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Abstract

Within the Standard Model, the current Higgs and top quark data favor metastability of
the electroweak vacuum, although the uncertainties are still significant. The true vacuum
is many orders of magnitude deeper than ours and the barrier separating the two is tiny
compared to the depth of the well. This raises a cosmological question: how did the Higgs
field get trapped in the shallow minimum and why did it stay there during inflation? The
Higgs initial conditions before inflation must be fine–tuned to about one part in 108 in order
for the Higgs field to end up in the right vacuum. In this note, we show that these problems
can be resolved if there is a small positive coupling between the Higgs and the inflaton.

The ATLAS and CMS experiments at the LHC have recently observed a particle whose

properties are well consistent with those expected of the Standard Model Higgs boson. Its mass

is determined to be

Mh = 126.0± 0.4± 0.4 GeV , ATLAS [1]

Mh = 125.3± 0.4± 0.5 GeV , CMS [2]

Such a light Higgs boson coupled with the recent Tevatron top quark mass determination

mexp
t = 173.2± 0.9 GeV [3]

favors metastability of the electroweak (EW) vacuum. Taking, for example, Mh = 125 GeV and

mt = 173 GeV, one finds that the quartic Higgs coupling turns negative at Λ ∼ 1010 GeV [4],

indicating that the electroweak vacuum is not the ground state and therefore only metastable,
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although its lifetime is greater than the age of the universe [5]. In fact, the two loop analysis

of [4] finds that absolute stability is disfavored at 98% CL for Mh < 126 GeV, with the main

uncertainty coming from the top mass determination. Although no conclusive statement can

yet be made [6, 7, 8] as the uncertainties may be larger than those assumed in [4], this shows

that the current data favor metastability of our vacuum.

Extrapolating the Standard Model all the way to the Planck scale, one would then conclude

that the Higgs field is trapped in the false vacuum with a much larger energy density than

that of the ground state and that the barrier separating the two is very small compared to the

difference of the energy densities (Fig. 1):

Λ4 �M4
Pl . (1)

Here we consider the large Higgs field regime h� v (v = 246 GeV) such that [9]

VHiggs(h) ' 1

4
λ(h) h4 (2)

in the unitary gauge, where λh(Mh) ' 0.13. The coupling runs logarithmically with h and

turns negative at the “instability scale” Λ. This raises the cosmological question: how did the

universe end up in such an energetically disfavored state? For generic initial conditions h <∼MPl

at the beginning of inflation [10, 11], the universe is overwhelmingly likely to evolve to the true

ground state of the system. Not only would that lead to different physics, but would also be

catastrophic since the latter is expected to have a negative Planck–scale energy density and

even the (COBE–normalized) inflaton contribution 10−9M4
Pl would not stop the gravitational

collapse [12], before thermal effects get a chance to play any role. One therefore faces a fine–

tuning problem: the initial value of the Higgs field must be extremely small, h <∼ Λ, in Planck

units. For Λ ∼ 1010 GeV, this constitutes a 1 in 108 tuning.1

Furthermore, even if the Higgs field starts at the origin, it will not necessarily remain there

during inflation. Since it is effectively massless, its quantum fluctuations are of order the Hubble

scale H. Therefore, for H > Λ it is likely to end up in the wrong vacuum. For H � Λ, it will

remain at the origin, yet this does not solve the problem of initial conditions.

One possibility to address this issue is based on the landscape idea, along the lines of Ref. [13].

Namely, the regions of multiverse with the “wrong” initial conditions collapse due to the AdS

1The Standard Model also suffers from another fine–tuning, namely, the hierarchy problem. It is however not
directly related to the cosmological problem above since the latter has to do with a fine–tuning in the initial
conditions.
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Figure 1: A schematic view of the Higgs potential (Λ ∼ 1010 GeV �MPl).

instability such that all the remaining regions would have the Higgs field around the origin in

field space. However, as shown in [13], those regions that survive (large–field) inflation would

only allow for small curvature perturbations and the probability of generating the right amount

of perturbations is exponentially small.

One may also declare that the Higgs field was prepared in a special state by unknown pre–

inflationary dynamics, but this simply begs the question. Possible thermal effects would not do

the job since at large h the fields which couple to the Higgs are heavy and not expected to be

in thermal equilibrium.

It is worth noticing that the problem disappears altogether if one allows for physics beyond

the Standard Model. For example, a tiny coupling of the Higgs to the hidden sector can stabilize

the potential [14] and allow for “Higgs–portal” inflation [15]. We will however take a conservative

view and assume that the SM, with the addition of an inflaton, is valid up to the Planck scale.

The Higgs itself cannot play the role of an inflaton [16, 17, 18, 19] if the electroweak vacuum is

metastable and the extra degree of freedom is necessary.

In this work, we show that the above problems can be resolved if there is a Higgs–inflaton

coupling which drives the Higgs field to small values during inflation. Suppose the full scalar

potential is given by

V = VHiggs(h) + Vcross(h, φ) + Vinfl(φ) , (3)

where φ is the inflaton. Then, the Higgs field evolves to the electroweak vacuum after inflation
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if

hend <∼ Λ , (4)

where hend is the Higgs field value at the end of inflation. This requirement constraints infla-

tionary models and allowed Higgs–inflaton couplings. Restricting ourselves to sub–Planckian

Higgs fields and using gauge invariance, we can expand

Vcross(h, φ) = h2f1(φ) + h4f2(φ) + ... (5)

The desired effect of the cross term is to make the Higgs potential convex and induce a Higgs

mass term above the Hubble scale H so that h would evolve to small values during inflation.

Consider the simplest case of a renormalizable Higgs–inflaton coupling (as in Higgs–portal

models [20]) and the quadratic inflaton potential in chaotic inflation [11],

Vcross =
1

2
ξh2φ2 , Vinfl =

1

2
m2φ2 , (6)

where ξ is positive. The first constraint is that the coupling ξ should not lead to large radiative

corrections to the inflaton potential during the last 60 e–folds. The most important correction

is of order (see e.g. [21])

∆Vinfl '
ξ2

64π2
φ4 ln

ξφ2

m2
, (7)

so for m = 10−5 and φ ∼ 10 in Planck units [22], the constraint is

ξ <∼ 10−6 . (8)

Next, the Higgs potential becomes dominated by the cross coupling at

φ0 >

√
|λ|
2ξ

h0 ∼ 20 , (9)

where we have taken |λ| ' 10−1 and chosen the initial Higgs field value h0 = 0.1 such that

higher dimensional Higgs operators are unimportant. With these initial conditions, the effective

Higgs mass squared is large and positive, and the field will naturally evolve to small values. Let

us consider this process in more detail.

The evolution of the Higgs and inflaton fields is governed by

ḧ+ 3Hḣ+
∂V

∂h
= 0 ,

φ̈+ 3Hφ̇+
∂V

∂φ
= 0 , (10)
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with

3H2 =
1

2
ḣ2 +

1

2
φ̇2 + V (11)

and

V ' 1

2
ξh2φ2 +

1

2
m2φ2 . (12)

Suppose that initially ḣ and φ̇ are insignificant. Then the Hubble rate is dominated by the cross

term, H0 '
√
ξ/6 φ0h0, and the effective Higgs and inflaton masses satisfy

mφ � H0 � mh . (13)

It is then clear that h will evolve quickly leading to a rapid decrease in the expansion rate, while

the evolution of φ is “slow–roll”. At the initial stage of inflation, h evolves according to

ḧ+

√
3

2

√
ḣ2 +m2

hh
2 ḣ+m2

hh = 0 , (14)

with m2
h = ξφ2

0. The solution to this equation is known in the limit mht� 1 (see e.g. late time

inflaton evolution [23]),

h ' C cosmht

mht
, (15)

with order one C. Since mh ' 25H0, the asymptotics mht � 1 is reached after a few Hubble

times H−1
0 . Therefore, in about 10 Hubble times, the amplitude of the Higgs field decreases by

more than an order of magnitude. From that point on, the quadratic potential m2φ2 takes over

the energy density and the usual slow roll inflation takes place. The expansion rate becomes

approximately constant and the Higgs evolution is governed by

ḧ+ 3Hḣ+m2
hh = 0 , (16)

with H ' mφ0/
√

6. Its solutions are C± exp
(
− 3/2 H ±

√
9/4 H2 −m2

h

)
. Since mh � H, the

Higgs field decays exponentially,

|h| ∼ e−
3
2
Ht|h(0)| . (17)

Within about 20 e-folds, it will be of electroweak size (Fig. 2). On the other hand, the evolution

of φ is “slow–roll” and not affected by h, as the latter makes a negligible contribution to the

energy density. The total number of e-folds is given approximately by 1/4φ2
0 > 100 for φ0

satisfying (9). Finally, note that the Higgs “instability” scale during inflation becomes

Λ '

√
2ξ

|λ|
φ� H (18)
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Figure 2: Evolution of the Higgs field (solid) and the inflaton (dashed) as a function of the
number of e–folds Ne. The log–scale plot shows the absolute value of h which goes through zero
during each oscillation, but gets cut off at a finite value for numerical reasons. The initial values
are φ0 = 32, h0 = 0.1 and ξ = 10−6.

and the quantum fluctuations of the Higgs field are irrelevant.

We see that even in the simplest case of φ2 inflation, the Higgs–inflaton coupling can sta-

bilize the Higgs potential without spoiling the predictions for curvature perturbations. During

inflation, the Higgs field evolves quickly to small values, yet the shape of the Higgs potential

after inflation is unaffected since ξ � 1. The mechanism is operative in the following range:

10−10 <∼ ξ <∼ 10−6 . (19)

The upper bound is dictated by the smallness of radiative corrections to the inflaton potential,

while the lower bound comes from requiring fast Higgs evolution, mh >∼ H. The latter is com-

parable to the limit on ξ imposed by the dominance of the classical roll of the inflaton over

quantum fluctuations, φ0 <∼ 5/
√
m [21]. Note also that for ξ < 10−8, the scalar potential is

dominated by m2φ2 and inflation is always “slow–roll”.

The inflaton-Higgs coupling also provides the reheating mechanism through parametric res-

onance [24]. However, whether the reheating process is complete or not depends on the presence

of other couplings which make the inflaton unstable. For instance, φ can couple to the right–
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handed neutrinos2 as φN̄N , or have a trilinear coupling to the Higgs, φh2. The reheating

temperature is sensitive to such couplings and no model–independent prediction can be made.

Unless it is exceedingly high (1015 GeV), the Higgs field will remain at small values throughout

the reheating [13].

As seen from (9), there is no fundamental obstacle to increase the initial value of the Higgs

field to Planckian values. In that case, however, calculability is lost due to higher order Higgs

operators. It is also clear that the mechanism generalizes to other large–field inflationary po-

tentials, as long as (9) is satisfied in the slow–roll region and mh >∼ H.

The inflaton interactions may enjoy the shift symmetry which can justify the smallness of ξ

and higher order operators [21]. In particular, small values of ξ are radiatively stable and not

fine–tuned in the t’Hooft sense since setting ξ = 0 (and mφ = 0) makes the theory invariant

under φ → φ + const, which is the usual shift symmetry of inflationary models. This is in

contrast with the fine–tuning in the Higgs initial conditions, which is not justified by dynamics

and symmetries.

The Higgs coupling to the inflaton obtained above is far too small to be probed at colliders.

This applies to typical inflationary potentials, yet there is a notable exception. If one allows for

a large non–minimal scalar coupling to gravity as in [16], ξ can be substantial. Suppose we add

the term

∆L/
√
−g = − 1

2
κφ2R , (20)

where g is the determinant of the metric and R is the scalar curvature. Assume, for simplicity,

that at large φ the scalar potential is dominated by

V ' 1

2
ξh2φ2 +

1

4
λφφ

4 . (21)

Then, eliminating the non-minimal coupling to gravity by a conformal transformation, one finds

that, for κφ2 � 1, the scalar potential in the φ–direction is exponentially close to a flat one.

Taking λφ <∼ O(1), the correct curvature perturbations are reproduced for κ ∼ 105 [16]. The

h–direction, on the other hand, is very steep with the effective mass of order
√
ξ/κ, while the

Hubble rate is of order
√
λφ/κ (for details, see [15]). Thus, for ξ <∼ 0.1, the Higgs will quickly

evolve to small values, as before. Note that such values of ξ do not lead to significant quantum

corrections to λh and the inflaton potential. In particular, the electroweak vacuum remains

2The right–handed neutrinos would be an important ingredient in the complete framework as they may consti-
tute dark matter [25] and/or generate matter–antimatter asymmetry [26]. Note that their coupling to the Higgs
does not improve the stability of the Higgs potential.
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metastable. On the other hand, the Higgs coupling to the inflaton is similar in strength to the

Higgs self–coupling, unlike in the previous scenarios. This is the familiar Higgs portal interaction

[20], which, given a light enough inflaton, can potentially be probed at colliders. For example,

the LHC already places some constraints on this scenario [27].

To conclude, we have argued that, in the Standard Model (which may include right–handed

neutrinos), there is a fine–tuning problem with the initial conditions of the Higgs field at the

beginning of inflation, if the electroweak vacuum is indeed metastable. Furthermore, the Higgs

field is subject to large quantum fluctuations during inflation which can destabilize the EW

vacuum. These problems can be circumvented by the presence of a small positive coupling of

the Higgs to the inflaton, ∆V = 1
2ξh

2φ2, as in Higgs portal models. In this case, the Higgs field

is driven to small values during inflation, even if its initial value is close to the Planck scale.

The important condition is that inflation be “large–field”, while the specifics of the inflaton

potential are not essential. The coupling ξ can be taken small enough not to affect the curvature

perturbation predictions, in which case it does not change the shape of the Higgs potential after

inflation, either. Finally, unlike a fine–tuning of the initial conditions, the smallness of the

Higgs–inflaton coupling can in principle be justified by an approximate shift symmetry.
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