

Yukawa couplings on perturbative or non-perturbative level and at the same time

required, among other criteria, the absence of R-parity violating terms as well as the

absence of dimension 5 proton decay operators. They found of the order of 40 local

D-brane configurations based on four D-brane stacks that are consistent with the

global consistency conditions and exhibit a (semi-)realistic phenomenology. Given

those D-brane quivers it is interesting whether the absence of R-parity as well as di-

mension 5 proton decay operators is accidental or is originated from a discrete gauge

symmetry.

We will study the constraints arising from string theory for the presence of a dis-

crete gauge symmetry in D-brane models. As we will see those stringy constraints do

contain the usual four-dimensional discrete anomaly constraints, however, pose addi-

tional constraints related to higher dimensional anomalies upon decompactification.

Established those constraints we analyse the promising local D-brane configurations

found in [20–22] with respect to discrete gauge symmetries. We find that depending

on the hypercharge embedding matter parity appears quite frequently, forbidding the

undesired R-parity violating terms. Only very few D-brane quivers allow for Proton

hexality which ensures the absence R-parity violating terms as well as the dangerous

dimension 5 operators.

This paper is organized as follows. In section 2 we review the findings of the sys-

tematic search for discrete symmetries in the MSSM, using four-dimensional discrete

anomaly conditions. In section 3 we discuss the constraints on the transformation

behaviour of chiral matter that arise from string consistency conditions. Moreover,

we establish the conditions on the transformation behaviour of the matter fields for

the presence of a discrete gauge symmetry in D-brane compactifications. In section

4 we impose the constraints for the presence of a discrete gauge symmetry, studied

before, for a class of intriguing local D-brane configurations that exhibit a (semi-)

realistic phenomenology. We analyse what type of discrete symmetries can appear as

well as their phenomenological implications. In section 5 we present our conclusions.

The appendix A contains the details of the systematic bottom-up search for local

D-brane configurations that give rise to a (semi-)realistic phenomenology.

2. Discrete gauge symmetries in the MSSM from a field the-

ory perspective

In this section we review the results of the work [23] where the authors search for all

possible family independent (non-R) discrete gauge symmetries within the MSSM.
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QL UR DR L ER NR Hu Hd

A 0 0 −1 −1 0 1 0 1

L 0 0 0 −1 1 1 0 0

R 0 −1 1 0 1 −1 1 −1

Table 1: The family independent generators of discrete ZN gauge symmetries in the

MSSM.

They find a finite class of discrete gauge symmetries that satisfy the four-dimensional

discrete gauge anomaly constraints, i.e. the mixed ASU(3)SU(3)ZN
, ASU(2)SU(2)ZN

as

well as the gravitational anomaly AGGZN
. In their search they furthermore require

the family independent discrete gauge symmetries to allow for the Yukawa couplings

QLHdDR QLHuUR LHdER . (2.1)

As already shown in [24]1 any family independent discrete gauge symmetry ZN

of the MSSM with generator gN can be expressed in terms of products of powers of

three mutually commuting generators AN , LN and RN , i.e.

gN = An
N × L

p
N × Rm

N , (2.2)

where the exponents run over m,n, p = 0, 1, ...N−1. The charges of the chiral MSSM

matter fields under these three independent ZN are displayed in table 1. Given this

assignment the matter fields carry discrete charges

qQL
= 0 qUR

= −m qDR
= m− n (2.3)

qL = −n− p qER
= m+ p qHu

= m qHd
= −m+ n

under a gN transformation.

The discrete gauge anomaly constraints applying the charge assignment (2.3)

read (see also [26])

SU(3)− SU(3)− ZN : 3n = 0 mod N (2.4)

SU(2)− SU(2)− ZN : 2n+ 3p = 0 mod N (2.5)

G−G− ZN : − 13n− 3p+ 3m = 0 mod N + η
N

2
, (2.6)

where the first two lines correspond to the discrete gauge anomalies of SU(3) and

SU(2), respectively. The last line describes the gravitational anomaly, where η = 0

for N being odd and η = 1 for N being even. The last term of (2.6) takes into

account the possibility of heavy Majorana fermion fields.

1See, also [25].
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Solving these discrete gauge anomaly constraints one finds a finite class of so-

lutions [23], ranging from Z2 up to Z18 symmetries. In table 2 all possible family

independent discrete gauge symmetries of the MSSM are displayed in terms of the

three ZN generators, AN , LN and RN .

N n p m Discrete gauge symmetries

2 0 0 1 R2

3
0 0 1 R3

0 1 (0, 1, 2) L3, L3R3, L3R
2
3

6
0 0 1 R6

0 2 (1, 3, 5) L2
6R6, L

2
6R

3
6, L

2
6R

5
6

9

3 1 (2, 5, 8) A3
9L9R

2
9, A

3
9L9R

5
9, A

3
9L9R

8
9

3 4 (2, 5, 8) A3
9L

4
9R

2
9, A

3
9L

4
9R

5
9, A

3
9L

4
9R

8
9

3 7 (2, 5, 8) A3
9L

7
9R

2
9, A

3
9L

7
9R

5
9, A

3
9L

7
9R

8
9

18

6 2 (1, 7, 13) A6
18L

2
18R18, A

6
18L

2
18R

7
18, A

6
18L

2
18R

13
18

6 8 (1, 7, 13) A6
18L

8
18R18, A

6
18L

8
18R

7
18, A

6
18L

8
18R

13
18

6 14 (1, 7, 13) A6
18L

14
18R18, A

6
18L

14
18R

7
18, A

6
18L

14
18R

13
18

Table 2: All fundamental discrete gauge symmetries in the MSSM satisfying the anomaly

cancellation conditions [23]. Here one allows for heavy fermions with fractional charges.

For the MSSM with 3 right-handed neutrinos only a subgroup of the discrete

symmetries displayed in table 2 can be realized. Requiring the presence of the Dirac

neutrino mass LHuNR implies the charge

qNR
= n+ p−m (2.7)

under the discrete symmetry. Since the neutrinos are not charged under the SU(3)

and SU(2) their presence will only lead to changes in the gravitational discrete gauge

anomaly, which is then given by

G−G− ZN : −10n = 0 mod N + η
N

2
, (2.8)

which together with the other two discrete gauge anomaly constraints allows only

for solutions with n = 0. Thus in contrast to the pure MSSM the MSSM with

three additional right-handed neutrinos does not allow any Z9 and Z18 symmetries.

On the other hand all Z2, Z3 and Z6 symmetries displayed in table 2 are realized.

Beyond those the MSSM with three right-handed neutrinos does not exhibit any

further family independent discrete gauge symmetries.

For a given discrete gauge symmetry, i.e. for a specific choice of the parameters

m, n and p, we can determine with eq. (2.3) the discrete charges of the SM fields

and study the appearances of various terms in the superpotential. Specifically it is

interesting whether a discrete symmetry forbids some of the undesired couplings such
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coupling R2 L3R3 R3 L3 L3R
2
3 L2

6R
5
6 R6 L2

6R
3
6 L2

6R6 Z9 & Z18

HuHd X X X X X X X X X

LHu X

LLER X

QLLDR X

URDRDR X

QLQLQLL X X X

URURDRER X X X

LHuLHu X X X

NRNR X X X

Table 3: Allowed superpotential terms for the respective discrete gauge symmetries [23].

as R-parity violating terms or dangerous dimension 5 proton decay operators. Table

3 depicts for all possible family independent discrete gauge symmetries the allowed

superpotential terms.

Let us discuss some of the intriguing discrete symmetries displayed in table 3.

The Z2 symmetry R2 is the usual matter parity [27] while L3R3 is Baryon triality [24].

Proton hexality, basically the product of matter parity and Baryon triality, is given

by L2
6R

5
6 and forbids all R-parity violating terms as well as the dangerous dimension

5 proton decay operators while still allowing for a µ-term HuHd and the Weinberg

operator LHuLHu.

The above discussion on the allowed couplings for the respective discrete gauge

symmetry applies specifically to the MSSM. Allowing for additional singlets, such as

right-handed neutrinos, which do not acquire any vev does not change the analysis.

However, the presence of right-handed neutrinos accompanied with a Dirac neutrino

mass term raises the issue of the generation of small neutrino masses. A particular

intriguing mechanism is the see-saw mechanism that requires large Majorana mass

terms for the right-handed neutrinos. In the last line of table 3 we display which

of the discrete symmetries permits for a Majorana mass term and thus allows the

generation of small neutrino masses via the see-saw mechanism.

Finally, there exist two additional classes of discrete gauge symmetries, namely

non-abelian discrete gauge symmetries and discrete R-symmetries. As recently pointed

out the latter may play a special role in GUT theories, realized as a ZR
4 symmetry

that forbids all R-parity violating terms as well as dimension 5 proton decay oper-

ators [28–30]. On the other hand non-abelian discrete gauge symmetries are often

times invoked explaining various observations in flavour physics (see e.g. [31]). In

this work we perform a systematic bottom-up D-brane analysis which ignores any

specifics of the internal geometry. However non-abelian discrete gauge symmetries as

well as discrete R-symmetries do rely on the details of the compactification manifold.
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Thus here we focus only on the subset of abelian discrete gauge symmetries.

3. Discrete symmetries in D-brane compactifications

In this work we want to perform a systematic bottom-up study for discrete gauge

symmetries within the class of realistic local D-brane configurations based on four

D-brane stacks found in [20–22] 2. There the authors studied local D-brane construc-

tions, where the gauge degrees of freedom are given by open strings attached to a

D-brane stack whereas the chiral matter appears at the intersection of two D-brane

stacks. As we will review below the distribution of the chiral matter is not arbitrary

but subject to severe constraints arising from string consistency constraints, such as

tadpole cancellation.

In the work [20–22] the authors systematically analysed all four-stack config-

urations, four stack quivers, imposed the severe consistency constraints as well as

required some (semi-) realistic features. More specifically, they demanded the chi-

ral spectrum to be one of the MSSM or MSSM plus three right-handed neutrinos,

required the presence of the quark and lepton Yukawa couplings, the absence of

R-parity violating superpotential terms as well as the absence of dimension 5 pro-

ton decay operators. Moreover, in this search they asked for a mechanism that

explains the small neutrino masses and demanded quark Yukawa textures that are

in agreement with the CKM matrix. They found of the order of 40 local D-brane

configurations allowing for an intriguing low energy phenomenology. Here we want

to analyse those promising four stack quivers with respect to discrete gauge anoma-

lies, i.e. we study whether the absence of undesired superpotential terms can be

explained by the presence of a discrete gauge symmetry.

Recently discrete gauge symmetries attracted a lot of attention in the construc-

tion of realistic string theory model building. In the context of heterotic string theory,

for specific toroidal compactifications one could identify proton hexality, forbidding

for this specific model the presence of R-parity violating couplings and dimension 5

proton decay operators [45]. Moreover, in [46] the authors found for a similar con-

struction a ZR
4 symmetry realized that forbids any undesired couplings and allows

the µ-term only non-perturbatively, thus giving an explanation for the small value

of around 100 GeV .

Inspired by the work of Banks and Seiberg [5] discrete gauge symmetries were

studied also in the context of D-brane compactifications. In [6] (see also [19]) abelian

discrete gauge symmetries arising from anomalous U(1) gauge factors were investi-

gated. This study has been very recently extended to abelian and non-abelian dis-

crete gauge symmetries arising from isometries of the compactification manifold [47].

2The first local bottom-up constructions were discussed in [32–34]. For recent analogous work

on semi-realistic bottom-up searches, see [35–44].
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As discussed above we want to perform a systematic study of discrete gauge sym-

metries within a class of local D-brane configurations without making any reference

to the details of the compactification manifold. Thus in this work we focus on the

first class of abelian discrete gauge symmetries investigated in [6]. There the authors

discuss the presence of abelian discrete gauge symmetries in D-brane compactifica-

tions which are remnants of anomalous U(1) gauge symmetries which generically

appear in D-brane compactifications. Those anomalous U(1) gauge symmetries be-

come massive via the Green-Schwarz mechanism and survive as global symmetries

on the perturbative level. D-instanton effects can break those global symmetries

inducing sometimes desired, but perturbatively forbidden, couplings, such as Majo-

rana mass terms for the right-handed neutrinos [16, 17, 48, 49] or particular Yukawa

couplings in GUT theories [50]. As shown in [6] discrete abelian gauge symmetries in

D-brane compactifications are not broken by non-perturbative effects and thus hold

not only at all levels in perturbation theory, but also at the non-perturbative level.

Here we focus on the concrete case of type IIA constructions with intersecting

D6 branes, but an analogous discussion applies to the T-dual type IIB picture with

D-branes on singularities as well as the type I compactification with magnetized D9

branes. In those compactifications D6-branes fill out the four-dimensional space-time

and wrap three-cycles πx in the internal manifold3. A stack of N D6-branes gives rise

to an U(N) gauge theory, that splits into U(N) = SU(N)× U(1) where the abelian

part is generically anomalous. It becomes massive via the Stückelberg mechanism

and does not appear in the low-energy field theory dynamics. In [33] the authors

give the criteria for the existence of an unbroken abelian gauge symmetry in the low

energy effective theory. For the linear combination

U(1) =
∑

x

qxU(1)x , (3.1)

where the respective U(1) factors originate from the various D-brane stacks, to remain

massless the criterion reads [33]

1

2

∑

x

qxNx(πx − π′
x) = 0 . (3.2)

Here the sum runs over all D-brane stacks x in the given global setup and π′
x denotes

the orientifold image cycle of πx. In order to avoid later confusions in the discussion

of discrete symmetries let us elaborate on constraint (3.2). We introduce a basis

of three-cycles {αi} and {βi} that are even and odd under the orientifold action,

respectively, with i = 1, ..., h21 + 1. The choice of basis is such that αi · βj = δij and

3For recent reviews on D-brane model building, see [51–54]. For original work on globally

consistent non-supersymmetric intersecting D-branes, see [55–58], and for chiral globally consistent

supersymmetric ones, see [11, 59]. For supersymmetric MSSM realizations, see [60–62], and for

supersymmetric constructions within type II RCFT’s, see [63, 64].
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αi ·αj = βi ·βj = 0. Then a three-cycle πx and its orientifold image π′
x wrapped by a

D-brane stack and its image D-brane stack, respectively, can be expanded in terms

of this basis

πx =
∑

i

(mi
xαi + ni

xβi) π′
x =

∑

i

(mi
xαi − ni

xβi) , (3.3)

where mi
x and ni

x are integer and are usually referred to as wrapping numbers. Using

eq. (3.3) the constraint (3.2) takes the form

∑

i

∑

x

qxNxn
i
xβi = 0 . (3.4)

Given that the three-cycles βi are orthogonal to each other eq. (3.2) reads

∑

x

qxNxn
i
x = 0 ∀i . (3.5)

For a discrete gauge symmetry ZN arising from a linear combination

ZN =
∑

x

kxU(1)x (3.6)

to survive in the low energy effective field theory it has to satisfy [6]

1

2

∑

x

kxNx(πx − π′
x) = 0 mod N . (3.7)

Here we normalize the kx to be all integer in order to properly identify the discrete

gauge symmetry. Let us clarify the left-hand side of eq. (3.7), which is supposed to

indicate that on the left-hand side the basis cycles βi appear only in multiples of N .

More specifically, using again the expansion of the three-cycles in terms of the basis

{αi} and {βi} the constraint (3.7) reads

∑

x

kxNxn
i
x = 0 mod N ∀i , (3.8)

In [6, 19] the authors give the constraint for having a discrete symmetry in the

form (3.8) 4. However, for the derivation of stringy bottom-up constraints the cycle

constraints (3.2) and (3.7) will turn out to be more appropriate.

4In [6] the actual constraint is given by

∑

x

kxNxπx ◦ αi = 0 mod N ∀i

which coincides with (3.7) in case αi ◦ βj = δij , but differs for the cases where αi ◦ βj = 2δij by a

factor of 2. We compensate that by extending the range for the entries kx to the set [0, 2N − 1].

See also, section 4. We thank G. Honecker for pointing out this issue.
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Representation Multiplicity

a #( a) =
1
2
(πa ◦ π

′
a − πa ◦ πO6)

a #( a) =
1
2
(πa ◦ π

′
a + πa ◦ πO6)

( a, b) #( a, b) = πa ◦ πb

( a, b) #( a, b) = πa ◦ π
′
b

Table 4: Chiral spectrum of intersection D-branes.

We want to analyse in a bottom-up fashion, consistent with global embedding

conditions, i.e. string constraints, analogously to the work of [20–22]5 what kind of

discrete gauge symmetries do appear in (semi-)realistic D-brane compactifications.

Given a local configuration of D-brane stacks, where the gauge degrees of freedom

are given by open strings localized at a stack of D-branes while the chiral matter is

localized at an intersection of two D-brane stacks, the chiral matter content cannot

be arbitrary. In contrast, it is subject to severe consistency conditions, namely the

tadpole constraint, given by

∑

x

Nx (πx + π′
x) = 4πO6 , (3.9)

as well as the constraint (3.2) required for the presence of a massless U(1) in the

low energy effective theory. Here πO6 in eq. (3.9) denotes the homology class of the

orientifold plane.

The equations (3.9) and (3.2) are conditions on the three-cycles the D6-branes

wrap, and imply the transformation behaviour of the four-dimensional chiral matter

under the D-brane gauge symmetries. More specifically, the chiral matter fields can-

not be distributed arbitrarily at the intersections of stacks of D-branes, but they have

to obey the above conditions. Those constraints on the transformation behaviour of

the matter fields under the D-brane gauge symmetries can be derived by multiplying

the equations (3.9) and (3.2) with the three-cycles wrapped by the D6-branes and

using table 4.

From the tadpole constraint one obtains [20, 41, 64]

∑

x 6=a

Nx

(

#( a, x) + #( a, x)
)

+ (Na − 4)#( a) + (Na + 4)#( a) = 0 , (3.10)

which is a constraint for each D-brane stack a of the D-brane setup. Due to the

absence of antisymmetric representations for abelian gauge symmetries for a U(1)

stack, for a single D-brane stack, the constraint takes the form

∑

x 6=a

Nx

(

#( a, x) + #( a, x)
)

+ 5#( a) = 0 mod 3 . (3.11)

5See also, [41, 64, 65].
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Note that eq. (3.10) is exactly the anomaly cancellation condition for non-abelian

gauge symmetries6. However, condition (3.11) has no four-dimensional field theory

analogue. It should be stressed that the constraints (3.10) and (3.11) are only neces-

sary constraints. A given tadpole free chiral spectrum arising from a local D-brane

configuration does satisfy eq. (3.10) and (3.11). However, a spectrum satisfying

eq. (3.10) and (3.11) is not necessarily tadpole free.

The constraints on the transformation behaviour of matter field for having an

abelian gauge symmetry in the low energy effective action arising from eq. (3.2) takes

the form [20, 41]

1

2

∑

x 6=a

qx Nx#( a, x)−
1

2

∑

x 6=a

qx Nx#( a, x) (3.12)

=
qaNa

2(4−Na)

(

∑

x 6=a

Nx

(

#( a, x) + #( a, x)
)

+ 8#( a)

)

,

where we multiplied equation (3.2) with the homology class of the three-cycles

wrapped by the D-brane stack a. In the derivation of eq. (3.12) we used (3.10)

to eliminate the anti-symmetrics. That allows us to display the constraints on the

transformation behaviour of the matter fields independently of whether the con-

sidered D-brane stack consists of a single or multiple D6-branes. As for the tadpole

constraint one has one constraint for each D-brane stack a. Moreover, the constraints

(3.12) do imply the cancellation of abelian cubic anomalies as well as mixed anoma-

lies in four dimensions. However, the constraints imply additional conditions on the

transformation behaviour of chiral matter beyond four-dimensional abelian gauge

anomaly cancellation. The additional constraints are related to the cancellation of

higher dimensional anomalies upon decompactification [9, 12, 13].

Again we would like to stress that condition (3.12) is only a necessary constraint,

but not sufficient. This means that not any chiral spectrum arising from a local D-

brane configuration satisfying (3.12) for a linear combination of the abelian U(1)

factors does exhibit this abelian gauge symmetry in the low energy effective action.

Let us assume that the MSSM is realized only on a subset of D6-brane stacks,

and furthermore that the remaining D6-branes, so called hidden sector D-branes

whose presence may be required for global consistency, do not intersect the MSSM

D6-branes chirally. For such a scenario the sum over x in equations (3.10), (3.11)

and (3.12) does only contain the visible MSSM D-brane stacks and no knowledge of

the hidden sector is necessary.

In the work [20–22] the authors investigated various local D-brane configurations

by specifying for each local setup the origin of the chiral MSSM matter, i.e. they

6This statement holds true for all SU(N) withN > 2. For SU(2) field theory does not distinguish

between 2 = 2, however string theory knows about the U(2) origin of SU(2) and thus differentiates

between 2 = 2.
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specify the intersection at which the chiral matter fields do appear, and systematically

analyse whether such local configurations do satisfy the severe constraints laid out

above. They furthermore required a set of phenomenological bottom-up constraints

to ensure compatibility with experimental observations. The latter contain among

others the absence of R-parity violating couplings on the perturbative level. We

summarize them in appendix A.

Here we want to investigate whether those promising local D-brane configurations

found in [20–22], that are consistent with the global consistency conditions, do exhibit

discrete gauge symmetries and analyse their phenomenological implications for the

low energy effective field theory.

The condition to have a discrete symmetry in a D-brane compactification (3.7)

is a constraint on the three-cycles the D6-branes wrap. Just as for the tadpole

constraint (3.9) and the masslessness condition (3.2) we will translate this cycle

condition into a constraint on the transformation behaviour of the chiral matter by

multiplying eq. (3.7) with the homology class of the three-cycles wrapped by the

MSSM branes and apply table 4. One obtains

1

2

∑

x 6=a

kxNx

(

#( a, x)−#( a, x)
)

−
kaNa

2

(

#( a) + #( a)
)

= 0 mod N ,

(3.13)

which represents a separate constraint for each D-brane stack a. Note that due to

the non-integer prefactor 1
2
in equation (3.13) the kx do lie in the interval (0, 2N−1).

Furthermore, for U(1) D-brane stacks there are no massless antisymmetrics. In an

analogous fashion as for the massless U(1)’s condition (see eq. (3.12)) we use the

tadpole condition (3.10) to eliminate the antisymmetrics that results into

1

2

∑

x 6=a

kxNx#( a, x)−
1

2

∑

x 6=a

kx Nx#( a, x) (3.14)

−
kaNa

2(4−Na)

(

∑

x 6=a

Nx

(

#( a, x) + #( a, x)
)

+ 8#( a)

)

= 0 mod N .

One has to be slightly careful in using the tadpole constraint (3.9) to replace the

antisymmetrics due to the fact that generically the prefactor is non-integer. This is

not an issue for the presence of an abelian gauge symmetry, however can be very

crucial for discrete gauge symmetries since the left hand side is not 0 but rather 0

mod N . One can compensate that by enlarging the interval for the kx or by requiring

an additional constraint arising from multiplying the homology class of the orientifold
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plane with the discrete symmetry constraint (3.7) 7. This additional constraint reads

∑

a

kaNa

(

#( a)−#( a)
)

= 0 mod N , (3.15)

which after replacing the antisymmetrics in order not to have to distinguish between

non-abelian and abelian D-brane stacks takes the form

∑

a

kaNa

4−Na

(

∑

x 6=a

Nx

(

#( a, x) + #( a, x)
)

+ 2Na#( a)

)

= 0 mod N . (3.16)

Let us mention that the constraints (3.14) and (3.16) do imply the vanishing of the

various discrete gauge anomalies, such as SU(N) − SU(N) − ZN or G − G − ZN .

However, analogously to the abelian gauge symmetry these string theory constraints

are more severe than just four-dimensional discrete gauge anomaly cancellation.

In the subsequent chapter we will investigate the quivers, local D-brane config-

urations, that were found in [20–22] with respect to discrete symmetries. We will

analyse to what extend discrete gauge symmetries do arise and their implications

for the low energy action. We will compare those discrete symmetries with the ones

found in a pure field theory context [23–25].

4. Systematic bottom-up search

In the work [20–22] the authors found various local D-brane configuration, contain-

ing up to four D-brane stacks, giving rise to the MSSM spectrum and extensions of

it that satisfy the severe top-down constraints arising from string theory, see equa-

tions (3.10), (3.11) and (3.12) as well as some minimal set of phenomenological re-

quirements, so called bottom-up constraints. Those contain constraints on R-parity

violating couplings, on dangerous dimension 5 proton decay operators as well as on

Yukawa textures. In appendix A we summarize those phenomenological bottom-up

constraints.

Here we will study those local D-brane configurations, that are consistent with

the global consistency conditions, with respect to discrete symmetries. We will anal-

yse what quivers do satisfy the constraints to exhibit discrete symmetries and inves-

tigate their implications on the superpotential couplings.

Let us lay out the details of the search. For a chosen N we check whether a

given linear combination of U(1)’s in terms of the vector (ka, kb, kc, kd), with the kx’s

being integers, does satisfy the constraints (3.14) and (3.16). Due to the prefactor 1
2

in eq. (3.7) we let the kx run from 0 to 2N − 1.

7Note that for the abelian gauge symmetry such an additional constraint is not necessary, since

one can use the tadpole constraint to replace the homology class of the orientifold plane by all the

three-cycles wrapped by the D-brane stacks.
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Via a hypercharge shift we can find to any given solution (ka, kb, kc, kd) an addi-

tional equivalent solutions by adding the hypercharge. Thus (ka+mya, kb+myb, kc+

myc, kd +myd) is also a solution to the constraints (3.14) and (3.16) where m is an

integer and the yx denote the integer hypercharge embedding coefficients. In order

to avoid overcounting we fix the discrete charge of QL for one family to be 0 by

choosing ka = kb
8. Thus we run only over three free integer parameter, namely ka,

kc and kd.

Additionally, we demand that the discrete symmetries allow for the quark and

lepton Yukawa couplings in the superpotential, whose presence is crucial for the gen-

eration of low energy fermion masses. It turns out that this requirement is very

stringent and rules out various discrete symmetries which otherwise satisfy the dis-

crete top-down constraints (3.14) and (3.16).

Finally, we often find solutions for discrete gauge symmetries of higher degree

due to the 1
2
in (3.14) and (3.16), such as Z12, which eventually after determining

the matter field charges turn out to be of lower degree from a pure MSSM point of

view, since all matter charges have a common divisor. We take those things into

account when identifying the discrete symmetries but nevertheless display the linear

combinations describing the discrete gauge symmetries in the D-brane language.

Therefore, it frequently happens that Z6 symmetries contain coefficients that are

higher than 12.

In the following we investigate the various promising four-stack quivers, which

give rise to the MSSM spectrum (see section 4.1) and the MSSM spectrum with

three right-handed neutrinos (see section 4.2). Those promising quivers, that are

consistent with the global consistency conditions, were found in a systematic bottom-

up search performed in [20–22]. In sections 4.1 and 4.2 we give the details of our

findings, specifically we display for each D-brane configuration the possible discrete

symmetries and their corresponding vectors (ka, kb, kc, kd). In section 4.3 we present

a broad summary of our results.

4.1 MSSM realizations

Here we investigate all four stack realizations that give rise to the exact MSSM

spectrum, satisfy the severe top-down constraints discussed above and pass the phe-

nomenological constraints displayed in appendix A. Those quivers were found in the

systematic bottom-up search performed in [22]. There the authors found D-brane

configurations for two different hypercharge embeddings, namely

• U(1)Y = −1
3
U(1)a −

1
2
U(1)b + U(1)d

• U(1)Y = −1
3
U(1)a −

1
2
U(1)b

which we will discuss subsequently.
8In our displayed local D-brane configurations at least one of the left-handed quarks transforms

as ( a, b) under the D-brane gauge symmetry U(3)a × U(2)b.
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4.1.1 Hypercharge U(1)Y = −1
3
U(1)a −

1
2
U(1)b + U(1)d

For this hypercharge embedding there are three different D-brane quivers that give

rise to realistic phenomenology. They are displayed in table 5. The first two solutions

#
QL DR UR L ER Hu Hd

( a, b) ( a, c) ( a, d) a ( b, c) ( c, d) b
( b, d) ( b, c) ( b, d)

1 3 3 3 0 3 1 2 1 1 0

2 3 3 3 0 3 0 3 1 0 1

3 3 3 0 3 3 0 3 1 0 1

Table 5: MSSM spectrum for setups with U(1)Y = −1
3 U(1)a −

1
2 U(1)b + U(1)d.

of table 5 exhibit a discrete Z3 symmetry which can be identified with L3R3, i.e.

Baryon triality. The linear combination is given by

L3R3 = U(1)a + U(1)b + 3U(1)c + U(1)d (4.1)

and satisfies the constraints (3.14) and (3.16). Thus both models may exhibit a

Baryon triality.

The third solution of table 5 may even have an additional massless U(1) given

by

Uadd(1) = U(1)d . (4.2)

However, it should be absent since otherwise it would spoil the presence of desired

Yukawa couplings. Even any discrete subgroup of Uadd(1) is forbidden, since it does

not allow any of the superpotential terms QLHuUR, QLHdDR nor LHdER. Apart

from this additional undesired Uadd(1) and its potential undesired discrete subgroups

this local D-brane setup does not exhibit any further discrete symmetries.

4.1.2 Hypercharge U(1)Y = −1
3
U(1)a −

1
2
U(1)b

#
QL DR UR L ER Hu Hd

( a, b) ( a, d) a ( b, d) b
( b, c) ( b, c)

1 3 3 3 3 3 1 1

Table 6: MSSM spectrum for setups with U(1)Y = −1
3U(1)a −

1
2U(1)b.

The solution # 1 displayed in table 6 may exhibit an additional Uadd(1) that is

given by

Uadd(1) = U(1)c (4.3)
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satisfying the necessary constraints (3.12). However, such an abelian gauge symmetry

and any discrete subgroup of it should be absent, since otherwise the desired Yukawa

couplings QLHuUR, QLHdDR and LHdER would be forbidden.

Apart from this additional Uadd(1) we find no vector (ka, kb, kc, kd) that satisfies

the discrete anomaly constraints (3.14) and (3.16). Thus in such a configuration one

cannot find any discrete gauge symmetry, which may help to explain the absence of

various undesired superpotential terms and the absence of R-parity violating terms

or dimension 5 proton decay operators is rather accidental.

4.2 MSSM + three right-handed neutrino realizations

Here we analyse all four stack realizations exhibiting the MSSM spectrum plus three

right-handed neutrinos, satisfying the severe top-down constraints and allowing for

an acceptable phenomenology. Those quivers were found in a systematic search

performed in [20,21], where the authors found only four solutions for the hypercharge

embeddings listed below

• U(1)Y = 1
6
U(1)a +

1
2
U(1)c −

3
2
U(1)d

• U(1)Y = −1
3
U(1)a −

1
2
U(1)b

• U(1)Y = −1
3
U(1)a −

1
2
U(1)b + U(1)d

• U(1)Y = 1
6
U(1)a +

1
2
U(1)c −

1
2
U(1)d .

They will be analysed with respect to discrete gauge symmetries in the following.

4.2.1 Hypercharge U(1)Y = 1
6
U(1)a +

1
2
U(1)c −

3
2
U(1)d

#
QL DR UR L ER NR Hu Hd

( a, b) a
( a, c) ( b, c) ( c, d) b

( b, c) ( b, c)

1 3 3 3 3 3 3 1 1

Table 7: MSSM + 3 NR spectrum for setups with U(1)Y = 1
6U(1)a +

1
2U(1)c −

3
2U(1)d.

In the model # 1 of table 7 the matter fields transform in such a way that there

may be an additional Uadd(1) given by the linear combination

Uadd(1) = U(1)a + U(1)b + U(1)c − 3U(1)d , (4.4)

which allows for all the desired Yukawa couplings, and together with the hypercharge

gives the B-L symmetry: U(1)B−L = 2U(1)Y − 1
2
Uadd(1). Clearly any discrete sub-

group of the gauge symmetry Uadd(1) will satisfy the constraints (3.14) and (3.16).

The Z2, Z3 and Z6 discrete subgroups of Uadd(1) correspond to R2, R3 and R6, re-

spectively. Beyond the discrete gauge subgroups of Uadd(1) the local setup does not

exhibit any additional discrete gauge symmetries.
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4.2.2 Hypercharge U(1)Y = −1
3
U(1)a −

1
2
U(1)b

#
QL DR UR L ER NR Hu Hd

( a, b) ( a, d) a
( b, d) b

( c, d) ( c, d) ( c, d) c c d d ( b, c) ( b, c)

1 3 3 3 3 3 0 0 0 0 0 0 3 1 1

2 3 3 3 3 3 0 0 0 0 0 3 0 1 1

3 3 3 3 3 3 0 0 3 0 0 0 0 1 1

4 3 3 3 3 3 0 3 0 0 0 0 0 1 1

5 3 3 3 3 3 1 1 0 0 0 0 1 1 1

6 3 3 3 3 3 3 0 0 0 0 0 0 1 1

7 3 3 3 3 3 0 0 1 0 1 0 1 1 1

8 3 3 3 3 3 0 1 0 0 1 1 0 1 1

9 3 3 3 3 3 0 0 0 0 3 0 0 1 1

10 3 3 3 3 3 0 1 1 1 0 0 0 1 1

11 3 3 3 3 3 1 0 0 1 0 1 0 1 1

12 3 3 3 3 3 0 0 0 3 0 0 0 1 1

Table 8: MSSM + 3 NR spectrum for setups with U(1)Y = −1
3U(1)a −

1
2U(1)b.

The solutions # 1, # 3 and # 5 of table 8 may exhibit an additional U(1),

satisfying the constraints (3.12). However, it should be noted that those U(1)’s

cannot be realized in a realistic compactification, since their presence would forbid

some of the desired Yukawa couplings QLHuUR, QLHdDR or LHdER. Not even a

discrete subgroup of those abelian gauge symmetries is allowed since for any discrete

subgroup the absence of the desired Yukawa couplings holds true.

The solution # 2 may even exhibit two independent abelian gauge symmetries,

namely

Uadd
1 (1) = U(1)c and Uadd

2 (1) = U(1)b − 2U(1)d (4.5)

Only the linear combination Uf (1) = −3U(1)Y +Uadd
1 (1)− 1

2
Uadd
2 (1) should be indeed

realized, since otherwise various desired Yukawa couplings would be not allowed. This

implies the presence of a B-L symmetry that is given by U(1)B−L = 2U(1)Y +
1
2
Uf (1).

Again the constraints (3.12) are only necessary constraints and not sufficient, but

clearly any subgroup of Uf (1) does satisfy the discrete anomaly constraints (3.14) and

(3.16). Thus even though Uf (1) may not be realized in a concrete compactification

it may well be that a discrete subgroup survives. Among those subgroups rank the

Z2, Z3 and Z6 discrete symmetries R2 R3 and R6.

In addition to the above mentioned observations we find for all solutions apart

for solutions # 4, # 5, # 8 and # 10 the discrete symmetry R2 realized, where the

matter field charges are given by

R2 = U(1)a + U(1)b + U(1)c + U(1)d . (4.6)

As can be seen from table 2 this matter parity R2 forbids the presence of R-parity

violating couplings. Beyond matter parity R2 none of the twelve setups exhibits
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any additional discrete gauge symmetries, apart from solution # 2 which allows for

discrete subgroups of Uf (1).

4.2.3 Hypercharge U(1)Y = −1
3
U(1)a −

1
2
U(1)b + U(1)d

#
QL DR UR L ER NR Hu Hd

( a, b) ( a, c) ( a, d) a
( b, c) ( c, d) b c c ( b, d) ( b, c) ( b, d)

1 3 3 3 0 3 1 2 0 3 1 1 0

2 3 3 3 0 3 1 2 3 0 1 1 0

3 3 3 0 3 3 0 3 0 3 1 0 1

4 3 3 0 3 3 0 3 3 0 1 0 1

Table 9: MSSM + 3 NR spectrum for setups with U(1)Y = −1
3U(1)a −

1
2U(1)b +U(1)d.

The solution # 1 of table 9 satisfies all constraints for matter parity, Baryon

triality and hence also for Proton hexality. Matter parity R2 and Baryon triality

L3R3 are given by

R2 = U(1)a + U(1)b + U(1)c + 5U(1)d (4.7)

L3R3 = U(1)a + U(1)b + 3U(1)c + U(1)d . (4.8)

Proton hexality takes the form

L2
6R

5
6 = U(1)a + U(1)b + 9U(1)c + 13U(1)d (4.9)

and does prevent the presence of R-parity violating couplings as well as the presence

of dangerous dimension 5 proton decay operators, and at the same time allows for a

µ-term as well as a Weinberg operator.

The second solution of table 9 exhibits a massless U(1) of the form

Uadd(1) = U(1)a + U(1)b + U(1)c − 3U(1)d (4.10)

which does not forbid any desired Yukawa couplings whereas the B-L symmetry takes

the form U(1)B−L = 2U(1)Y + 1
2
Uadd(1). As before any discrete subgroup satisfies

the constraints for the discrete symmetry (3.14) and (3.16). For instance the Z2

subgroup of Uadd can be interpreted as matter parity. Moreover, one finds all four

different discrete Z3 symmetries found in the MSSM using the pure field theoretical

ansatz. They are given by the following linear combinations

L3R
2
3 = 2U(1)c + 4U(1)d (4.11)

L3 = U(1)a + U(1)b + 5U(1)c + 5U(1)d (4.12)

R3 = U(1)a + U(1)b + U(1)c + 3U(1)d (4.13)

L3R3 = U(1)a + U(1)b + 3U(1)c + U(1)d , (4.14)
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where R3 originates from Uadd(1). Only Baryon triality L3R3 allows for the presence

of a Weinberg operator. Thus in presence of the other discrete symmetries it is

challenging to find a mechanism to generate neutrino masses. Finally, the setup also

satisfies the constraints to exhibit all of the Z6 symmetries, i.e.

L2
6R6 = 3U(1)a + 3U(1)b + 19U(1)c + 23U(1)d (4.15)

L2
6R

3
6 = U(1)a + U(1)b + 17U(1)c + 5U(1)d (4.16)

L2
6R

5
6 = U(1)a + U(1)b + 9U(1)c + 13U(1)d (4.17)

R6 = U(1)a + U(1)b + U(1)c + 21U(1)d , (4.18)

where R6 originates from Uadd(1). In contrast to the solution # 1 here the proton

hexality may be realized as a subgroup of a larger symmetry, namely a combination of

the abelian gauge symmetry Uadd(1) and the discrete symmetry L3R3. In a concrete

realization of this setup the B ∧ F couplings may break the Uadd(1) down to matter

parity R2 and thus only Proton hexality survives in the low energy limit. In case a

larger symmetry survives the B ∧F couplings one needs a dynamical mechanism for

the larger symmetry to break down to Proton hexality since otherwise the generation

of a Weinberg operator and µ-term is not allowed.

The solution # 3 of table 9 may exhibit an additional Uadd(1) = U(1)d which

potentially remains massless, i.e. it satisfies the constraints (3.12). However, the

presence of such an abelian gauge symmetry would spoil the model, since it would

forbid various desired Yukawa couplings. Even worse there exists no discrete sub-

group of the abelian gauge symmetry Uadd(1) that would allow the desired Yukawa

couplings. Thus in a concrete realization it must be absent. The local D-brane

configuration however does allow for a discrete Z2 that allows all desired Yukawa

couplings, the matter parity R2, given by

R2 = U(1)a + U(1)b + U(1)c + U(1)d (4.19)

which forbids all R-parity violating couplings.

The solution # 4 of table 9 may exhibit two additional U(1)’s given by

Uadd
1 (1) = U(1)b − 2U(1)c and Uadd

2 (1) = U(1)d (4.20)

where the latter cannot survive as a gauge symmetry since it would forbid all desired

Yukawa couplings. On the other hand the abelian gauge symmetry Uadd
1 (1) does

allow all superpotential terms. The B-L symmetry is given by UB−L(1) =
1
2
UY (1)−

1
4
Uadd
1 (1) in terms of the hypercharge and the additional Uadd

1 (1). One finds for this

configuration that the discrete subgroup of the two abelian gauge symmetries U(1)Y
and Uadd

1 (1) do give rise to matter parity R2, to the Z3 symmetry R3 and to the Z6

symmetry R6 These discrete gauge symmetries are realized as the following linear
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combinations

R2 = U(1)a + U(1)b + U(1)c + U(1)d (4.21)

R3 = U(1)a + U(1)b + U(1)c (4.22)

R6 = U(1)a + U(1)b + U(1)c + 9U(1)d , (4.23)

While R2 forbids all R-parity violating couplings in this local D-brane configuration

the absence of dimension 5 proton decay operators is rather accidental and does not

originate from a discrete gauge symmetry.

4.2.4 Hypercharge U(1)Y = 1
6
U(1)a +

1
2
U(1)c −

1
2
U(1)d

#
QL DR UR L ER NR Hu Hd

( a, b) ( a, c) ( a, d) ( a, c) ( a, d) ( b, c) ( b, d) ( c, d) c d b
( c, d) ( c, d) ( b, c) ( b, d) ( b, c) ( b, c)

1 3 3 0 0 3 0 3 0 0 3 2 0 1 0 1 1 0

2 3 3 0 0 3 0 3 1 0 2 2 1 0 0 1 1 0

3 3 3 0 2 1 0 3 2 1 0 2 1 0 0 1 1 0

4 3 3 0 2 1 0 3 0 2 1 2 1 0 0 1 1 0

5 3 3 0 3 0 0 3 2 1 0 2 0 1 1 0 1 0

6 3 3 0 3 0 0 3 0 2 1 2 0 1 1 0 1 0

7 3 3 0 3 0 0 3 1 2 0 2 1 0 1 0 1 0

8 3 0 3 0 3 3 0 2 0 1 3 0 0 0 1 0 1

9 3 0 3 0 3 3 0 0 1 2 3 0 0 0 1 0 1

10 3 0 3 1 2 3 0 3 0 0 3 0 0 1 0 0 1

11 3 0 3 1 2 3 0 1 1 1 3 0 0 1 0 0 1

12 3 0 3 3 0 3 0 0 3 0 3 0 0 1 0 0 1

Table 10: MSSM + 3 NR spectrum for setups with U(1)Y = 1
6U(1)a+

1
2U(1)c−

1
2U(1)d.

All solutions of table 10 apart from # 3, # 4, # 10 and # 11 exhibit the discrete

Z3 symmetry L3R3, i.e. Baryon triality. For all these solutions the Baryon triality

is given by the same linear combination, namely

L3R3 = 2U(1)c + 4U(1)d . (4.24)

Apart from those discrete symmetry L3R3 only the solutions # 1 and # 12 may

contain more discrete symmetries. They both may exhibit an additional massless

Uadd(1)9 which allows all desired Yukawa couplings. Moreover, it turns out that both

solutions do give rise to matter parity R2 and all possible Z3 and Z6 symmetries.

For solution # 1 of table 10 the matter parity takes the form

R2 = U(1)a + U(1)b + 3U(1)c + 7U(1)d (4.25)

9For solution # 1 the additional U(1) takes the form Uadd(1) = −U(1)b − 2U(1)d while for

solution # 12 it is given by Uadd(1) = U(1)b − 2U(1)c. The form of the B-L symmetry is given by

UB−L(1) = −UY (1) +
1

2
Uadd(1) and UB−L(1) = −UY (1)−

1

2
Uadd(1), respectively.
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while the Z3 symmetries are given by

R3 = U(1)a + U(1)b + 3U(1)c + 5U(1)d (4.26)

L3 = U(1)a + U(1)b + U(1)c + U(1)d (4.27)

L3R3 = 2U(1)c + 4U(1)d (4.28)

L3R
2
3 = U(1)a + U(1)b + 5U(1)c + 3U(1)d . (4.29)

The Z6 symmetries read

R6 = U(1)a + U(1)b + 3U(1)c + 23U(1)d (4.30)

L2
6R6 = U(1)a + U(1)b + 11U(1)c + 15U(1)d (4.31)

L2
6R

3
6 = U(1)a + U(1)b + 19U(1)c + 7U(1)d (4.32)

L2
6R

5
6 = 3U(1)a + 3U(1)b + U(1)c + 5U(1)d . (4.33)

For solution # 12 of table 10 the matter parity is given by the linear combination

R2 = U(1)a + U(1)b + U(1)c + 5U(1)d (4.34)

The Z3 symmetries take the form

R3 = U(1)a + U(1)b + U(1)c + 3U(1)d (4.35)

L3 = U(1)a + U(1)b + 5U(1)c + 5U(1)d (4.36)

L3R3 = 2U(1)c + 4U(1)d (4.37)

L3R
2
3 = U(1)a + U(1)b + 3U(1)c + U(1)d . (4.38)

and the Z6 symmetries read

R6 = U(1)a + U(1)b + U(1)c + 21U(1)d (4.39)

L2
6R6 = U(1)a + U(1)b + 9U(1)c + 13U(1)d (4.40)

L2
6R

3
6 = U(1)a + U(1)b + 17U(1)c + 5U(1)d (4.41)

L2
6R

5
6 = 3U(1)a + 3U(1)b + 11U(1)c + 7U(1)d . (4.42)

Beyond the discrete Z2, Z3, Z6 gauge symmetries as well as the subgroups of the

additional Uadd(1) both solutions, # 1 and # 12, do not possess any further family

dependent discrete gauge symmetries.

Again in contrast to the solution # 1 of table 9 the Proton hexality in solution #

1 and # 12 may be realized as a subgroup of a larger symmetry, namely a combination

of the abelian gauge symmetry Uadd(1) and the discrete symmetry, matter parity R2.

In a concrete realization of this setup the B ∧ F couplings may break the Uadd(1)

down to matter parity R2 and thus only Proton hexality survives in the low energy

limit. However, in case of a larger symmetry surviving the Green-Schwarz mechanism

one needs a dynamical mechanism for the larger symmetry to break down to Proton

hexality. Otherwise one would face severe difficulties in the generation of a Weinberg

operator and µ-term, since the larger symmetry does forbid them.
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4.2.5 SU(2) realized as Sp(2) with U(1)Y = 1
6
U(1)a +

1
2
U(1)c −

1
2
U(1)d

Since Sp(2) is isomorphic to SU(2) we can realize the SU(2) of the MSSM as a

D-brane stack wrapping an orientifold invariant cycle. A D-brane stack that wraps

an orientifold invariant cycle, thus giving rise to a Sp(2) symmetry does not contain

a U(1) gauge factor that can contribute to the hypercharge or a discrete symmetry.

Moreover, it should be noted that the tadpole constraint for the Sp(2) stack does

not give any constraints on the transformation behaviour of the chiral matter fields.

While the last statement seems to suggest that one finds multiple local D-brane

configurations that satisfy the severe top-down constraints and exhibiting a (semi-

) realistic phenomenology the systematic search performed in [20] finds only one

configuration displayed in table 11.

#
QL DR UR L ER NR Hu Hd

( a, b) ( a, c) ( a, c) ( b, d) ( c, d) ( c, d) ( b, c) ( b, c)

1 3 3 3 3 3 3 1 1

Table 11: MSSM + 3 NR spectrum for setups with U(1)Y = 1
6 U(1)a +

1
2 U(1)c −

1
2U(1)d.

This model may exhibit a massless Uadd(1) which is given by

Uadd(1) = U(1)c . (4.43)

and contains the discrete symmetries R2, R3 and R6. The abelian gauge symmetry

Uadd(1) can be combined with U(1)Y such that it gives the B − L symmetry

U(1)B−L = 2U(1)Y − Uadd(1) . (4.44)

In addition the configuration displayed in table 11 may exhibit the Z3 symmetries

L3, L3R3 and L3R
2
3 given by the linear combination

L3 = 2U(1)d (4.45)

L3R3 = 2U(1)c + 4U(1)d (4.46)

L3R
2
3 = U(1)c + 4U(1)d (4.47)

as well as the Z6 discrete symmetries L2
6R6, L

2
6R

3
6 and L2

6R
5
6 which take the form

L2
6R6 = U(1)c + 4U(1)d (4.48)

L2
6R

3
6 = 3U(1)c + 4U(1)d (4.49)

L2
6R

5
6 = U(1)c + 8U(1)d . (4.50)

As before Proton hexality may appear as a subgroup of a larger symmetry depending

on the details of the Stückelberg-type couplings in a concrete realization. In that case
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one needs a dynamical mechanism to further break the larger symmetry to Proton

hexality in order to allow for a µ-term and a Weinberg operator.

Beyond those discrete gauge symmetries the local D-brane configuration does

not exhibit any additional discrete gauge symmetry. In particular the D-brane setup

does not possess any family dependent discrete gauge symmetries.

4.3 Summary of the results

Let us give a brief summary of the results of the systematic bottom-up search per-

formed above. The first thing to note is that we do not find in any of the intriguing

four stack quivers family dependent discrete gauge symmetries that allow for the

desired Yukawa couplings QLHuUR, QLHdDR and LHdER. This is somewhat not

expected since specifically the leptons in those D-brane configurations do arise from

different intersections of D-brane stacks, and thus transform differently under the

anomalous U(1) factors. Nevertheless after determining the discrete charge of all

matter fields all generations do have the same charge, even though their D-brane

origin is significantly different.

The second observation is that we do not find any discrete Z9 and Z18 sym-

metries for the local MSSM D-brane configurations, which can appear in the pure

field theoretical approach. This is due to the more constraining conditions for the

appearance of discrete symmetries in D-brane compactifications.

Table 12 displays for each quiver the potential appearing discrete symmetries.

It shows that matter parity R2 is favoured for the hypercharge embeddings

U(1)Y = −
1

3
U(1)a −

1

2
U(1)b and (4.51)

U(1)Y = −
1

3
U(1)a −

1

2
U(1)b + U(1)d (4.52)

which appears for almost all D-brane setups with these hypercharge embeddings. For

the hypercharge embedding in eq. (4.52) U(1)Y = −1
3
U(1)a −

1
2
U(1)b there is only

one configuration out of 12 that allows for a Z3 and Z6 discrete symmetry. On the

other hand for the hypercharge embedding U(1)Y = −1
3
U(1)a −

1
2
U(1)b + U(1)d we

do find for each realization a Z3 symmetry, but only in two cases it is Baryon triality.

Those local D-brane configurations also allow for Proton hexality.

For the Madrid embedding

U(1)Y =
1

6
U(1)a +

1

2
U(1)c −

1

2
U(1)d .

almost all realizations have the potential to exhibit Baryon triality. However, the

presence of matter parity is highly suppressed. Only for two setups we also find

matter parity realized. Hence, those quivers pass the constraints to exhibit Proton

hexality.
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Spectrum Hypercharge Table # R2 L3R3 R3 L3 L3R
2
3 L2

6R
5
6 R6 L2

6R
3
6 L2

6R6

MSSM

(

−1
3
,−1

2
, 0, 1

)

5

1 X

2 X

3
(

−1
3
,−1

2
, 0, 1

)

6 1

MSSM + 3 NR

(

1
6
, 0, 1

2
,−3

2

)

7 1 X X X

(

−1
3
,−1

2
, 0, 0

)

8

1 X

2 X X X

3 X

4

5

6 X

7 X

8

9 X

10

11 X

12 X

(

−1
3
,−1

2
, 0, 1

)

9

1 X X X

2 X X X X X X X X X

3 X

4 X X X

(

1
6
, 0, 1

2
,−1

2

)

10

1 X X X X X X X X X

2 X

3

4

5 X

6 X

7 X

8 X

9 X

10

11

12 X X X X X X X X X
(

1
6
, 0, 1

2
,−1

2

)

11 1 X X X X X X X X X

Table 12: The table summarizes our findings on the search of discrete gauge symmetries

in promising local D-brane setups. The symbol X denotes the potential presence of a

discrete gauge symmetry for the respective local D-brane setup. Matter parity is given by

R2, Baryon triality by L3R3 and Proton hexality by L2
6R

5
6.

Summarizing we find only five setups that have the potential to exhibit Proton

hexality, which is a particular intriguing discrete symmetry since it forbids all R-

parity violating terms as well as all dangerous dimension 5 proton decay operators.

This suggests that the presence of Proton hexality in D-brane compactifications is

rather suppressed.
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Finally, one observes a similar pattern as in the field theoretical approach, namely

that the presence of discrete Z6 symmetries is tied to the presence of Z2 and Z3

symmetries. We find the same relations as in pure field theory

R2 × L3R3
∼= L2

6R
5
6 (4.53)

R2 ×R3
∼= R6 (4.54)

R2 × L3
∼= L2

6R
3
6 (4.55)

R2 × L3R
2
3
∼= L2

6R6 . (4.56)

Thus, the presence of R2 along with a discrete Z3 symmetry implies the presence of

a Z6 symmetry.

5. Conclusions

We study the presence of discrete gauge symmetries in D-brane compactifications.

We translate the conditions for the presence of a discrete gauge symmetry in D-brane

compactifications laid out in [6] into constraints on the transformation behaviour of

the chiral matter fields. This allows for a bottom-up search, a search that does

not require the knowledge of any features of the compactification manifold, for local

D-brane configurations with respect to discrete gauge symmetries.

After establishing those constraints on the transformation behaviour of the chiral

matter fields we perform a systematic search for discrete gauge symmetries within

a class of promising local D-brane quivers based on four stacks of D-branes. Those

local configurations, that are consistent with the global consistency conditions, were

found in [20–22] and exhibit the exact MSSM spectrum or the exact MSSM spectrum

plus three right-handed neutrinos. Within this class of intriguing four stack quiv-

ers there is no quiver that allows for a family dependent discrete gauge symmetry.

Moreover, none of the local MSSM D-brane configurations exhibits a discrete Z9 and

Z18 gauge symmetry, which, on the other hand, were found in [23] using a pure field

theoretical approach. This confirms one of our earlier findings that the constraints on

the transformation behaviour of the chiral matter fields for having a discrete gauge

symmetry in D-brane compactifications goes beyond the four-dimensional discrete

gauge anomaly conditions used in [23].

Our search reveals that all Z2, Z3 and Z6 discrete gauge symmetries found in [23]

can be also realized in the local D-brane configurations. We find that the realiza-

tion of discrete symmetries depends on the hypercharge embedding of the D-brane

configuration. For instance while the Madrid embedding favours Baryon triality it

disfavours matter parity. The presence of Proton hexality, i.e. the simultaneous

presence of matter parity and Baryon triality, is rather suppressed and only realized

for five of the intriguing four D-brane-stack quivers. In those quivers the absence of
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R-parity and disastrous dimension 5 proton decay operators is not accidental, but

can be explained by the presence of a discrete gauge symmetry.

It would be interesting to extend this analysis to local semi-realistic D-brane

configurations with more than 4 D-brane stacks. Specifically, it would be interesting

to see whether one can find family dependent discrete gauge symmetries in those

realizations. Furthermore, another intriguing avenue is to extend the analysis to the

NMSSM [40] and GUT realizations of the MSSM [41] as well as extending it to local

D-brane configurations with additional exotics [42].

Finally, we would like to comment on the limits of the bottom-up approach ap-

plied here. The discrete gauge symmetries considered here purely originate from

the anomalous U(1) factors carried by each D-brane stack. In addition there may be

abelian or even non-abelian gauge factors arising from isometries of the compactifica-

tion manifold which can lead to abelian and non-abelian discrete gauge symmetries

in the low energy effective action [47]. The consideration of discrete symmetries

originating from isometries, requires the specification of the properties of the com-

pactification and thus goes beyond the scope of this work.
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A. Bottom-up constraints

In this appendix we display all the bottom-up constraints which were imposed in the

search of realistic local D-brane configurations. Apart from the top-down constraints

(3.10), (3.11) and (3.12) that the spectrum has to satisfy we furthermore require a

few phenomenological constraints to be satisfied

• The MSSM superpotential couplings

QL Hu UR QL HdDR LHdER (A.1)

are either realized perturbatively or in case they violate global U(1) selec-

tion rules and thus are perturbatively forbidden they will be induced by D-

instantons, such that all three families of quarks and charged leptons acquire

masses.

• We require that the D-brane quiver exhibits a mechanism which accounts for

the neutrino masses [16, 17, 48, 49, 66–68].

• We demand the absence of the R-parity violating couplings

DR DR UR LLER QL LDR LHu (A.2)

on the perturbative level and furthermore, require that they are not gener-

ated by a D-instanton whose presence is required to generate a perturbatively

forbidden, but desired, MSSM superpotential couplings.

• We demand that none of the D-instantons required to generate desired Yukawa

couplings does induce a tadpole NR.

• We rule out setups which lead to a large family mixing in the quark Yukawa

couplings [20, 35, 36, 69, 70].

• We demand the absence of the dangerous dimension 5 proton decay operators

UR UR DR ER and QL QL QL L (A.3)

on the perturbative level and additionally require that they are not generated

by a D-instanton whose presence is required to generate a perturbatively for-

bidden, but desired, MSSM superpotential couplings.
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