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R-urrent six-point orrelators in AdS5 SupergravityJ. Bartels1, J. Kotanski1, A.-M. Mishler1, V. Shomerus21 II. Institute Theoretial Physis, Hamburg University, Germany2 DESY Theory Group, Hamburg, GermanyJanuary 12, 2010AbstratWithin the onjetured duality between N = 4 super Yang-Mills and Anti-deSitter stringtheory, the BFKL Pomeron of the gauge theory orresponds to the graviton mode of the dualstring. As a �rst step towards analyzing multigraviton exhange, we investigate R-urrent six-point funtions within the supergravity approximation. We ompute the analogue of di�rativesattering, and we analyze the triple Regge limit. In the supergravity approximation the triplegraviton vertex is found to vanish.
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Keywords: AdS/CFT, R-urrents, orrelators, DIS, MSYM1 IntrodutionSine many years, the high energy behavior of sattering amplitudes in quantum �eld theoryhas attrated interest, and extensive alulations have been performed in order to understand thestruture well beyond leading orders of perturbation theory. In this ontext, a speial role is playedby the Regge limit whih is losely onneted with unitarity of the theory.The AdS/CFT orrespondene [1, 2, 3, 4℄ has raised new hopes to determine the high energybehavior to all orders of the 't Hooft oupling �, inluding the strong oupling region, at least forthose gauge theories whih possess a dual string theory desription. The most prominent exampleof suh a duality relates 4D super Yang-Mills (SYM) theory with N = 4 supersymmetries to typeIIB string theory in the Anti-deSitter bakground AdS5 � S5. Through the orrespondene, thegauge theoreti BFKL Pomeron [5, 6, 7℄ gets related to graviton on the string theory side [8, 9℄.In [10℄ and [11℄ we have examined this orrespondene in some detail. Stimulated by QCD where�� sattering provides a safe framework for investigating the BFKL Pomeron, we have studiedthe elasti sattering of two R-urrents [12℄ in N = 4 SYM theory. On the weak oupling side, thehigh energy sattering amplitude fatorizes into the urrent impat fators and the BFKL Green'sfuntion. In [10℄ the R-urrent impat fator has been alulated to leading order. The BFKLGreen's funtion is known also in NLO [13, 14, 15℄. In the strong oupling region, the methodof alulating leading order orrelations funtion was de�ned in [3℄. It involves the summation ofWitten diagrams ontaining supergravity �elds whih live on the AdS5 spae. Our alulation ofthe high energy behavior of Witten diagrams has shown that the sattering amplitudes for in�nite't Hooft oupling � also ome as a onvolution of impat fators and an exhange propagator, justas in the weakly oupled theory. The onvolution is de�ned through an integration over the radialdiretion of the AdS5 geometry. As a result of our alulation, we have obtained an expressionfor the R-urrent impat fator at � ! 1. Corretions of the order 1=� require string theory1
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Figure 1: Unitarity orretions in QCD: (a) a fan diagram; (b) the six-point funtionalulations. As to the exhanged graviton, Witten diagrams in the Regge limit yield a power lawbehavior Agraviton � sj , with j = 2 being the spin of the graviton. The higher order orretionsto the graviton trajetory j = 2� 4 + �22p� +O( 1� ) ; (1.1)annot be derived from Witten diagrams, and they have been dedued from other lines of ar-guments [8, 9℄. In [16℄ a representation for the Regge limit of four urrent orrelators has beensuggested whih would allow to interpolate between weak and strong limits. We have not attemptedto ast our result for the Witten diagram into this form.Within QCD, it is well known that the BFKL Pomeron violates unitarity bounds sine it growsas ABFKL � isj with j = 1 + !BFKL at very high energies. Consequently the Pomeron mustbe tamed by suitable orretions. Elaborate alulations have been performed in order to identifythe relevant orretions within perturbation theory. An example arises in the ontext of deepinelasti eletron proton sattering at small x (whih is related to the elasti sattering of a virtualphoton on the proton). It has been argued that the most important orretions to the BFKLexhange are given by 'fan' diagrams (an example is shown in �g. 1a) whih ontain the triplePomeron vertex. This vertex desribes the splitting of one BFKL Pomeron into two Pomerons.A derivation of this result is obtained by onsidering, �rst, the sattering of the virtual photonon two (weakly oupled) nuleons and, then, losing the two BFKL Pomerons at the lower endby integrating over the 'di�rative' squared mass M2 (�g. 1b). As a key feature, the fan diagramin �g. 1a. ontains, in its lower part, the exhange of two BFKL Pomerons whih omes witha minus sign relative to the single BFKL exhange. At high energies, double Pomeron exhangegrows as Adouble BFKL � �is1+2!BFKL , and thus starts to weaken the growth of the single BFKLexhange. In preparation for extending this disussion to N = 4 SYM theory, one may replaethe two nuleons at the bottom by virtual photons. In this way, the essential amplitude to bestudied, beomes the six-point eletromagneti urrent orrelator, evaluated in the triple Reggelimit. It is a remarkable feature of QCD that the two lower Pomerons do not ouple diretly tothe upper impat fator. Suh a 'diret' oupling would orrespond to the eikonal approximation.The absene of this diret oupling in the leading logarithmi approximation of QCD means thatthe eikonal piture is not supported.Turning toN = 4 SYM theory, the analogous orrelator is the six-point orrelator of R-urrents.Our omments on QCD suggest to investigate, as a �rst step of addressing the unitarization, thesix-point R-urrent orrelator in the limit s1 � s2 � M2. In the weak oupling limit, this highenergy limit of the six-point R-urrent orrelator in N = 4 SYM theory has been studied in [17℄.2



Figure 2: High energy limit of the six-point funtion in N = 4 SYMThe main result is illustrated in �g. 2. At high energies, the six-point amplitude an be writtenas a sum of several piees [18℄; eah of them orresponds to a distint set of simultaneous energydisontinuities, in agreement with the Steinmann relations. For our disussion we are interestedonly in those terms whih ontribute to the disontinuity in the energies s1, s2 and in the squareof the di�rative mass, M2. In the leading log approximation, the triple Pomeron vertex (�g. 2,right �gure) is the same as in QCD. The amplitude orresponding to this diagram has the formAtriple3!3 = s1s2M2 Z Z Z d!d!1d!2(2�i)3 s!11 s!22 (M2)!�!1�!2�(!1)�(!2)�(!; !1; !2)F (!; !1; !2) ;where the signature fators are given by�(!) = �� e�ipi! � 1sin�! ; �(!; !1; !2) = �� e�i�(!�!1�!2) � 1sin�(! � !1 � !2) ; (1.2)and F (!; !1; !2) = �(Q2)
G(!)
 V 
G(!1)
 �(Q2A)
G(!2)
 �(Q2B) : (1.3)Here 
 denotes the integration over transverse momenta, G(!) is the BFKL Green's funtion, �is the impat fator presented in [10℄, and details on the triple Pomeron vertex V an be an befound in [17℄. The disontinuity of this six-point funtion aross the ut in M2 leads to the rosssetion of the di�rative sattering proess (in the notations of QCD) � + � !MX + �. SineM2 is large, we obtain a ontribution of 'large di�rative masses'. In all three ! variables, theleading singularity is given by the BFKL harateristi funtions! = !1 = !2 = �s�(� = 0; n = 0) = 4N�s ln 2� : (1.4)As an important feature of N = 4 SYM theory we �nd an extra ontribution (see �g. 2, left �gure)where the two BFKL exhanges ouple diretly to the upper R-urrents. The presene of this'diret' oupling, whih is absent in QCD and might be viewed as a support of eikonalization inN = 4 SYM theory, an be traed bak to the fat that fermions (and salars) belong to the adjointrepresentation. The orresponding sattering amplitude is of the formAdiret3!3 = s1s2 Z Z d!1d!2(2�i)2 s!11 s!22 �(!1)�(!2)F (M2;!1; !2) ; (1.5)where F (M2;!1; !2) = �(Q2;M2)diret 
G(!1)
 �(Q2A)
G(!2)
 �(Q2B) : (1.6)3
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Figure 3: Witten diagrams for the two graviton exhange in the t�hannelAn expression for the new impat fator �(M2;Q2))diret whih desribes the oupling of the twoBFKL Pomerons to the upper R-urrent an be found in [19, 20℄ and [17, 21℄ 1. For large M2,this impat fator falls o� asM�4. For the di�rative ross setion one takes the M2-disontinuityof the six-point amplitude, i.e. the M2-disontinuity of the impat fator �(M2;Q2))diret. Thelatter falls o� as M�8, i.e. it ontributes to the region of small di�rative masses.In the present paper we ontinue the investigtion of the high energy limit in the strongly oupledtheory using Witten diagrams. Our main interest now is in the six-point R-urrent orrelators.In the triple Regge limit, the amplitude is dominated by t�hannel exhanges of gravitons. Therelevant diagrams are shown in �gs. 3 and 4. There is an obvious orrespondene between the twoontributions on the weak (�g. 2) and on the strong oupling side (�gs. 3 and 4, left diagram).These Witten diagrams will be onsidered as the strong oupling analogue of our weak ouplingresults obtained in N = 4 SYM theory .Our artile is organized as follows. Setion 2 is devoted to a brief review of our notation usedin [11℄. In setion 3 we present omputations of the sattering amplitude with the two t�hannelgravitons and one intermediate R-boson arrying mass M (�g. 3). We rewrite the amplitude tomomentum spae and perform the high energy limit. The amplitude is found to be proportionalto the square of two large energy variables, namely s21s22. The planar graph (left part of �g. 3) hasa ut for positive M2, starting at M2 = 0, and, for large M2 (triple Regge limit), falls o� as M�2.Correspondingly, the rossed graph (right part of �g. 3) has a ut for negative values ofM2. Finally,in setion 4 we onsider the orrelation funtion with the triple graviton vertex (�g. 4). In the tripleRegge limit, the expeted ontribution to the triple Regge behavior � (s1=M2)j1(s2=M2)j2(M2)jwith j = j1 = j2 = 2 vanishes. Instead, we �nd ontributions proportional to s21, s22, and s1s2.2 Six-point orrelation funtions at strong ouplingLet us onsider N = 4 super Yang-Mills (SYM) theory in four dimensional Eulidean spae. TheFourier transform of the six-point orrelator reads as(2�)4Æ( 6Xi=1 ~pi)Aj1j2j3j4j5j6(~pi) = Z  6Yi=1 d4xi e�i~pi�~xi! h 6Ya=1 Jja(~xa)i : (2.1)By Jj we denote R-urrents with j labelling the spaial diretions, j = 1; : : : ; d = 4. The ~x =(x1; x2; x3; x4) stands for the four dimensional Eulidean vetor (the value j = 0 refers to the �fth1Ref. [21℄ disusses the M2 disontinuity of the two-Pomeron impat fator. In order to obtain the full impatfator from this disontinuity, one writes a (unsubtrated) dispersion relation.4
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(~x3)Figure 4: Left �gure: triple graviton exhange with the triple graviton vertex. Right �gure: twograviton exhange with the diret oupling of two gravitons and two bosons.oordinate).We use the same notations as in [11℄. Starting with the Eulidean notation ~p = (p1; p2; p3; p4)and j~pj = p~p2, the Wik rotation ontinues j~pj2 = ~p2 ! �p2 = �p24 + p21 + p22 + p23 in Minkowskispae. In the high energy limit, our sattering amplitude depends upon the energies s1, s2, thedi�rative mass squared M2, and the momentum transfers t1, t2, and t. Furthermore, j~p1j, j~p2j,j~p3j, (j~p4j ,j~p5j and j~p6j) are the virtualities of the inoming (outgoing) urrents. In Eulideannotation we haves1 = �(~p1 + ~p2)2 ; s2 = �(~p1 + ~p3)2 ; M2 = �(~p1 + ~p2 + ~p5)2 ;�t = (~p1 + ~p4)2 ; �t1 = (~p2 + ~p5)2 ; �t2 = (~p3 + ~p6)2 : (2.2)After Wik rotations, the energy variables s1, s2, and M2 are positive, whereas the momentumtransfer variables t, t1, t2 remain negative; the masses of the external urrents are kept negative(spae-like), �j~pij. After Wik rotation, we still ontinue to use the vetor symbol ~p for theMinkowski vetor (p1; p2; p3; p4), but now ~p2 = �p2.The high energy limit is de�ned ass1; s2 �M2 � t; �t1; �t2;�j~pij2: (2.3)For the two graviton exhange diagrams we will keep M2 �nite, whereas for the triple gravitondiagram we take the triple Regge limit where also M2 beomes large.Finally, we �nd it onvenient to present the sattering amplitude in the heliity basis. To thisend we ontrat the orrelator A with appropriate polarization vetorsA�1�2�3;�4�5�6(j~pij; s1; s2;M2; t; t1; t2) ==Xji �(�1)j1 (~p1)�(�2)j2 (~p2)�(�3)j3 (~p3)�(�4)j4 (~p4)��(�5)j5 (~p5)��(�6)j6 (~p6)�Aj1j2j3j4j5j6(~pi) ; (2.4)where �i = L;� runs through the possible heliities and we introdued the polarization vetors��ij (~pi) suh that pji �(�i)j (~pi) = 0.In order to alulate the amplitude (2.1) in the limit of in�nite 't Hooft oupling [10℄ we makeuse of the onjetured AdS/CFT orrespondene [2℄ between IIB string theory on AdS5 spae andN = 4 SU(N) super Yang-Mills theory. An e�ient alulation an only be performed in the limitof large N. Moreover the full string theory on AdS5 is well approximated by lassial supergravitywhen 't Hooft oupling � = g2YMN goes to in�nity.5



Aording to the AdS/CFT orrespondene, orrelation funtions are related with a lassialsupergravity ation SAdS by [3, 4℄hJ(1)J(2) : : : J(n)iCFT = !n ÆnÆ�0(1) : : : Æ�0(n) exp(�SAdS[�[�0℄℄)���0=0 ; (2.5)where the fator !n omes from the relative normalization [22℄ while the soures �0 of operatorsin super Yang-Mills theory orrespond to the boundary values of supergravity �elds in AdS5 inthe 4-dimensional quantum �eld theory, i.e. �j�AdS � �0. We are using the following onventionsonerning the Anti-deSitter spae AdSd+1. Its Eulidean ontinuation is parameterized by z0 > 0and ~x with oordinates xi enumerated by the Latin indies i = 1; : : : ; d. We use the metrids2 = 1z20 (dz20 + d~x2) ; (2.6)where d~x2 an be related to the metri of Minkowski spae by Wik rotation. The limit z0 ! 0orresponds to the boundary of the Anti-deSitter spae. The most interesting ase is for d = 4whih an be related to QCD.To simplify notation we trunate the SU(4) R-urrent group to U(1)R. However, our onsid-erations may easily be generalized to the non-Abelian ase. The supergravity ation is de�nedby S = 12�2d+1 Z dd+1zpg(�R+�) + Sm ; (2.7)where R is the salar urvature while the ovariant matter ation reads as [23, 22, 24, 25℄Sm = 12�2d+1 Z dd+1zpg �14F��F�� �A�J� + : : :� : (2.8)Here �25 is �xed by mathing two- and three-point proteted operators [23, 22℄, while F�� is the �eldstrength of the gauge �eld A. Throughout this note, Greek indies refer to the (d+1)-dimensionalspae, i.e. they take values from 0 to d. Latin subsripts, on the other hand, parameterize diretionsalong the Eulidean d-dimensional boundary of AdSd+1. Contrations of the full metri (2.6) aredenoted with upper and lower indies while ontrations of both lower indies denotes simplesummation with Kroneker delta.After these tehnial preparations we an now begin to evaluate the high energy limit of our six-point orrelator at strong oupling, where supergravity on AdS is believed to provide an auratedesription. To this end we make use of a very onvenient and intuitive diagrammati proedurethat was �rst proposed by Witten [3℄ and then developed further by many other authors. It relieson summing diagrams whih in our ase ontain only three basi building bloks, namely thebulk-to-bulk propagators for the graviton and the gauge R-bosons as well as the bulk-to-boundaryR-boson propagator. They are onneted by verties de�ned in eqs. (2.7) and (2.8). In the highenergy limit it is enough to analyze diagrams plotted in �gs. 3, 4.3 Two Graviton exhange: Low di�rative massesIn this setion we analyze two Witten diagrams depited in �g. 3. These will later turn out toontain all leading order ontributions to the high energy limit of the full amplitude. After a verydetailed disussion of the �rst diagram we an obtain the ontribution from the seond diagramthrough analyti ontinuation. The results are spelled out in eqs. (3.27) and (3.30). They involvea new impat fator, de�ned in eq. (3.21), whose properties shall be analyzed in subsetion 3.3.The �nal subsetion is then devoted to a study of the deep inelasti limit of the amplitude.6



3.1 The Momentum spae representationWe start from the expression for the two graviton exhange in on�guration spae. Its ontributionto the six urrent matrix element is2I2G;planar = Z dd+1yyd�30 Z dd+1vvd�30 Z dd+1wwd�30 Z dd+1zzd�30 ~T(14)��;��(z; y) (3.1)G��;�0�0(z; w)G��;�0�0(y; v) ~T(25)�0�0(w) ~T(36)�0�0(v) ;where the stress-energy tensor~T(14)�� = z20�[�G�℄�1 (z; ~x1)�[�G�℄j4 (z; ~x4) + z20�[�G�℄�1(z; ~x1)�[�G�℄j4(z; ~x4)�12z20Æ���[�G�℄�1(z; ~x1)�[�G�℄j4(z; ~x4) : (3.2)In the high energy limit, the highest ontribution omes from the �rst two terms. For the ouplingof the two gravitons to the upper urrents one an de�ne the double stress-energy tensor~T(14)��;�� = (Æ��0Æ��0 + Æ��0Æ��0 )(Æ��0Æ��0 + Æ��0Æ��0 )[z20y20�z[�0G�℄j1(z; ~x1)�y[�0�z[�0G�℄� ℄(z; y)�y[�0G� ℄;j4(y; ~x4)�12z20y20Æ�0�0�z[�G�℄j1 (z; ~x1)�y[�0�z[�G�℄� ℄(z; y)G�y[�0G� ℄;j4(y; ~x4)�12y20z20Æ�0�0�z[�0G�℄j1(z; ~x1)�y[��z[�0G�℄� ℄(z; y)�y[�G� ℄j4(y; ~x4)+14y20z20Æ�0�0Æ�0�0�z[�G�℄j1 (z; ~x1)�y[��z[�G�℄� ℄(z; y)�y[�G� ℄j4(y; ~x4)℄ : (3.3)In the high energy limit, only the �rst term ontributes to the leading power in energy. Theexpressions for the propagators are listed in Ref. [11℄.Let us now speify d = 4. Using the expressions for the propagators presented in Ref. [11℄ werewrite the formulae in the momentum spae. We de�ne Fourier transform of stress-energy tensorsas ~T(14)��(z) = 1(2�)8 Z d4p1 Z d4p4 e�i~p1�(~z�~x1) e�i~p4�(~z�~x4) T(14)��(z0; ~p1; ~p4) ; (3.4)and ~T(14)��;��(z; y) = 1(2�)12 Z d4p1 Z d4p4 Z d4p e�i~p1�(~z�~x1) e�i~p4�(~y�~x4) e�i~p�(~y�~z)T(14)��;��(z0; y0; ~p1; ~p; ~p4) : (3.5)This gives T(14)��(z0; ~p1; ~p4) � �z20p1[�G�℄�1 (z0; ~p1)p4[�G�℄j4 (z0; ~p4)�z20p1[�G�℄�1(z0; ~p1)p4[�G�℄j4 (z0; ~p4) ; (3.6)2The orrelation funtions and amplitudes are alulated up to multipliative onstants, whih an be easilyrestored from the ation (2.7).
7



with pk0 � i�z0 andT(14)��;��(z0; y0; ~p1; ~p; ~p4) � z20y20p1[�G�℄j1(z0; ~p1)�p[�p[�G�℄� ℄(z0; y0; ~p)p4[�G� ℄;j4(y0; ~p4) (3.7)+z20y20p1[�G�℄j1 (z0; ~p1)�p[�p[�G�℄� ℄(z0; y0; ~p)p4[�G� ℄;j4(y0; ~p4)+z20y20p1[�G�℄j1 (z0; ~p1)�p[�p[�G�℄� ℄(z0; y0; ~p)p4[�G� ℄;j4(y0; ~p4)+z20y20p1[�G�℄j1 (z0; ~p1)�p[�p[�G�℄� ℄(z0; y0; ~p)p4[�G� ℄;j4(y0; ~p4) ;with �~zi = �ipi, �~yi = �i�pi, p0 = i�z0 , �p0 = i�y0 , p10 � i�z0 , p40 � i�y0 . In the above formulae theapproximation indiates that we omit terms whih, in the high energy limit, are power suppressed.Finally, our expression in the four-dimensional momentum spae takes the following form(2�)4Æ(4)(Xi ~pi)A2G;planarj1j2j3j4j5j6(~pi) = 0� 6Yj=1 Z d4xj e�i~xj �~pj1A I2G;planar == (2�)4Æ(4)(Xi ~pi) Z 10 dy0y0 Z 10 dv0v0 Z 10 dw0w0 Z 10 dz0z0 T(14)��;��(z0; y0; ~p1; ~p1 + ~p2 + ~p5; ~p4)G��;�0�0(z0; w0; ~p2 + ~p5)T(25)�0�0(w0; ~p2; ~p5)G��;�0�0 (y0; v0; ~p3 + ~p6)T(36)�0�0 (v0; ~p3; ~p6) :3.2 The high energy limitIn the high energy limit, the leading ontribution an be obtained exatly in the same way as itwas done for four point funtions [11℄. For the inoming R-boson propagators, the only importantparts are those proportional to pk, namelyp[kGl℄j(z0; ~p) = z0(pkÆlj � plÆkj)j~pjK1(z0j~pj) � z0pkÆlj j~pjK1(z0j~pj) ; (3.8)p[kG0℄j(z0; ~p) = iz0(Ækj j~pj2 � pjpk)K0(z0j~pj) � �iz0pjpkK0(z0j~pj) ; (3.9)where �~zi = �ipi, p0 = i�z0 . Making use of the Ward identity, i.e. shifting the polarization vetors(listed in [11℄, Appendix A), we an remove terms without pk. To simplify the notation of thebulk-to-bulk R-boson propagator we introdueKa(z0; y0; j~pj) = 1Xk=0 2�2k�1�(k + 2)�(k + 1)  z0y0j~pjpz20 + y20!2k+aK2k+a(j~pjqz20 + y20) ; (3.10)and ~Ka(z0; y0; j~pj) = 1Xk=0 2�2k�a�(k + 1 + a)�(k + 1)  z0y0j~pjpz20 + y20!2k+aK2k+a(j~pjqz20 + y20) : (3.11)This allows us to rewrite the bulk-to-bulk R-boson propagators asG�j(z0; y0; ~p) = 18Æ�jz0y0 ~K1 � i8pjÆ�0z0y20K0 ; (3.12)and G�0(z0; y0; ~p) = 18Æ�0(z20 + y20) ~K1 � 18Æ�0z0y0 ~K0 + i8pjÆ�jz20y0K0 : (3.13)Furthermore, in the high energy limit the leading term of the graviton propagator is given byG��;�0�0(z0; w0; ~p) � (Æ��0Æ��0 + Æ��0Æ��0)G(z0; w0; ~p) ; (3.14)8



with G(z0; w0; ~p) � ~Ka=2(z0; w0; j~pj) : (3.15)To alulate the sattering amplitude we have to ontrat the resulting expression with the polar-ization vetors, namelyA2G;planar�1�2�3;�4�5�6 = Xji 3Ya=1 �(�a)ja (~pa) (A2G;planar)j1j2j3;j4j5j6 6Yb=4 �(�b)jb (~pb)� : (3.16)Substituting the expressions for the propagators, the double stress-energy tensor reads asT(14)��;��(z0; y0; ~p1; ~p; ~p4) � � 18z40y40p1k1pk2pk3p4k4(Æ�k1Æ�k3 + Æ�k3Æ�k1)(Æ�k2Æ�k4 + Æ�k4Æ�k2)Xm=0;1Wmj1j4(~p1; ~p4)Km(z0j~p1j) ~Km(z0; y0; j~pj)Km(y0j~p4j) ; (3.17)where we have introdued the vetor ~p = ~p1 + ~p2 + ~p5: (3.18)The tensor part, namelyWmj1j4(~p1; ~p4) = (Æj1j4 j~p1jj~p4jÆm;1 � p1j1p4j4Æm;0) ; (3.19)in the basis of polarization vetors basis (f. [11℄), an be written asWm1�1�4(~p1; ~p4) = Xj1;j4 �(�1)j1 (~p1)�(�4)j4 (~p4)�Wm1j1j4(~p1; ~p4)� j~p1jj~p4j(Æm1;1Æ�1;hÆ�4;h + Æm1;0Æ�1;LÆ�4;L) : (3.20)In analogy with [11℄, we introdue the impat fator for the oupling of two gravitons��1�4(j~p1j; j~pj; j~p4j; z0; y0) = Xm=0;1Wm�1�4(~p1; ~p4)Km(z0j~p1j) ~Km(z0; y0; j~pj)Km(y0j~p4j) : (3.21)We rewrite eq. (3.17) asT(14)��;��(z0; y0; ~p1; ~p; ~p4) � � 18z40y40p1k1pk2pk3p4k4(Æ�k1Æ�k3 + Æ�k3Æ�k1)(Æ�k2Æ�k4 + Æ�k4Æ�k2)��1�4(j~p1j; j~pj; j~p4j; z0; y0) : (3.22)For the lower stress-energy tensors we make use of the impat fators introdued in [11℄��2�5(j~p2j; j~p5j;w0) = Xm=0;1Wm�2�5(~p2; ~p5)Km(w0j~p2j)Km(w0j~p5j) : (3.23)With this notation, the lower stress-energy tensors an be written in the formT(25)�0�0(w0; ~p2; ~p5) � 2w40p2k02p5k05(Æ�0k02Æ�0k05 + Æ�0k05Æ�0k02) ��2�5(j~p2j; j~p5j;w0) (3.24)and T(36)�0�0(v0; ~p3; ~p6) � 2v40p3k03p6k06(Æ�0k03Æ�0k06 + Æ�0k06Æ�0k03) ��3�6(j~p3j; j~p6j; v0) : (3.25)We note that, similarly to the four point orrelators in [11℄, heliity is onserved in all impatfators. With the vetor ~p = ~p1 + ~p2 + ~p5 from eq. (3.18) and withM2 = �~p2 (3.26)9



we now perform the Wik rotation to positive M2: j~pj ! iM . In the limit of large s1 and s2 wethus arrive at:A2G;planar�1�2�3�4�5�6 = 2s21s22 Z 10 dz0 Z 10 dy0 Z 10 dw0 Z 10 dv0 z30y30w30v30 ��1�4(j~p1j; iM; j~p4j; z0; y0)G(z0; w0; ~p2 + ~p5)G(y0; v0; ~p3 + ~p6) ��2�5(j~p2j; j~p5j;w0)��3�6(j~p3j; j~p6j; v0) : (3.27)This formula summarizes our results for the high energy limit of the planar amplitude in �g. 3.The seond Witten diagram with rossed bulk-to-bulk graviton propagators an now be obtainedvery easily. Introduing the vetor ~p0 = ~p1 + ~p3 + ~p6 ; (3.28)with j~p0j2 = M2 + t� t1 � t2 + j~p1j2 + j~p4j2 �M2 + j~p1j2 + j~p4j2 ; (3.29)the high energy limit of the rossed diagram has the formA2G;rossed�1�2�3�4�5�6 = 2s21s22 Z 10 dz0 Z 10 dy0 Z 10 dw0 Z 10 dv0 z30y30w30v30 ��1�4(j~p1j; j~p0j; j~p4j; z0; y0)G(y0; w0; ~p2 + ~p5)G(z0; v0; ~p3 + ~p6) ��2�5(j~p2j; j~p5j;w0)��3�6(j~p3j; j~p6j; v0) : (3.30)For large M2 we ould substitute j~p0j !M , but for the moment we keep M2 �nite.3.3 Analyti struture of the two graviton impat fatorIn the last setion we have identi�ed the two graviton impat fator (3.21) as one of the newbuilding bloks for the planar amplitude. Let us pause for a moment and have a loser look atits analyti struture. We are interested in the region where M2 = �j~pj2 is positive and we havesubstituted j~pj ! �iM . The impat fator ontains the funtion ~Km(z0; y0; j~pj) that arises fromthe intermediate bulk-to-bulk R-boson propagator and is de�ned as the analyti ontinuation of~Km(z0; y0;M). Sine ~Km(z0; y0;M) is de�ned as an in�nite sum over modi�ed Bessel funtions,see eq. (3.11), its analyti ontinuation(�iM)nKn(�iM) = ��2Mn(Yn(M)� iJn(M)) ; (3.31)has a ut for positive M2 with a branhing point at M2 = 0, its disontinuity being given by�MnJn(M). While the upper sign orresponds the region above the ut whih is related to theFeynman propagator, the lower sign is valid below the ut.The analyti struture beomes more transparent if we make use of another representation ofthe bulk-to-bulk R-boson propagator [27, 28℄~Km(z0; y0; j~pj) = Z 10 ! d!!2 + j~pj2 Jm(!z0)Jm(!y0)= Km(z0j~pj)Im(y0j~pj)�(z0 � y0) +Km(y0j~pj)Im(z0j~pj)�(y0 � z0) ; (3.32)where Ka(x) and Ia(x) are modi�ed Bessel funtions. The subsriptsm = 1 and m = 0 orrespondto the transverse and longitudinal polarization, respetively. Making use of the �rst line on theright hand side of eq. (3.32), one an rewrite the two graviton impat fator as a superposition ofproduts of single graviton impat fators��1�4(j~p1j; j~pj; j~p4j; z0; y0) = Z 10 ! d!!2 + j~pj2 Xm=0;1Wm�1�4(~p1; ~p4)Km(z0j~p1j)Jm(!z0)Jm(!y0)Km(y0j~p4j) : (3.33)10



Using eq. (3.20), the seond line on the right hand side an be rewritten as��1�4(j~p1j; j~pj; j~p4j; z0; y0) = 1j~p1jj~p4j Z 10 ! d!!2 + j~pj2 Xm=0;1Wm�1�4(~p1; ~p4)Km(z0j~p1j)Jm(!z0)Xm0=0;1Wm0�1�4(~p1; ~p4)Jm0(!y0)Km0(y0j~p4j) : (3.34)Performing the Wik rotation, substituting j~pj ! iM and omparing with the single gravitonimpat fator in eq. (3.23) we identify the right hand side as a dispersion integral over the produtof the imaginary parts of two single graviton impat fators, where one of the urrents has beenanalytially ontinued into the time like region��1�4(j~p1j;�iM; j~p4j; z0; y0) = 4�2 1j~p1jj~p4j Z 10 ! d!!2 �M2 Im(im��1�4(j~p1j;�i!; z0)) �� Im(im��1�4(�i!; j~p4j; y0)) : (3.35)On the other hand the dispersion integral is given by��1�4(j~p1j;�iM; j~p4j; z0; y0) = 1� Z 10 2! d!!2 �M2 Im(��1�4(j~p1j;�i!; j~p4j; z0; y0)) : (3.36)Comparing the previous two equations we onlude that the imaginary part of the two gravitonimpat fator is equal to the produt of imaginary parts of two single graviton impat fators.Finally, it is also interesting to investigate the behavior of the two graviton impat fator forlarge values of M2. Making use of the integral representation (3.32) of the R-boson propagatoralong with the ompleteness relation for Bessel funtions, one an expand the propagator for largeM to obtain~K�P (z0; y0; ; j~pj) = Æ(z0 � y0)z0j~pj2 � 1j~pj4 Z 10 d!!3J�P (!z0)J�P (!y0) + : : : : (3.37)A similar analysis also applies to the rossed amplitude. For large M2 we have j~p0j2 � M2.Therefore the leading ontributions proportional to 1=M2 anel from the sum of the two diagrams.We are left with the asymptoti behavior � 1=M4 of the ombined amplitude. This behavior of thetwo graviton impat fator (3.21) may be ompared with the analogous impat fator on the weakoupling side, �diret in eq. (1.6). It is urious to observe that the latter has the same asymptotibehavior � 1=M4 for large values of M2.3.4 The deep inelasti limitIn this subsetion we turn to the di�rative ross setion whih is given by the disontinuity of thesix-point orrelator aross the positive M2 ut. For this disussion we speialize on the kinematilimit where the virtualities of the upper bosons are muh larger than the virtualities of the lowerones, namely j~p1j2; j~p4j2 � j~p2j2; j~p3j2; j~p5j2; j~p6j2: (3.38)For further simpli�ation we set j~p1j2 = j~p4j2 = Q2A (3.39)and j~p2j2 = j~p3j2 = j~p5j2 = j~p6j2 = Q2B: (3.40)11



This is the kinemati limit probed in, e.g., deep inelasti eletron proton sattering; for this reasonwe name this limit as 'deep inelasti limit'. This limit will allow us to perform the integrationsover the �fth oordinates and to obtain expliit analyti expressions. In partiular, this limit willallow us to study the large-M2 behavior of the imaginary part of the impat fator whih, in thedi�rative ross setion, determines the large-M2 behavior of the ross setion.To simplify notation we de�ne dimensionless variableszM = z0M ; yM = y0M ; vM = v0M ; wM = w0M ; (3.41)the ratios � = QA=M ; � = QB=QA : (3.42)and "k = j~qkj=QB ; ~q1 = ~p2 + ~p5 ; ~q2 = ~p3 + ~p6 : (3.43)With these de�nitions we rewrite the the planar amplitude (3.27) asA2G;planar�A�B1�B2 = 2� s1Q2A�2� s2Q2A�2 �16�4Q�2A Z 10 dyM Z 10 dvM Z 10 dwM Z 10 dzMw3Mv3Mz3My3MKm(�A)(zM�) ~Km(�A)(zM ; yM ;�i)Km(�A)(yM�)G(zM ; wM ; "1��)G(yM ; vM ; "2��)Km(�B1)(wM��)Km(�B1)(wM��)Km(�B2)(vM��)Km(�B2)(vM��) : (3.44)Here we have inserted the de�nitions of the impat fators. Making use use of heliity onservationwe an rename the heliity variables suh that �A = �1 = �4 and �B1 = �2 = �5, �B2 = �3 = �6.Furthermore, m(�) = 0 for longitudinal polarization, and m(�) = 1 for transverse polarization.We have also a similar expression for the rossed diagram.As a �rst step of simpli�ation let us onsider the forward limit"k ! 0 ; (3.45)for k = 1; 2, i.e. t1 = t2 ! 0, so that the graviton propagatorG(zM ; wM ; 0) = 14(w2Mz2M �(zM � wM ) + z2Mw2M �(wM � zM )) : (3.46)ThenA2G;planar�A�B1�B2 = 18 � s1Q2A�2� s2Q2A�2 �16�4Q�2A Z 10 dyM Z 10 dvM Z 10 dwM Z 10 dzMw3Mv3Mz3My3MKm(�A)(zM�) ~Km(�A)(zM ; yM ;�i)Km(�A)(yM�)�w2Mz2M �(zM � wM )v2My2M �(yM � vM ) + z2Mw2M �(wM � zM )v2My2M �(yM � vM )+w2Mz2M �(zM � wM )y2Mv2M �(vM � yM ) + z2Mw2M �(wM � zM )y2Mv2M �(vM � yM )�Km(�B1)(wM��)Km(�B1)(wM��)Km(�B2)(vM��)Km(�B2)(vM��) : (3.47)Making use of expressions given in the Appendix A is is possible to do the integrals over wM andvM , and with the saddle point method desribed in Appendix C, one an investigate the large M2limit. However, we hose another way. 12



We turn to the DIS limit (3.38), whih implies � ! 0, and we expand in powers of �. Dueto the fast vanishing of the Bessel funtions of the two graviton vertex (whih do not ontain the� variable) one an the lower impat fators in powers of � and perform the integrals over wMand vM . In the ase of transverse polarizations of the lower R-urrents, the small-� behavior ofthe Bessel funtions gives rise to logarithmi divergenes for small �. The appearane of suhlogarithms is known already from the single graviton exhange [11℄. For two gravitons we havemaximally two logarithms in �. Using eq. (3.32) one an then perform the integrals over zM andyM . Thus, the amplitude of the planar diagram beomesA2G;planar�A�B1�B2 � �M�2� s1Q2A�2� s2Q2A�2 I�(��2) logm(�B1)+m(�B2)(��2) ; (3.48)where the funtion I�(��2) stands for the result of the integrals over zM and yMI�(��2) = ���232 Z 10 dzM Z 10 dyMz5My5MKm(�)(zM ) ~Km(�)(zM=�; yM=�;�i)Km(�)(yM ) :(3.49)The integrations an be done analytially leading to� �2I�(��2) = �p(0)� + p(1)� log(��2) + p(2)� log(�)��=1 : (3.50)The funtions p(i)� are rational funtions in � and �, and their detailed form is presented in AppendixB 3. Due to the ln(��2), the funtion I� has a ut for real positive �2 = Q2A=M2, i.e a right utin M2 starting at M2 = 0. There no no poles in M2. If we would have taken the virtualities ofthe urrents ~p1 and ~p2 to be di�erent from eah other, we would have obtained also logarithms inthe ratio ~p1=~p2. For further details we refer to Appendix C.The ontribution related to the rossed diagram is obtained by substituting: �M2 ! ~M2 �M2+t�t1�t2+j~p1j2+j~p4j2, i.e. A2G;rossed�A�B1�B2 is obtained from the analyti ontinuation of A2G;planar�A�B1�B2in the M2 plane. As we have already disussed before, in the large-M2 limit the leading term ofA2G;rossed�A�B1�B2 , is of the order ~M�2 � �M�2, and it anels with the leading term of A2G;planar�A�B1�B2 .This means that the sum is of the order M�4,A2G;planar�A�B1�B2 +A2G;rossed�A�B1�B2 = �Q2AM4 � s1Q2A�2� s2Q2A�2 Î�(�2) logm(�A)+m(�B)(��2) :The funtion Î�(�2) = ��2(I�(��2)� I�((��2 + 2)�1)) ; (3.51)desribing the sum of the planar and rossed impat fator has both right and left hand uts inM2. The absolute value of �4Î�(�2) is shown �g. 5 and 6, both for transverse and longitudinalpolarizations. In both ases, there is a maximum at the beginning of the M2-uts. In ontrastto the transverse impat fator, the longitudinal one is logarithmially divergent at M2 = 0 and~M2 = 0. These divergenes ome from the logarithmi behavior of the longitudinal R-bosonpropagator (3.11). In the large M2 limit the leading term of Î�(�2 = 0) is of the formÎ�(�2 = 0) = Z 10 drr7K2m(�)(r) = 835�(4�m(�))�(4 +m(�)) : (3.52)From eq. (3.50), with the expliit form of p(1)� being given in the appendix, it is straightforwardto determine the disontinuity of the amplitude (3.48) aross the right hand ut in M2disM2IT (��2) = �576�12 ��2 � 1�� ��2 � 1�(�2 + 1)5 (�2 + 1)5 ; (3.53)3In the appendix we disuss the more general ase jp1j 6= jp4j and onsider the funtion I� as a funtion of �and � = jp1j=jp4j. The results of this setion are obtained by taking the limit � = 1.13
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and disM2IL(��2) = �64�10 ��4 � 4�2 + 1�� ��4 � 4�2 + 1�(�2 + 1)5 (�2 + 1)5 : (3.54)For M ! 0 the disontinuity for transversely polarized R�bosons vanishes as M2, while thelongitudinally polarized one goes to a onstant. For large M2, the imaginary part of A2G;planar�A�B1�B2is proportional to M�12 (M�14) for the longitudinal (transverse) polarization. Finally, one analso notie that the resaled imaginary part, ��4 Im I�(��2), is invariant under the substitution�2 $ (�2)�1.We end this setion with a omment on the diagram on the rhs of �g.4. It ontains a diretoupling of two gravitons to the upper R boson, and it does not depend upon M2. At the end ofthe following setion we will show that its dependene upon s1 and s2 is quite similar to the triplegraviton diagram to whih we turn in the following setion.4 The triple Regge limit: triple graviton exhangeThere are two more Witten diagrams that an ontribute to the six-point orrelators of R-urrents,namely the two terms that are depited in �g. 4. The �rst one involves the triple graviton vertex.We will onstrut the vertex in the following subsetion before we evaluate the Regge limit of theentire diagram in subsetion 4.2. The seond diagram in �g. 4 is the subjet of subsetion 4.3.It ontains a vertex between two gravitons and two R-bosons. Through our analysis, the onlyterm that ould ontribute to the disontinuity in M2 is found to vanish. Furthermore, we shallshow that the remaining M2-independent terms from the two diagrams in �g. 4 are subleadingompared to the ontributions from the Witten diagrams in �g. 3.4.1 Triple graviton vertexIn order to analyze the �rst diagram of �g. 4 we need an expression for the three graviton vertex.This vertex was derived before in Ref. [26℄. In the following, we re-derive the vertex at prepare forthe high energy limit. As usual, our task is to expand the Einstein Hilbert ationS = � 12�2d+1 Z dd+1zpgR ; (4.1)in small �utuations h�� of the metri g�� = �g�� + h�� around the metri �g�� of the AdSbakground. In order to �x our onventions we reall that the urvature, Rii tensor and Riemanntensor are de�ned through R = R��g�� = R����g��g�� ; (4.2)R���� = g�R��� = g�(����� � ����� + ������� � �������) ; (4.3)where the Christo�el symbols are given by��� = 12g��(��g� + �g�� � ��g�) : (4.4)In the following alulation we need to expand both the inverse metri g�� and the determinant gup to third order in the �utuation h�� . For the inverse metri we �ndg�� = �g�� � �g��1h�1�1�g�1� + �g��1h�1�1�g�1�2h�2�2�g�2� � �g��1h�1�1�g�1�2h�2�2�g�2�3h�3�3�g�3� : : : ;15



while pg = exp lnpg � p�g(1 + 12 �g��h�� � 14 �g��h��1�g�1�1h�1� + 18 (�g��h��)2 ++ 16 �g��h��1�g�1�1h�1�2�g�2�2h�2� � 18 (�g��h��1�g�1�1h�1�)�g�3�3h�3�3 + 148 (�g��h��)3): (4.5)After the substitution g�� ! �g�� + h�� we an expand the Langrangian of the Einstein Hilbertation, �pgR = �p�g � �R +H(1) +H(2) +H(3)� ; (4.6)up to third order in the �utuation �eld h�� . The onstant term is determined by the AdS urvature� �R = �d(d+ 1). The �rst order orretions to the urvature �R involve the quantityH(1) = �z20(d� 2)(d� 1)h00(z) + 12z20((d� 3)d+ 4)�h� z30(d� 4)�0�h+z30 2(d� 2)��h�0 + z40(�����h� ����h��) ; (4.7)where �h = h�� is the trae of the �utuation �eld. After multipliation with the fator pg, we anwrite these terms as a total derivative, in agreement with the fat that we are expanding arounda solution �g of the Einstein Hilbert ation. The equation of motion for the �utuation �eld h isrelated to the seond order terms H(2) in the expansion of the Lagrangian. We have reprodued anexpliit expression in Appendix D. What we really need here is the form of the terms that appearin the third order,H(3) = 148((d� 11)d+ 36)z60�h3 � 18z60((d� 11)d+ 34)h00�h2 + 12(d� 11)dz60�hh�0h�0+18((11� d)d� 40)z60h��h���h+ 14z60((d� 11)d+ 38)h��h��h00�z60(d� 8)(d� 3)h��h�0h�0 + 16((d � 11)d+ 48)z60h��h�h� + 12z80�h��h���h�+15z60h�0h�0�h+ 9z70h0h���h�� � 18z70(d� 8)�h2�0�h+ 18z80����h��(2h�h� � �h2)+14z70(d� 6)�h2��h�0 + 12z70(d� 8)�hh0����h� z70(d� 6)�hh0���h��+12z70(d� 9)�hh���0h�� � z70(d� 5)�hh����h�0 � z70dh0h���h���z70(d� 8)h0�h�����h+ 2z70(d� 6)h0�h���h� + 2z70(d� 5)h0�h��h��+z70(d+ 2)h��h��0h� + 14z70(d� 8)h��h���0�h� 12z70(d� 6)h��h���h0+z80h����h����h + 32z80h���h�� �h�� � z80h����h� �h�� � 12z80h���h�� ��h��12z80h���h�� ��h� 14z80h�����h���h� z80h��h����h�� + 34z80h����h� ��h�+z80h����h� ��h� 2z80h����h� ��h� + z80h��h� ����h� 2z80h��h� ���h��+z80h��h� ����h� + z80h���h�� ��h� + z80h���h� ���h� z80h���h� ��h��+z80�hh�����h� � 12z80�hh�����h� � 12z80�h��h�����h� 18z80�����h(2h�h� � �h2)�38z80�h�h���h�� + 14z80�h��h���h� + 18z80�h��h��h� 12z80�hh�����h : (4.8)16



In the following analysis we shall now speialize to d = 4. Having spelled out the third order termsH(3), we an now read o� the triple graviton vertex V TR. In order to spell out the answer, weshall split the vertex into four di�erent ontributions,V TR�1�1;�2�2;�3�3(Q1; Q2; Q3) = V TR;11�1�1;�2�2;�3�3(Q1; Q2; Q3) + V TR;20�1�1;�2�2;�3�3(Q1; Q2; Q3)+V TR;10�1�1;�2�2;�3�3(Q1; Q2; Q3) + V TR;00�1�1;�2�2;�3�3(Q1; Q2; Q3) : (4.9)Here, we group terms aording to the number of the Kroneker deltas whih onnet di�erentgravitons, i.e. Kroneker deltas of the form Æ�i;�i and those involving internal (summed) labels arenot ounted. Expliitly, the terms that ontribute to V TR;20 are given byV TR;20�1�1;�2�2;�3�3(Q1; Q2; Q3)= �38Æ�1;�2Æ�1;�2Æ�3;�3Q1;�Q2;�z30 � 12Æ�1;�2Æ�1;�2Æ�3;�3Q2;�Q2;�z30+34Æ�2;�3Æ�2;�3Q2;�1Q3;�1z30 + Æ�1;�2Æ�1;�2Q2;�3Q3;�3z30�12Æ�1;�2Æ�1;�2Æ�3;�3Q2;�Q3;�z30 + Æ�1;�3Æ�1;�3Q3;�2Q3;�2z30+14Æ�1;�2Æ�1;�2Q3;�3Q3;�3z30 � 14Æ�1;�2Æ�1;�2Æ�3;�3Q3;�Q3;�z30�52Æ�1;�2Æ�1;�2Æ�3;�3Q2;0z20 + 5Æ�2;�3Æ�2;�3Æ0;�1Q3;�1z20+Æ�1;�2Æ�1;�2Æ0;�3Q3;�3z20 � Æ�1;�2Æ�1;�2Æ�3;�3Q3;0z20�32Æ�1;�2Æ�1;�2Æ�3;�3z0 + 52Æ�2;�3Æ�2;�3Æ0;�1Æ0;�1z0 : (4.10)All terms we displayed ontrat the indies among two of the three �utuation �elds. Terms inwhih the ontrations involve all three graviton �elds are olleted inV TR;11�1�1;�2�2;�3�3(Q1; Q2; Q3)= �Æ�1;�3Æ�2;�3Q2;�1Q3;�2z30 � 12Æ�1;�2Æ�1;�3Q2;�3Q3;�2z30�2Æ�1;�2Æ�2;�3Q2;�1Q3;�3z30 � Æ�1;�3Æ�1;�2Q2;�2Q3;�3z30+32Æ�1;�2Æ�1;�3Æ�2;�3Q2;�Q3;�z30 � Æ�1;�3Æ�2;�3Q3;�1Q3;�2z30�2Æ�1;�3Æ�1;�2Q3;�2Q3;�3z30 + Æ�1;�3Æ�1;�2Æ�2;�3Q3;�Q3;�z30�2Æ�1;�3Æ�2;�3Æ0;�1Q3;�2z20 � 4Æ�1;�2Æ�2;�3Æ0;�1Q3;�3z20+6Æ�1;�3Æ�1;�2Æ�2;�3Q3;0z20 + 103 Æ�1;�2Æ�1;�3Æ�2;�3z0+4Æ�1;�2Æ�1;�3Æ0;�2Æ0;�3z0 : (4.11)
17



Q1

Q3Q2

µ2, ν2 µ3, ν3

µ1, ν1

Figure 7: The three graviton vertex.Terms in whih only two of the graviton �elds are ontrated diretly through a single ontrationare grouped together into the vertexV TR;10�1�1;�2�2;�3�3(Q1; Q2; Q3)= 14Æ�1;�2Æ�1;�2Æ�2;�1Æ�3;�3Q1;�1Q2;�2z30 + 12Æ�1;�1Æ�1;�2Æ�2;�2Æ�3;�3Q1;�1Q2;�2z30+Æ�1;�1Æ�1;�2Æ�2;�2Æ�3;�3Q2;�1Q2;�2z30 + Æ�1;�2Æ�1;�2Æ�2;�1Æ�3;�3Q2;�1Q3;�2z30+Æ�1;�1Æ�1;�2Æ�2;�2Æ�3;�3Q2;�1Q3;�2z30 + Æ�1;�1Æ�1;�2Æ�2;�2Æ�3;�3Q3;�1Q3;�2z30+2Æ�1;�2Æ�2;�1Æ�3;�3Æ0;�1Q2;�1z20 + Æ�1;�1Æ�1;�2Æ�3;�3Æ0;�2Q2;�1z20+4Æ�1;�2Æ�2;�1Æ�3;�3Æ0;�1Q3;�1z20 + Æ�1;�2Æ�3;�3Æ0;�1Æ0;�2z0 : (4.12)What remains are those terms of the three graviton vertex that ontain no diret ontrations oftwo di�erent graviton �elds,V TR;00�1�1;�2�2;�3�3(Q1; Q2; Q3)= �18Æ�1;�1Æ�1;�2Æ�2;�2Æ�3;�3Q1;�1Q1;�2z30 + 18Æ�1;�1Æ�2;�2Æ�3;�3Æ�1;�2Q1;�1Q1;�2z30�12Æ�1;�1Æ�1;�2Æ�2;�2Æ�3;�3Q1;�1Q2;�2z30 + 18Æ�1;�1Æ�2;�2Æ�3;�3Æ�1;�2Q1;�1Q2;�2z30�12Æ�1;�1Æ�1;�2Æ�2;�2Æ�3;�3Q2;�1Q2;�2z30 � 14Æ�1;�2Æ�1;�1Æ�2;�2Æ�3;�3Q2;�1Q3;�2z30+12Æ�1;�1Æ�2;�2Æ�3;�3Æ0;�1Q1;�1z20 � 2Æ�1;�1Æ�2;�2Æ�3;�3Æ0;�1Q2;�1z20�12z20Æ�1;�1Æ�2;�2Æ0;�1Q3;�3 + 16Æ�1;�1Æ�2;�2Æ�3;�3z0�34Æ�2;�2Æ�3;�3Æ0;�1Æ0;�1z0 : (4.13)The symbols Qk denote �ve dimensional derivatives ating on k-th external graviton propaga-tors (k runs from 1 to 3, f. �g. 7), Qk;� � �zk� : (4.14)Before turning to the high energy limit, we still have to symmetrize these expressions. This anbe done in two steps. To begin with, we symmetrize the two indies (�k; �k) for eah graviton(labelled by k). Then, in a seond step, we also symmetrize in the label k.18



4.2 The triple Regge limitSo far we have worked in on�guration spae. The Fourier transform is de�ned as before, andderivatives in on�guration spae, as before, turn into external momenta, ~p1,. . . ,~p6. When om-puting the sattering amplitude in the triple Regge limit one noties that the large energy variables,s1 and s2, are onstruted by ontrating large momenta ontained in the stress-energy tensorsvia Kroneker deltas from the graviton propagators and from the triple graviton vertex. Sine thegraviton vertex involves at most two ontrations of external indies from two di�erent gravitons,the amplitude with the triple graviton vertex provides terms proportional to s21, s22, or s1s2 pluslower order ontributions. In fat, the leading ontribution from the triple Regge limit omes formthe terms (4.11) and (4.10). While the former leads to terms whih are proportional to s1s2, thelatter provides two types of terms whih are either proportional to s21 or to s22.We ompare this result with one expets from general arguments [18℄. In the notation ofRegge theory, the kinemati limit whih we referred to as the 'triple Regge limit' is a mixed Regge-heliity limit. For this high energy limit the Steinmann relations allow for four sets of non-vanishingenergy disontinuities. Following the arguments in [18℄ as well as eq. (4.24) of the same paper, oneexpets the six-point sattering amplitude to onsist of four terms. If we label the leading angularmomentum singularities in the three t hannels by j, j1, and j2, respetively, the four terms havethe following energy dependene (i) (M2)j�j1�j2sj11 sj22 , and(ii) sj2 , (iii) s(j+j1�j2)=21 s(j+j2�j1)=22 , (iv) sj1 ,The only term whih ontributes to the disontinuity in M2 is the �rst one: This is the six-pointamplitude in QCD (or N = 4 SYM) whih we have desribed in the introdution. In the weakoupling limit, the leading singularities in the angular momentum plane are given by the BFKLPomeron. Returning to graviton exhange we have omputed the omplete (i.e. not restritedourselves to the M2-dependent piee) six-point orrelator in the supergravity approximation. Theleading singularities are at j = j1 = j2 = 2, and the three terms we have found are in agreementwith the energy dependene of (ii) - (iv). The �rst term is absent, i.e. in the Witten diagram with`elementary' graviton exhange, the triple graviton vertex is found to vanish.From the point of view of Feynman diagrams, this result an also be understood as follows.In [11℄ it has been demonstrated that the heliity struture of graviton exhange at high energiesan be viewed as the exhange of two spin one bosons, eah of them being in a irular polarizedt-hannel heliity state. Correspondingly, in our high energy limit where the graviton exhangesabove and below the triple vertex an be viewed as double-boson exhanges, the triple gravitonvertex ats like a produt of two triple boson verties. A simple look at the triple gluon bosonvertex of QCD shows that - in the triple Regge limit - the six-point amplitude with three gluonexhange omes with two terms: One of them is proportional to s1 while the other is proportionalto s2. Again, no term proportional to s1s2(M2)�1 appears. Consequently, the produt of two suhthree gluon exhanges produes three terms, proportional to s21, s22, and s1s2.4A similar result an also be found in �at supergravity [30, 31℄. In the zero slope limit thetriple graviton vertex deouples. A non-vanishing triple graviton exhange is expeted to appearonly one the gravitons are reggeized. This, however, requires a genuine string alulation andthus goes beyond the sope of this paper.4It is interesting to note that a nonzero triple vertex of reggeizing gluons in QCD has been found [29℄. Afterintegration over M2 this vertex beomes zero, thus restoring signature onservation.
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4.3 The oupling of two gravitons and two R�bosonsThere is one more diagram we need to ompute, namely the seond one depited in �g. 4. In thehigh energy limit it will turn out to ontribute to the same order as the triple graviton exhange.The analysis follows the same steps we have desribed at great length in the �rst two subsetions.Hene, we an be rather brief now. Copying our derivation of the triple graviton vertex, one analulate the vertex with two R�bosons and two gravitons, i.e. the vertex that appears in theseond diagram of �g. 4. Making use of eqs. (4.2)-(4.5) we expand the kineti term of R�bosons�pgF��F�� = p�g(F (0) + F (1) + F (2)) ; (4.15)where F (0) = �z40F��F�� and the stress-energy tensor is de�ned byF (1) = (2z20F��F�� � 12z20F��F��Æ��)z40h�� = T��z40h�� : (4.16)The oupling of two gravitons and two R�bosons an be read fromF (2) = �14F��F��Æ�1�2Æ�1�2 � 18F��F��Æ�1�1Æ�2�2 + 12F��2F��2Æ�1�1+12F��1F��1Æ�2�2 � F�1�2F�1�2 � 2F�1�2F�1�2� z80h�1�1h�2�2 : (4.17)In the high energy limit, the diagram under onsideration an only give subleading ontributionwhih are proportional to s21, s22, or s1s2. In fat, as we have argued previously, powers of s1 and s2appear if and only if momenta (derivatives) from the �eld strength tensors F�� are ontrated bythe Kroneker deltas oming with the graviton propagators. In the oupling (4.17) of two gravitonsand two R�bosons, eah term involves only two �eld strength tensors. Sine eah �eld strengthtensor ontains only one momentum that is ontrated with the graviton by using eqs. (3.8)-(3.9),ontributions proportional to s21s22 are impossible to obtain. The �rst two terms of the vertex leadto traes over the graviton propagator and hene they furnish onstant ontributions to high energysattering. The remaining terms behave as sisj , at most. Hene, at high energies, the six-pointorrelator of R-urrents is dominated by the two diagrams in �g. 3. The two diagrams in �g. 4are subleading.5 SummaryIn this paper we have investigated the orrelation funtion of six R-urrents at high energies andin the strong oupling limit. Interest in suh six-point funtions omes from the observation thatgraviton exhanges at high energies need to be unitarized. As a �rst step, we need to omputethe oupling of two gravitons to the R-urrent. Suh a oupling appears as a part of the six-pointfuntion. We have two lasses of Witten diagrams, one ontaining the two graviton exhangesdepited in �g. 3, the other one ontaining the three graviton exhange in �g. 4. The latter onerepresents the triple Regge limit. These Witten diagrams have their analogues on the weak ouplingside, i.e. in the high energy behavior of R-urrent orrelators in N = 4 SYM: The diagrams in�g. 3 orrespond to the exhange of two BFKL Pomerons on the weak oupling side, see �g. 2, left�gure. On the other hand, the triple graviton diagram in �g. 4 has its weak oupling ounterpartin the triple Pomeron diagram on the right hand side of �g. 2. It is remarkable that the existeneof the former ontribution is a onsequene of the supersymmtri struture of N = 4 SYM, andit does not hold for (nonsupersymmetri) QCD. The study of the present paper an be viewed asthe strong oupling analogue of an earlier paper [17℄.20



Beginning with the two graviton exhange, the orrelation funtion has the same strutureas on the weak oupling side, a onvolution of impat fators and exhange propagators. Theintegration is over the position of the impat fators in the diretion of the �fth oordinate. Oneof our main results is the new impat fator whih desribes the oupling of two gravitons to theupper R-boson. Similar to its weak oupling ounterpart (whih onsists of a losed loop of spinorsand salars in the adjoint representation of the olor group), it has a ut in the mass variable M2,is maximal for small M2 and, for large M2, falls o� as M�4.In the seond part we have onsidered the three graviton diagram. We derived an expression forthe triple graviton vertex, and found that the oupling of three elementary gravitons vanishes inthe triple Regge limit. In agreement with the Steinmann relations, we obtained three terms whihgrow as s21, s22, and s1s2, respetively. We expet that the triple graviton vertex will be nonzeroone the attahed gravitons reggeize. This, however, requires genuine string sattering amplitudesand thus goes well beyond the analysis of Witten diagrams. Note that the triple vertex of theBFKL Pomeron in weakly oupled QCD possesses a non-trivial inner struture. This is linked tothe fat that the BFKL Pomeron is a omposite objet. Hene, it is tempting to expet some kindof reggeization for the dual graviton so as to math its triple vertex with that of the Pomeron.As we have said at the beginning, our present study was mainly motivated by the interestin two-graviton exhange. As a �rst step, we have investigated the oupling of two gravitons tothe R-urrent. The existene of the diret oupling hints at the importane of eikonalization.Nevertheless, the triple graviton diagram also needs further investigation.Our study of higher order R-urrent orrelators should be seen also within another ontext.One of the most important ingredients in the analysis of gauge/string dualities is the remarkableappearane of integrability. For multi-olor QCD is was shown many years ago, see [32, 33, 34℄, thatthe BKP Hamiltonian, i.e. the operator that enodes the rapidity evolution of n-gluon t hannelstates, orresponds to a losed spin hain and is integrable. Suh BKP states enter the high energylimit of sattering amplitudes with more than eight external legs. Our study of the six-pointamplitude therefore also serves as a preparation for pursuing further studies in this diretion.AknowledgmentsWe are grateful for disussions with A. H. Mueller, G. P. Vaa and L. Motyka. This work wassupported by the grant of SFB 676, Partiles, Strings and the Early Universe: �the Struture ofMatter and Spae-Time�.A Integrals for the forward aseTo alulate the forward ase as well as the OPE limit we have found the following integrals Z 1v dvAvAK0(vA)K0(vA) = � v (K0(v)K1(v)� K0(v)K1(v))( � 1)( + 1) =  log()2 � 1 +O �v2�(A.1)and  Z 1v dvAvAK1(vA)K1(vA) =  v (K0(v)K1(v)�K0(v)K1(v))( + 1)( � 1)= log(v�1) + (log(2)� E) + 2 log ()2 � 1 +O �v2� (A.2)
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as well asZ v0 dvAv5AK0(vA)K0(vA) =  �4 �2 + 1� v4(2 � 1)2 � 32 �4 + 42 + 1� v2(2 � 1)4 !K0(v)K0(v)+ v52 � 1 + 16 �22 + 1� v3(2 � 1)3 + 64 �4 + 42 + 1� v(2 � 1)5 !K1(v)K0(v)+ v51� 2 � 16 �2 + 2� v3(2 � 1)3 � 64 �5 + 43 + � v(2 � 1)5 !K0(v)K1(v)+ 8v4(2 � 1)2 + 96 �3 + � v2(2 � 1)4 !K1(v)K1(v)+32 ��34 + 2 �4 + 42 + 1� log() + 3�(2 � 1)5 (A.3)and Z v0 dvAv5AK1(vA)K1(vA) =  8v4(2 � 1)2 + 96 �3 + � v2(2 � 1)4 !K0(v)K0(v)+ v51� 2 � 8 �2 + 5� v3(2 � 1)3 � 192 �3 + � v(2 � 1)5 !K1(v)K0(v)+ v52 � 1 + 8 �52 + 1� v3(2 � 1)3 + 192 �4 + 2� v(2 � 1)5 !K0(v)K1(v)+ �4 �2 + 1� v4(2 � 1)2 � 16 �4 + 102 + 1� v2(2 � 1)4 !K1(v)K1(v)+16 �6 + 94 � 92 � 12 �4 + 2� log()� 1� (2 � 1)5 (A.4)The above results an be also used to perform integrals from [11℄.B Integrals appearing in the DIS limitIn this appendix we present further details of the six-point amplitude, restriting ourselves to thelimit of deep inelasti sattering. We will be slightly more general than in setion 3.4, by allowingthe external virtualities to be less restrited. In partiular, we allow j~p1j; j~p4j � j~p2j; j~p3j; j~p5j; j~p6j,without the onstraints j~p1j = j~p4j et., and we de�ne� = j~p1j=M ; � = j~p2j=j~p1j ; � = j~p4j=j~p1j ; �1 = j~p5j=j~p2j ; �2 = j~p6j=j~p3j : (B.1)As a result, our integrals depend also upon the variables �, �1, �2. Thus, the exhange de�ned byplanar diagram reads asA2G;planar�A�B1�B2 � �M�2� s1j~p1jj~p4j�2� s2j~p1jj~p4j�2 I�(��2; �)L�B1(�; �1)L�B2(�; �2) ; (B.2)where the integrations over lower verties giveL�B (�; �) = logm(�B)(��2)�� log(�2)�2 � 1 �1�m(�B) (B.3)22



while ontribution oming from the integral over upper verties, I�(��2; �), is de�ned by� �2�I�(��2; �) = p(0)� + p(1)� log(��2) + p(2)� log(�) : (B.4)For the transverse polarization we found thatp(0)T = 96�2�4(�2 + 1)4 (�2 � 1)8 (�2�2 + 1)4��5 ��2 + 1� ��12 � 9�10 + 17�8 � 858�6 + 17�4 � 9�2 + 1��14�2�3 �5�16 � 39�14 + 172�12 + 1333�10 + 2938�8 + 1333�6 + 172�4 � 39�2 + 5��12+� ��2 + 1� ��16+ 11�14� 261�12� 4081�10� 8980�8� 4081�6� 261�4+ 11�2 + 1��10�2 ��17 + 42�15 + 1609�13 + 7020�11 + 12056�9 + 7020�7 + 1609�5 + 42�3 + ���8�� ��2 + 1� �18�12 + 883�10 + 6856�8 + 13886�6 + 6856�4 + 883�2 + 18��6�4� �8�12 + 437�10 + 2125�8 + 3680�6 + 2125�4 + 437�2 + 8��4�� ��2 + 1� �23�8 + 1298�6 + 3238�4 + 1298�2 + 23��2�2� �3�8 + 178�6 + 478�4 + 178�2 + 3�� (B.5)p(1)T = 576�14 ��2 � 1� �7 ��2�2 � 1�(�2 + 1)5 (�2�2 + 1)5 (B.6)p(2)T = 1152�2�7(�2 � 1)9 (�2�2 + 1)5�10�8 �5�4 + 18�2 + 5� �10 + �6 �145�10 + 669�8 + 334�6 � 36�4 + 9�2 � 1� �2+20 ��6 + 6�4 + 6�2 + 1�+ �2 �94�8 + 534�6 + 464�4 + 34�2 � 6�+�4 �171�10 + 897�8 + 632�6 � 18�4 � 3�2 + 1�� (B.7)while for the longitudinal polarizationp(0)L = � 192�2�6(�2 + 1)4 (�2 � 1)8 (�2�2 + 1)4�� ��17 � 8�15 + 28�13 � 186�11 � 510�9 � 186�7 + 28�5 � 8�3 + ���14� ��2 + 1� ��16 � 4�14 � 8�12 + 612�10 + 1738�8 + 612�6 � 8�4 � 4�2 + 1��12+ �5�16 � 34�14 � 688�12 � 4552�10 � 7102�8 � 4552�6 � 688�4 � 34�2 + 5��10�2 ��2 + 1� �3�12 + 236�10 + 1704�8 + 3464�6 + 1704�4 + 236�2 + 3��8�2 �62�12 + 791�10 + 3653�8 + 5688�6 + 3653�4 + 791�2 + 62��6�6 ��2 + 1� �41�8 + 336�6 + 716�4 + 336�2 + 41��4�2 �93�8 + 743�6 + 1268�4 + 743�2 + 93��2�10 ��2 + 1� �5�4 + 32�2 + 5�� (B.8)23



p(1)L = 64�12 ��4 � 4�2 + 1� �6 ��4�4 � 4�2�2 + 1�(�2 + 1)5 (�2�2 + 1)5 (B.9)p(2)L = � 128�2�6(�2 � 1)9 (�2�2 + 1)5��4 �100�12 + 1125�10 + 1251�8 + 16�6 + 36�4 � 9�2 + 1��8+�2 �275�12 + 3681�10 + 5652�8 + 512�6 � 63�4 + 27�2 � 4��6+ �316�12 + 4617�10 + 8523�8 + 1888�6 � 252�4 + 27�2 + 1��4+9 �19�10 + 293�8 + 608�6 + 208�4 � 7�2 � 1��2+36 ���2 + 2� ��4 + 14�2 + 8� �2 + 1�� (B.10)One an notie that the poles in �2-plane are spurious, i.e. all poles of p(k)� (�2; �) anel eah otherin the sum.The ontribution related to the rossed diagram is de�ned by the formula with �M2 ! ~M2 �M2 + t � t1 � t2 + j~p1j2 + j~p4j2, namely A2G;rossed�A�B1�B2 is analyti ontinuation of A2G;planar�A�B1�B2 in M2plane. In the large M2 limit the leading terms of A2G;rossed�A�B1�B2 , whih is of ~M�2 � M�2 order,anels with the leading term of A2G;planar�A�B1�B2 . This means that the sum is of M�4 orderA2G;planar�A�B1�B2 +A2G;rossed�A�B1�B2 = �j~p1jj~p4jM4 � s1j~p1jj~p4j�2� s2j~p1jj~p4j�2 Î�(�2; �)L�B1(�; �1)L�B2(�; �2) ;(B.11)where t1 = t2 = t = 0. The funtion desribing the sum of the planar and rossed upper impatfator reads as Î�(�2; �) = ��2��1(I�(��2; �)� I�((��2 + 1 + �2)�1; �)) ; (B.12)In the large M2 limit, its value is de�ned byÎ�(�2 = 0; �) = �4 Z 10 drr7K��(r)K��(r�) ; (B.13)and it is plotted in �g. 8 as a funtion of the ratio of upper virtualities, i.e. �. The funtion remindsthe Gaussian pro�le with maximum at j~p1j = j~p4j.Making use of eq. (3.32) one an �nd that the imaginary part of R-boson propagatorIm ~K��(zM=�; yM=�;�i) = ��2J��(zM=�)J��(yM=�) : (B.14)This allows to alulate simply the imaginary part of the amplitude (B.2) related to disontinuityalong M2 > 0, namelydisM2IT (��2; �) = �576�12 ��2 � 1���6 ��2�2 � 1�(�2 + 1)5 (�2�2 + 1)5 (B.15)and disM2IL(��2; �) = �64�10 ��4 � 4�2 + 1���5 ��4�4 � 4�2�2 + 1�(�2 + 1)5 (�2�2 + 1)5 (B.16)24
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1��1+�Figure 8: Funtions Î�(�2 = 0; �) = (� + ��1)I(0)� (�) � 2I(1)� (�) plotted as a funtion of 1��1+� =j~p1j�j~p4jj~p1j+j~p4jThe roots, whih are related to the hange of the amplitude phase, appear atj~p1j=M; j~p4j=M = 1 for the transverse part, (B.17)j~p1j=M; j~p4j=M = 1p2 (p3� 1) for the longitudinal part.Also, similarly to the � = 1 ase we an observe the symmetry of��2��4 Im I�(��2; �) under ��2 $ (��2)�1 ; (B.18)where ��2 � j~p1jj~p4jM2 . Thus, the disontinuity multiplied by (��2)�3 is invariant under the inversionin the M2=(j~p1jj~p4j) variable.C The saddle point method for large M2 expansionIn this appendix we alulate the real part of the integralI�(�2; �) = 132��2�5 Z 10 dzM Z 10 dyMz5My5MK��(zM )K��(yM�) ~K��(zM=�; yM=�; 1) ;(C.1)from eq. (3.48) in large M2 limit making use expression for the propagator ~K��(zM ; yM ; 1) de�nedby eq. (3.11). Let us hange variables zM = r sin(�) and yM = r os(�) and jJ j = r. Analyzing eq.(C.1) one an �nd that in its �rst two order expansion in small � the leading ontribution omesfrom the region where k � ��2. Thus we an apply the saddle point method with the large k
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parameter, i.e.I�(�2; �) = Z 10 dr 1Xk=0�����2k�2 4�k�3(2� �� + 2(1� ��)k)�(k + 1)�(k + 2) r11+2k+���5Z �=20 d�K��+2k � r��K��(r� os(�))K��(r sin(�)) os5+��(�) sin5+��(�)(sin(�) os(�))2k= Z 10 dr 1Xk=0�����2k�2 4�k�3(2� �� + 2(1� ��)k)�(k + 1)�(k + 2) r11+2k+���5K��+2k � r��h(r; k) ; (C.2)whereh(r; k) = Z �=20 d�gr(�) ekf(�) = Z �=20 d� �gr(�0) + g0r(�0)(� � �0) + 12g00r (�0)(� � �0)2 + : : :�ekf(�0)+kf 0(�0)(���0)+ 12!kf 00(�0)(���0)2+ 13!kf 000(�0)(���0)3+ 14!kf (iv)(�0)(���0)4+::: ; (C.3)with gr(�) = K��(r� os(�))K��(r sin(�)) os5+��(�) sin5+��(�) ; (C.4)and f(�) = 2 log(sin(�) os(�)) = 2 log (os(�0) sin(�0)) + 4 ot(2�0)(� � �0)�4 s2(2�0)(�� �0)2 + 163 ot(2�0) s2(2�0)(�� �0)3�83 �(os(4�0) + 2) s4(2�0)� (� � �0)4 +O �(�� �0)5� : (C.5)Sine we are going to alulate the �rst two orders we have to expand f(�) to fourth order andg(�) to seond order. The saddle point orresponds to z0 = y0, i.e. �0 = �=4. It is de�ned byot(2�0) = 0, so that f 0(�0) = f 000(�0) = 0. To integrate out � we useZ �=20 d� e�4k�2� 83k�4 = p32p2 e 3k4 K1=4�3k4 �= 12p�k� 12 � 116p�k� 32 + 35768p�k� 52 +O �k� 72� ; (C.6)and Z �=20 d��2 e�4k�2� 83k�4 = 316r32e3k=4 �K 34 �3k4 ��K 14 �3k4 ��= 116p�k� 32 � 5128p�k� 52 + 1052048p�k� 72 +O �k� 92� ; (C.7)whih resultsI�(�2; �) = � Z 10 dr 1Xk=0 2����4k�17�2k5=2�(k)�(k + 2)(�� + 2(�� � 1)k � 2)p�r11K��+2k � r��� r����+2k �2�2rK��+1� rp2��p2(�� + 1)K�� � r�p2�� r�K��+1� r�p2��+K�� � rp2�����2 + 1� r2 � 16�� + 32k � 44�K�� � r�p2�+2p2(�� + 1)r�K��+1� r�p2���+ : : : : (C.8)26



Sine the dominant ontribution for small � is de�ned in the region wherek = �=�2 with � = �xed ; (C.9)one an exhange sum over k by integral over �. We substitute the large k expansion of Besselfuntions, i.e. K2k+��(r=�) � 12 � r2������2k JXj=0 �(�� + 2k � j)�(j + 1) �� r24�2�j ; (C.10)and making use of(2k)j���2�2k �(�� � j + 2k)�(k)�(k + 2) � �32�3=2p� + �2��2 � 2(2j + 1)�� + 2j(j + 1)� 9��516�5=2p� + : : :(C.11)we resum j. Finally, one an �nd thatI�(�2; �) = I(0)� (�) + I(1)� (�)��2 + : : : ; (C.12)where I(0)� (�) = �58192 Z 10 drr11K�� � rp2�K�� � r�p2�Z 10 d�e� r28� ��2 ; (C.13)I(1)� (�) = �4 Z 10 drr11 Z 10 d� e� r28�2097152p2�5�16rK��+1� rp2��2(�� + 1)K�� � r�p2��p2r�K��+1� r�p2���2+K�� � rp2��32(�� + 1)r�K��+1� r�p2��2 (C.14)+p2 �r4 + 16(�� � 1)�r2 + 8�2 ���2 + 1� r2 + 8(�� � 7)�� � 48��K�� � r�p2��� :Moreover we perform the integrals over �, i.e.I(0)� (�) = �532 Z 10 drr9K�� (r)K�� (r�) ; (C.15)I(1)� (�) = Z 10 dr�4r7128 (rK��+1 (r) (2(�� + 1)K�� (r�) � 2r�K��+1 (r�))+K�� (r) ����2 + 1� r2 + 4(�� � 3)�� � 16�K�� (r�)+2(�� + 1)r�K��+1 (r�))) : (C.16)and over r. For �� = 1 we getI(0)T (�) = 192�4(�2 � 1)8 �3�8 + 178�6 + 478�4 + 178�2 + 3��60192�6 log(�2)(�2 � 1)9 ��6 + 6�4 + 6�2 + 1� ; (C.17)27



and I(1)T (�) = 96�3(�2 � 1)8 (�10 + 127�8 + 712�6 + 712�4 + 127�2 + 1)�1152�5 log(�2)(�2 � 1)9 �3�8 + 33�6 + 68�4 + 33�2 + 3� ; (C.18)while for �� = 0 the resulting expression looks likeI(0)L (�) = � 1920�5(�2 � 1)8 �5�6 + 37�4 + 37�2 + 5�+12192�5 log(�2)(�2 � 1)9 ��8 + 16�6 + 36�4 + 16�2 + 1� ; (C.19)I(1)L (�) = � 384�4(�2 � 1)8 (7�8 + 97�6 + 212�4 + 97�2 + 7)+576�4 log(�2)(�2 � 1)9 ��10 + 27�8 + 112�6 + 112�4 + 27�2 + 1� : (C.20)Moreover, the integral from eq. (3.51) readsÎ�(�2 = 0; �) � Î(0)� (�) = (�+ ��1)I(0)� (�)� 2I(1)� (�) ; (C.21)so that Î(0)T (�) = 384�3(�2 � 1)6 ��6 + 29�4 + 29�2 + 1�� 4608�5 log ��2�(�2 � 1)7 ��4 + 3�2 + 1� ; (C.22)Î(0)L (�) = � 384�4(�2 � 1)6 �11�4 + 38�2 + 11�+ 1152�4 log ��2�(�2 � 1)7 ��6 + 9�4 + 9�2 + 1� : (C.23)D Variations of the ationThe seond variation of the ation reads as , i.e.H(2) = z40(d� 5)(d� 2)h�0h�0 � 14z40((d� 7)d+ 20)h��h�� + 18z40((d� 7)d+ 16)�h2�12z40((d� 7)d+ 14)h00�h+ z50(d� 6)h�0���h� 2z50(d� 4)h�0��h��+z50(d� 7)h���0h�� � 2z50(d� 3)h����h�0 � 12z50(d� 6)�h�0�h+ z50(d� 4)�h��h�0�34z60��h� ��h� + 12z60��h� ��h� + 14z60���h ���h� z60h�������h+ 2z60h�����h��z60h�����h� � z60��h�� ���h+ z60��h� ��h� + 12z60�h�����h� 12z60�h����h�� (D.1)Referenes[1℄ Alexander M. Polyakov. Gauge Fields as Rings of Glue. Nul. Phys., B164:171�188, 1980.28
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