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Using ⋆-calculus on the dual of the Borchers-Uhlmann algebra endowed with a combina-
torial co-product, we develop a method to calculate a unitary transformation relating the
GNS representations of a non-quasifree and a quasifree state of the free hermitian scalar
field. The motivation for such an analysis and a further result is the fact that a unitary
transformation of this kind arises naturally in scattering theory on non-stationary back-
grounds. Indeed, employing the perturbation theory of the Yang-Feldman equations with
a free CCR field in a quasifree state as an initial condition and making use of extended
Feynman graphs, we are able to calculate the Wightman functions of the interacting and
outgoing fields in a φp-theory on arbitrary curved spacetimes. A further examination then
reveals two major features of the aforementioned theory: firstly, the interacting Wight-
man functions fulfil the basic axioms of hermiticity, invariance, spectrality (on stationary
spacetimes), perturbative positivity, and locality. Secondly, the outgoing field is free and
fulfils the CCR, but is in general not in a quasifree state in the case of a non-stationary
spacetime. In order to obtain a sensible particle picture for the outgoing field and, hence,
a description of the scattering process in terms of particles (in asymptotically flat space-
times), it is thus necessary to compute a unitary transformation of the abovementioned
type.
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non-quasifree states
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I. INTRODUCTION

In the theory of quantum fields on curved spacetimes, it has been realised quite early that in-
teractions contribute significantly to particle production due to non-stationary gravitational forces
[BDF80]. The scattering theory of interacting fields on physical backgrounds has thus been in
the focus of attention. The picture that has been drawn is that this scattering behavior is es-
sentially encoded in two S-matrices, one being a generalisation of the known scattering matrix
in flat spacetime that can be calculated by means of reduction formulae similar to the Lehmann-
Symanzik-Zimmermann (LSZ) method and the other being a Bogoliubov transformation between
”in”- and ”out”-representations that are both quasifree but not the same [BiTa80]. The former of
these S-matrices was assumed to describe the scattering of incoming particles into outgoing parti-
cles via an interaction with both gravity and matter fields, while the latter, and already well-known
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one [Wa79], was interpreted as describing the particle production by means of the gravitational
field alone.

With some exceptions, e.g., [BiFo79], that, however, have not been very precise on the topic
of asymptotic conditions either, most of the works within the above described framework [Bir80,
BiDa82, BDF80, BiTa80] have thus assumed asymptotic conditions for the interacting field in the
Heisenberg picture φ(x) → φin/out(x) as x0 → ∓∞ with φin(x) = a(x)+a†(x) and φout(x) = b(x)+
b†(x), where a(x), a†(x) and b(x), b†(x) are annihilation and creation fields fulfilling a(x)Ωin =
b(x)Ωout = 0 for suitable ”in”- and ”out”-Fock, i.e., quasifree and pure, vacuum states Ωin and
Ωout respectively. It seems, however, that the consistency of this type of asymptotic condition has
never been checked. In fact, once the ”in”-state for the field has been specified to be a certain,
say, quasifree state, the field theory should be determined by this initial condition, the canonical
commutation relations (CCR), and the equations of motion. Properties of ”out”-fields should
thus have to be derived and cannot be assumed ab initio. In [GoTa03], this supposition has been
investigated within a toy model for quantum field theory on curved spacetimes which has indeed
failed to reproduce the assumption of quasifreeness of the outgoing state and has thus underlined
the relevance of non-quasifree states for free fields.

In the present work, we show that this result is not an artefact of the mentioned toy model, but
occurs genuinely in (scalar) quantum field theory on non-stationary spacetimes. In fact, we are able
to show that the cosmological time scale under which these finding result in non-neglegible particle
production is roughly one millonth of a second - early enough not to conflict with well established
physical theories like nucleosynthesis, but late enough to be relevant for physical models of the
very early universe.

This raises the question how to physically interpret non-quasifree representations of the CCR,
i.e., how to compute the particle content of a non-quasifree state. In the case of unitary equivalence
to a quasifree representation and for real scalar quantum fields, we provide a complete solution to
this problem using a ⋆-product and the associated calculus on the dual of the Borchers-Uhlmann
algebra endowed with a combinatorial co-product. On a Lorentz manifold that is asymptoti-
cally flat at early and late times, one can then take the distinguished quasifree ”in”- and ”out”-
representations as a reference and calculate the ”out”-particle content of the scattered non-quasifree
state to finally obtain information on the relative particle production due to interaction with both
matter fields and gravitation.

In order to be able to access the question whether the outgoing field is in a quasifree represen-
tation, one has to explicitely calculate its unsymmetric vacuum expectation values (VEVs), i.e.,
Wightman functions. This is not possible via symmetric scattering amplitudes of LSZ-type or
Feynman path integral formalisms, one needs a standalone way to perturbatively compute Wight-
man functions instead. Such a formalism is readily available on Minkowski spacetime, namely,
the sectorised Feynman graph formalism of Ostendorf and Steinmann [Ost84, Ste93, Ste00]. This
formalism successfully abandons the CCR and asymptotic conditions, but requires the standard
spectral properties. It is thus not well-suited for our purposes since it can only be extended to
stationary spacetimes, where spectral properties can be formulated, and can not be employed to
compute Wightman functions of outgoing fields, but only those of interacting fields.

After fixing the setting of our work in section II, we therefore develop an independent formalism
to calculate the Wightman functions for quantum fields on generic curved spacetimes using a
quasifree ”in”-representation and the perturbation theory of Yang-Feldman equations, cf., section
III. In the course of this, we introduce a Feynman graph calculus for Wightman functions where
the external vertices of the Feynman graph have to be labeled properly and the edges have to be
decorated with arrows symbolising various kinds of propagators. Once the method to compute the
Wightman functions has been established, their basic properties are then analysed in the sections
IV and V. Hermiticity, invariance under orthochronous isomorphisms, perturbative positivity, the
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relation to asymptotic conditions φ(x) → φout/in(x), x0 → ±∞ in the Heisenberg picture, and the
spectrum condition (on stationary spacetimes) do not pose major problems. However, a proof of
locality by means of our Feynman graphs seems to require a lot of combinatorial effort. We thus
take a slight detour: after assuring equivalence of the Yang-Feldman equations and the expansion
of the interacting field by means of retarded products, locality follows easily from the Glaser–
Lehmann–Zimmermann (GLZ)-relations for retarded products. In this context, the power of the
GLZ-relation is sourced from the fact that they seem to be the most efficient way to encode the
commutator combinatorics appearing in the proof of locality.

Once we have shown that the Wightman functions in our framework possess all sensible prop-
erties we can expect, we proceed in section VI by verifying the Klein-Gordon equation and the
CCR for the ”out”-field. The proof of the CCR is again best achieved by having recourse to
retarded products and it is moreover established that the ”out”-field representation is genuinely
non-quasifree. To assess the physical content of such a non-quasifree state, we develop the afore-
mentioned method to explicitely calculate a unitary transformation between a non-quasifree state
and a quasifree one, provided it exists, in section VII. In section VIII, we provide a brief out-
look. Technical and computational details on ⋆-calculus and retarded products are given in two
appendices.

We point out that all calculations are carried through in unrenormalised perturbation theory.
This is mostly due to the fact that we have little to contribute to the theory of renormalisation on
physical backgrounds, which has recently been established by means of the Epstein-Glaser method
and microlocal analysis [BFK96, BrFr00, HoWa01, HoWa02, HoWa03].

II. SETTING

In this section, we present some basic notation and the field theory setting we work in. To wit,
we would like to perturbatively calculate Wightman functions of hermitian scalar quantum fields
on a globally hyberbolic smooth Lorentzian manifold (M , g) in φp-theory. That is, our quantum
fields, operator valued distributions on a Hilbert space, satisfy the formal1 equation

(⊔⊓ + m2 + κR)φ = −λφp−1

with coupling constant λ, scalar curvature R, mass m and ⊔⊓ = ∇a∇a, ∇a being the covariant
derivative associated with g.

We start by introducing the fundamental functions of the theory. Let Gr (Ga) be the unique
[BGP07] retarded (advanced) fundamental solution of the Klein-Gordon operator (⊔⊓ + m2+κR),
i.e., Gr/a are real valued bidistributions on M satisfying

(⊔⊓ + m2 + κR)Gr/a(x, y) = δ(x, y)

and suppx Gr/a(x, y) ⊂ V
±
y , V

+
x (V

−
x ) being the closed causal forward (backward) cone with base-

point x. δ(x, y) is the delta-distribution associated with g, i.e.,
∫

M×M dgxdgyδ(x, y)f(x)g(y) =
∫

M dgxf(x)g(x) for all compactly supported (complex-valued) test functions f, g ∈ D(M) : =
C∞0 (M,C), where dgx =

√−g dx, g = det g, is the canonical volume form associated with g. We
note that Gr(x, y) = Ga(y, x) and define the antisymmetric bidistribution

D(x, y) = Gr(x, y)−Ga(x, y). (1)

1 Recall that we work in unrenormalised formal perturbation theory throughout this paper.
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Obviously, D fulfils the Klein-Gordon equation in both arguments and vanishes for x ⊥ y, i.e., for
spacelike separated x and y.

To calculate the Wightman functions, we need to specify initial conditions for the field φ(x).
We achieve this by postulating that for large asymptotic times x0 → ∓∞ the interacting field
φ(x) converges to incoming or outgoing fields φin/out(x), where we demand that the ”in”-field
satisfies the free Klein-Gordon equation (⊔⊓ + m2 + κR)φin = 0. For space-times (M,g) that are
”large” enough to allow the fields to disperse quickly enough to become finally non-interacting,
the abovementioned asymptotic conditions are formulated in terms of the Yang-Feldman equations
[YaFe50]

φloc(x) := φ(x) = φin/out(x) + (Gr/a j)(x), (2)

where (Gr/a j)(x) stands for (the formal expression)

Gr/a(x, j) :=

∫

M

dgy Gr/a(x, y)j(y)

and the current j equals −λφp−1 in our case.
It is necessary to specify a representation for φin(x) (or, equivalently, an algebraic ”in”-state

for the Borchers-Uhlmann algebra of the free scalar field) ”by hand” as, in absence of isometries
and spectral conditions on general curved manifolds, the Klein-Gordon equation and the CCR are
not sufficient to fix it uniquely2 [Wal93].

This can be accomplished by first choosing propagators D±(x, y), that is, complex valued bidis-
tributions on M satisfying the Klein-Gordon equation in both arguments and ImD± = ±1

2D,

D+(x, y) = D+(y, x) = D−(y, x), such that D̃ : = 2ReD+ is symmetric and constitutes the
choice of a state. Here, the bar denotes complex comjugation. To select a pure state, we require
D̃(f, f) = 1

4 infh∈D(M) |D(f, h)2/D̃(h, h)| for all f ∈ D(M), cf., [Wal93]. Particularly, this implies

that D+ is positive, i.e., D+(f , f) ≥ 0 ∀ f ∈ D(M). We furthermore demand that D+ is invariant
under any existing isometric diffeomorphisms of (M,g) preserving the time direction, which only
constrains D̃, as D automatically fulfils this condition. For a discussion of the existence of such
(and even more general) bi-distributions, cf., [Wal93].

Before proceeding to select an incoming state, we need to introduce the notion of truncated
Wightman functions. These are defined via a cluster expansion as

〈Ω, φa1(x1) · · · φan(xn)Ω〉 =
∑

I∈P(n)

∏

{j1,··· ,jl}∈I

〈Ω, φaj1 (xj1) · · · φajl (xjl)Ω〉T , (3)

where aj ∈ {in, loc, out} and P(n) is the collection of all partitions of {1, · · · , n} into disjoint, non-
empty subsets {j1, · · · , jl} with j1 < · · · < jl. A quasifree state is characterised by the property to
have vanishing truncated Wightman functions for all n 6= 2.

Let us anticipate at this point that, via the Yang-Feldman equations, both φloc and φout are
formal power series in −λ with monomials in φin as coefficients and can thus formally be understood
as operators on the same, i.e., the incoming, Hilbert space, of which Ω is a vacuum state as we
will specify in the following. This motivates our choice to write all Wightman functions as VEVs
w.r.t. Ω.

2 The standard ”Fourier” spectrum condition has been successfully replaced by a microlocal spectrum condition
[BFK96] to advance quantum field theory on curved spacetime in many ways. The microlocal spectrum condition
does, however, not determine a unique state, but only a class of states [Ver92].
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We can now finally specify the state for the incoming field as a quasifree state with two-point
function D+, i.e.,

〈Ω, φin(x)φin(y)Ω〉T = D+(x, y), (4)

〈Ω, φin(x1) · · · φin(xn)Ω〉T = 0 for n 6= 2. (5)

Taking (4)-(5) into account, it follows immediately that (3) simplifies considerably if we only
consider Wightman functions of ”in”-fields, namely,

〈Ω, φin(x1) · · · φin(xn)Ω〉 =







∑

I∈P ′(n)

∏

{j1,j2}∈I

D+(xj1 , xj2) if n is even,

0 if n is odd.

(6)

Here, P ′(n) is the collection of all partitions of {1, · · · , n} into disjoint subsets containing two ele-
ments {j1, j2} with j1 < j2, i.e., P ′(n) is a collection of all possible pairings made out of {1, · · · , n}.

We now explain how (4) and (5) determine a particle picture in the remote past. By our
assumptions, D̃ is a symmetric bidistribution that fulfils the Klein-Gordon equation in both argu-
ments. Consequently, the solution part Sf of any test function defined as Sf := D̃ f solves the
Klein-Gordon equation and clearly (Sf,Sh) := D̃(f , g) constitutes a well-defined inner product
on the space of complex solutions of the Klein-Gordon equation with compactly supported initial
data. Let us indicate the completion of this space w.r.t. ( . , . ) by H and note that the imaginary
part 1

2D of D+ defines a (C-bilinear) symplectic form Σ on the space of complex valued solutions
via Σ(Df,Dg) := D(f, g) that extends continuously to H.

Upon comparison with the symplectic form, the inner product then induces a complex structure
J via (ψ, Jχ) := Σ(ψ,χ) for any two solutions. One straightforwardly obtains J∗ = −J , J2 = −1,
and, thus, J = i(K+ −K−) with K± the projector on the eigenspace of J with eigenvalue ±i. In
the following, we call H± := K±H the positive/negative frequency spaces respectively. We note
that H± = H∓ since Jψ = −iψ for ψ ∈ H+.

Let now F be the symmetric Fock space over H+ with Fock-vacuum Ω. By a†(ψ), a(ψ),
ψ ∈ H+, we denote the usual creation and annihilation operators on F . We use the convention
a(ψ)∗ = a†(ψ)∗, ψ ∈ H+, in order to obtain a C-linear definition for a(χ), χ ∈ H−. Here, ∗ stands
for taking the adjoint (neglecting domain questions). Let S± := K±S be the operator that maps
test functions to the positive/negative frequency solution part. The incoming field can now finally
be defined as the C-linear operator valued distribution

φin(f) = a(S−f) + a†(S+f) . (7)

Furthermore, by [Wal93, Lemma 3.2.1], (D̃f, D̃h) = D̃(f̄ , h) = Σ(Df, D̃h) = (Df, JD̃h) for all test
functions f, h, from which −JDf = D̃f follows. Application to (7) gives φin(f) = ia(K−Df) −
ia†(K+Df) which is the definition given in [Wal93].

It follows from the Fock construction, (4), and the properties of D+ that

[φin(x), φin(y)] = iD(x, y) (8)

which constitutes that the incoming field fulfils the CCR and closes the specification and analysis
of the properties of the ”in”-field.

Fixing both φin(x) and φout(x) would over-determine the system, we therefore only employ the
Yang-Feldman equations (2) as a definition of φout(x) without specifying any further properties of
it. From (1) and (2) it follows immediately that

φout(x) = φin(x) + (D j)(x). (9)
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Furthermore, because both φin(x) and D fulfil the Klein-Gordon equation, φout(x) does as well.
However, we still need to check if the outgoing field fulfils the CCR and determine whether it is in
a quasifree state or not.

III. CALCULATION OF THE WIGHTMAN FUNCTIONS

To evaluate Wightman functions, we will make use of generalised Feynman graphs. In the
following figures, we draw all graphs in φ3-theory for simplicity. For the actual calculations, the
degree p of the φp-theory is irrelevant. We begin developing the graphical calculus by introducing
the symbols for the propagators of our theory.

D+(x,y)  ≅ x y ≅   D--
(y,x)

Gr(x,y)  ≅ x y ≅   Ga (y,x)

D(x,y)  ≅ x y ≅   -D(y,x)

D(x,y)  ≅ x y
~ ≅  D(y,x)  

~

FIG. 1 Propagators

D+(x, y) is being represented by a line with an open arrow, D(x, y) by a line with a closed
arrow and Gr(x, y) by a line with a double open arrow, the arrows pointing to x. Furthermore,
D̃(x, y) is drawn with two arrows pointing apart as shown in figure 1.

Next, we introduce a tree expansion for the fields according to the Parisi-Wu method [PaWu81].
We expand the fields in powers of the negative coupling constant −λ:

φa(x) =

∞∑

σ=0

(−λ)σφaσ(x). (10)

Clearly,

φinσ (x) =

{
φin(x) if σ = 0,
0 otherwise.

(11)

We calculate φaσ(x) for a = loc/out recursively using (2) and (9):

φaσ(x) =







φin(x) if σ = 0 and






∆a

∞∑

σ1,··· , σp−1=0,

σ1+···+σp−1=σ−1

p−1
∏

i=1

φlocσi







(x) otherwise,
(12)

where ∆loc := Gr, ∆
out := D. Following the recursion in (12), we define tree graphs corresponding

to the summands in (12) by an induction over σ. To fix the initial step, we draw φa0(x), i.e., an ”in”-
field, as a leaf attached to a root corresponding to an external x-vertex. A tree corresponding to
φaσ(x) is drawn by taking p−1 trees corresponding to perturbative local fields of order σ1, · · · , σp−1
s.t.

∑
σl = σ−1, assembling their roots y1, · · · , yp−1 to form a single internal y-vertex and adding
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a trunk, i.e., a new line from y to x corresponding to ∆a(x, y). Therefore, a tree correspoding
to φaσ(x) has a root corresponding to an external x-vertex, a trunk corresponding to ∆a, several
branches corresponding to Grs, several leaves corresponding to ”in”-fields and σ branching points
corresponding to internal vertices with a total number of p− 1 branches and leaves emerging from
them. We note that the causal flow (the direction of the Gr-arrows) always points to the root.

We label the different tree components inductively, accounting for the fact that the indices σi
in (12) are distinguishable. The initial step of the labelling induction is fixed by defining the label
of a trunk to be the index of the external vertex variable attached to it. To assign a label to a
branch/leaf, one takes the label of the branch or trunk the considered branch/leaf emerges from as
a basis. One then extends it by a dot followed by a number reflecting the position of the considered
branch/leaf (field) at the actual branching point (in the corresponding current), i.e., the index i
of φlocσi

in (12). Some examples of trees are displayed in figure 2 for the convenience of the reader.

= φ in(xi)

xi

φa (xi)
0

xi

φ loc (xi)
1

xi

φout(xi)
3

i.1 i.2 i.1 i.2

i.2.1 i.2.2

i.2.2.1 i.2.2.2

i i i

FIG. 2 The only possible tree for φa
0
(x), the only possible tree for φloc

1
(x), and one possible tree for φout

3
(x)

We shall proceed to consider the Wightman functions of our theory. To compute them, it is
sufficient to consider only their connected parts, i.e., the truncated Wightman functions.

In order to calculate the truncated Wightman functions, we will first expand them in powers of
the coupling constant:

〈Ω, φa1(x1) · · · φan(xn)Ω〉T =
∞∑

σ=0

(−λ)σ〈Ω, φa1(x1) · · ·φan(xn)Ω〉Tσ . (13)

Inserting (10) into the left side of (13) and comparing terms of equal order in −λ, we get:

〈Ω, φa1(x1) · · ·φan(xn)Ω〉Tσ =

∞∑

σ1,··· , σn=0,
P

σl=σ

〈Ω, φa1σ1
(x1) · · · φanσn

(xn)Ω〉T . (14)

We know from the tree expansion that, for a fixed σ, every φaσ(x) can be expressed in
terms of incoming fields convoluted with fundamental functions. Therefore, it follows that
〈Ω, φa1σ1

(x1) · · · φanσn
(xn)Ω〉T can be expressed in terms of Wightman functions of ”in”-fields inte-

grated with additional propagators. Finally, combining (11), (12), (6) and (14), we can express
truncated Wightman functions of arbitrary fields merely in terms of fundamental functions.

Let us now introduce Feynman graphs corresponding to perturbative n-point Wightman func-
tions. A Feynman graph of order σ consists of n external vertices corresponding to the arguments
x1, · · · , xn and type-indices a1, · · · , an of a Wightman function and σ internal vertices correspond-
ing to arbitrary variables inM . The vertices are connected to the remainder of the graph by q lines,
with q = 1 (q = p) for external (internal) vertices. A line is called an external line if it is connected
to an external vertex, an internal line otherwise. While Wightman functions correspond to Feyn-
man graphs, one can show that truncated Wightman functions correspond to connected Feynman
graphs. We call a Feynman graph with arrows and labels on all lines an extended Feynman graph.
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On the level of graphs, the resolving of (14) via (6) corresponds to gluing the leaves of n
trees with a total order of σ together to yield an extended Feynman graph of order σ with n
external vertices. As we calculate truncated Wightman functions, only gluing possibilities that
yield connected Feynman graphs are allowed.

To finish describing the gluing process, we need to analyse the gluing lines in more detail. A
line originating from gluing a pair of two leaves together, i.e., a D±-line, is defined to be labelled
by combining the leaves’ labels to a pair. Starting from the beginning, we compare the two labels
slot-by-slot until we find a pair of numbers that does not match. The arrow on the D±-line then
points to the leaf corresponding to the lower of these numbers.

We have now described how to expand fields to trees that are subsequently assembled to ex-
tended Feynman graphs (see figure 3 for two examples),

x3

x2

x1

x3

x2

x1

x3

x2

x1

x3

x2

x1

2

1 3

2.12.2

2.2.2 2.2.1

3.2

3.1

2

1 3

2.12.2

2.2.2 2.2.1

3.2

3.1

2

31 & 2.1

2.2

2.2.2 & 3.1

2.2.1 & 3.2

2

1 & 2.2.2

3

2.1 & 3.2

2.2

2.2.1 & 3.1

FIG. 3 Two possibilities to glue the same set of trees to graphs corresponding to
〈Ω, φa0(x1)φloc2 (x2)φ

out
1 (x3)Ω〉T

but this also works the other way round. To calculate 〈Ω, φa1(x1) · · · φan(xn)Ω〉Tσ , we draw all
topologically possible connected Feynman graphs of order σ with n fixed external vertices x1, · · · , xn
of type a1, · · · , an. We then consider all possibilities to partition each Feynman graph into n
connected and loop-less subgraphs, i.e., trees and several remaining lines. Each such subgraph
contains exactly one root xi of type ai. A partition is fixed by marking a certain number of lines
such that the Feynman graph with these lines removed consists of n disconnected tree graphs
without leaves, arrows and labels and each internal vertex is part of a such a tree (see figure 4 for
two examples, where the marked lines are displayed as dotted lines). In this process, the external
lines connected to external vertices of type a = in always have to be marked. Next, we assign
labels to all external lines according to the indices of their external vertex variables. Using these
labels as an initial step and starting from the roots, we ”walk up” the trees on the unmarked
lines and inductively assign labels to all lines emerging from the vertices we pass. As a result, the
marked lines have two labels, one from each vertex they connect. The inductive dependence of the
labels on the preceding labels is fixed by the labelling algorithm defined above in the discussion
of the tree expansion. For each of the possible choices of labels we draw arrows on all lines. The
type of the arrows on the unmarked lines is chosen according to a1, · · · , an and the tree expansion.
Furthermore, each marked line becomes a D±-line. The direction of the arrow on such a line is
determined by comparison of the two labels of the line in the manner described in the preceding
paragraph.
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x3

x2

x1

x3

x2

x1

x3

x2

x1

x3

x2

x1

2

1

3

2.1 & 3.2
2.2 

& 

1.1
1.2 & 3.1

x3

x2

x1

2 & 3.1.2

1 & 3.1.1.2

3

3.1

3.1.1.1 & 3.2

3.1.1

x3

x2

x1

2

1

3

2.1 & 3.2

1.2 & 3.1

2.2 

& 

1.1
x3

x2

x1

2 & 3.1.2

1 & 3.1.1.2

3

3.1

3.1.1.1 & 3.2

3.1.1

FIG. 4 Two possibilities to extend a Feynman graph corresponding to 〈Ω, φloc(x1)φloc(x2)φout(x3)Ω〉T3

To obtain the analytical expression corresponding to an extended Feynman graph, we assign
variables to all internal vertices, write down the propagators corresponding to all lines and then inte-
grate over all internal vertices. Once we have the analytical expressions, summing over all topologi-
cally possible Feynman graphs and all possibilities to extend them yields 〈Ω, φa1(x1) · · ·φan(xn)Ω〉Tσ
(see figure 4 for two examples).

For calculations, it is often convenient to drop the labels and replace them by combinatorial
factors, see [Hac07] for a detailed discussion of these issues.

IV. PROPERTIES OF THE WIGHTMAN FUNCTIONS: INVARIANCE, HERMITICITY, SPECTRAL

PROPERTY, POSITIVITY, AND THE ASYMPTOTIC CONDITION

With the means of computing the Wightman functions of our theory at hand, we can continue
by discussing their fundamental properties in this section.

Invariance under orthochronous isometric diffeomorphisms As we have shown in section III, the Wight-
man functions of our theory can be expressed in terms of integrals of products of fundamental func-
tions. Since we know from section II that all fundamental functions are invariant under isometric
diffeomorphisms preserving the time direction and the integrals contain the canonical volume form
which is invariant under all isometric diffeomorphisms by definition, invariance of the Wightman
functions follows immediately.
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Hermiticity The Wightman functions fulfil Hermiticity if

〈Ω, φa1(x1) · · · φan(xn)Ω〉 = 〈Ω, φan(xn) · · ·φa1(x1)Ω〉. (15)

Since we can express the Wightman functions in terms of Wightman functions of ”in”-fields con-
voluted with the real valued fundamental functions Gr/a and D and since the order of fields in the
latter Wightman function corresponds to the order of fields in the original Wightman function, it
is sufficient to prove (15) for a1, · · · , an = in.

We know from (6) how to express Wightman functions of incoming fields in terms of D+. The
complex conjugation of (6) exchanges all D+(xj1 , xj2) with D+(xj2 , xj1) which obviously corre-
sponds to reversing the total order of fields in the Wightman function of ”in”-fields, thus (15)
holds for a1, · · · , an = in.

Spectral condition In general spacetimes, there is no well-defined Fourier transformation, therefore,
standard spectral conditions can not be formulated. However, in stationary spacetimes, the time
translations form a one parameter group of isometries and we assume that Fourier transformations
w.r.t. the time parameter are possible. A well-defined standard spectral condition can thus be
formulated in that case: one restricts D̃ by requiring that the Fourier transform in the time ar-
guments defined by the global timelike killing field of n-point Wightman functions of ”in”-fields
vanish if the sums Σj :=

∑n
j=l+1El are not all positive. Here, El is the variable conjugated to the

l-th time argument in the VEV. We note that all fundamental functions are invariant under time
translations by our assumptions, hence, they only depend on time differences of both arguments.
Therefore, the unitary time translation operator that is obtained from the time translation invari-
ance of Wightman functions of interacting and outgoing fields via the GNS construction coincides
with the time translation operator for the ”in”-fields, which has positive spectrum by construction.

Perturbative positivity If we expand Wightman functions perturbatively up to a given order N , we
can add further terms of order O(λN+1) to obtain a VEV of fields φa,N (x) =

∑N
σ=0(−λ)σφaσ(x)

that act as operator-valued distributions on the incoming Fock space. The VEVs obviously fulfil
positivity. Thus, the Wightman functions expanded in −λ up to an arbitrary but fixed order N
fulfil positivity up to a O(λN+1)-term.

Asymptotic condition In this work, we have used asymptotic conditions given by the Yang-Feldman
equations (2). It is a natural question to ask up to what extent these asymptotic conditions lead
to the asymptotic conditions in the Heisenberg picture φ(x) → φin/out(x) as x0 → ∓∞ in a given
foliation M ≃ R×C ofM , where C is a Cauchy surface. In a weak sense, the Heisenberg asymptotic
condition is

lim
x0
j→±∞

[

〈Ω, φa1(x1) · · · φ(xj) · · ·φan(xn)Ω〉T − 〈Ω, φa1(x1) · · · φout/in(xj) · · · φan(xn)Ω〉T
]

= 0.

(16)
Let us consider the case x0 → −∞ first: In the extended Feynman graph expansion of the left
hand side, all connected graphs where the tree with root xj is of order σj = 0 cancel and all
other graphs survive. Likewise, if x0 → +∞, we obtain in the expansion into connected extended
Feynman graphs two times all graphs where the order of the xj tree is larger than zero – once with
the trunk of the j-th tree being a retarded propagator for the local field and once another graph
with opposite sign where the trunk is evaluated with D. Using D = Gr −Ga, we see that, in the
case x0 → +∞, one obtains all extended graphs where the tree with root xj is of order larger than
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zero and its trunk is evaluated with an advanced propagator, cf., figure 5. We note that in the
limit x0 → ±∞, the integral over the vertex variable u is restricted to u in the causal future/past
of xj and hence the domain of integration becomes smaller and smaller. An actual proof of the
vanishing of the left hand side of (16) requires technical assumptions on the manifold M and on
the propagators D± – and hence the state – and we do not want to go into the details now. It
however seems that these conditions are not much stronger than what is needed to assure that the
integrals over the vertices in the Feynman graphs exist.

xj

u xj
o

0
- ∞

xj

u xj
o

0
+ ∞

FIG. 5 Heuristic check of the asymptotic conditions on the level of graphs

V. PROPERTIES OF THE WIGHTMAN FUNCTIONS: LOCALITY

To prove locality of the truncated Wightman functions, we have to show that

〈Ω, φa1(x1) ... [φai(xi), φai+1(xi+1)] · · · φan(xn)Ω〉T (17)

vanishes for xi ⊥ xi+1, ∀i ∈ {1, ... , n − 1}, aj = loc if j ∈ {i, i + 1}, aj = in/loc/out otherwise.
For proving this, it is sufficient to show that the interacting field itself is local. Since we are given
the interacting field as a formal power series in −λ, locality of φ = φloc has to be proven to each
order in −λ separately. To order σ we have

[φ(x), φ(y)]σ =
∑

σ1+σ2=σ

[φ(x)σ1 , φ(y)σ2 ] . (18)

For a fixed order, it is hence possible to replace the fields φ(x)σ1 , φ(x)σ2 by their tree expansions
and compute [φ(x), φ(y)]σ as sums of commutators of single trees that are in effect commutators
of products of free fields integrated with retarded propagators. Employing Leibniz’ rule for the
commutator results in glueing together two leaves, one from each tree, with a D-propagator.
One can then hope to obtain an expression which vanishes for spacelike-separated x and y. The
procedure for σ = 1 in φ3-theory is depicted in figure 6, where the last step follows fromD = Gr−Ga

and ”telescope cancellations”.
It turns out that one is left with a ”Gr-chain” and a ”Ga-chain”, i.e., a product of re-

tarded/advanced propagators such that the right slot of one propagator corresponds to the left
slot of another, namely,

[φ(x), φ(y)]1 = 2i

∫

M

dgx1 {Gr(x, x1)Gr(x1, y)−Ga(x, x1)Ga(x1, y)} φin(x1). (19)

Owing to the causal support properties of the retarded and advanced propagators, we see that
either x � x1 � y or x � x1 � y, where x � y (x � y) depicts that x ∈ V

±
y . As a result, both the
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[φloc (x),φloc (y)]     =
1

x
y

, y
x

,
+

=   2

x

, +   2

y

y

,

x

=   2i +   2i

=   2i --   2i

x y x y

x y x y

FIG. 6 The commutator of two interacting fields to first order

Gr-chain and the Ga-chain vanish for x ⊥ y. To generalise this observation to arbitrary order, we
prove the equivalence of the tree expansion to the expansion into retarded products. We then use
the GLZ relation [GLZ57] to prove locality. See also [Hac07] for a proof up to second loop order
that works on the level of Feynman graphs and proves locality graph by graph.

The retarded product R1,n(B0(x0) |B1(x1), . . . , Bn(xn)) of n+1 operators B0(x0), . . . , Bn(xn)
that are mutually local, i.e., [Bi(xi), Bj(xj)] vanishes for all i, j if xi ⊥ xj , is defined as

R1,0 (B0(x0)) := B0(x0),

R1,n (B0(x0) |B1(x1), . . . , Bn(xn)) :=

:= (−1)n
∑

π∈Sn

[
Bπ(n)(xπ(n)),

[
Bπ(n−1)(xπ(n−1)), · · ·

[
Bπ(1)(xπ(1)), B0(x0)

]
· · ·
]]
1x0�xπ(1)�···�xπ(n)

,

(20)
where Sn is the permutation group of order n and 1A denotes the characteristic function of the
set A. Note that renormalisation is necessary for a proper definition at coinciding points. With
the above definition, R1,n(B0(x0) |B1(x1), . . . , Bn(xn)) is both symmetric in the last n slots and
manifestly vanishing if any of the spacetime positions of the last n operators is not in the causal
past of x0. From (20) it follows straighforwardly that retarded products of a certain order may be
expressed in terms of retarded products of one order less

R1,n (B0(x0) |B1(x1), . . . , Bn(xn)) =

= −
n∑

j=1

[Bj(xj), R1,n−1(B0(x0) |B1(x1), . . . ,✘✘
✘✘Bj(xj), . . . , Bn(xn))] 1xj�xi ∀i∈{0,...,n}. (21)

Employing the above recursion and the Jacobi identity for the commutator, one can prove the GLZ
relations [GLZ57],

R1,n (A |C,B1(x1), . . . , Bn(xn))−R1,n (C |A,B1(x1), . . . , Bn(xn)) =
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=
∑

I⊂N : ={1,...,n}



R1,|I|

(

A

∣
∣
∣
∣
∣

∏

i∈I

Bi(xi)

)

, R1,|N\I|



C

∣
∣
∣
∣
∣
∣

∏

j∈N\I

Bj(xj)







 . (22)

The most important feature of retarded products in our context is the fact that the interacting
field can be expanded in terms of retarded products, where a retarded product of order σ encodes
the complete (−λ)σ-contribution of the interacting field, namely,

φ(x) =
∞∑

σ=0

(iλ)σ

σ!

∫

Mσ

σ∏

i=1

dgxi R1,σ(φ
in(x) | Lint(x1), . . . ,Lint(xσ)), (23)

with Lint(x) := φin(x)p/p in our case. A combinatorial proof of (23) that makes the relation with
the tree expansion explicit will be given at the end of this section.

To prove locality in terms of retarded products, we start from

[φ(x), φ(y)]σ =

∫

Mσ

σ∏

i=1

dgxi
∑

σ1+σ2=σ

(−i)σ
σ1!σ2!

×

×
[
R1,σ1(φ

in(x) | Lint(x1), . . . ,Lint(xσ1)), R1,σ2(φ
in(y) | Lint(xσ1+1), . . . ,Lint(xσ))

]

which, due to the GLZ relations, simplifies to

[φ(x), φ(y)]σ =
(−i)σ
σ!

{
R1,σ+1(φ

in(x) |φin(y),L⊗σint )−R1,σ+1(φ
in(y) |φin(x),L⊗σint )

}
,

where R1,n+1

(
φin(x) |φin(y),L⊗nint

)
stands in shorthand for

∫

Mn

σ∏

i=1

dgxiR1,n+1(φ
in(x) |φin(y),Lint(x1), . . . ,Lint(xn)).

The result is, as we could have expected from our finger exercise in figure 6, a retarded piece, pre-
sumably corresponding to a sum of Gr-chains, minus an advanced piece, presumably corresponding
to a sum of Ga-chains. In fact, we will prove this correspondence in appendix B, since it will be
necessary for the proof of the ”out”-field CCR. If x ⊥ y, both the retarded and the advanced piece
vanish due to the causal support properties of the retarded products.

Let us now proceed to see why the perturbative expansion of the interacting field in terms of
retarded products is equivalent to the perturbative expansion of the interacting field due to the
Yang-Feldman equation in terms of tree graphs. Since in case of the expansion in trees the (−λ)σ-
contribution to the interacting field consists of the sum of all possible tree graphs with σ branching
points, we have to show that the (−λ)σ term of the expansion in retarded products corresponds to
exactly such sum. To achieve this, let us recall how one can inductively obtain all possible trees
of order σ: one starts with the ”in”-field and then replaces an ”in”-field/leaf by a first order-tree
σ times and in all possible ways, taking care to discard trees occuring multiply. Starting from the
recursion (21), we shall proceed to understand how it reproduces the aforementioned combinatorial
procedure.

To this effect, let us first notice that (21) simplifies considerably in the current context, since
all operators B1, . . . , Bn are of the same type and the labelling of the xi does not matter due to
them being integration variables. Hence, the symmmetrisation can be replaced by a factor and the
(−λ)σ-contribution to the interacting field in terms of retarded products reads
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φ(x)σ =
(−i)σ
σ!

∫

Mσ

σ∏

i=1

dgxi R1,σ(φ
in(x) | Lint(x1), . . . ,Lint(xσ))

= − (−i)σ
(σ − 1)!

∫

Mσ

σ∏

i=1

dgxi
[
Lint(xσ), R1,σ−1(φ

in(x) | Lint(x1), . . . ,Lint(xσ−1))
]
1 xσ�xi

∀i∈{0,...,σ−1}

.

Since all operators appearing in R1,σ−1(φ
in(x) | Lint(x1), . . . ,Lint(xσ−1)) are monomials in

the ”in”-field, we know due to the Leibniz rule for the commutator that this retarded
product is given by sums of products of ”in”-fields. As Lint(xσ) is also a monomial in
the incoming field and the commutator of two ”in”-fields is a C-number, we can compute
[Lint(xσ),R1,σ−1(φ

in(x) | Lint(x1), . . . ,Lint(xσ−1))] by means of

[

Bn,
m∏

i=1

Ai

]

=
m∑

j=0

j−1
∏

i=1

Ai [B,Aj ]
dBn

dB

m∏

i=j+1

Ai,

which holds under the assumption that [Ai, B] commutes with all other occuring operators for all
i and where we have formally written dBn/dB in shorthand for nBn−1. This formula implies that
[Lint(xσ),R1,σ−1(φ

in(x) | Lint(x1), . . . ,Lint(xσ−1))]1xσ�xi∀i∈{0,...,σ−1} can be computed by summing
over all possibilities to replace one incoming field φin(xj) in R1,σ−1(φ

in(x) | Lint(x1), . . . ,Lint(xσ−1))
by

[
φin(xσ), φ

in(xj)
] dLint(xσ)

dφin(xσ)
1xσ�xj = iD(xσ , xj)φ

in(xσ)
p−11xσ�xj

= −iGr(xj , xσ)φ
in(xσ)

p−1.

To account for the Leibniz rule of this procedure, we denote it by means of a formal derivative
operator (cf., [DuFr02], where the framework is such that it is a well-defined functional derivative),
viz.,

D(x)φin(y) := Gr( · , x)
dLint(x)

dφin(x)

d

dφin( · )φ
in(y) := Gr(y, x)

dLint(x)

dφin(x)
.

Employing this notation, we can write the interacting field to order σ as

φ(x)σ = − (−i)σ
(σ − 1)!

∫

Mσ

σ∏

i=1

dgxi
[
Lint(xσ), R1,σ−1(φ

in(x) | Lint(x1), . . . ,Lint(xσ−1))
]
1 xσ�xi

∀i∈{0,...,σ−1}

=
(−i)σ−1
(σ − 1)!

∫

Mσ

σ∏

i=1

dgxi D(xσ)R1,σ−1(φ
in(x) | Lint(x1), . . . ,Lint(xσ−1))1 xσ�xi

∀i∈{0,...,σ−1}

,

where it is understood that the operator expression replacing the ”in”-field on which D(xσ) cur-
rently acts has to be inserted exactly at the position where that incoming field has been. We can
now iterate the recursion (21) to eventually obtain

φ(x)σ =

∫

Mσ

σ∏

i=1

dgxi D(xσ) · · · D(x1)φ
in(x)1xσ�···�x1�x. (24)
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This puts us in the position to prove formal equivalence of this expression to the one obtained
from the Yang-Feldman equation in terms of tree graphs. Obviously, both expression are equal in
zeroth order. Let us assume that they are equal to order σ and show how equivalence to order σ+1
follows inductively. By our assumptions, the integrand of (24) can be rewritten in a form devoid
of explicit restrictions on the integration domain for x1, . . . , xσ, namely, the sum of the integrands
of all trees of order σ, viz.,

φ(x)σ =:

∫

Mσ

σ∏

i=1

dgxi Iσ(x1, . . . , xσ).

With this notation, we have

φ(x)σ+1 =

∫

Mσ+1

σ+1∏

i=1

dgxiD(xσ+1)Iσ(x1, . . . , xσ)1 xσ+1�xi
∀i∈{0,...,σ}

.

D(xσ+1) acts on Iσ by replacing an ”in”-field by the integrand of a first order tree graph in all
tree integrands Iσ consists of and in all possible ways. As a result, we obtain integrands of trees
of order σ + 1, still with no mutual restrictions on the integration variables x1, . . . , xσ, but with
the constraint that xσ+1 is causally earlier than all of these spacetimes points. It is clear that
D(xσ+1)Iσ(x1, . . . , xσ)1xσ+1�xi∀i∈{0,...,σ} contains all possible tree integrands of order σ + 1, the
question is whether on can rewrite this expression in way that it contains every possible tree
integrand of order σ + 1 with unit weight and without any restrictions on the integration domain.

To answer this question, let us divide the tree integrands we straightforwadly obtain by the
action of D(xσ+1) on Iσ(x1, . . . , xσ) into equivalence classes, where two integrands are taken to
be equivalent if they can be matched by permuting vertex variables. Let us choose an arbitrary
but fixed equivalence class E and assume that it has m members. Their number implies that
there are m different possibilities to build the tree graph corresponding to E out of a tree graph
of order σ by replacing a leaf with a first order tree. Hence, the tree graph corresponding to E
must have m ”virgin” vertices, where we call a vertex virgin if it has the maximal number of
p − 1 ”in”-fields attached to it; the m members of E then correspond to the m possible ways
to remove one of these virgin vertices to obtain a tree of lower order. Now, let us permute the
vertex variables of all members of E such that they are all equal but have different restrictions
on the integration domain of x1, . . . , xσ+1 and let V := {xi1 , . . . , xim} be the resulting integration
variables of the virgin vertices. Since the virgin vertices are connected to the remainder of the
tree by retarded propagators, we can discard the integration constrains on the m integrands under
consideration which are automatically fulfilled due to the causal support properties of Gr. The
remaining restrictions on the integration domain can only be of the form V ∋ xj � xi ∀xi ∈ V. In
fact, due to the Leibniz rule for D(xσ+1), all m possible integration constraints of this kind must
appear. Hence, summing up the m integrands with matching variables but different restrictions
on the integration domain, we obtain once the same integrand, but without any integration con-
straints. Since the above described procedure is valid for all equivalence classes of tree integrands,
∫

Mσ+1

∏σ+1
i=1 dgxiD(xσ+1) · · · D(x1)φ

in(x)1xσ+1�···�x1�x corresponds to the sum of all possible trees
of order σ + 1 weighted with unit multiplicity, and the formal equivalence of the expansion of
the interacting field by means of the retarded products on the one hand and the Yang-Feldman
equation via Parisi-Wu tree graphs on the other hand is established.

VI. PROPERTIES OF THE OUTGOING FIELDS

We now examine the properties of the outgoing fields.
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Klein-Gordon Equation We have already seen in section II that the ”out”-fields of the theory fulfil
the Klein-Gordon equation as is manifest from their definition via the Yang-Feldman equation (9).

Canonical commutation relations To prove the CCR, we have to examine the commutator of two
outgoing fields to each order in −λ separately. Due to the Yang-Feldman equations, we have

[
φout(x), φout(y)

]

σ
=
[
φ(x)− (−λ)Ga(x, φ

p−1), φ(y)− (−λ)Ga(y, φ
p−1)

]

σ

= [φ(x), φ(y)]σ
︸ ︷︷ ︸

Iσ

−
[
φ(x), Ga(y, φ

p−1)
]

σ−1
︸ ︷︷ ︸

IIσ

−
[
Ga(x, φ

p−1), φ(y)
]

σ−1
︸ ︷︷ ︸

IIIσ

+
[
Ga(x, φ

p−1), Ga(y, φ
p−1)

]

σ−2
︸ ︷︷ ︸

IVσ

.

(25)
In zeroth order, only the first term of (25) contributes and the result is

[
φout(x), φout(y)

]

0
=
[
φin(x), φin(y)

]
= iD(x, y).

To prove CCR for the ”out”-field, we thus need to show that
[
φout(x), φout(y)

]

σ
vanishes identically

for σ > 0. In the case σ = 1, only the first three terms of (25) contribute and we have

I1 = −i
∫

M

dgx1
{
R1,2

(
φin(x) |φin(y),Lint(x1)

)
−R1,2

(
φin(y) |φin(x),Lint(x1)

)}

= (p − 1)i

∫

M

dgx1 {Gr(x, x1)Gr(x1, y)−Ga(x, x1)Ga(x1, y)}φin(x1)p−2

II1 =
[
φin(x), Ga(y, (φ

in)p−1)
]
= (p− 1)i

∫

M

dgx1D(x, x1)Gr(x1, y)φ
in(x1)

p−2

III1 =
[
Ga(x, (φ

in)p−1), φin(y)
]
= (p− 1)i

∫

M

dgx1Ga(x, x1)D(x1, y)φ
in(x1)

p−2.

Due to ”telescope cancellations” by means of D = Gr −Ga, I1 − II1 − III1 = 0.
For σ > 1, the structure of cancellations is in principle the same as above, the only difference

being the possible appearance of propagators ”lying inbetween” Gr/a(x, x1) and Gr/a(x1, y). Such
terms survive in Iσ − IIσ − IIIσ and have to be cancelled by IVσ. To treat such terms, we need
the following identities, proven in appendix B:

(−i)n
n!

R1,n+1

(
φin(x) |φin(y),L⊗nint

)

=

∫

M

dgx1 Gr(x, x1)
∑

P

σi=n−1

p−2
∑

j=0

φ(x1)
j
σ1

(−i)σ2

σ2!
R1,σ2+1

(
φin(x1) |φin(y),L⊗σ2

int

)
φ(x1)

p−2−j
σ3

(26)

=

∫

M

dgx1
∑

P

σi=n−1

p−2
∑

j=0

φ(x1)
j
σ1

(−i)σ2

σ2!
R1,σ2+1

(
φin(x) |φin(x1),L⊗σ2

int

)
φ(x1)

p−2−j
σ3

Gr(x1, y), (27)
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where φ(x)jσ stands in shorthand for
∑

P

σi=σ

j∏

i=1
φ(x)σi . Iterating these identies yields that

(−i)n

n! R1,n+1

(
φin(x) |φin(y),L⊗nint

)
can be expressed completely in terms of Gr-chains connecting

x with y.
Employing the above listed identities, we have for σ > 1

Iσ =
(−i)σ
σ!

{
R1,σ+1

(
φin(x) |φin(y),L⊗σint

)
−R1,σ+1

(
φin(y) |φin(x),L⊗σint

)}

=

∫

M

dgx1
∑

P

σi=σ−1

p−2
∑

i=0

φ(x1)
i
σ1

(−i)σ2

σ2!

{
Gr(x, x1)R1,σ2+1

(
φin(x1) |φin(y),L⊗σ2

int

)
−

− Ga(x, x1)R1,σ2+1

(
φin(y) |φin(x1),L⊗σ2

int

)}
φ(x1)

p−2−i
σ3

= (p− 1)i

∫

M

dgx1 {Gr(x, x1)Gr(x1, y)−Ga(x, x1)Ga(x1, y)}φ(x1)p−2σ−1 +

+

∫

M2

dgx1dgx2
∑

P

σi=σ−2

p−2
∑

i,j=0

φ(x1)
i
σ1
φ(x2)

j
σ2

(−i)σ3

σ3!
×

×
{
Gr(x, x1)R1,σ3+1

(
φin(x1) |φin(x2),L⊗σ3

int

)
Gr(x2, y) −

− Ga(x, x1)R1,σ3+1

(
φin(x2) |φin(x1),L⊗σ3

int

)
Ga(x2, y)

}
φ(x2)

p−2−j
σ4

φ(x1)
p−2−i
σ5

,

where the first summand of the last line corresponds to the case σ2 = 0 in the second line.
For IIσ and IIIσ, we again need (26), (27) and, furthermore, the general commutator identity





n∏

i=1

Ai,

m∏

j=1

Bj



 =

n−1∑

k=1

m−1∑

l=1

k−1∏

i=1

Ai

l−1∏

j=1

Bj[Ak, Bl]

m∏

j=l+1

Bj

n∏

i=k+1

Ai

=

n−1∑

k=1

m−1∑

l=1

l−1∏

j=1

Bj

k−1∏

i=1

Ai[Ak, Bl]

n∏

i=k+1

Ai

m∏

j=l+1

Bj, (28)

to obtain
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IIσ =

∫

M

dgx1
[
φ(x), φ(x1)

p−1
]

σ−1
Gr(x1, y)

=

∫

M

dgx2
∑

P

σi=σ−1

p−2
∑

i=0

φ(x2)
j
σ1

[φ(x), φ(x2)]σ2
φ(x2)

p−2−j
σ3

Gr(x2, y)

=

∫

M

dgx2
∑

P

σi=σ−1

p−2
∑

i=0

φ(x2)
j
σ1

(−i)σ2

σ2!

{
R1,σ2+1(φ

in(x) |φin(x2),L⊗σ2
int ) −

− R1,σ2+1(φ
in(x2) |φin(x),L⊗σ2

int )
}
φ(x2)

p−2−j
σ3

Gr(x2, y)

= (p − 1)i

∫

M

dgx1 {Gr(x, x1)−Ga(x, x1)}Gr(x1, y)φ(x1)
p−1
σ−1 +

+

∫

M2

dgx1dgx2
∑

P

σi=σ−1

p−2
∑

i,j=0

φ(x1)
i
σ1
φ(x2)

j
σ2

(−i)σ3

σ3!
×

×
{
Gr(x, x1)R1,σ3+1(φ

in(x1) |φin(x2),L⊗σ3
int ) −

− Ga(x, x1)R1,σ3+1(φ
in(x2) |φin(x1),L⊗σ3

int )
}
φ(x2)

p−2−j
σ4

φ(x1)
p−2−i
σ5

Gr(x2, y),

IIIσ =

∫

M

dgx1Ga(x, x1)
[
φ(x1)

p−1, φ(y)
]

σ−1

=

∫

M

dgx1Ga(x, x1)
∑

P

σi=σ−1

p−2
∑

i=0

φ(x1)
j
σ1

[φ(x1), φ(y)]σ2
φ(x1)

p−2−j
σ3

=

∫

M

dgx1Ga(x, x1)
∑

P

σi=σ−1

p−2
∑

i=0

φ(x1)
j
σ1

(−i)σ2

σ2!

{
R1,σ2+1(φ

in(x1) |φin(y),L⊗σ2
int ) −

− R1,σ2+1(φ
in(y) |φin(x1),L⊗σ2

int )
}
φ(x1)

p−2−j
σ3

= (p− 1)i

∫

M

dgx1Ga(x, x1) {Gr(x1, y)−Ga(x1, y)} φ(x1)p−1σ−1 +

+

∫

M2

dgx1dgx2Ga(x, x1)
∑

P

σi=σ−1

p−2
∑

i,j=0

φ(x1)
i
σ1
φ(x2)

j
σ2

(−i)σ3

σ3!
×

×
{
R1,σ3+1(φ

in(x1) |φin(x2),L⊗σ3
int )Gr(x2, y) −

− R1,σ3+1(φ
in(x2) |φin(x1),L⊗σ3

int )Ga(x2, y)
}
φ(x2)

p−2−j
σ4

φ(x1)
p−2−i
σ5

.

Finally, using (28), the computation of IVσ yields
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Iσ   =

IIσ   =

IIIσ   =

IVσ   =

FIG. 7 The partial results for σ > 1

IVσ =

∫

M2

dgx1dgx2 Ga(x, x1)
[
φ(x1)

p−1, φ(x2)
p−2
]

σ−2
Gr(x2, y)

=

∫

M2

dgx1dgx2 Ga(x, x1)
∑

P

σi=σ−2

p−2
∑

i,j=0

φ(x1)
i
σ1
φ(x2)

j
σ2

×

× [φ(x1), φ(x2)]σ3
φ(x2)

p−2−j
σ4

φ(x1)
p−2−i
σ5

Gr(x2, y)

=

∫

M2

dgx1dgx2 Ga(x, x1)
∑

P

σi=σ−2

p−2
∑

i,j=0

φ(x1)
i
σ1
φ(x2)

j
σ2

×

× (−i)σ3

σ3!

{
R1,σ3+1(φ

in(x1) |φin(x2),L⊗σ3
int ) −

− R1,σ3+1(φ
in(x2) |φin(x1),L⊗σ3

int )
}
φ(x2)

p−2−j
σ4

φ(x1)
p−2−i
σ5

Gr(x2, y).

We have subsumed the partial results graphically in figure 7, where the encircled double arrows
depict Gr-chains. It is straightforward to check the cancellations Iσ − IIσ − IIIσ + IVσ = 0. This
closes the proof of the ”out”-field CCR.

Non-quasifree representation One of the main claims of this article is that, on non-stationary space-
times, the outgoing field is in general in the GNS-representation of a state which is not quasifree.
The reason for this is the lack of both spectral conditions and energy-momentum conservation,
which would assure the vanishing of higher order truncated Wightman functions of the ”out”-field
in the stationary case.

To see this explicitely, let us consider as an example for a non-stationary spacetime R
d with

metric g(ǫ) := (1 + ǫh)η, where η is the Minkowski metric and h a C∞-function on M of compact
support. One then has dgx =

√

|g| dx = (1+ ǫh)d/2dx and such a spacetime is non-stationary since
the metric depends on ”time”.

By means of the methods described in section III (see [Hac07] for a detailed calculation), one
computes the truncated 4-point function of the ”out”-field to first order in −λ in φ4 theory on this
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spacetime as

〈Ω, φout(x1)φout(x2)φout(x3)φout(x4)Ω〉T1 = 12Im

∫

Rd

dy

4∏

l=1

D−g(ǫ)(xl, y) (1 + ǫh(y))
d
2 , (29)

where the D− bear the subscript g(ǫ) to emphasize that they depend on the metric via the Klein-
Gordon-equation. To calculate (29) up to first order in ǫ, one needs to expand (1+ ǫh)d/2 and D−g
in ǫ, where D−g (x, y) = 〈Ω, φing (y)φing (x)Ω〉 can be expanded in ǫ by expanding each of the two fields

φing separately via the free Klein-Gordon equation. Denoting the expansion of φing up to first order
in ǫ as

φing = φin0 + ǫφin1 +O(ǫ2),

we obtain the expansion of D−g to first order in ǫ as

D−g (x, y) = 〈Ω, φin0 (y)φin0 (x)Ω〉+ ǫ
(
〈Ω, φin1 (y)φin0 (x)Ω〉+ 〈Ω, φin0 (y)φin1 (x)Ω〉

)
+O(ǫ2)

=: D−0,0(x, y) + ǫ
(

D−0,1(x, y) +D−1,0(x, y)
)

+O(ǫ2).

To compute the single terms in the expansion of φing , one first evaluates the wave operator as

� = −|g|−
1
2 ∂bg

bc|g|
1
2∂c

= −ηbc∂b∂c + ǫ

[

−hηbc∂b∂c −
(
d

2
+ 1

)

ηbc (∂bh) ∂c

]

=: �0 + ǫ�1.

Inserting this into the Klein-Gordon equation (with minimal coupling) for φing , one obtains to zeroth
order in ǫ

(
�0 +m2

)
φin0 = 0,

i.e., the Klein-Gordon equation on flat spacetime, and to first order in ǫ

�1φ
in
0 +

(
�0 +m2

)
φin1 = 0

⇒
(
�0 +m2

)
φin1 =

[(
d

2
+ 1

)

ηbc (∂bh) ∂c + h�0

]

φin0

⇒ φin1 = Gr,0

[(
d

2
+ 1

)

ηbc (∂bh) ∂c − hm2

]

φin0 .

(30)

with Gr,0 denoting the retarded Green’s function on Minkowski spacetime.
The well-known expression for D− on flat spacetime is

D−0,0(x, y) =

∫

Rd−1

d~k

2ω~k
e−i

~k~x+iω~k
x0 ei

~k~y−iω~k
y0 , (31)

from which it is explicitly seen that the Fourier transform of D−0,0(x, y) w.r.t. x, respectively
x− y, has support in the negative mass shell and its Fourier transform w.r.t. y has support in the
positive mass shell, i.e., D−0,0(x, y) fulfils the spectral condition. From (30) it follows that D−1,0(x, y)

(D−0,1(x, y)) can be obtained by application of the operator Gr,0

[(
d
2 + 1

)
ηab (∂ah) ∂b − hm2

]
to the
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first (second) argument of D−0,0(x, y). Fourier transforming D−0,1(x, y) on Minkowski spacetime
w.r.t. y, one thus gets the Fourier transform of Gr,0 multiplied by the Fourier transform of (the
derivative of) h convoluted with the Fourier transform of (the derivative) of D−0,0. Since the latter

convolution smears up the mass shell spectrum of (the derivative of) D−0,0 and Gr,0 is known to have

off-shell spectrum, the Fourier transform of D−0,1(x, y) w.r.t. to y clearly has off-shell support. In

contrast, the Fourier transform of D−1,0(x, y) w.r.t. to y remains on-shell like the Fourier transform

of D−0,0(x, y).
With these considerations in mind, we can continue examining (29). An expansion up to first

order in ǫ yields a zeroth order term and three different first order terms, viz.,

Im

∫

Rd

dy

4∏

l=1

D−g(ǫ)(xl, y) (1 + ǫh(y))
d
2

= Im





∫

Rd

dy

4∏

l=1

D−0,0(xl, y) + ǫ




d

2

∫

Rd

4∏

l=1

D−0,0(xl, y)h(y)dy

+
∑

j

∫

Rd

dy D−0,1(xj , y)
∏

l 6=j

D−0,0(xl, y) +
∑

j

∫

Rd

dy D−1,0(xj , y)
∏

l 6=j

D−0,0(xl, y)







+O(ǫ2).

(32)

Upon Fourier transforming w.r.t. y, it is easily seen that the zeroth order term vanishes due
to energy-momentum conservation and the spectral support properties of D−0,0. Similarly, owing

to the spectral support properties of D−1,0, the last first order term in (32) also vanishes due to
energy-momentum conservation. However, the remaining two first order terms are in general non-
vanishing: regarding

∫

Rd

dy
4∏

l=1

D−0,0(xl, y)h(y),

we can see that it does not vanish in general, despite the spectral properties of D−0,0, as energy-
momentum conservation is violated due to h not having ”δ-support” in momentum space. In
contrast to this,

∫

Rd

dy D−1,0(xj, y)
∏

l 6=j

D−0,0(xl, y)

is non-vanishing because of the spectral properties of D−1,0, even if energy-momentum conserva-
tion holds. It might be possible to fine-tune the situation in such a way that the two above-
mentioned non-trivial contributions to 〈Ω, φout(x1)φout(x2)φout(x3)φout(x4)Ω〉T1 due to alleviated
spectral properties on the one hand and abolished energy-momentum conservation on the other
hand cancel each other, but in general this is certainly not the case.

To close this section, we remark that from the discussion of the above example it follows that
the metric g, and hence the curvature of spacetime, must show characteristic changes on a time
scale t / 1/(4m) to allow the violation of energy-momentum conservation (and presumably also
the deviation from the spectrum condition) to be big enough to assure a non-quasifree ”out”-state,
e.g., t / 7 × 10−6s for a pion with m ≈ 140MeV. This time scale is sufficiently shorter than the
period of nucleosynthesis at about 1 to 102 seconds after the Big Bang, such that these findings
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are not in contradiction with well established physical facts. It is however significantly longer than
the time of, e.g., electro-weak symmetry breaking, which happened at ≈ 10−12s such that it seems
highly reasonable that full curved spacetime QFT calculations are required to model the physics
of the very early universe.

VII. UNITARY TRANSFORMATIONS BETWEEN CCR REPRESENTATIONS

In the previous section we have seen how non-quasifree states (for free fields) naturally appear
in scattering theory on non-stationary curved spacetimes. If one is interested in a scattering picture
in terms of particles, one thus needs a way to calculate the particle content of a non-quasifree state,
i.e., a unitary transformation relating the GNS-representations of a non-quasifree and a quasifree
state, but of course the ability to calculate such a transformation is also interesting in its own
right. Hence, given a quasifree representation of the CCR with Fock-space F , in this section, we
calculate the particle content of non-quasifree representations that are unitarily equivalent to the
given quasifree one. To arrive at such a result, we shall use the language of Wightman functionals
and ⋆-product calculus, cf., appendix A for a short introduction and notational conventions.

To start, let ϕ(x) be the operator valued distribution fulfilling the Klein-Gordon equation and
the CCR that has been obtained via the GNS-construction from some Wightman functional (not
necessarily corresponding to a quasifree state)W ′ with GNS-Hilbert space HGNS and GNS-vacuum
state Ψ0 ∈ HGNS. Furthermore, let ξ(x) be the operator valued distribution obtained from a
quasifree Wightman functional W via the Fock construction given in section II with Ω ∈ F the
Fock vacuum. A relevant application is of course ϕ = φout and ξ = φin. We assume unitary
equivalence of both CCR representations in the following technical sense: let U : FGNS → F be
a unitary transformation such that Uϕ(f)U∗ = ξ(f) ∀f ∈ D(M) and let Ψ := UΨ0 ∈ F such
that Ψ is in a dense core of some closure of the Fock creation and annihilation operators a(ψ) and
a†(χ), ψ ∈ H+, χ ∈ H−. It is furthermore assumed that, for any vector Υ in this core, the vectors
a♯(ψ1) · · · a♯(ψn)Υ are jointly continuous in the ψl w.r.t. the (H±)⊗n and the F topologies, where
a♯ stands for either a or a†.

To determine U , it is enough to calculate Ψ since Uϕ(f1) · · ·ϕ(fn)Ψ0 = ξ(f1) · · · ξ(fn)Ψ, fl ∈
D(M), can be calculated using (7), once the n-particle components of Ψ are know. Being an
element of F , Ψ can be parameterized as

Ψ =
∞∑

n=0

∫

Mn

dgx1 · · · dgxn fn(x1, . . . , xn)ξ(x1) · · · ξ(xn),

where the complex functions fn are symmetric under permutation of arguments, purely positive fre-
quency, i.e., S⊗n− fn = 0, and fulfil a normalization condition, viz., ‖Ψ 12F =

∑∞
n=0 ‖S⊗nfn‖2(H+)⊗n

= 1. Furthermore, the fn are taken from some function space s.t. fn 7→ S⊗nfn ∈ (H+)⊗̂n is
onto, where ⊗̂ denotes the symmetric tensor product. Given W and W ′, computing U is hence
equivalent to determining fn, or rather S⊗n+ fn, since the mapping S+ is not one-to-one and only
the solution part of fn is ”visible” in Ψ.

Let f = (f0, f1, f2, . . .), then obviously

W ′ =
→
Df∗

←
Df W =

∞∑

n,j=0

→
Df∗

n

←
Dfj W, (33)

where the convergence of the infinite sums on the right hand side follows from the assumption that

Ψ is in a core for the closed creation and annihilation operators. The operators
↔
Df=

∑∞
n=0

↔
Dfn act
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by inserting fn into the first/last n arguments of a Wightman function, cf., appendix A. Application
of the relation (A2) derived in that appendix and ⋆-multiplication withW ⋆−1 = exp⋆(−WT ) yields

exp⋆(W
′T −W T ) =

∞∑

m,j=0

∫

Mn+j

dgx1 · · · dgxn+j

∑

I∈P({1,...,n+j}
I={I1,...,Ik}, k≥1

⋆ k
l=1

↔
DIl W

T ×

× f∗n(x1, . . . , xn)fj(xn+1, . . . , xn+j). (34)

Both W
′
and W induce CCR representations. By [GoTa03, Lemma 5.2], this is equivalent to

ImW
′T
2 = 1

2D and W
′T
n (x1, . . . , xn) being symmetric under permutation of arguments – and hence

real by the Hermiticity of W ′ – for n ≥ 3. This automatically holds for the quasifree state W
since W T

2 = D+ and W T
n (x1, . . . , xn) = 0 for n ≥ 3. Hence, the left hand side of (34) is real and

symmetric. We note that

↔
DIl W

T = 0 for |Il| > 3
↔
DIl W

T = (D+(xj1 , xj2), 0, . . .) for Il = {j1, j2}, j1 < j2
→
DIl W

T = (0,D+(xj, · ), 0, . . .) for Il = {j}
←
DIl W

T = (0,D+( · , xj), 0, . . .) for Il = {j}







. (35)

As a result, only the partitions that consist of sets with one or two elements only contribute in
(34). Given such a partition I = {I1, . . . , Il}, let S := ∪l:|Il|=1Il and Î ∈ P ′({1, . . . , n + j} \ S})
the remainder, which is a pairing partition. Employing this notation, we can can compute

∑

I∈P({1,...,n+j}
I={I1,...,Ik}, k≥1

⋆ k
l=1

↔
DIl W

T =
∑

S⊆{1,...,n+j}

Î∈P ′({1,...,n+m}\S)

Î={I1,...,I(n+j−|S|)/2}

Il={il,jl}, il<jl

(n+j−|S|)/2
∏

l=1

D+(xil , xjl) ⋆j∈S
↔
Dxj W

T . (36)

Clearly, (⋆j∈S
↔
Dxj W

T )s = 0 if s 6= |S| and for s = |S|, S = {j1, . . . , js}, j1 < j2 < . . . < jq ≤ n <
jq+1 < . . . < js,

(

⋆j∈S
↔
Dxj W

T
)

s
(y1, . . . , ys) =

∑

π∈Ss

q
∏

l=1

D+(xjl , yπ(l))

s∏

l=q+1

D−(xjl , yπ(l)), (37)

where Sn denotes the permutations of {1, . . . , n}. Inserting (36) and (37) into (35) yields

exp⋆

(

W
′T −W T

)

s
(y1, . . . , ys) =

=
∑

r≥s
r−s even

r∑

n=0

∫

Mr

dgx1 · · · dgxr
∑

{j1,...,js}⊆{1,...,r}

j1<···<jq≤n<

<jq+1<···<js

∑

Î∈P ′({1,...,n+m}\S)

Î={I1,...,I(r−s)/2}

Il={il,kl}, il<kl

∑

π∈Ss

× (38)

×
(r−s)/2
∏

l=1

D+(xil , xkl)

q
∏

l=1

D+(xjl , yπ(l))
s∏

l=q+1

D−(xjl , yπ(l)) ×

× f∗n(x1, . . . , xn)fr−n(xn+1, . . . , xr).
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We note that
∫

M dgxD
±(x, y)f(x) = 0 if f is positive/negative frequency, cf., (7). Furthermore,

by our assumptions, f∗n is purely negative frequency and fn−r purely positive frequency. One can
thus replace all propagators D± in (38) by the real symmetric function D̃ = D+ + D− since the
integral over the added propagator D∓ with f∗n or fn−r always vanishes.

Having done so, we can commute the sums over n and over S on the right hand side of (38),
such that the integral contains the function

z̃r(x1, . . . , xr) :=
r∑

n=0

f∗n(x1, . . . , xn)fn−r(xn+1, . . . , xr). (39)

Next, we would like to symmetrise this expression, viz.,

zr(x1, . . . , xr) := (r!)−1
∑

π∈Sr

z̃r(xπ(1), . . . , xπ(r)),

a procedure which also makes zr a real function, and to replace z̃r by zr. To see that this is well-
defined, let 1 ≤ j < r. We have to show that z̃r is integrated w.r.t. a function which is symmetric
in xj and xj+1. Given one term in the combinatorial sum, suppose that j, j + 1 ∈ S. Then,
symmetry follows from summation over Ss. Next, suppose that either j or j + 1 is a member of a
pairing and the other index is in S. Then, there exists another contribution to the combinatorial
sum where j and j+1 are exchanged showing symmetry for this case. Let finally j and j +1 both
be members a pairing. If the pairings are different, the argument just given applies. If this is one
and the same pairing, then symmetry follows from the symmetry of D̃.

Taking into account that the sum over Ss yields a factor s!, the sum over S a factor
(r
s

)
and

the sum over pairings a factor 2s−r(r − s)!/((r − s)/2)!, one obtains a combinatorial factor cs,r by
multiplication of these contributions. These considerations finally lead to

exp⋆

(

W
′T −WT

)

s
(y1, . . . , ys) =

∞∑

r=s
r−s even

cs,r

∫

Mr

dgx1 · · · dgxr
(r−s)/2
∏

l=1

D̃(x2l−1, x2l) × (40)

×
r∏

l=r−s+1

D̃(xl, yl−r+s) zr(x1, . . . , xr).

To fulfil our task to compute U , we need to solve this system of equations for the solution part
of zr, i.e., for S⊗rzr = D̃⊗rzr. To this end, to obtain a better understanding of the structure
of (40), we introduce some additional graphical notation: we denote the s-point function of the
functional on the left hand side by a white circle with s legs and the function zr by a shaded circle
with r amputated legs. The integrations with the propagators D̃ then either add free legs that
carry two arrows with opposite direction or a line of that type that goes back into the shaded circle.
S⊗rzr thus corresponds to a shaded circle with r legs with double arrows of opposite direction.
This way, one obtains two decoupled systems, one for s even and one for s odd, cf., figure VII for
the even system, which makes the upper triangular structure visible. In the following, we focus
on solving the even system, the odd system can be solved alike. In φp-theories with p even, the
odd system is identically zero on the left hand side and hence gives S⊗rzr = 0 for odd r. We note
that the empty circles are solutions of the Klein-Gordon equation in each of their legs. By the
demand of continuity of the creation/annihilation operators in ψ and χ when repeatedly applied

to Ψ, Riesz’ lemma implies that the empty circle with s legs is in H⊗̂s. Let {hj}j∈N be an ONS
in H. Taking the scalar product with hj in the first two legs and then summing over j on the
right hand side induces an opposite double arrow line that goes back into the shaded circle, since
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FIG. 8 The triangular system of equations for the functions S⊗rzr
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FIG. 9 Solution to the triangular system

(D̃f, D̃h) = D̃(f, h) for f, h real. On the left hand side, we denote this contraction operation by a
arrow-less line going back into the white circle.

The unique solution of the even system may hence be written down in graphical form as in
figure 9. The solution exists by assumption of unitary equivalence, thus, all infinite sums involved
in the inverse system converge, which follows from limn→∞Π(n)Ψ = Ψ in F , where Π(n) projects
on states with at most n particles, and the fact that for a state with at most n particles we have a
finite system of equations. The constants ds,r := (C−1)s,r are defined as the entries of the inverse
of the upper triangular matrix C := (cs,r)s,r∈2N.

Let us recall that the functions zr have been a convenient intermediate tool, and that our
ultimate aim is to determine the solution part of the (purely positive frequency) functions fn.
Hence, it remains to reconstruct S⊗nfn = S+

⊗nfn from the functions S⊗rzr. To achieve this, let
us first suppose that z0 = |f0|2 6= 0. As the state Ψ is only determined up to a phase, one may



Non-quasifree states on curved spacetimes 26

assume f0 > 0. Then, by (39),

S⊗r+ zr(x1, . . . , xr) = f0S⊗r+ fr(x1, . . . , xr) , for r ∈ N.

If S⊗rzr = 0 for r < r0 and r0 is maximal, r0 must be even. It follows that S⊗nfn = 0 for n <

r0/2. Hence, there exist y1, . . . , yr0/2 ∈M such that S⊗
r0
2

− ⊗ S⊗
r0
2

+ zr0(y1, . . . , yr0/2, y1, . . . , yr0/2) =

|S⊗
r0
2 fr0/2(y1, . . . , yr0/2)|2 > 0. We may fix the phase such that S⊗

r0
2 fr0/2(y1, . . . , yr0/2) > 0 and

we obtain the solution part of fn, n ≥ r0/2, via

S⊗
r0
2

− ⊗ S⊗n+ z r0
2
+n(y1, . . . , yr0/2, x1, . . . , xn) = S⊗

r0
2

+ fr0/2(y1, . . . , yr0/2)S⊗n+ fn(x1, . . . , xn),

which closes the looked-for computation of U .
To obtain a complete description of the scattering process on non-stationary spacetimes in

terms of particles, we have to assume that the spacetime under consideration is asymptotically
flat3 in the remote future and past, such that unique preferred quasifree states are available both
for the incoming and the outgoing field. Then, there are associated Fock spaces, say Fin = F and
Fout, and a combination of the scattering theory described in the previous sections and the results
obtained in this section gives the n-particle amplitudes fn of the scattered incoming quasifree state
in the particle picture of the remote future. If one wants to determine particle production from
an incoming multi-particle state, one can apply suitably smeared incoming fields φin(x) to the
incoming vacuum, then calculate the outgoing representation of the CCR, and then conclude as
above.

VIII. CONCLUSIONS AND OUTLOOK

In the this work, we have seen that non-quasifree states for free fields appear naturally in
scattering theory on non-stationary curved spacetimes. This result is well in line with recent works
[HoRu02, San09] which show that a certain class of non-quasifree states, namely, the ones for which
the truncated 2-point function is a distribution with the singularity structure of the Minkowski
vacuum state and the other truncated n-point functions are smooth, is the natural class of states
in perturbative quantum field theory on curved spacetimes. In the light of this, it seems somewhat
unnatural and unnecessary to restrict oneself to quasifree states, although some important technical
results are only available for quasifree states, see, e.g., [LüRo90, Ver92].

Therefore, and also because there are situations where one is interested in the particle inter-
pretation of non-quasifree states, we develop a method to calculate, provided it exists, a unitary
transformation relating a non-quasifree state to a quasifree one. Heuristically, the form of the
result could have been anticipated: as we assume unitary equivalence, the GNS-vacuum associated
to the non-quasifree state corresponds to a state in the Fock space related to the quasifree state
under consideration, and the task is to compute the n-particle components fn of this state. Since
we assume both states to fulfil the same commutation relations, they only differ in the real and
symmetric part of their 2-point function and the higher order truncated n-point functions, which
are real and symmetric in the non-quasifree case and vanishing in the quasifree case. It is thus not
surprising that our result (40) relates the truncated n-point functions of the non-quasifree state

3 Here, asymptotically flat is meant in a rather loose sense, i.e., we assume that both in the remote future and in the
remote past of (M, g), there is an open, non-empty, globally hyperbolic subset of (M,g) which contains a Cauchy
surface of (M, g) and is isometric to such a subset of Minkowski spacetime. In this setting, it is straightforward
to define preferred states as the pull-backs of the ones in Minkowski space. However, even within the more strict
definition of asymptotically flat spacetimes, one can obtain preferred states, as devised in [DMP06].
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to an expression in the symmetric part of the 2-point function of the quasifree state smeared with
a real and symmetrised version of the fn. The non-trivial part of our result are, however, the
combinatorics involved, and we have managed to tame them by encoding them conveniently into
⋆-calculus on the dual of the Borchers-Uhlmann algebra.

The method of computing a unitary transformation relating the GNS-representations of non-
quasifree and quasifree states developed in this work is well-suited for general treatments of the
topic, but not for explicit numerical calculations. A different method to compute such a transforma-
tion, which is based on [CaGl69], works for finite-dimensional systems, i.e., ”mode-by-mode”, and
is therefore better suited for numerical computations, has been developed and applied in [Hac07].
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APPENDIX A: ⋆ -calculus

In this appendix, we present some useful applications of ⋆-calculus and the related notation we
have used in the main body of this work. ⋆-calculus goes back to Borchers [Bor75] and Ruelle
[Rue69]; for ⋆-products in algebraic quantum field theory, cf., [BDF09] and the references cited
therein, for ⋆-calculus for quantum fields in the context of Hopf algebras see, e.g., Mestre and Oeckl
[MeOe06].

Let D be the Borchers-Uhlmann algebra of the Hermitian scalar field with multiplication ⊗
and unit 1 : = (1, 0, . . .), i.e., the non-commutative, unital, involutive, topological, free tensor
algebra over the space of complex valued test functions D(M). If f ∈ D is a monomial, f =
(0, . . . , 0, fn, 0, . . .) then we identify f with fn ∈ D(Mn). We also note that the involution ∗
acts via f∗n(x1, . . . , xn) = fn(xn, . . . , x1). For fj ∈ D(M) and N ⊂ N finite, we define ⊗j∈Nfj
(⊗∅fj := 1) such that the tensor product preserves the natural order of N . A co-commutative
co-product ∆ : D → D ⊗D can then be defined by

∆(⊗n∈Nfn) =
∑

S⊆N

(⊗n∈Sfn)⊗
(
⊗n∈N\Sfn

)
, (A1)

linearity and continuity. Note that, in (A1), the tensor products in the parantheses are multiplica-
tion in D, whereas the tensor product between the paratheses is the one in D ⊗ D. Furthermore,
the projection ε((f0, f1, . . .)) = f0 defines a co-unit.

Let D′ = {(W0,W1, . . .) :W0 ∈ C,Wn ∈ D′(M×n), n ≥ 1} be the topological dual of D, i.e., the
space of Wightman functionals. In many applications, a Wightman functional will be given by the

sequence of n-point (truncated) VEVs, viz., W
(T )
n (x1, . . . , xn) := 〈Ω, ϕ(x1) · · ·ϕ(xn)Ω〉(T ) for some

operator valued distribution ϕ. The co-product on D naturally leads to a product, ⋆, which can
be defined as

W ⋆ V := (W ⊗ V ) ◦∆,
making D′ a commutative algebra with unit 1 = ε.

From (A1) we get

(W ⋆ V )|N |(⊗n∈Nfn) =
∑

S⊆N

W|S|(⊗n∈Sfn)V|N |−|S|(⊗n∈N\Sfn)
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which shows the coincidence of ⋆ with Borchers’ s-product.
It is easy to see that (W ⋆n)m = 0 for n > m and W ∈ D′1 := {V ∈ D′ |V 0 = 0}. Hence,

arbitrary ⋆-power series converge on D′1. In particular, the ⋆-exponential exp⋆ : D′1 → 1 ⊕ D′1
and ⋆-logarithm log⋆ : 1 ⊕ D′1 → D′1 are well defined through their power series exp⋆(W ) : =
∑∞

n=0W
⋆n/n! and log(W ) := −

∑∞
n=1(1 −W )⋆n/n. Furthermore, exp⋆ and log⋆ are inverses of

one another and the usual relations hold, i.e., exp⋆(W + V ) = exp⋆W ⋆ exp⋆ V , exp⋆(0) = 1 and
log⋆(W ⋆ V ) = log⋆W + log⋆ V . For log⋆W , we also use the notation W T . In fact, if W denotes
the collection of Wightman functions, (W T )n is the truncated n-point function defined in equation
(3) above, cf., [Bor75].

Let f ∈ D(M), and
→
m (f),

←
m (f) : D → D be the left and right multiplication with f in

D. We then define left and right derivatives
→
Df and

←
Df on D′ via

→
Df W := W◦ →m (f) and

←
Df W := W◦ ←m (f). In fact, it is easily verified that a Leibniz rule holds for these derivatives
(which of course motivates this nomenclature), viz.,

↔
Df (W ⋆ V ) = (

↔
Df W ) ⋆ V +W ⋆ (

↔
Df V )

where
↔
Df stands either for

→
Df or for

←
Df . For a formal power series h(t), this implies that

↔
Df

h⋆(W ) = (h′)⋆(W )⋆
↔
Df W , where f⋆ denotes the formal ⋆-power series one obtains from the formal

power series f by replacing the normal product with the ⋆-product and f ′(t) := f (1)(t) := df/dt.

For notational convenience, we shall sometimes write
↔
Df=:

∫

M dgx f(x)
↔
Dx.

Higher order derivative operators
↔
Df W := W◦ ↔m (f), f ∈ D, can also be written as

↔
Df=

∑∞
n=0

↔
Dfn , and we write

↔
Dfn=:

∫

Mn

dgx1 · · · dgxn f(x1, . . . xn)
↔
Dx1 · · ·

↔
Dxn .

By induction, it is easy to see that, for fn and fj symmetric, the following chain rule holds

→
Dfn

←
Dfj h⋆(W ) =

n+j
∑

k=1

(h(k))⋆(W ) ⋆

∫

Mn+j

dgx1 · · · dgxn+j

∑

I∈P({1,...,n+j})
I={I1,...,Ik}

⋆ k
l=1

↔
DIl W ×

× fn(x1, . . . , xn)fj(xn+1, . . . , xn+j),

where P(N) is the set of partitions of N and
↔
DIl : =

→
Dxj1

· · ·
→
Dxjq

←
Dxs1

· · ·
←
Dxsr

for Il =
{j1, . . . , jq, s1, . . . , sr}, 1 ≤ j1 < j2 < . . . < jq ≤ n < s1 < s2 < . . . < sr ≤ n+ j.

For h(t) = exp(t), WT ∈ D′1, and W = exp⋆(W
T ), we finally obtain

→
Dfn

←
Dfj W = W ⋆

∫

M×(n+j)

dgx1 · · · dgxn+j

∑

I∈P({1,...,n+j}
I={I1,...,Ik},k≥1

⋆ k
l=1

↔
DIl W

T ×

× fn(x1, . . . , xn)fj(xn+1, . . . , xn+j), (A2)

which closes this appendix.

APPENDIX B: Identities involving retarded products

In this appendix, we would like to prove some identities we have used both implicitely and
explicitely in the proof of the CCR of the outgoing field in the main body of this work.
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First, we need to show that the σ-th order of the j-th power of the interacting field is, like in
the case of the interacting field itself, the result of the σ-fold retarded action of Lint on the j-th
power of the ”in”-field. For this purpose, it is convenient to introduce a shorthand notation for
the multiple application of the formal differential operator D(x), viz.,

DnA(x) :=

∫

Mn

dgXn,1Dn(Xn,1)A(x)1Xn,1�x :=

∫

Mn

n∏

i=1

dgxi D(xn) · · · D(x1)A(x)1xn�···�x1�x,

where Xk,l denotes the causally ordered k−l+1-tuple (xk, xk−1, . . . , xl)1xk�···�xl
and A(x) is an ar-

bitrary expression in terms of ”in”-fields. Later, we will also need tuples of spacetime points devoid

of mutual causal relations. To this end, we will denote by X
6 �
k,l the k− l+1-tuple (xk, xk−1, . . . , xl).

With this notation, we have to show that

φ(x)jσ :=
∑

P

σi=σ

j
∏

i=1

φ(x)σi = Dσφin(x)j .

On can achieve this by an induction similar to the one employed to show that φ(x)σ defined via
the Yang-Feldman equation is equal to Dσφin(x). The case σ = 0 is clear. Let us assume the result
holds for σ and show how its validity for σ + 1 follows. We can compute

Dσ+1φin(x)j = DDσφin(x)j

=

∫

M

dgxσ+1 D(xσ+1)
∑

P

σi=σ

j
∏

i=1





∫

Mσi

dgXσi,1Dσi(Xσi,1)φ
in(x)1xσ+1�Xσi,1

�x





=

∫

M

dgxσ+1

∑

P

σi=σ

j
∑

k=1

k−1∏

i=1





∫

Mσi

dgXσi,1Dσi(Xσi,1)φ
in(x)1xσ+1�Xσi,1

�x



×

×
∫

Mσk

dgXσk,1Dσk+1(xσ+1 ×Xσk ,1)φ
in(x)1xσ+1�Xσk,1�x× (B1)

×
j
∏

i=k+1





∫

Mσi

dgXσi,1Dσi(Xσi,1)φ
in(x)1xσ+1�Xσi,1

�x



 .

In comparison, we know that φ(x)jσ+1 equals

∑

P

σi=σ+1

j
∏

i=1





∫

Mσi

dgXσi,1Dσi(Xσi,1)φ
in(x)1Xσi,1

�x



 , (B2)

notably, the appearing j integrands in every summand of
∑

P

σi=σ+1 are mutually independent,
while the corresponding integrands in (B1) depend on one another, namely, only one of them
depends on xσ+1 explicitely, but all others are constrained such that their integration domains
are causally later than xσ+1. If we can show that all combinatorially possible constraints appear
exactly once, then their sum yields the independent integrands of (B2). To achieve this, let us
pick an arbitrary but fixed summand of

∑
P

σi=σ+1, say, (σ1, . . . , σj) = (n1, . . . , nj). Apart from
integration domain restrictions, the j integrands of this summand are the same as the ones of all
summands of

∑
P

σi=σ

∑j
k=1 in (B1) with (σ1, . . . , σk+1, . . . , σj) = (n1, . . . , nj). If we assume that

m entries of (n1, . . . , nj) are non-zero, then there are exactly m summands of the latter type due to
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the exhaustion of the sum
∑

P

σi=σ and the Leibniz rule for D(xσ+1). The integrands of these m
summands are such that it is always a different of the j integrands that explicitely depends on xσ+1.
Therefore, all possibilities of the event ”One of the j integrands involves an integration variable
which is causally earlier than the integration domains of all other j−1 integrands.” appear, and their
sum yields exactly the summand of (B2) under consideration; this implies Dσ+1φin(x)j = φ(x)jσ+1.

In the following, we can use this result to prove the looked-for recursive relations

(−i)n
n!

R1,n+1

(
φin(x) |φin(y),L⊗nint

)

=

∫

M

dgx1 Gr(x, x1)
∑

P

σi=n−1

p−2
∑

j=0

φ(x1)
j
σ1

(−i)σ2

σ2!
R1,σ2+1

(
φin(x1) |φin(y),L⊗σ2

int

)
φp−2−jσ3

(x1) (B3)

=

∫

M

dgx1
∑

P

σi=n−1

p−2
∑

j=0

φ(x1)
j
σ1

(−i)σ2

σ2!
R1,σ2+1

(
φin(x) |φin(x1),L⊗σ2

int

)
φ(x1)

p−2−j
σ3

Gr(x1, y). (B4)

To this effect, let us define another formal differential operator δ(x) via

δ(y)A(x) := D( · , y) dA(x)
dφin( · ) := i

[
φin(y), A(x)

]
,

where A(x) is again an arbitrary expression in terms of incoming fields and the empty argument
( · ) denotes that the argument of the ”in”-field the differential operators currently acts upon in a
Leibniz rule-summand has to be inserted in that slot.

We can now proceed to prove (B3) by induction. In case n = 1, one can straightforwardly
compute that both expressions equal

(p − 1)i

∫

M

dgx1 Gr(x, x1)Gr(x1, y)φ(x1)
p−2.

Assuming that the wished-for equality holds for n, we can analyse the case n+ 1, viz.,

(−i)n+1

n!
R1,n+2

(
φin(x) |φin(y),L⊗n+1

int

)
=

= i

∫

Mn+1

n+1∏

i=1

dgxi

n+1∑

k=1

(

Dn+1−k(Xn+1,k+1)δ(y)Dk(Xk,1)φ
in(x)1Xn+1,k+1�y�Xk,1�x

)

= i

∫

Mn+1

n+1∏

i=1

dgxi D(xn+1)
n∑

k=1

(

Dn−k(Xn,k+1)δ(y)Dk(Xk,1)φ
in(x)1xn+1�Xn,k+1�y�Xk,1�x

)

+

+ iδ(y)

∫

Mn+1

dgXn+1,1 Dn+1(Xn+1,1)φ
in(x)1y�Xn+1,1�x

= i

∫

Mn+1

n+1∏

i=1

dgyi D(xn+1)
(−i)n+1

n!
R1,n+1

(

φin(x) |φin(y),L⊗nint (X
6 �
n,1)
)

1
xn+1�X

6 �
n,1 ×y�x

+

+ iδ(y)

∫

Mn+1

dgXn+1,1 Gr(x, x1)Dn(Xn+1,2)φ
in(x1)

p−11y�Xn+1,2�x1�x.
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The remaining steps are cumbersome but elementary. To write them down at this point, we
would have to introduce even more abbreviating notation which is necessary to avoid loosing
the overview, we thus prefer to rather sketch them briefly: the next step would be to insert the
induction hypothesis in the first term of the last line of the above equation and to rewrite the
resulting retarded product of lower order by means of the formal differential operators D and
δ. Employing the Leibniz rule for D and the combinatorial considerations regarding different
possibilities to distribute causal relations among the factors of a product we have already used
at the beginning of this appendix, one can show that the two terms in the last line of the above
equation indeed add up to

∫

M

dgx1 Gr(x, x1)
∑

P

σi=n

p−2
∑

j=0

φ(x1)
j
σ1

(−i)σ2

σ2!
R1,σ2+1

(
φin(x1) |φin(y),L⊗σ2

int

)
φ(x1)

p−2−j
σ3

,

which proves the first of the two looked-for recursion relations for (−i)n

n! R1,n+1

(
φin(x) |φin(y),L⊗nint

)
.

To prove the second one (B4), we can again perform an induction by order. The case n = 1 can
be validated straighforwardly and for n+ 1 a computation yields like in the preceding proof

(−i)n+1

n!
R1,n+2

(
φin(x) |φin(y),L⊗n+1

int

)
=

= i

∫

Mn+1

n+1∏

i=1

dgxi D(xn+1)
n∑

k=1

(

Dn−k(Xn,k+1)δ(y)Dk(Xk,1)φ
in(x)1xn+1�Xn,k+1�y�Xk,1�x

)

+

+ iδ(y)

∫

Mn+1

dgXn+1,1 Dn+1(Xn+1,1)φ
in(x)1y�Xn+1,1�x.

Employing the by now multiply used combinatorial considerations, one can show that the first
summand in the last line equals

∫

M

dgx1
∑

P

σi=n

p−2
∑

j=0

φ(x1)
j
σ1

(−i)σ2

σ2!
R1,σ2+1

(
φin(x) |φin(x1),L⊗σ2

int

)
φ(x1)

p−2−j
σ3

Gr(x1, y)

up to some missing combinatorial possibilities. To show that the second summand in the last line
accounts for exactly these possibilities, one has to be able to ”extract” a Gr( · , y) from it. This
can be achieved by the Leibniz rule for δ. To wit, every D in δ(y)Dn+1(Xn+1,1)φ

in(x) involves a
commutator with Lint = (φin)p/p, such that the application of δ(y) to Dn+1(Xn+1,1)φ

in(x) yields a
sum over terms without δ(y) but with one D replaced by a commutator with δ(y)Lint, which equals
Gr( · , y)φin( · )p−1 due to the enforced causal relations of the arguments. Further elementary steps
then lead to the wished-for conclusion.
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[LüRo90] C. Lüders and J. E. Roberts, Local quasiequivalence and adiabatic vacuum states, Commun.

Math. Phys. 134 (1990) 29.
[MeOe06] A. Mestre, R. Oeckl, Combinatorics of n-point functions via Hopf algebras in quantum field

theory, J. Math. Phys. 47 (2006), 052301, math-ph/0505066.
[Ost84] A. Ostendorf, Feynman rules for Wightman functions, Ann. Inst. H. Poincare 40 No. 3, 273–290

(1984).
[PaWu81] G. Parisi, Wu Y.-S., Perturbation theory without gauge fixing, Sci. Sinica 24 No. 4, 483–496

(1981).
[Rue69] D. Ruelle, Statistical mechanics: rigorous results, Benjamin, Massachusets 1969.
[San09] K. Sanders, Equivalence of the (generalised) Hadamard and microlocal spectrum condition for

(generalised) free fields in curved spacetime, arXiv:0903.1021 [math-ph].
[Ste71] O. Steinmann, Perturbation expansions in axiomatic field theory, Lecture Notes in Physics 11,

Berlin-Heidelberg-New York: Springer- Verlag (1971).

http://arxiv.org/abs/0901.2038
http://arxiv.org/abs/gr-qc/0506069
http://arxiv.org/abs/hep-th/0211242
http://arxiv.org/abs/hep-th/0403213
http://arxiv.org/abs/math-ph/0505066
http://arxiv.org/abs/0903.1021


Non-quasifree states on curved spacetimes 33

[Ste93] O. Steinmann, Perturbation theory for Wightman functions, Commun. Math. Phys. 152, 627–645
(1993).

[Ste00] O. Steinmann, Perturbative quantum electrodynamics and axiomatic field theory, Springer Verlag,
Berlin/Heidelberg/New York, 2000.

[Ver92] R. Verch, Local definiteness, primarity and quasiequivalence of quasifree Hadamard quantum states
in curved space-time, Commun. Math. Phys. 160 (1994) 507.

[Wa79] R. M. Wald, Existence Of The S Matrix In Quantum Field Theory In Curved Space-Time, Annals
Phys. 118 (1979) 490.

[Wal93] R.M. Wald, Quantum field theory in curved space-time and black hole thermodynamics, Chicago
Univ. Press 1993.

[YaFe50] C.N. Yang, D. Feldman, The S-Matrix in the Heisenberg representation, Phys. Rev. 79, 972-987
(1950).

Hanno Gottschalk

Institut für angewandte Mathematik
Rheinische Friedrich-Wilhelms-Universität Bonn
Wegelerstr. 6
D-51373 Bonn, Germany
e-mail: gottscha@wiener.iam.uni-bonn.de

Thomas-Paul Hack

II. Institut für Theoretische Physik
Universität Hamburg
Luruper Chaussee 149
22761 Hamburg, Germany
e-mail: thomas-paul.hack@desy.de


	Introduction
	Setting
	Calculation of the Wightman functions
	Properties of the Wightman functions: Invariance, Hermiticity, spectral property, positivity, and the asymptotic condition
	Invariance under orthochronous isometric diffeomorphisms
	Hermiticity
	Spectral condition
	Perturbative positivity
	Asymptotic condition



	Properties of the Wightman functions: Locality 
	Properties of the outgoing fields
	Klein-Gordon Equation
	Canonical commutation relations
	Non-quasifree representation



	Unitary transformations between CCR representations
	Conclusions and outlook
	Acknowledgments
	 -calculus
	Identities involving retarded products
	References

