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R-
urrent six-point 
orrelators in AdS5 SupergravityJ. Bartels1, J. Kotanski1, A.-M. Mis
hler1, V. S
homerus21 II. Institute Theoreti
al Physi
s, Hamburg University, Germany2 DESY Theory Group, Hamburg, GermanyJanuary 12, 2010Abstra
tWithin the 
onje
tured duality between N = 4 super Yang-Mills and Anti-deSitter stringtheory, the BFKL Pomeron of the gauge theory 
orresponds to the graviton mode of the dualstring. As a �rst step towards analyzing multigraviton ex
hange, we investigate R-
urrent six-point fun
tions within the supergravity approximation. We 
ompute the analogue of di�ra
tives
attering, and we analyze the triple Regge limit. In the supergravity approximation the triplegraviton vertex is found to vanish.
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tionSin
e many years, the high energy behavior of s
attering amplitudes in quantum �eld theoryhas attra
ted interest, and extensive 
al
ulations have been performed in order to understand thestru
ture well beyond leading orders of perturbation theory. In this 
ontext, a spe
ial role is playedby the Regge limit whi
h is 
losely 
onne
ted with unitarity of the theory.The AdS/CFT 
orresponden
e [1, 2, 3, 4℄ has raised new hopes to determine the high energybehavior to all orders of the 't Hooft 
oupling �, in
luding the strong 
oupling region, at least forthose gauge theories whi
h possess a dual string theory des
ription. The most prominent exampleof su
h a duality relates 4D super Yang-Mills (SYM) theory with N = 4 supersymmetries to typeIIB string theory in the Anti-deSitter ba
kground AdS5 � S5. Through the 
orresponden
e, thegauge theoreti
 BFKL Pomeron [5, 6, 7℄ gets related to graviton on the string theory side [8, 9℄.In [10℄ and [11℄ we have examined this 
orresponden
e in some detail. Stimulated by QCD where
�
� s
attering provides a safe framework for investigating the BFKL Pomeron, we have studiedthe elasti
 s
attering of two R-
urrents [12℄ in N = 4 SYM theory. On the weak 
oupling side, thehigh energy s
attering amplitude fa
torizes into the 
urrent impa
t fa
tors and the BFKL Green'sfun
tion. In [10℄ the R-
urrent impa
t fa
tor has been 
al
ulated to leading order. The BFKLGreen's fun
tion is known also in NLO [13, 14, 15℄. In the strong 
oupling region, the methodof 
al
ulating leading order 
orrelations fun
tion was de�ned in [3℄. It involves the summation ofWitten diagrams 
ontaining supergravity �elds whi
h live on the AdS5 spa
e. Our 
al
ulation ofthe high energy behavior of Witten diagrams has shown that the s
attering amplitudes for in�nite't Hooft 
oupling � also 
ome as a 
onvolution of impa
t fa
tors and an ex
hange propagator, justas in the weakly 
oupled theory. The 
onvolution is de�ned through an integration over the radialdire
tion of the AdS5 geometry. As a result of our 
al
ulation, we have obtained an expressionfor the R-
urrent impa
t fa
tor at � ! 1. Corre
tions of the order 1=� require string theory1
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Figure 1: Unitarity 
orre
tions in QCD: (a) a fan diagram; (b) the six-point fun
tion
al
ulations. As to the ex
hanged graviton, Witten diagrams in the Regge limit yield a power lawbehavior Agraviton � sj , with j = 2 being the spin of the graviton. The higher order 
orre
tionsto the graviton traje
tory j = 2� 4 + �22p� +O( 1� ) ; (1.1)
annot be derived from Witten diagrams, and they have been dedu
ed from other lines of ar-guments [8, 9℄. In [16℄ a representation for the Regge limit of four 
urrent 
orrelators has beensuggested whi
h would allow to interpolate between weak and strong limits. We have not attemptedto 
ast our result for the Witten diagram into this form.Within QCD, it is well known that the BFKL Pomeron violates unitarity bounds sin
e it growsas ABFKL � isj with j = 1 + !BFKL at very high energies. Consequently the Pomeron mustbe tamed by suitable 
orre
tions. Elaborate 
al
ulations have been performed in order to identifythe relevant 
orre
tions within perturbation theory. An example arises in the 
ontext of deepinelasti
 ele
tron proton s
attering at small x (whi
h is related to the elasti
 s
attering of a virtualphoton on the proton). It has been argued that the most important 
orre
tions to the BFKLex
hange are given by 'fan' diagrams (an example is shown in �g. 1a) whi
h 
ontain the triplePomeron vertex. This vertex des
ribes the splitting of one BFKL Pomeron into two Pomerons.A derivation of this result is obtained by 
onsidering, �rst, the s
attering of the virtual photonon two (weakly 
oupled) nu
leons and, then, 
losing the two BFKL Pomerons at the lower endby integrating over the 'di�ra
tive' squared mass M2 (�g. 1b). As a key feature, the fan diagramin �g. 1a. 
ontains, in its lower part, the ex
hange of two BFKL Pomerons whi
h 
omes witha minus sign relative to the single BFKL ex
hange. At high energies, double Pomeron ex
hangegrows as Adouble BFKL � �is1+2!BFKL , and thus starts to weaken the growth of the single BFKLex
hange. In preparation for extending this dis
ussion to N = 4 SYM theory, one may repla
ethe two nu
leons at the bottom by virtual photons. In this way, the essential amplitude to bestudied, be
omes the six-point ele
tromagneti
 
urrent 
orrelator, evaluated in the triple Reggelimit. It is a remarkable feature of QCD that the two lower Pomerons do not 
ouple dire
tly tothe upper impa
t fa
tor. Su
h a 'dire
t' 
oupling would 
orrespond to the eikonal approximation.The absen
e of this dire
t 
oupling in the leading logarithmi
 approximation of QCD means thatthe eikonal pi
ture is not supported.Turning toN = 4 SYM theory, the analogous 
orrelator is the six-point 
orrelator of R-
urrents.Our 
omments on QCD suggest to investigate, as a �rst step of addressing the unitarization, thesix-point R-
urrent 
orrelator in the limit s1 � s2 � M2. In the weak 
oupling limit, this highenergy limit of the six-point R-
urrent 
orrelator in N = 4 SYM theory has been studied in [17℄.2



Figure 2: High energy limit of the six-point fun
tion in N = 4 SYMThe main result is illustrated in �g. 2. At high energies, the six-point amplitude 
an be writtenas a sum of several pie
es [18℄; ea
h of them 
orresponds to a distin
t set of simultaneous energydis
ontinuities, in agreement with the Steinmann relations. For our dis
ussion we are interestedonly in those terms whi
h 
ontribute to the dis
ontinuity in the energies s1, s2 and in the squareof the di�ra
tive mass, M2. In the leading log approximation, the triple Pomeron vertex (�g. 2,right �gure) is the same as in QCD. The amplitude 
orresponding to this diagram has the formAtriple3!3 = s1s2M2 Z Z Z d!d!1d!2(2�i)3 s!11 s!22 (M2)!�!1�!2�(!1)�(!2)�(!; !1; !2)F (!; !1; !2) ;where the signature fa
tors are given by�(!) = �� e�ipi! � 1sin�! ; �(!; !1; !2) = �� e�i�(!�!1�!2) � 1sin�(! � !1 � !2) ; (1.2)and F (!; !1; !2) = �(Q2)
G(!)
 V 
G(!1)
 �(Q2A)
G(!2)
 �(Q2B) : (1.3)Here 
 denotes the integration over transverse momenta, G(!) is the BFKL Green's fun
tion, �is the impa
t fa
tor presented in [10℄, and details on the triple Pomeron vertex V 
an be 
an befound in [17℄. The dis
ontinuity of this six-point fun
tion a
ross the 
ut in M2 leads to the 
rossse
tion of the di�ra
tive s
attering pro
ess (in the notations of QCD) 
� + 
� !MX + 
�. Sin
eM2 is large, we obtain a 
ontribution of 'large di�ra
tive masses'. In all three ! variables, theleading singularity is given by the BFKL 
hara
teristi
 fun
tions! = !1 = !2 = �s�(� = 0; n = 0) = 4N
�s ln 2� : (1.4)As an important feature of N = 4 SYM theory we �nd an extra 
ontribution (see �g. 2, left �gure)where the two BFKL ex
hanges 
ouple dire
tly to the upper R-
urrents. The presen
e of this'dire
t' 
oupling, whi
h is absent in QCD and might be viewed as a support of eikonalization inN = 4 SYM theory, 
an be tra
ed ba
k to the fa
t that fermions (and s
alars) belong to the adjointrepresentation. The 
orresponding s
attering amplitude is of the formAdire
t3!3 = s1s2 Z Z d!1d!2(2�i)2 s!11 s!22 �(!1)�(!2)F (M2;!1; !2) ; (1.5)where F (M2;!1; !2) = �(Q2;M2)dire
t 
G(!1)
 �(Q2A)
G(!2)
 �(Q2B) : (1.6)3
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Figure 3: Witten diagrams for the two graviton ex
hange in the t�
hannelAn expression for the new impa
t fa
tor �(M2;Q2))dire
t whi
h des
ribes the 
oupling of the twoBFKL Pomerons to the upper R-
urrent 
an be found in [19, 20℄ and [17, 21℄ 1. For large M2,this impa
t fa
tor falls o� asM�4. For the di�ra
tive 
ross se
tion one takes the M2-dis
ontinuityof the six-point amplitude, i.e. the M2-dis
ontinuity of the impa
t fa
tor �(M2;Q2))dire
t. Thelatter falls o� as M�8, i.e. it 
ontributes to the region of small di�ra
tive masses.In the present paper we 
ontinue the investigtion of the high energy limit in the strongly 
oupledtheory using Witten diagrams. Our main interest now is in the six-point R-
urrent 
orrelators.In the triple Regge limit, the amplitude is dominated by t�
hannel ex
hanges of gravitons. Therelevant diagrams are shown in �gs. 3 and 4. There is an obvious 
orresponden
e between the two
ontributions on the weak (�g. 2) and on the strong 
oupling side (�gs. 3 and 4, left diagram).These Witten diagrams will be 
onsidered as the strong 
oupling analogue of our weak 
ouplingresults obtained in N = 4 SYM theory .Our arti
le is organized as follows. Se
tion 2 is devoted to a brief review of our notation usedin [11℄. In se
tion 3 we present 
omputations of the s
attering amplitude with the two t�
hannelgravitons and one intermediate R-boson 
arrying mass M (�g. 3). We rewrite the amplitude tomomentum spa
e and perform the high energy limit. The amplitude is found to be proportionalto the square of two large energy variables, namely s21s22. The planar graph (left part of �g. 3) hasa 
ut for positive M2, starting at M2 = 0, and, for large M2 (triple Regge limit), falls o� as M�2.Correspondingly, the 
rossed graph (right part of �g. 3) has a 
ut for negative values ofM2. Finally,in se
tion 4 we 
onsider the 
orrelation fun
tion with the triple graviton vertex (�g. 4). In the tripleRegge limit, the expe
ted 
ontribution to the triple Regge behavior � (s1=M2)j1(s2=M2)j2(M2)jwith j = j1 = j2 = 2 vanishes. Instead, we �nd 
ontributions proportional to s21, s22, and s1s2.2 Six-point 
orrelation fun
tions at strong 
ouplingLet us 
onsider N = 4 super Yang-Mills (SYM) theory in four dimensional Eu
lidean spa
e. TheFourier transform of the six-point 
orrelator reads as(2�)4Æ( 6Xi=1 ~pi)Aj1j2j3j4j5j6(~pi) = Z  6Yi=1 d4xi e�i~pi�~xi! h 6Ya=1 Jja(~xa)i : (2.1)By Jj we denote R-
urrents with j labelling the spa
ial dire
tions, j = 1; : : : ; d = 4. The ~x =(x1; x2; x3; x4) stands for the four dimensional Eu
lidean ve
tor (the value j = 0 refers to the �fth1Ref. [21℄ dis
usses the M2 dis
ontinuity of the two-Pomeron impa
t fa
tor. In order to obtain the full impa
tfa
tor from this dis
ontinuity, one writes a (unsubtra
ted) dispersion relation.4
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hange with the triple graviton vertex. Right �gure: twograviton ex
hange with the dire
t 
oupling of two gravitons and two bosons.
oordinate).We use the same notations as in [11℄. Starting with the Eu
lidean notation ~p = (p1; p2; p3; p4)and j~pj = p~p2, the Wi
k rotation 
ontinues j~pj2 = ~p2 ! �p2 = �p24 + p21 + p22 + p23 in Minkowskispa
e. In the high energy limit, our s
attering amplitude depends upon the energies s1, s2, thedi�ra
tive mass squared M2, and the momentum transfers t1, t2, and t. Furthermore, j~p1j, j~p2j,j~p3j, (j~p4j ,j~p5j and j~p6j) are the virtualities of the in
oming (outgoing) 
urrents. In Eu
lideannotation we haves1 = �(~p1 + ~p2)2 ; s2 = �(~p1 + ~p3)2 ; M2 = �(~p1 + ~p2 + ~p5)2 ;�t = (~p1 + ~p4)2 ; �t1 = (~p2 + ~p5)2 ; �t2 = (~p3 + ~p6)2 : (2.2)After Wi
k rotations, the energy variables s1, s2, and M2 are positive, whereas the momentumtransfer variables t, t1, t2 remain negative; the masses of the external 
urrents are kept negative(spa
e-like), �j~pij. After Wi
k rotation, we still 
ontinue to use the ve
tor symbol ~p for theMinkowski ve
tor (p1; p2; p3; p4), but now ~p2 = �p2.The high energy limit is de�ned ass1; s2 �M2 � t; �t1; �t2;�j~pij2: (2.3)For the two graviton ex
hange diagrams we will keep M2 �nite, whereas for the triple gravitondiagram we take the triple Regge limit where also M2 be
omes large.Finally, we �nd it 
onvenient to present the s
attering amplitude in the heli
ity basis. To thisend we 
ontra
t the 
orrelator A with appropriate polarization ve
torsA�1�2�3;�4�5�6(j~pij; s1; s2;M2; t; t1; t2) ==Xji �(�1)j1 (~p1)�(�2)j2 (~p2)�(�3)j3 (~p3)�(�4)j4 (~p4)��(�5)j5 (~p5)��(�6)j6 (~p6)�Aj1j2j3j4j5j6(~pi) ; (2.4)where �i = L;� runs through the possible heli
ities and we introdu
ed the polarization ve
tors��ij (~pi) su
h that pji �(�i)j (~pi) = 0.In order to 
al
ulate the amplitude (2.1) in the limit of in�nite 't Hooft 
oupling [10℄ we makeuse of the 
onje
tured AdS/CFT 
orresponden
e [2℄ between IIB string theory on AdS5 spa
e andN = 4 SU(N
) super Yang-Mills theory. An e�
ient 
al
ulation 
an only be performed in the limitof large N
. Moreover the full string theory on AdS5 is well approximated by 
lassi
al supergravitywhen 't Hooft 
oupling � = g2YMN
 goes to in�nity.5



A

ording to the AdS/CFT 
orresponden
e, 
orrelation fun
tions are related with a 
lassi
alsupergravity a
tion SAdS by [3, 4℄hJ(1)J(2) : : : J(n)iCFT = !n ÆnÆ�0(1) : : : Æ�0(n) exp(�SAdS[�[�0℄℄)���0=0 ; (2.5)where the fa
tor !n 
omes from the relative normalization [22℄ while the sour
es �0 of operatorsin super Yang-Mills theory 
orrespond to the boundary values of supergravity �elds in AdS5 inthe 4-dimensional quantum �eld theory, i.e. �j�AdS � �0. We are using the following 
onventions
on
erning the Anti-deSitter spa
e AdSd+1. Its Eu
lidean 
ontinuation is parameterized by z0 > 0and ~x with 
oordinates xi enumerated by the Latin indi
es i = 1; : : : ; d. We use the metri
ds2 = 1z20 (dz20 + d~x2) ; (2.6)where d~x2 
an be related to the metri
 of Minkowski spa
e by Wi
k rotation. The limit z0 ! 0
orresponds to the boundary of the Anti-deSitter spa
e. The most interesting 
ase is for d = 4whi
h 
an be related to QCD.To simplify notation we trun
ate the SU(4) R-
urrent group to U(1)R. However, our 
onsid-erations may easily be generalized to the non-Abelian 
ase. The supergravity a
tion is de�nedby S = 12�2d+1 Z dd+1zpg(�R+�) + Sm ; (2.7)where R is the s
alar 
urvature while the 
ovariant matter a
tion reads as [23, 22, 24, 25℄Sm = 12�2d+1 Z dd+1zpg �14F��F�� �A�J� + : : :� : (2.8)Here �25 is �xed by mat
hing two- and three-point prote
ted operators [23, 22℄, while F�� is the �eldstrength of the gauge �eld A. Throughout this note, Greek indi
es refer to the (d+1)-dimensionalspa
e, i.e. they take values from 0 to d. Latin subs
ripts, on the other hand, parameterize dire
tionsalong the Eu
lidean d-dimensional boundary of AdSd+1. Contra
tions of the full metri
 (2.6) aredenoted with upper and lower indi
es while 
ontra
tions of both lower indi
es denotes simplesummation with Krone
ker delta.After these te
hni
al preparations we 
an now begin to evaluate the high energy limit of our six-point 
orrelator at strong 
oupling, where supergravity on AdS is believed to provide an a

uratedes
ription. To this end we make use of a very 
onvenient and intuitive diagrammati
 pro
edurethat was �rst proposed by Witten [3℄ and then developed further by many other authors. It relieson summing diagrams whi
h in our 
ase 
ontain only three basi
 building blo
ks, namely thebulk-to-bulk propagators for the graviton and the gauge R-bosons as well as the bulk-to-boundaryR-boson propagator. They are 
onne
ted by verti
es de�ned in eqs. (2.7) and (2.8). In the highenergy limit it is enough to analyze diagrams plotted in �gs. 3, 4.3 Two Graviton ex
hange: Low di�ra
tive massesIn this se
tion we analyze two Witten diagrams depi
ted in �g. 3. These will later turn out to
ontain all leading order 
ontributions to the high energy limit of the full amplitude. After a verydetailed dis
ussion of the �rst diagram we 
an obtain the 
ontribution from the se
ond diagramthrough analyti
 
ontinuation. The results are spelled out in eqs. (3.27) and (3.30). They involvea new impa
t fa
tor, de�ned in eq. (3.21), whose properties shall be analyzed in subse
tion 3.3.The �nal subse
tion is then devoted to a study of the deep inelasti
 limit of the amplitude.6



3.1 The Momentum spa
e representationWe start from the expression for the two graviton ex
hange in 
on�guration spa
e. Its 
ontributionto the six 
urrent matrix element is2I2G;planar = Z dd+1yyd�30 Z dd+1vvd�30 Z dd+1wwd�30 Z dd+1zzd�30 ~T(14)��;��(z; y) (3.1)G��;�0�0(z; w)G��;�0�0(y; v) ~T(25)�0�0(w) ~T(36)�0�0(v) ;where the stress-energy tensor~T(14)�� = z20�[�G�℄�1 (z; ~x1)�[�G�℄j4 (z; ~x4) + z20�[�G�℄�1(z; ~x1)�[�G�℄j4(z; ~x4)�12z20Æ���[�G�℄�1(z; ~x1)�[�G�℄j4(z; ~x4) : (3.2)In the high energy limit, the highest 
ontribution 
omes from the �rst two terms. For the 
ouplingof the two gravitons to the upper 
urrents one 
an de�ne the double stress-energy tensor~T(14)��;�� = (Æ��0Æ��0 + Æ��0Æ��0 )(Æ��0Æ��0 + Æ��0Æ��0 )[z20y20�z[�0G�℄j1(z; ~x1)�y[�0�z[�0G�℄� ℄(z; y)�y[�0G� ℄;j4(y; ~x4)�12z20y20Æ�0�0�z[�G�℄j1 (z; ~x1)�y[�0�z[�G�℄� ℄(z; y)G�y[�0G� ℄;j4(y; ~x4)�12y20z20Æ�0�0�z[�0G�℄j1(z; ~x1)�y[��z[�0G�℄� ℄(z; y)�y[�G� ℄j4(y; ~x4)+14y20z20Æ�0�0Æ�0�0�z[�G�℄j1 (z; ~x1)�y[��z[�G�℄� ℄(z; y)�y[�G� ℄j4(y; ~x4)℄ : (3.3)In the high energy limit, only the �rst term 
ontributes to the leading power in energy. Theexpressions for the propagators are listed in Ref. [11℄.Let us now spe
ify d = 4. Using the expressions for the propagators presented in Ref. [11℄ werewrite the formulae in the momentum spa
e. We de�ne Fourier transform of stress-energy tensorsas ~T(14)��(z) = 1(2�)8 Z d4p1 Z d4p4 e�i~p1�(~z�~x1) e�i~p4�(~z�~x4) T(14)��(z0; ~p1; ~p4) ; (3.4)and ~T(14)��;��(z; y) = 1(2�)12 Z d4p1 Z d4p4 Z d4p e�i~p1�(~z�~x1) e�i~p4�(~y�~x4) e�i~p�(~y�~z)T(14)��;��(z0; y0; ~p1; ~p; ~p4) : (3.5)This gives T(14)��(z0; ~p1; ~p4) � �z20p1[�G�℄�1 (z0; ~p1)p4[�G�℄j4 (z0; ~p4)�z20p1[�G�℄�1(z0; ~p1)p4[�G�℄j4 (z0; ~p4) ; (3.6)2The 
orrelation fun
tions and amplitudes are 
al
ulated up to multipli
ative 
onstants, whi
h 
an be easilyrestored from the a
tion (2.7).
7



with pk0 � i�z0 andT(14)��;��(z0; y0; ~p1; ~p; ~p4) � z20y20p1[�G�℄j1(z0; ~p1)�p[�p[�G�℄� ℄(z0; y0; ~p)p4[�G� ℄;j4(y0; ~p4) (3.7)+z20y20p1[�G�℄j1 (z0; ~p1)�p[�p[�G�℄� ℄(z0; y0; ~p)p4[�G� ℄;j4(y0; ~p4)+z20y20p1[�G�℄j1 (z0; ~p1)�p[�p[�G�℄� ℄(z0; y0; ~p)p4[�G� ℄;j4(y0; ~p4)+z20y20p1[�G�℄j1 (z0; ~p1)�p[�p[�G�℄� ℄(z0; y0; ~p)p4[�G� ℄;j4(y0; ~p4) ;with �~zi = �ipi, �~yi = �i�pi, p0 = i�z0 , �p0 = i�y0 , p10 � i�z0 , p40 � i�y0 . In the above formulae theapproximation indi
ates that we omit terms whi
h, in the high energy limit, are power suppressed.Finally, our expression in the four-dimensional momentum spa
e takes the following form(2�)4Æ(4)(Xi ~pi)A2G;planarj1j2j3j4j5j6(~pi) = 0� 6Yj=1 Z d4xj e�i~xj �~pj1A I2G;planar == (2�)4Æ(4)(Xi ~pi) Z 10 dy0y0 Z 10 dv0v0 Z 10 dw0w0 Z 10 dz0z0 T(14)��;��(z0; y0; ~p1; ~p1 + ~p2 + ~p5; ~p4)G��;�0�0(z0; w0; ~p2 + ~p5)T(25)�0�0(w0; ~p2; ~p5)G��;�0�0 (y0; v0; ~p3 + ~p6)T(36)�0�0 (v0; ~p3; ~p6) :3.2 The high energy limitIn the high energy limit, the leading 
ontribution 
an be obtained exa
tly in the same way as itwas done for four point fun
tions [11℄. For the in
oming R-boson propagators, the only importantparts are those proportional to pk, namelyp[kGl℄j(z0; ~p) = z0(pkÆlj � plÆkj)j~pjK1(z0j~pj) � z0pkÆlj j~pjK1(z0j~pj) ; (3.8)p[kG0℄j(z0; ~p) = iz0(Ækj j~pj2 � pjpk)K0(z0j~pj) � �iz0pjpkK0(z0j~pj) ; (3.9)where �~zi = �ipi, p0 = i�z0 . Making use of the Ward identity, i.e. shifting the polarization ve
tors(listed in [11℄, Appendix A), we 
an remove terms without pk. To simplify the notation of thebulk-to-bulk R-boson propagator we introdu
eKa(z0; y0; j~pj) = 1Xk=0 2�2k�1�(k + 2)�(k + 1)  z0y0j~pjpz20 + y20!2k+aK2k+a(j~pjqz20 + y20) ; (3.10)and ~Ka(z0; y0; j~pj) = 1Xk=0 2�2k�a�(k + 1 + a)�(k + 1)  z0y0j~pjpz20 + y20!2k+aK2k+a(j~pjqz20 + y20) : (3.11)This allows us to rewrite the bulk-to-bulk R-boson propagators asG�j(z0; y0; ~p) = 18Æ�jz0y0 ~K1 � i8pjÆ�0z0y20K0 ; (3.12)and G�0(z0; y0; ~p) = 18Æ�0(z20 + y20) ~K1 � 18Æ�0z0y0 ~K0 + i8pjÆ�jz20y0K0 : (3.13)Furthermore, in the high energy limit the leading term of the graviton propagator is given byG��;�0�0(z0; w0; ~p) � (Æ��0Æ��0 + Æ��0Æ��0)G(z0; w0; ~p) ; (3.14)8



with G(z0; w0; ~p) � ~Ka=2(z0; w0; j~pj) : (3.15)To 
al
ulate the s
attering amplitude we have to 
ontra
t the resulting expression with the polar-ization ve
tors, namelyA2G;planar�1�2�3;�4�5�6 = Xji 3Ya=1 �(�a)ja (~pa) (A2G;planar)j1j2j3;j4j5j6 6Yb=4 �(�b)jb (~pb)� : (3.16)Substituting the expressions for the propagators, the double stress-energy tensor reads asT(14)��;��(z0; y0; ~p1; ~p; ~p4) � � 18z40y40p1k1pk2pk3p4k4(Æ�k1Æ�k3 + Æ�k3Æ�k1)(Æ�k2Æ�k4 + Æ�k4Æ�k2)Xm=0;1Wmj1j4(~p1; ~p4)Km(z0j~p1j) ~Km(z0; y0; j~pj)Km(y0j~p4j) ; (3.17)where we have introdu
ed the ve
tor ~p = ~p1 + ~p2 + ~p5: (3.18)The tensor part, namelyWmj1j4(~p1; ~p4) = (Æj1j4 j~p1jj~p4jÆm;1 � p1j1p4j4Æm;0) ; (3.19)in the basis of polarization ve
tors basis (
f. [11℄), 
an be written asWm1�1�4(~p1; ~p4) = Xj1;j4 �(�1)j1 (~p1)�(�4)j4 (~p4)�Wm1j1j4(~p1; ~p4)� j~p1jj~p4j(Æm1;1Æ�1;hÆ�4;h + Æm1;0Æ�1;LÆ�4;L) : (3.20)In analogy with [11℄, we introdu
e the impa
t fa
tor for the 
oupling of two gravitons��1�4(j~p1j; j~pj; j~p4j; z0; y0) = Xm=0;1Wm�1�4(~p1; ~p4)Km(z0j~p1j) ~Km(z0; y0; j~pj)Km(y0j~p4j) : (3.21)We rewrite eq. (3.17) asT(14)��;��(z0; y0; ~p1; ~p; ~p4) � � 18z40y40p1k1pk2pk3p4k4(Æ�k1Æ�k3 + Æ�k3Æ�k1)(Æ�k2Æ�k4 + Æ�k4Æ�k2)��1�4(j~p1j; j~pj; j~p4j; z0; y0) : (3.22)For the lower stress-energy tensors we make use of the impa
t fa
tors introdu
ed in [11℄��2�5(j~p2j; j~p5j;w0) = Xm=0;1Wm�2�5(~p2; ~p5)Km(w0j~p2j)Km(w0j~p5j) : (3.23)With this notation, the lower stress-energy tensors 
an be written in the formT(25)�0�0(w0; ~p2; ~p5) � 2w40p2k02p5k05(Æ�0k02Æ�0k05 + Æ�0k05Æ�0k02) ��2�5(j~p2j; j~p5j;w0) (3.24)and T(36)�0�0(v0; ~p3; ~p6) � 2v40p3k03p6k06(Æ�0k03Æ�0k06 + Æ�0k06Æ�0k03) ��3�6(j~p3j; j~p6j; v0) : (3.25)We note that, similarly to the four point 
orrelators in [11℄, heli
ity is 
onserved in all impa
tfa
tors. With the ve
tor ~p = ~p1 + ~p2 + ~p5 from eq. (3.18) and withM2 = �~p2 (3.26)9



we now perform the Wi
k rotation to positive M2: j~pj ! iM . In the limit of large s1 and s2 wethus arrive at:A2G;planar�1�2�3�4�5�6 = 2s21s22 Z 10 dz0 Z 10 dy0 Z 10 dw0 Z 10 dv0 z30y30w30v30 ��1�4(j~p1j; iM; j~p4j; z0; y0)G(z0; w0; ~p2 + ~p5)G(y0; v0; ~p3 + ~p6) ��2�5(j~p2j; j~p5j;w0)��3�6(j~p3j; j~p6j; v0) : (3.27)This formula summarizes our results for the high energy limit of the planar amplitude in �g. 3.The se
ond Witten diagram with 
rossed bulk-to-bulk graviton propagators 
an now be obtainedvery easily. Introdu
ing the ve
tor ~p0 = ~p1 + ~p3 + ~p6 ; (3.28)with j~p0j2 = M2 + t� t1 � t2 + j~p1j2 + j~p4j2 �M2 + j~p1j2 + j~p4j2 ; (3.29)the high energy limit of the 
rossed diagram has the formA2G;
rossed�1�2�3�4�5�6 = 2s21s22 Z 10 dz0 Z 10 dy0 Z 10 dw0 Z 10 dv0 z30y30w30v30 ��1�4(j~p1j; j~p0j; j~p4j; z0; y0)G(y0; w0; ~p2 + ~p5)G(z0; v0; ~p3 + ~p6) ��2�5(j~p2j; j~p5j;w0)��3�6(j~p3j; j~p6j; v0) : (3.30)For large M2 we 
ould substitute j~p0j !M , but for the moment we keep M2 �nite.3.3 Analyti
 stru
ture of the two graviton impa
t fa
torIn the last se
tion we have identi�ed the two graviton impa
t fa
tor (3.21) as one of the newbuilding blo
ks for the planar amplitude. Let us pause for a moment and have a 
loser look atits analyti
 stru
ture. We are interested in the region where M2 = �j~pj2 is positive and we havesubstituted j~pj ! �iM . The impa
t fa
tor 
ontains the fun
tion ~Km(z0; y0; j~pj) that arises fromthe intermediate bulk-to-bulk R-boson propagator and is de�ned as the analyti
 
ontinuation of~Km(z0; y0;M). Sin
e ~Km(z0; y0;M) is de�ned as an in�nite sum over modi�ed Bessel fun
tions,see eq. (3.11), its analyti
 
ontinuation(�iM)nKn(�iM) = ��2Mn(Yn(M)� iJn(M)) ; (3.31)has a 
ut for positive M2 with a bran
hing point at M2 = 0, its dis
ontinuity being given by�MnJn(M). While the upper sign 
orresponds the region above the 
ut whi
h is related to theFeynman propagator, the lower sign is valid below the 
ut.The analyti
 stru
ture be
omes more transparent if we make use of another representation ofthe bulk-to-bulk R-boson propagator [27, 28℄~Km(z0; y0; j~pj) = Z 10 ! d!!2 + j~pj2 Jm(!z0)Jm(!y0)= Km(z0j~pj)Im(y0j~pj)�(z0 � y0) +Km(y0j~pj)Im(z0j~pj)�(y0 � z0) ; (3.32)where Ka(x) and Ia(x) are modi�ed Bessel fun
tions. The subs
riptsm = 1 and m = 0 
orrespondto the transverse and longitudinal polarization, respe
tively. Making use of the �rst line on theright hand side of eq. (3.32), one 
an rewrite the two graviton impa
t fa
tor as a superposition ofprodu
ts of single graviton impa
t fa
tors��1�4(j~p1j; j~pj; j~p4j; z0; y0) = Z 10 ! d!!2 + j~pj2 Xm=0;1Wm�1�4(~p1; ~p4)Km(z0j~p1j)Jm(!z0)Jm(!y0)Km(y0j~p4j) : (3.33)10



Using eq. (3.20), the se
ond line on the right hand side 
an be rewritten as��1�4(j~p1j; j~pj; j~p4j; z0; y0) = 1j~p1jj~p4j Z 10 ! d!!2 + j~pj2 Xm=0;1Wm�1�4(~p1; ~p4)Km(z0j~p1j)Jm(!z0)Xm0=0;1Wm0�1�4(~p1; ~p4)Jm0(!y0)Km0(y0j~p4j) : (3.34)Performing the Wi
k rotation, substituting j~pj ! iM and 
omparing with the single gravitonimpa
t fa
tor in eq. (3.23) we identify the right hand side as a dispersion integral over the produ
tof the imaginary parts of two single graviton impa
t fa
tors, where one of the 
urrents has beenanalyti
ally 
ontinued into the time like region��1�4(j~p1j;�iM; j~p4j; z0; y0) = 4�2 1j~p1jj~p4j Z 10 ! d!!2 �M2 Im(im��1�4(j~p1j;�i!; z0)) �� Im(im��1�4(�i!; j~p4j; y0)) : (3.35)On the other hand the dispersion integral is given by��1�4(j~p1j;�iM; j~p4j; z0; y0) = 1� Z 10 2! d!!2 �M2 Im(��1�4(j~p1j;�i!; j~p4j; z0; y0)) : (3.36)Comparing the previous two equations we 
on
lude that the imaginary part of the two gravitonimpa
t fa
tor is equal to the produ
t of imaginary parts of two single graviton impa
t fa
tors.Finally, it is also interesting to investigate the behavior of the two graviton impa
t fa
tor forlarge values of M2. Making use of the integral representation (3.32) of the R-boson propagatoralong with the 
ompleteness relation for Bessel fun
tions, one 
an expand the propagator for largeM to obtain~K�P (z0; y0; ; j~pj) = Æ(z0 � y0)z0j~pj2 � 1j~pj4 Z 10 d!!3J�P (!z0)J�P (!y0) + : : : : (3.37)A similar analysis also applies to the 
rossed amplitude. For large M2 we have j~p0j2 � M2.Therefore the leading 
ontributions proportional to 1=M2 
an
el from the sum of the two diagrams.We are left with the asymptoti
 behavior � 1=M4 of the 
ombined amplitude. This behavior of thetwo graviton impa
t fa
tor (3.21) may be 
ompared with the analogous impa
t fa
tor on the weak
oupling side, �dire
t in eq. (1.6). It is 
urious to observe that the latter has the same asymptoti
behavior � 1=M4 for large values of M2.3.4 The deep inelasti
 limitIn this subse
tion we turn to the di�ra
tive 
ross se
tion whi
h is given by the dis
ontinuity of thesix-point 
orrelator a
ross the positive M2 
ut. For this dis
ussion we spe
ialize on the kinemati
limit where the virtualities of the upper bosons are mu
h larger than the virtualities of the lowerones, namely j~p1j2; j~p4j2 � j~p2j2; j~p3j2; j~p5j2; j~p6j2: (3.38)For further simpli�
ation we set j~p1j2 = j~p4j2 = Q2A (3.39)and j~p2j2 = j~p3j2 = j~p5j2 = j~p6j2 = Q2B: (3.40)11



This is the kinemati
 limit probed in, e.g., deep inelasti
 ele
tron proton s
attering; for this reasonwe name this limit as 'deep inelasti
 limit'. This limit will allow us to perform the integrationsover the �fth 
oordinates and to obtain expli
it analyti
 expressions. In parti
ular, this limit willallow us to study the large-M2 behavior of the imaginary part of the impa
t fa
tor whi
h, in thedi�ra
tive 
ross se
tion, determines the large-M2 behavior of the 
ross se
tion.To simplify notation we de�ne dimensionless variableszM = z0M ; yM = y0M ; vM = v0M ; wM = w0M ; (3.41)the ratios � = QA=M ; � = QB=QA : (3.42)and "k = j~qkj=QB ; ~q1 = ~p2 + ~p5 ; ~q2 = ~p3 + ~p6 : (3.43)With these de�nitions we rewrite the the planar amplitude (3.27) asA2G;planar�A�B1�B2 = 2� s1Q2A�2� s2Q2A�2 �16�4Q�2A Z 10 dyM Z 10 dvM Z 10 dwM Z 10 dzMw3Mv3Mz3My3MKm(�A)(zM�) ~Km(�A)(zM ; yM ;�i)Km(�A)(yM�)G(zM ; wM ; "1��)G(yM ; vM ; "2��)Km(�B1)(wM��)Km(�B1)(wM��)Km(�B2)(vM��)Km(�B2)(vM��) : (3.44)Here we have inserted the de�nitions of the impa
t fa
tors. Making use use of heli
ity 
onservationwe 
an rename the heli
ity variables su
h that �A = �1 = �4 and �B1 = �2 = �5, �B2 = �3 = �6.Furthermore, m(�) = 0 for longitudinal polarization, and m(�) = 1 for transverse polarization.We have also a similar expression for the 
rossed diagram.As a �rst step of simpli�
ation let us 
onsider the forward limit"k ! 0 ; (3.45)for k = 1; 2, i.e. t1 = t2 ! 0, so that the graviton propagatorG(zM ; wM ; 0) = 14(w2Mz2M �(zM � wM ) + z2Mw2M �(wM � zM )) : (3.46)ThenA2G;planar�A�B1�B2 = 18 � s1Q2A�2� s2Q2A�2 �16�4Q�2A Z 10 dyM Z 10 dvM Z 10 dwM Z 10 dzMw3Mv3Mz3My3MKm(�A)(zM�) ~Km(�A)(zM ; yM ;�i)Km(�A)(yM�)�w2Mz2M �(zM � wM )v2My2M �(yM � vM ) + z2Mw2M �(wM � zM )v2My2M �(yM � vM )+w2Mz2M �(zM � wM )y2Mv2M �(vM � yM ) + z2Mw2M �(wM � zM )y2Mv2M �(vM � yM )�Km(�B1)(wM��)Km(�B1)(wM��)Km(�B2)(vM��)Km(�B2)(vM��) : (3.47)Making use of expressions given in the Appendix A is is possible to do the integrals over wM andvM , and with the saddle point method des
ribed in Appendix C, one 
an investigate the large M2limit. However, we 
hose another way. 12



We turn to the DIS limit (3.38), whi
h implies � ! 0, and we expand in powers of �. Dueto the fast vanishing of the Bessel fun
tions of the two graviton vertex (whi
h do not 
ontain the� variable) one 
an the lower impa
t fa
tors in powers of � and perform the integrals over wMand vM . In the 
ase of transverse polarizations of the lower R-
urrents, the small-� behavior ofthe Bessel fun
tions gives rise to logarithmi
 divergen
es for small �. The appearan
e of su
hlogarithms is known already from the single graviton ex
hange [11℄. For two gravitons we havemaximally two logarithms in �. Using eq. (3.32) one 
an then perform the integrals over zM andyM . Thus, the amplitude of the planar diagram be
omesA2G;planar�A�B1�B2 � �M�2� s1Q2A�2� s2Q2A�2 I�(��2) logm(�B1)+m(�B2)(��2) ; (3.48)where the fun
tion I�(��2) stands for the result of the integrals over zM and yMI�(��2) = ���232 Z 10 dzM Z 10 dyMz5My5MKm(�)(zM ) ~Km(�)(zM=�; yM=�;�i)Km(�)(yM ) :(3.49)The integrations 
an be done analyti
ally leading to� �2I�(��2) = �p(0)� + p(1)� log(��2) + p(2)� log(�)��=1 : (3.50)The fun
tions p(i)� are rational fun
tions in � and �, and their detailed form is presented in AppendixB 3. Due to the ln(��2), the fun
tion I� has a 
ut for real positive �2 = Q2A=M2, i.e a right 
utin M2 starting at M2 = 0. There no no poles in M2. If we would have taken the virtualities ofthe 
urrents ~p1 and ~p2 to be di�erent from ea
h other, we would have obtained also logarithms inthe ratio ~p1=~p2. For further details we refer to Appendix C.The 
ontribution related to the 
rossed diagram is obtained by substituting: �M2 ! ~M2 �M2+t�t1�t2+j~p1j2+j~p4j2, i.e. A2G;
rossed�A�B1�B2 is obtained from the analyti
 
ontinuation of A2G;planar�A�B1�B2in the M2 plane. As we have already dis
ussed before, in the large-M2 limit the leading term ofA2G;
rossed�A�B1�B2 , is of the order ~M�2 � �M�2, and it 
an
els with the leading term of A2G;planar�A�B1�B2 .This means that the sum is of the order M�4,A2G;planar�A�B1�B2 +A2G;
rossed�A�B1�B2 = �Q2AM4 � s1Q2A�2� s2Q2A�2 Î�(�2) logm(�A)+m(�B)(��2) :The fun
tion Î�(�2) = ��2(I�(��2)� I�((��2 + 2)�1)) ; (3.51)des
ribing the sum of the planar and 
rossed impa
t fa
tor has both right and left hand 
uts inM2. The absolute value of �4Î�(�2) is shown �g. 5 and 6, both for transverse and longitudinalpolarizations. In both 
ases, there is a maximum at the beginning of the M2-
uts. In 
ontrastto the transverse impa
t fa
tor, the longitudinal one is logarithmi
ally divergent at M2 = 0 and~M2 = 0. These divergen
es 
ome from the logarithmi
 behavior of the longitudinal R-bosonpropagator (3.11). In the large M2 limit the leading term of Î�(�2 = 0) is of the formÎ�(�2 = 0) = Z 10 drr7K2m(�)(r) = 835�(4�m(�))�(4 +m(�)) : (3.52)From eq. (3.50), with the expli
it form of p(1)� being given in the appendix, it is straightforwardto determine the dis
ontinuity of the amplitude (3.48) a
ross the right hand 
ut in M2dis
M2IT (��2) = �576�12 ��2 � 1�� ��2 � 1�(�2 + 1)5 (�2 + 1)5 ; (3.53)3In the appendix we dis
uss the more general 
ase jp1j 6= jp4j and 
onsider the fun
tion I� as a fun
tion of �and � = jp1j=jp4j. The results of this se
tion are obtained by taking the limit � = 1.13



-1

0

1

2

3

4

5

6

7

8

-4 -3 -2 -1 0 1 2

PSfrag repla
ements
� = T� = L

M2=Q2AFigure 5: The logarithm of the absolute value of �4Î�(�2) plotted as a fun
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and dis
M2IL(��2) = �64�10 ��4 � 4�2 + 1�� ��4 � 4�2 + 1�(�2 + 1)5 (�2 + 1)5 : (3.54)For M ! 0 the dis
ontinuity for transversely polarized R�bosons vanishes as M2, while thelongitudinally polarized one goes to a 
onstant. For large M2, the imaginary part of A2G;planar�A�B1�B2is proportional to M�12 (M�14) for the longitudinal (transverse) polarization. Finally, one 
analso noti
e that the res
aled imaginary part, ��4 Im I�(��2), is invariant under the substitution�2 $ (�2)�1.We end this se
tion with a 
omment on the diagram on the rhs of �g.4. It 
ontains a dire
t
oupling of two gravitons to the upper R boson, and it does not depend upon M2. At the end ofthe following se
tion we will show that its dependen
e upon s1 and s2 is quite similar to the triplegraviton diagram to whi
h we turn in the following se
tion.4 The triple Regge limit: triple graviton ex
hangeThere are two more Witten diagrams that 
an 
ontribute to the six-point 
orrelators of R-
urrents,namely the two terms that are depi
ted in �g. 4. The �rst one involves the triple graviton vertex.We will 
onstru
t the vertex in the following subse
tion before we evaluate the Regge limit of theentire diagram in subse
tion 4.2. The se
ond diagram in �g. 4 is the subje
t of subse
tion 4.3.It 
ontains a vertex between two gravitons and two R-bosons. Through our analysis, the onlyterm that 
ould 
ontribute to the dis
ontinuity in M2 is found to vanish. Furthermore, we shallshow that the remaining M2-independent terms from the two diagrams in �g. 4 are subleading
ompared to the 
ontributions from the Witten diagrams in �g. 3.4.1 Triple graviton vertexIn order to analyze the �rst diagram of �g. 4 we need an expression for the three graviton vertex.This vertex was derived before in Ref. [26℄. In the following, we re-derive the vertex at prepare forthe high energy limit. As usual, our task is to expand the Einstein Hilbert a
tionS = � 12�2d+1 Z dd+1zpgR ; (4.1)in small �u
tuations h�� of the metri
 g�� = �g�� + h�� around the metri
 �g�� of the AdSba
kground. In order to �x our 
onventions we re
all that the 
urvature, Ri

i tensor and Riemanntensor are de�ned through R = R��g�� = R����g��g�� ; (4.2)R���� = g�
R
��� = g�
(���
�� � ���
�� + �
������ � �
������) ; (4.3)where the Christo�el symbols are given by���
 = 12g��(��g
� + �
g�� � ��g�
) : (4.4)In the following 
al
ulation we need to expand both the inverse metri
 g�� and the determinant gup to third order in the �u
tuation h�� . For the inverse metri
 we �ndg�� = �g�� � �g��1h�1�1�g�1� + �g��1h�1�1�g�1�2h�2�2�g�2� � �g��1h�1�1�g�1�2h�2�2�g�2�3h�3�3�g�3� : : : ;15



while pg = exp lnpg � p�g(1 + 12 �g��h�� � 14 �g��h��1�g�1�1h�1� + 18 (�g��h��)2 ++ 16 �g��h��1�g�1�1h�1�2�g�2�2h�2� � 18 (�g��h��1�g�1�1h�1�)�g�3�3h�3�3 + 148 (�g��h��)3): (4.5)After the substitution g�� ! �g�� + h�� we 
an expand the Langrangian of the Einstein Hilberta
tion, �pgR = �p�g � �R +H(1) +H(2) +H(3)� ; (4.6)up to third order in the �u
tuation �eld h�� . The 
onstant term is determined by the AdS 
urvature� �R = �d(d+ 1). The �rst order 
orre
tions to the 
urvature �R involve the quantityH(1) = �z20(d� 2)(d� 1)h00(z) + 12z20((d� 3)d+ 4)�h� z30(d� 4)�0�h+z30 2(d� 2)��h�0 + z40(�����h� ����h��) ; (4.7)where �h = h�� is the tra
e of the �u
tuation �eld. After multipli
ation with the fa
tor pg, we 
anwrite these terms as a total derivative, in agreement with the fa
t that we are expanding arounda solution �g of the Einstein Hilbert a
tion. The equation of motion for the �u
tuation �eld h isrelated to the se
ond order terms H(2) in the expansion of the Lagrangian. We have reprodu
ed anexpli
it expression in Appendix D. What we really need here is the form of the terms that appearin the third order,H(3) = 148((d� 11)d+ 36)z60�h3 � 18z60((d� 11)d+ 34)h00�h2 + 12(d� 11)dz60�hh�0h�0+18((11� d)d� 40)z60h��h���h+ 14z60((d� 11)d+ 38)h��h��h00�z60(d� 8)(d� 3)h��h�0h�0 + 16((d � 11)d+ 48)z60h��h�
h�
 + 12z80�h��h���
h�
+15z60h�0h�0�h+ 9z70h0
h���
h�� � 18z70(d� 8)�h2�0�h+ 18z80����h��(2h
�h
� � �h2)+14z70(d� 6)�h2��h�0 + 12z70(d� 8)�hh0����h� z70(d� 6)�hh0���h��+12z70(d� 9)�hh���0h�� � z70(d� 5)�hh����h�0 � z70dh0
h���
h���z70(d� 8)h0�h�����h+ 2z70(d� 6)h0�h���
h�
 + 2z70(d� 5)h0�h�
�
h��+z70(d+ 2)h��h�
�0h�
 + 14z70(d� 8)h��h���0�h� 12z70(d� 6)h��h���
h
0+z80h����h����h

 + 32z80h���
h�� �
h�� � z80h����h
� �
h�� � 12z80h���
h�� ��h�
�12z80h���
h�� �
�h� 14z80h�����h���h� z80h��h�
�
��h�� + 34z80h����h
� ��h�
+z80h����h�
 �
�h� 2z80h����h�
 ��h
� + z80h��h�
 ���
�h� 2z80h��h�
 �
��h��+z80h��h�
 ����h�
 + z80h���
h�� ��h
� + z80h���
h�
 ���h� z80h���
h�
 ��h��+z80�hh�
����h�
 � 12z80�hh�
����h�
 � 12z80�h��h�����h� 18z80�����h(2h
�h
� � �h2)�38z80�h�
h���
h�� + 14z80�h��h�
��h�
 + 18z80�h��h��h� 12z80�hh�
���
�h : (4.8)16



In the following analysis we shall now spe
ialize to d = 4. Having spelled out the third order termsH(3), we 
an now read o� the triple graviton vertex V TR. In order to spell out the answer, weshall split the vertex into four di�erent 
ontributions,V TR�1�1;�2�2;�3�3(Q1; Q2; Q3) = V TR;11�1�1;�2�2;�3�3(Q1; Q2; Q3) + V TR;20�1�1;�2�2;�3�3(Q1; Q2; Q3)+V TR;10�1�1;�2�2;�3�3(Q1; Q2; Q3) + V TR;00�1�1;�2�2;�3�3(Q1; Q2; Q3) : (4.9)Here, we group terms a

ording to the number of the Krone
ker deltas whi
h 
onne
t di�erentgravitons, i.e. Krone
ker deltas of the form Æ�i;�i and those involving internal (summed) labels arenot 
ounted. Expli
itly, the terms that 
ontribute to V TR;20 are given byV TR;20�1�1;�2�2;�3�3(Q1; Q2; Q3)= �38Æ�1;�2Æ�1;�2Æ�3;�3Q1;�Q2;�z30 � 12Æ�1;�2Æ�1;�2Æ�3;�3Q2;�Q2;�z30+34Æ�2;�3Æ�2;�3Q2;�1Q3;�1z30 + Æ�1;�2Æ�1;�2Q2;�3Q3;�3z30�12Æ�1;�2Æ�1;�2Æ�3;�3Q2;�Q3;�z30 + Æ�1;�3Æ�1;�3Q3;�2Q3;�2z30+14Æ�1;�2Æ�1;�2Q3;�3Q3;�3z30 � 14Æ�1;�2Æ�1;�2Æ�3;�3Q3;�Q3;�z30�52Æ�1;�2Æ�1;�2Æ�3;�3Q2;0z20 + 5Æ�2;�3Æ�2;�3Æ0;�1Q3;�1z20+Æ�1;�2Æ�1;�2Æ0;�3Q3;�3z20 � Æ�1;�2Æ�1;�2Æ�3;�3Q3;0z20�32Æ�1;�2Æ�1;�2Æ�3;�3z0 + 52Æ�2;�3Æ�2;�3Æ0;�1Æ0;�1z0 : (4.10)All terms we displayed 
ontra
t the indi
es among two of the three �u
tuation �elds. Terms inwhi
h the 
ontra
tions involve all three graviton �elds are 
olle
ted inV TR;11�1�1;�2�2;�3�3(Q1; Q2; Q3)= �Æ�1;�3Æ�2;�3Q2;�1Q3;�2z30 � 12Æ�1;�2Æ�1;�3Q2;�3Q3;�2z30�2Æ�1;�2Æ�2;�3Q2;�1Q3;�3z30 � Æ�1;�3Æ�1;�2Q2;�2Q3;�3z30+32Æ�1;�2Æ�1;�3Æ�2;�3Q2;�Q3;�z30 � Æ�1;�3Æ�2;�3Q3;�1Q3;�2z30�2Æ�1;�3Æ�1;�2Q3;�2Q3;�3z30 + Æ�1;�3Æ�1;�2Æ�2;�3Q3;�Q3;�z30�2Æ�1;�3Æ�2;�3Æ0;�1Q3;�2z20 � 4Æ�1;�2Æ�2;�3Æ0;�1Q3;�3z20+6Æ�1;�3Æ�1;�2Æ�2;�3Q3;0z20 + 103 Æ�1;�2Æ�1;�3Æ�2;�3z0+4Æ�1;�2Æ�1;�3Æ0;�2Æ0;�3z0 : (4.11)
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Figure 7: The three graviton vertex.Terms in whi
h only two of the graviton �elds are 
ontra
ted dire
tly through a single 
ontra
tionare grouped together into the vertexV TR;10�1�1;�2�2;�3�3(Q1; Q2; Q3)= 14Æ�1;�2Æ�1;�2Æ�2;�1Æ�3;�3Q1;�1Q2;�2z30 + 12Æ�1;�1Æ�1;�2Æ�2;�2Æ�3;�3Q1;�1Q2;�2z30+Æ�1;�1Æ�1;�2Æ�2;�2Æ�3;�3Q2;�1Q2;�2z30 + Æ�1;�2Æ�1;�2Æ�2;�1Æ�3;�3Q2;�1Q3;�2z30+Æ�1;�1Æ�1;�2Æ�2;�2Æ�3;�3Q2;�1Q3;�2z30 + Æ�1;�1Æ�1;�2Æ�2;�2Æ�3;�3Q3;�1Q3;�2z30+2Æ�1;�2Æ�2;�1Æ�3;�3Æ0;�1Q2;�1z20 + Æ�1;�1Æ�1;�2Æ�3;�3Æ0;�2Q2;�1z20+4Æ�1;�2Æ�2;�1Æ�3;�3Æ0;�1Q3;�1z20 + Æ�1;�2Æ�3;�3Æ0;�1Æ0;�2z0 : (4.12)What remains are those terms of the three graviton vertex that 
ontain no dire
t 
ontra
tions oftwo di�erent graviton �elds,V TR;00�1�1;�2�2;�3�3(Q1; Q2; Q3)= �18Æ�1;�1Æ�1;�2Æ�2;�2Æ�3;�3Q1;�1Q1;�2z30 + 18Æ�1;�1Æ�2;�2Æ�3;�3Æ�1;�2Q1;�1Q1;�2z30�12Æ�1;�1Æ�1;�2Æ�2;�2Æ�3;�3Q1;�1Q2;�2z30 + 18Æ�1;�1Æ�2;�2Æ�3;�3Æ�1;�2Q1;�1Q2;�2z30�12Æ�1;�1Æ�1;�2Æ�2;�2Æ�3;�3Q2;�1Q2;�2z30 � 14Æ�1;�2Æ�1;�1Æ�2;�2Æ�3;�3Q2;�1Q3;�2z30+12Æ�1;�1Æ�2;�2Æ�3;�3Æ0;�1Q1;�1z20 � 2Æ�1;�1Æ�2;�2Æ�3;�3Æ0;�1Q2;�1z20�12z20Æ�1;�1Æ�2;�2Æ0;�1Q3;�3 + 16Æ�1;�1Æ�2;�2Æ�3;�3z0�34Æ�2;�2Æ�3;�3Æ0;�1Æ0;�1z0 : (4.13)The symbols Qk denote �ve dimensional derivatives a
ting on k-th external graviton propaga-tors (k runs from 1 to 3, 
f. �g. 7), Qk;� � �zk� : (4.14)Before turning to the high energy limit, we still have to symmetrize these expressions. This 
anbe done in two steps. To begin with, we symmetrize the two indi
es (�k; �k) for ea
h graviton(labelled by k). Then, in a se
ond step, we also symmetrize in the label k.18



4.2 The triple Regge limitSo far we have worked in 
on�guration spa
e. The Fourier transform is de�ned as before, andderivatives in 
on�guration spa
e, as before, turn into external momenta, ~p1,. . . ,~p6. When 
om-puting the s
attering amplitude in the triple Regge limit one noti
es that the large energy variables,s1 and s2, are 
onstru
ted by 
ontra
ting large momenta 
ontained in the stress-energy tensorsvia Krone
ker deltas from the graviton propagators and from the triple graviton vertex. Sin
e thegraviton vertex involves at most two 
ontra
tions of external indi
es from two di�erent gravitons,the amplitude with the triple graviton vertex provides terms proportional to s21, s22, or s1s2 pluslower order 
ontributions. In fa
t, the leading 
ontribution from the triple Regge limit 
omes formthe terms (4.11) and (4.10). While the former leads to terms whi
h are proportional to s1s2, thelatter provides two types of terms whi
h are either proportional to s21 or to s22.We 
ompare this result with one expe
ts from general arguments [18℄. In the notation ofRegge theory, the kinemati
 limit whi
h we referred to as the 'triple Regge limit' is a mixed Regge-heli
ity limit. For this high energy limit the Steinmann relations allow for four sets of non-vanishingenergy dis
ontinuities. Following the arguments in [18℄ as well as eq. (4.24) of the same paper, oneexpe
ts the six-point s
attering amplitude to 
onsist of four terms. If we label the leading angularmomentum singularities in the three t 
hannels by j, j1, and j2, respe
tively, the four terms havethe following energy dependen
e (i) (M2)j�j1�j2sj11 sj22 , and(ii) sj2 , (iii) s(j+j1�j2)=21 s(j+j2�j1)=22 , (iv) sj1 ,The only term whi
h 
ontributes to the dis
ontinuity in M2 is the �rst one: This is the six-pointamplitude in QCD (or N = 4 SYM) whi
h we have des
ribed in the introdu
tion. In the weak
oupling limit, the leading singularities in the angular momentum plane are given by the BFKLPomeron. Returning to graviton ex
hange we have 
omputed the 
omplete (i.e. not restri
tedourselves to the M2-dependent pie
e) six-point 
orrelator in the supergravity approximation. Theleading singularities are at j = j1 = j2 = 2, and the three terms we have found are in agreementwith the energy dependen
e of (ii) - (iv). The �rst term is absent, i.e. in the Witten diagram with`elementary' graviton ex
hange, the triple graviton vertex is found to vanish.From the point of view of Feynman diagrams, this result 
an also be understood as follows.In [11℄ it has been demonstrated that the heli
ity stru
ture of graviton ex
hange at high energies
an be viewed as the ex
hange of two spin one bosons, ea
h of them being in a 
ir
ular polarizedt-
hannel heli
ity state. Correspondingly, in our high energy limit where the graviton ex
hangesabove and below the triple vertex 
an be viewed as double-boson ex
hanges, the triple gravitonvertex a
ts like a produ
t of two triple boson verti
es. A simple look at the triple gluon bosonvertex of QCD shows that - in the triple Regge limit - the six-point amplitude with three gluonex
hange 
omes with two terms: One of them is proportional to s1 while the other is proportionalto s2. Again, no term proportional to s1s2(M2)�1 appears. Consequently, the produ
t of two su
hthree gluon ex
hanges produ
es three terms, proportional to s21, s22, and s1s2.4A similar result 
an also be found in �at supergravity [30, 31℄. In the zero slope limit thetriple graviton vertex de
ouples. A non-vanishing triple graviton ex
hange is expe
ted to appearonly on
e the gravitons are reggeized. This, however, requires a genuine string 
al
ulation andthus goes beyond the s
ope of this paper.4It is interesting to note that a nonzero triple vertex of reggeizing gluons in QCD has been found [29℄. Afterintegration over M2 this vertex be
omes zero, thus restoring signature 
onservation.
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4.3 The 
oupling of two gravitons and two R�bosonsThere is one more diagram we need to 
ompute, namely the se
ond one depi
ted in �g. 4. In thehigh energy limit it will turn out to 
ontribute to the same order as the triple graviton ex
hange.The analysis follows the same steps we have des
ribed at great length in the �rst two subse
tions.Hen
e, we 
an be rather brief now. Copying our derivation of the triple graviton vertex, one 
an
al
ulate the vertex with two R�bosons and two gravitons, i.e. the vertex that appears in these
ond diagram of �g. 4. Making use of eqs. (4.2)-(4.5) we expand the kineti
 term of R�bosons�pgF��F�� = p�g(F (0) + F (1) + F (2)) ; (4.15)where F (0) = �z40F��F�� and the stress-energy tensor is de�ned byF (1) = (2z20F��F�� � 12z20F��F��Æ��)z40h�� = T��z40h�� : (4.16)The 
oupling of two gravitons and two R�bosons 
an be read fromF (2) = �14F��F��Æ�1�2Æ�1�2 � 18F��F��Æ�1�1Æ�2�2 + 12F��2F��2Æ�1�1+12F��1F��1Æ�2�2 � F�1�2F�1�2 � 2F�1�2F�1�2� z80h�1�1h�2�2 : (4.17)In the high energy limit, the diagram under 
onsideration 
an only give subleading 
ontributionwhi
h are proportional to s21, s22, or s1s2. In fa
t, as we have argued previously, powers of s1 and s2appear if and only if momenta (derivatives) from the �eld strength tensors F�� are 
ontra
ted bythe Krone
ker deltas 
oming with the graviton propagators. In the 
oupling (4.17) of two gravitonsand two R�bosons, ea
h term involves only two �eld strength tensors. Sin
e ea
h �eld strengthtensor 
ontains only one momentum that is 
ontra
ted with the graviton by using eqs. (3.8)-(3.9),
ontributions proportional to s21s22 are impossible to obtain. The �rst two terms of the vertex leadto tra
es over the graviton propagator and hen
e they furnish 
onstant 
ontributions to high energys
attering. The remaining terms behave as sisj , at most. Hen
e, at high energies, the six-point
orrelator of R-
urrents is dominated by the two diagrams in �g. 3. The two diagrams in �g. 4are subleading.5 SummaryIn this paper we have investigated the 
orrelation fun
tion of six R-
urrents at high energies andin the strong 
oupling limit. Interest in su
h six-point fun
tions 
omes from the observation thatgraviton ex
hanges at high energies need to be unitarized. As a �rst step, we need to 
omputethe 
oupling of two gravitons to the R-
urrent. Su
h a 
oupling appears as a part of the six-pointfun
tion. We have two 
lasses of Witten diagrams, one 
ontaining the two graviton ex
hangesdepi
ted in �g. 3, the other one 
ontaining the three graviton ex
hange in �g. 4. The latter onerepresents the triple Regge limit. These Witten diagrams have their analogues on the weak 
ouplingside, i.e. in the high energy behavior of R-
urrent 
orrelators in N = 4 SYM: The diagrams in�g. 3 
orrespond to the ex
hange of two BFKL Pomerons on the weak 
oupling side, see �g. 2, left�gure. On the other hand, the triple graviton diagram in �g. 4 has its weak 
oupling 
ounterpartin the triple Pomeron diagram on the right hand side of �g. 2. It is remarkable that the existen
eof the former 
ontribution is a 
onsequen
e of the supersymmtri
 stru
ture of N = 4 SYM, andit does not hold for (nonsupersymmetri
) QCD. The study of the present paper 
an be viewed asthe strong 
oupling analogue of an earlier paper [17℄.20



Beginning with the two graviton ex
hange, the 
orrelation fun
tion has the same stru
tureas on the weak 
oupling side, a 
onvolution of impa
t fa
tors and ex
hange propagators. Theintegration is over the position of the impa
t fa
tors in the dire
tion of the �fth 
oordinate. Oneof our main results is the new impa
t fa
tor whi
h des
ribes the 
oupling of two gravitons to theupper R-boson. Similar to its weak 
oupling 
ounterpart (whi
h 
onsists of a 
losed loop of spinorsand s
alars in the adjoint representation of the 
olor group), it has a 
ut in the mass variable M2,is maximal for small M2 and, for large M2, falls o� as M�4.In the se
ond part we have 
onsidered the three graviton diagram. We derived an expression forthe triple graviton vertex, and found that the 
oupling of three elementary gravitons vanishes inthe triple Regge limit. In agreement with the Steinmann relations, we obtained three terms whi
hgrow as s21, s22, and s1s2, respe
tively. We expe
t that the triple graviton vertex will be nonzeroon
e the atta
hed gravitons reggeize. This, however, requires genuine string s
attering amplitudesand thus goes well beyond the analysis of Witten diagrams. Note that the triple vertex of theBFKL Pomeron in weakly 
oupled QCD possesses a non-trivial inner stru
ture. This is linked tothe fa
t that the BFKL Pomeron is a 
omposite obje
t. Hen
e, it is tempting to expe
t some kindof reggeization for the dual graviton so as to mat
h its triple vertex with that of the Pomeron.As we have said at the beginning, our present study was mainly motivated by the interestin two-graviton ex
hange. As a �rst step, we have investigated the 
oupling of two gravitons tothe R-
urrent. The existen
e of the dire
t 
oupling hints at the importan
e of eikonalization.Nevertheless, the triple graviton diagram also needs further investigation.Our study of higher order R-
urrent 
orrelators should be seen also within another 
ontext.One of the most important ingredients in the analysis of gauge/string dualities is the remarkableappearan
e of integrability. For multi-
olor QCD is was shown many years ago, see [32, 33, 34℄, thatthe BKP Hamiltonian, i.e. the operator that en
odes the rapidity evolution of n-gluon t 
hannelstates, 
orresponds to a 
losed spin 
hain and is integrable. Su
h BKP states enter the high energylimit of s
attering amplitudes with more than eight external legs. Our study of the six-pointamplitude therefore also serves as a preparation for pursuing further studies in this dire
tion.A
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ussions with A. H. Mueller, G. P. Va

a and L. Motyka. This work wassupported by the grant of SFB 676, Parti
les, Strings and the Early Universe: �the Stru
ture ofMatter and Spa
e-Time�.A Integrals for the forward 
aseTo 
al
ulate the forward 
ase as well as the OPE limit we have found the following integrals
 Z 1v dvAvAK0(vA)K0(vA
) = �
 v (K0(
v)K1(v)� 
K0(v)K1(
v))(
 � 1)(
 + 1) = 
 log(
)
2 � 1 +O �v2�(A.1)and 
 Z 1v dvAvAK1(vA)K1(vA
) = 
 v (
K0(
v)K1(v)�K0(v)K1(
v))(
 + 1)(
 � 1)= log(v�1) + (log(2)� 
E) + 
2 log (
)
2 � 1 +O �v2� (A.2)
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as well asZ v0 dvAv5AK0(vA)K0(vA
) =  �4 �
2 + 1� v4(
2 � 1)2 � 32 �
4 + 4
2 + 1� v2(
2 � 1)4 !K0(v)K0(
v)+ v5
2 � 1 + 16 �2
2 + 1� v3(
2 � 1)3 + 64 �
4 + 4
2 + 1� v(
2 � 1)5 !K1(v)K0(
v)+ 
v51� 
2 � 16
 �
2 + 2� v3(
2 � 1)3 � 64 �
5 + 4
3 + 
� v(
2 � 1)5 !K0(v)K1(
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v4(
2 � 1)2 + 96 �
3 + 
� v2(
2 � 1)4 !K1(v)K1(
v)+32 ��3
4 + 2 �
4 + 4
2 + 1� log(
) + 3�(
2 � 1)5 (A.3)and Z v0 dvAv5AK1(vA)K1(vA
) =  8
v4(
2 � 1)2 + 96 �
3 + 
� v2(
2 � 1)4 !K0(v)K0(
v)+ 
v51� 
2 � 8
 �
2 + 5� v3(
2 � 1)3 � 192 �
3 + 
� v(
2 � 1)5 !K1(v)K0(
v)+ v5
2 � 1 + 8 �5
2 + 1� v3(
2 � 1)3 + 192 �
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2� v(
2 � 1)5 !K0(v)K1(
v)+ �4 �
2 + 1� v4(
2 � 1)2 � 16 �
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2 � 1)4 !K1(v)K1(
v)+16 �
6 + 9
4 � 9
2 � 12 �
4 + 
2� log(
)� 1�
 (
2 � 1)5 (A.4)The above results 
an be also used to perform integrals from [11℄.B Integrals appearing in the DIS limitIn this appendix we present further details of the six-point amplitude, restri
ting ourselves to thelimit of deep inelasti
 s
attering. We will be slightly more general than in se
tion 3.4, by allowingthe external virtualities to be less restri
ted. In parti
ular, we allow j~p1j; j~p4j � j~p2j; j~p3j; j~p5j; j~p6j,without the 
onstraints j~p1j = j~p4j et
., and we de�ne� = j~p1j=M ; � = j~p2j=j~p1j ; � = j~p4j=j~p1j ; �1 = j~p5j=j~p2j ; �2 = j~p6j=j~p3j : (B.1)As a result, our integrals depend also upon the variables �, �1, �2. Thus, the ex
hange de�ned byplanar diagram reads asA2G;planar�A�B1�B2 � �M�2� s1j~p1jj~p4j�2� s2j~p1jj~p4j�2 I�(��2; �)L�B1(�; �1)L�B2(�; �2) ; (B.2)where the integrations over lower verti
es giveL�B (�; �) = logm(�B)(��2)�� log(�2)�2 � 1 �1�m(�B) (B.3)22



while 
ontribution 
oming from the integral over upper verti
es, I�(��2; �), is de�ned by� �2�I�(��2; �) = p(0)� + p(1)� log(��2) + p(2)� log(�) : (B.4)For the transverse polarization we found thatp(0)T = 96�2�4(�2 + 1)4 (�2 � 1)8 (�2�2 + 1)4��5 ��2 + 1� ��12 � 9�10 + 17�8 � 858�6 + 17�4 � 9�2 + 1��14�2�3 �5�16 � 39�14 + 172�12 + 1333�10 + 2938�8 + 1333�6 + 172�4 � 39�2 + 5��12+� ��2 + 1� ��16+ 11�14� 261�12� 4081�10� 8980�8� 4081�6� 261�4+ 11�2 + 1��10�2 ��17 + 42�15 + 1609�13 + 7020�11 + 12056�9 + 7020�7 + 1609�5 + 42�3 + ���8�� ��2 + 1� �18�12 + 883�10 + 6856�8 + 13886�6 + 6856�4 + 883�2 + 18��6�4� �8�12 + 437�10 + 2125�8 + 3680�6 + 2125�4 + 437�2 + 8��4�� ��2 + 1� �23�8 + 1298�6 + 3238�4 + 1298�2 + 23��2�2� �3�8 + 178�6 + 478�4 + 178�2 + 3�� (B.5)p(1)T = 576�14 ��2 � 1� �7 ��2�2 � 1�(�2 + 1)5 (�2�2 + 1)5 (B.6)p(2)T = 1152�2�7(�2 � 1)9 (�2�2 + 1)5�10�8 �5�4 + 18�2 + 5� �10 + �6 �145�10 + 669�8 + 334�6 � 36�4 + 9�2 � 1� �2+20 ��6 + 6�4 + 6�2 + 1�+ �2 �94�8 + 534�6 + 464�4 + 34�2 � 6�+�4 �171�10 + 897�8 + 632�6 � 18�4 � 3�2 + 1�� (B.7)while for the longitudinal polarizationp(0)L = � 192�2�6(�2 + 1)4 (�2 � 1)8 (�2�2 + 1)4�� ��17 � 8�15 + 28�13 � 186�11 � 510�9 � 186�7 + 28�5 � 8�3 + ���14� ��2 + 1� ��16 � 4�14 � 8�12 + 612�10 + 1738�8 + 612�6 � 8�4 � 4�2 + 1��12+ �5�16 � 34�14 � 688�12 � 4552�10 � 7102�8 � 4552�6 � 688�4 � 34�2 + 5��10�2 ��2 + 1� �3�12 + 236�10 + 1704�8 + 3464�6 + 1704�4 + 236�2 + 3��8�2 �62�12 + 791�10 + 3653�8 + 5688�6 + 3653�4 + 791�2 + 62��6�6 ��2 + 1� �41�8 + 336�6 + 716�4 + 336�2 + 41��4�2 �93�8 + 743�6 + 1268�4 + 743�2 + 93��2�10 ��2 + 1� �5�4 + 32�2 + 5�� (B.8)23



p(1)L = 64�12 ��4 � 4�2 + 1� �6 ��4�4 � 4�2�2 + 1�(�2 + 1)5 (�2�2 + 1)5 (B.9)p(2)L = � 128�2�6(�2 � 1)9 (�2�2 + 1)5��4 �100�12 + 1125�10 + 1251�8 + 16�6 + 36�4 � 9�2 + 1��8+�2 �275�12 + 3681�10 + 5652�8 + 512�6 � 63�4 + 27�2 � 4��6+ �316�12 + 4617�10 + 8523�8 + 1888�6 � 252�4 + 27�2 + 1��4+9 �19�10 + 293�8 + 608�6 + 208�4 � 7�2 � 1��2+36 ���2 + 2� ��4 + 14�2 + 8� �2 + 1�� (B.10)One 
an noti
e that the poles in �2-plane are spurious, i.e. all poles of p(k)� (�2; �) 
an
el ea
h otherin the sum.The 
ontribution related to the 
rossed diagram is de�ned by the formula with �M2 ! ~M2 �M2 + t � t1 � t2 + j~p1j2 + j~p4j2, namely A2G;
rossed�A�B1�B2 is analyti
 
ontinuation of A2G;planar�A�B1�B2 in M2plane. In the large M2 limit the leading terms of A2G;
rossed�A�B1�B2 , whi
h is of ~M�2 � M�2 order,
an
els with the leading term of A2G;planar�A�B1�B2 . This means that the sum is of M�4 orderA2G;planar�A�B1�B2 +A2G;
rossed�A�B1�B2 = �j~p1jj~p4jM4 � s1j~p1jj~p4j�2� s2j~p1jj~p4j�2 Î�(�2; �)L�B1(�; �1)L�B2(�; �2) ;(B.11)where t1 = t2 = t = 0. The fun
tion des
ribing the sum of the planar and 
rossed upper impa
tfa
tor reads as Î�(�2; �) = ��2��1(I�(��2; �)� I�((��2 + 1 + �2)�1; �)) ; (B.12)In the large M2 limit, its value is de�ned byÎ�(�2 = 0; �) = �4 Z 10 drr7K��(r)K��(r�) ; (B.13)and it is plotted in �g. 8 as a fun
tion of the ratio of upper virtualities, i.e. �. The fun
tion remindsthe Gaussian pro�le with maximum at j~p1j = j~p4j.Making use of eq. (3.32) one 
an �nd that the imaginary part of R-boson propagatorIm ~K��(zM=�; yM=�;�i) = ��2J��(zM=�)J��(yM=�) : (B.14)This allows to 
al
ulate simply the imaginary part of the amplitude (B.2) related to dis
ontinuityalong M2 > 0, namelydis
M2IT (��2; �) = �576�12 ��2 � 1���6 ��2�2 � 1�(�2 + 1)5 (�2�2 + 1)5 (B.15)and dis
M2IL(��2; �) = �64�10 ��4 � 4�2 + 1���5 ��4�4 � 4�2�2 + 1�(�2 + 1)5 (�2�2 + 1)5 (B.16)24
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1��1+�Figure 8: Fun
tions Î�(�2 = 0; �) = (� + ��1)I(0)� (�) � 2I(1)� (�) plotted as a fun
tion of 1��1+� =j~p1j�j~p4jj~p1j+j~p4jThe roots, whi
h are related to the 
hange of the amplitude phase, appear atj~p1j=M; j~p4j=M = 1 for the transverse part, (B.17)j~p1j=M; j~p4j=M = 1p2 (p3� 1) for the longitudinal part.Also, similarly to the � = 1 
ase we 
an observe the symmetry of��2��4 Im I�(��2; �) under ��2 $ (��2)�1 ; (B.18)where ��2 � j~p1jj~p4jM2 . Thus, the dis
ontinuity multiplied by (��2)�3 is invariant under the inversionin the M2=(j~p1jj~p4j) variable.C The saddle point method for large M2 expansionIn this appendix we 
al
ulate the real part of the integralI�(�2; �) = 132��2�5 Z 10 dzM Z 10 dyMz5My5MK��(zM )K��(yM�) ~K��(zM=�; yM=�; 1) ;(C.1)from eq. (3.48) in large M2 limit making use expression for the propagator ~K��(zM ; yM ; 1) de�nedby eq. (3.11). Let us 
hange variables zM = r sin(�) and yM = r 
os(�) and jJ j = r. Analyzing eq.(C.1) one 
an �nd that in its �rst two order expansion in small � the leading 
ontribution 
omesfrom the region where k � ��2. Thus we 
an apply the saddle point method with the large k
25



parameter, i.e.I�(�2; �) = Z 10 dr 1Xk=0�����2k�2 4�k�3(2� �� + 2(1� ��)k)�(k + 1)�(k + 2) r11+2k+���5Z �=20 d�K��+2k � r��K��(r� 
os(�))K��(r sin(�)) 
os5+��(�) sin5+��(�)(sin(�) 
os(�))2k= Z 10 dr 1Xk=0�����2k�2 4�k�3(2� �� + 2(1� ��)k)�(k + 1)�(k + 2) r11+2k+���5K��+2k � r��h(r; k) ; (C.2)whereh(r; k) = Z �=20 d�gr(�) ekf(�) = Z �=20 d� �gr(�0) + g0r(�0)(� � �0) + 12g00r (�0)(� � �0)2 + : : :�ekf(�0)+kf 0(�0)(���0)+ 12!kf 00(�0)(���0)2+ 13!kf 000(�0)(���0)3+ 14!kf (iv)(�0)(���0)4+::: ; (C.3)with gr(�) = K��(r� 
os(�))K��(r sin(�)) 
os5+��(�) sin5+��(�) ; (C.4)and f(�) = 2 log(sin(�) 
os(�)) = 2 log (
os(�0) sin(�0)) + 4 
ot(2�0)(� � �0)�4 
s
2(2�0)(�� �0)2 + 163 
ot(2�0) 
s
2(2�0)(�� �0)3�83 �(
os(4�0) + 2) 
s
4(2�0)� (� � �0)4 +O �(�� �0)5� : (C.5)Sin
e we are going to 
al
ulate the �rst two orders we have to expand f(�) to fourth order andg(�) to se
ond order. The saddle point 
orresponds to z0 = y0, i.e. �0 = �=4. It is de�ned by
ot(2�0) = 0, so that f 0(�0) = f 000(�0) = 0. To integrate out � we useZ �=20 d� e�4k�2� 83k�4 = p32p2 e 3k4 K1=4�3k4 �= 12p�k� 12 � 116p�k� 32 + 35768p�k� 52 +O �k� 72� ; (C.6)and Z �=20 d��2 e�4k�2� 83k�4 = 316r32e3k=4 �K 34 �3k4 ��K 14 �3k4 ��= 116p�k� 32 � 5128p�k� 52 + 1052048p�k� 72 +O �k� 92� ; (C.7)whi
h resultsI�(�2; �) = � Z 10 dr 1Xk=0 2����4k�17�2k5=2�(k)�(k + 2)(�� + 2(�� � 1)k � 2)p�r11K��+2k � r��� r����+2k �2�2rK��+1� rp2��p2(�� + 1)K�� � r�p2�� r�K��+1� r�p2��+K�� � rp2�����2 + 1� r2 � 16�� + 32k � 44�K�� � r�p2�+2p2(�� + 1)r�K��+1� r�p2���+ : : : : (C.8)26



Sin
e the dominant 
ontribution for small � is de�ned in the region wherek = �=�2 with � = �xed ; (C.9)one 
an ex
hange sum over k by integral over �. We substitute the large k expansion of Besselfun
tions, i.e. K2k+��(r=�) � 12 � r2������2k JXj=0 �(�� + 2k � j)�(j + 1) �� r24�2�j ; (C.10)and making use of(2k)j���2�2k �(�� � j + 2k)�(k)�(k + 2) � �32�3=2p� + �2��2 � 2(2j + 1)�� + 2j(j + 1)� 9��516�5=2p� + : : :(C.11)we resum j. Finally, one 
an �nd thatI�(�2; �) = I(0)� (�) + I(1)� (�)��2 + : : : ; (C.12)where I(0)� (�) = �58192 Z 10 drr11K�� � rp2�K�� � r�p2�Z 10 d�e� r28� ��2 ; (C.13)I(1)� (�) = �4 Z 10 drr11 Z 10 d� e� r28�2097152p2�5�16rK��+1� rp2��2(�� + 1)K�� � r�p2��p2r�K��+1� r�p2���2+K�� � rp2��32(�� + 1)r�K��+1� r�p2��2 (C.14)+p2 �r4 + 16(�� � 1)�r2 + 8�2 ���2 + 1� r2 + 8(�� � 7)�� � 48��K�� � r�p2��� :Moreover we perform the integrals over �, i.e.I(0)� (�) = �532 Z 10 drr9K�� (r)K�� (r�) ; (C.15)I(1)� (�) = Z 10 dr�4r7128 (rK��+1 (r) (2(�� + 1)K�� (r�) � 2r�K��+1 (r�))+K�� (r) ����2 + 1� r2 + 4(�� � 3)�� � 16�K�� (r�)+2(�� + 1)r�K��+1 (r�))) : (C.16)and over r. For �� = 1 we getI(0)T (�) = 192�4(�2 � 1)8 �3�8 + 178�6 + 478�4 + 178�2 + 3��60192�6 log(�2)(�2 � 1)9 ��6 + 6�4 + 6�2 + 1� ; (C.17)27



and I(1)T (�) = 96�3(�2 � 1)8 (�10 + 127�8 + 712�6 + 712�4 + 127�2 + 1)�1152�5 log(�2)(�2 � 1)9 �3�8 + 33�6 + 68�4 + 33�2 + 3� ; (C.18)while for �� = 0 the resulting expression looks likeI(0)L (�) = � 1920�5(�2 � 1)8 �5�6 + 37�4 + 37�2 + 5�+12192�5 log(�2)(�2 � 1)9 ��8 + 16�6 + 36�4 + 16�2 + 1� ; (C.19)I(1)L (�) = � 384�4(�2 � 1)8 (7�8 + 97�6 + 212�4 + 97�2 + 7)+576�4 log(�2)(�2 � 1)9 ��10 + 27�8 + 112�6 + 112�4 + 27�2 + 1� : (C.20)Moreover, the integral from eq. (3.51) readsÎ�(�2 = 0; �) � Î(0)� (�) = (�+ ��1)I(0)� (�)� 2I(1)� (�) ; (C.21)so that Î(0)T (�) = 384�3(�2 � 1)6 ��6 + 29�4 + 29�2 + 1�� 4608�5 log ��2�(�2 � 1)7 ��4 + 3�2 + 1� ; (C.22)Î(0)L (�) = � 384�4(�2 � 1)6 �11�4 + 38�2 + 11�+ 1152�4 log ��2�(�2 � 1)7 ��6 + 9�4 + 9�2 + 1� : (C.23)D Variations of the a
tionThe se
ond variation of the a
tion reads as , i.e.H(2) = z40(d� 5)(d� 2)h�0h�0 � 14z40((d� 7)d+ 20)h��h�� + 18z40((d� 7)d+ 16)�h2�12z40((d� 7)d+ 14)h00�h+ z50(d� 6)h�0���h� 2z50(d� 4)h�0��h��+z50(d� 7)h���0h�� � 2z50(d� 3)h����h�0 � 12z50(d� 6)�h�0�h+ z50(d� 4)�h��h�0�34z60��h�
 ��h�
 + 12z60��h�
 ��h�
 + 14z60���h ���h� z60h�������h+ 2z60h�
����h�
�z60h�
����h�
 � z60��h�� ���h+ z60��h�
 ��h�
 + 12z60�h�����h� 12z60�h����h�� (D.1)Referen
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