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Abstract

Within the conjectured duality between N/ = 4 super Yang-Mills and Anti-deSitter string
theory, the BEKL Pomeron of the gauge theory corresponds to the graviton mode of the dual
string. As a first step towards analyzing multigraviton exchange, we investigate R-current six-
point functions within the supergravity approximation. We compute the analogue of diffractive
scattering, and we analyze the triple Regge limit. In the supergravity approximation the triple
graviton vertex is found to vanish.
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1 Introduction

Since many years, the high energy behavior of scattering amplitudes in quantum field theory
has attracted interest, and extensive calculations have been performed in order to understand the
structure well beyond leading orders of perturbation theory. In this context, a special role is played
by the Regge limit which is closely connected with unitarity of the theory.

The AdS/CFT correspondence [I}, 2, [3, 4] has raised new hopes to determine the high energy
behavior to all orders of the ’t Hooft coupling A, including the strong coupling region, at least for
those gauge theories which possess a dual string theory description. The most prominent example
of such a duality relates 4D super Yang-Mills (SYM) theory with A" = 4 supersymmetries to type
IIB string theory in the Anti-deSitter background AdSs x Ss. Through the correspondence, the
gauge theoretic BFKL Pomeron [5, [6] [7] gets related to graviton on the string theory side [8] [9].

In [10] and [1I] we have examined this correspondence in some detail. Stimulated by QCD where
v*v* scattering provides a safe framework for investigating the BFKL Pomeron, we have studied
the elastic scattering of two R-currents [12] in A" =4 SYM theory. On the weak coupling side, the
high energy scattering amplitude factorizes into the current impact factors and the BFKL Green’s
function. In [I0] the R-current impact factor has been calculated to leading order. The BFKL
Green’s function is known also in NLO [I3| [14] 15]. In the strong coupling region, the method
of calculating leading order correlations function was defined in [3]. It involves the summation of
Witten diagrams containing supergravity fields which live on the AdSs space. Our calculation of
the high energy behavior of Witten diagrams has shown that the scattering amplitudes for infinite
't Hooft coupling A also come as a convolution of impact factors and an exchange propagator, just
as in the weakly coupled theory. The convolution is defined through an integration over the radial
direction of the AdSs geometry. As a result of our calculation, we have obtained an expression
for the R-current impact factor at A — oo. Corrections of the order 1/ require string theory
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Figure 1: Unitarity corrections in QCD: (a) a fan diagram; (b) the six-point function

calculations. As to the exchanged graviton, Witten diagrams in the Regge limit yield a power law
behavior Ag,quiton ~ s/, with j = 2 being the spin of the graviton. The higher order corrections

to the graviton trajectory
4+ v? 1
o(=), 1.1
2\/X (A) (1)

cannot be derived from Witten diagrams, and they have been deduced from other lines of ar-

j=2-

guments [8 0]. In [16] a representation for the Regge limit of four current correlators has been
suggested which would allow to interpolate between weak and strong limits. We have not attempted
to cast our result for the Witten diagram into this form.

Within QCD, it is well known that the BFKL Pomeron violates unitarity bounds since it grows
as Aprkr ~ is/ with j = 1 + wprkr at very high energies. Consequently the Pomeron must
be tamed by suitable corrections. Elaborate calculations have been performed in order to identify
the relevant corrections within perturbation theory. An example arises in the context of deep
inelastic electron proton scattering at small z (which is related to the elastic scattering of a virtual
photon on the proton). It has been argued that the most important corrections to the BFKL
exchange are given by ’fan’ diagrams (an example is shown in fig. [[h) which contain the triple
Pomeron vertex. This vertex describes the splitting of one BFKL Pomeron into two Pomerons.
A derivation of this result is obtained by considering, first, the scattering of the virtual photon
on two (weakly coupled) nucleons and, then, closing the two BFKL Pomerons at the lower end
by integrating over the ’diffractive’ squared mass M? (fig. Ib). As a key feature, the fan diagram
in fig. [h. contains, in its lower part, the exchange of two BFKL Pomerons which comes with
a minus sign relative to the single BFKL exchange. At high energies, double Pomeron exchange
grows as Agoupte BFEL ~ —is'T2¥BFEL and thus starts to weaken the growth of the single BFKL
exchange. In preparation for extending this discussion to A/ = 4 SYM theory, one may replace
the two nucleons at the bottom by virtual photons. In this way, the essential amplitude to be
studied, becomes the six-point electromagnetic current correlator, evaluated in the triple Regge
limit. It is a remarkable feature of QCD that the two lower Pomerons do not couple directly to
the upper impact factor. Such a ’direct’ coupling would correspond to the eikonal approximation.
The absence of this direct coupling in the leading logarithmic approximation of QCD means that
the eikonal picture is not supported.

Turning to ' = 4 SYM theory, the analogous correlator is the six-point correlator of R-currents.
Our comments on QCD suggest to investigate, as a first step of addressing the unitarization, the
six-point R-current correlator in the limit s; ~ sy > M2, In the weak coupling limit, this high
energy limit of the six-point R-current correlator in N’ =4 SYM theory has been studied in [17].
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Figure 2: High energy limit of the six-point function in N' =4 SYM

The main result is illustrated in fig. At high energies, the six-point amplitude can be written
as a sum of several pieces [I8]; each of them corresponds to a distinct set of simultaneous energy
discontinuities, in agreement with the Steinmann relations. For our discussion we are interested
only in those terms which contribute to the discontinuity in the energies s;, so and in the square
of the diffractive mass, M2. In the leading log approximation, the triple Pomeron vertex (fig. 2
right figure) is the same as in QCD. The amplitude corresponding to this diagram has the form

rinle 818 dwdw dw o
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where the signature factors are given by

e*ipiw -1 e*iﬂ(b.}fwlfu,'z) -1
f(CU) = —WW ) E(W,OJ1,0J2) = _Wsinﬂ'(w g — wg) s (12)
and
F(w,wi,wr) = ®(Q*) @G(w)®V & G(w) @ d(Q%) @ Glw) ® (Q%) - (1.3)

Here ® denotes the integration over transverse momenta, G(w) is the BFKL Green’s function, ®
is the impact factor presented in [I0], and details on the triple Pomeron vertex V' can be can be
found in [17]. The discontinuity of this six-point function across the cut in M? leads to the cross
section of the diffractive scattering process (in the notations of QCD) v* +v* — Mx + *. Since
M? is large, we obtain a contribution of ’large diffractive masses’. In all three w variables, the
leading singularity is given by the BFKL characteristic functions

4N .a51n 2
- )

w=w = w = aszx(r=0,n=0) = (1.4)
As an important feature of N' = 4 SYM theory we find an extra contribution (see fig. 2] left figure)
where the two BFKL exchanges couple directly to the upper R-currents. The presence of this
"direct’ coupling, which is absent in QCD and might be viewed as a support of eikonalization in
N =4 SYM theory, can be traced back to the fact that fermions (and scalars) belong to the adjoint
representation. The corresponding scattering amplitude is of the form

At = ms [ [ G )6 PO 1, 00), 19
where
F(M?%wi,w) = ®(Q%M*)" " @ Gw) ® $(Q%) ® G(w2) ® B(Q%) - (1.6)
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Figure 3: Witten diagrams for the two graviton exchange in the ¢t—channel

direct

An expression for the new impact factor ®(M?;Q?)) which describes the coupling of the two
BFKL Pomerons to the upper R-current can be found in [19) 20] and [I7], 21] [, For large M?,
this impact factor falls off as M ~*. For the diffractive cross section one takes the M2-discontinuity
of the six-point amplitude, i.e. the M2-discontinuity of the impact factor ®(M?;Q?))4 et The
latter falls off as M8, i.e. it contributes to the region of small diffractive masses.

In the present paper we continue the investigtion of the high energy limit in the strongly coupled
theory using Witten diagrams. Our main interest now is in the six-point R-current correlators.
In the triple Regge limit, the amplitude is dominated by t—channel exchanges of gravitons. The
relevant diagrams are shown in figs. Bland @l There is an obvious correspondence between the two
contributions on the weak (fig. @) and on the strong coupling side (figs. B and [} left diagram).
These Witten diagrams will be considered as the strong coupling analogue of our weak coupling
results obtained in /Y =4 SYM theory .

Our article is organized as follows. Section [2]is devoted to a brief review of our notation used
in [II]. In section Bl we present computations of the scattering amplitude with the two ¢—channel
gravitons and one intermediate R-boson carrying mass M (fig. ). We rewrite the amplitude to
momentum space and perform the high energy limit. The amplitude is found to be proportional
to the square of two large energy variables, namely s?s2. The planar graph (left part of fig. B)) has
a cut for positive M?2, starting at M2 = 0, and, for large M? (triple Regge limit), falls off as M ~2.
Correspondingly, the crossed graph (right part of fig.[)) has a cut for negative values of M?. Finally,
in section [ we consider the correlation function with the triple graviton vertex (fig. ). In the triple
Regge limit, the expected contribution to the triple Regge behavior ~ (s1/M?)J1 (sy/M?)I2(M?)J
with j = j; = j» = 2 vanishes. Instead, we find contributions proportional to s7, s3, and s;ss.

2 Six-point correlation functions at strong coupling

Let us consider A = 4 super Yang-Mills (SYM) theory in four dimensional Euclidean space. The
Fourier transform of the six-point correlator reads as

6

6
(27r)46(2@)A1112j3j41516(ﬁi) = /(H d4$ie_iﬁi.fi> <H Jj (Za)) - (2.1)

i=1

By J; we denote R-currents with j labelling the spacial directions, j = 1,...,d = 4. The & =
(z1,x2,x3,24) stands for the four dimensional Euclidean vector (the value j = 0 refers to the fifth

IRef. [21] discusses the M? discontinuity of the two-Pomeron impact factor. In order to obtain the full impact
factor from this discontinuity, one writes a (unsubtracted) dispersion relation.
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Figure 4: Left figure: triple graviton exchange with the triple graviton vertex. Right figure: two
graviton exchange with the direct coupling of two gravitons and two bosons.

coordinate).

We use the same notations as in [II]. Starting with the Euclidean notation p'= (p1, p2, p3, pa)
and |p] = \/p?, the Wick rotation continues |5]> = 5 — —p> = —p} + p} + p3 + p3 in Minkowski
space. In the high energy limit, our scattering amplitude depends upon the energies s, s2, the
diffractive mass squared M?, and the momentum transfers t;, to, and ¢. Furthermore, |7 ], 72|,
|P3l, (|D4] ,|P5| and |Ps|) are the virtualities of the incoming (outgoing) currents. In Euclidean
notation we have

s1. = —(Pr+p)?, s2 = —(Pi+53)°, M? = —(Pi+pe+55)°,
—t = (Pr+pa)?, —ti = (Pa+p5)°, —to = (P3+ps)>- (2.2)

After Wick rotations, the energy variables s;, ss, and M? are positive, whereas the momentum
transfer variables t, ¢1, {2 remain negative; the masses of the external currents are kept negative
(space-like), —|p;|. After Wick rotation, we still continue to use the vector symbol p for the
Minkowski vector (pi,pa,ps, pa), but now p? = —p?.

The high energy limit is defined as
S1, S2 > M2 - t7 _tla _t27 _|15;|2 (23)

For the two graviton exchange diagrams we will keep M? finite, whereas for the triple graviton
diagram we take the triple Regge limit where also M? becomes large.

Finally, we find it convenient to present the scattering amplitude in the helicity basis. To this
end we contract the correlator A with appropriate polarization vectors

A/\1A2>\3;A4A5A6(|m|; 51,52, M2; tat17t2) =

A - A - A - A — vk (A - vk (A o\ % -
=S M )R (F2)el? (Ba)ent) (7)€ (55) € (56) Aju jojsininis B) . (24)
Ji

where \; = L, £ runs through the possible helicities and we introduced the polarization vectors
ej‘ (p;) such that pgegxi)(p‘;) =0.

In order to calculate the amplitude ([Z.1)) in the limit of infinite 't Hooft coupling [I0] we make
use of the conjectured AdS/CFT correspondence [2] between IIB string theory on AdSs space and
N =4 SU(N,) super Yang-Mills theory. An efficient calculation can only be performed in the limit
of large N.. Moreover the full string theory on AdSs is well approximated by classical supergravity
when ’t Hooft coupling A = g3 ,,N. goes to infinity.



According to the AdS/CFT correspondence, correlation functions are related with a classical
supergravity action Saqs by [3l 4]

611
= wn—
¢o(1) ... 6¢o(n)
where the factor w,, comes from the relative normalization [22] while the sources ¢ of operators

in super Yang-Mills theory correspond to the boundary values of supergravity fields in AdSs in
the 4-dimensional quantum field theory, i.e. ¢|saas ~ ¢o. We are using the following conventions

(J)J2)...Jm))err exp(—Saas[dldol])] 5, g (2.5)

concerning the Anti-deSitter space AdS411. Its Euclidean continuation is parameterized by zg > 0

and # with coordinates x; enumerated by the Latin indices i = 1,...,d. We use the metric
2 L s =2
ds® = —(dzy +di®), (2.6)
20

where d#? can be related to the metric of Minkowski space by Wick rotation. The limit zy — 0
corresponds to the boundary of the Anti-deSitter space. The most interesting case is for d = 4
which can be related to QCD.

To simplify notation we truncate the SU(4) R-current group to U(1)g. However, our consid-
erations may easily be generalized to the non-Abelian case. The supergravity action is defined

by
1

S —
2“3“

d 2\ /g(=R + A) + Sy, (2.7)

where R is the scalar curvature while the covariant matter action reads as [23] 22], 24|, 25]

.

Sy = 5.2
Kat1

/dd“z\/g EF,“,F’“’ — A g+ (2.8)
Here 2 is fixed by matching two- and three-point protected operators [23,22], while F,, is the field
strength of the gauge field A. Throughout this note, Greek indices refer to the (d + 1)-dimensional
space, i.e. they take values from 0 to d. Latin subscripts, on the other hand, parameterize directions
along the Euclidean d-dimensional boundary of AdS;11. Contractions of the full metric (2.8) are
denoted with upper and lower indices while contractions of both lower indices denotes simple
summation with Kronecker delta.

After these technical preparations we can now begin to evaluate the high energy limit of our six-
point, correlator at strong coupling, where supergravity on AdS is believed to provide an accurate
description. To this end we make use of a very convenient and intuitive diagrammatic procedure
that was first proposed by Witten [3] and then developed further by many other authors. It relies
on summing diagrams which in our case contain only three basic building blocks, namely the
bulk-to-bulk propagators for the graviton and the gauge R-bosons as well as the bulk-to-boundary
R-boson propagator. They are connected by vertices defined in eqs. (227) and (28)). In the high
energy limit it is enough to analyze diagrams plotted in figs. B @l

3 Two Graviton exchange: Low diffractive masses

In this section we analyze two Witten diagrams depicted in fig. Bl These will later turn out to
contain all leading order contributions to the high energy limit of the full amplitude. After a very
detailed discussion of the first diagram we can obtain the contribution from the second diagram
through analytic continuation. The results are spelled out in eqs. (8:227) and (B30). They involve
a new impact factor, defined in eq. (B:21]), whose properties shall be analyzed in subsection 3.3.
The final subsection is then devoted to a study of the deep inelastic limit of the amplitude.



3.1 The Momentum space representation

We start from the expression for the two graviton exchange in configuration space. Its contribution
to the six current matrix element 1!

dd+1 di+1ly A+l dd+1z N
I2G,planal‘ / / / / 14)uu7po' (Z7 y) (31)

Guu;u’u’ (Zy w)Gpo;p’cr’ (ya U)T(QS),U,’U’ (w)T(36)p’a" (U) 3

where the stress-energy tensor
T(M),“, = Z%B[MG,\]M (Z, fl)a[,,G)‘]j4 (Z, 534) + Zga[,,G)‘]pl (Z, fl)a[uG)‘]j4 (Z, 54)
1 S -
—§z§6uya[aGg]p1 (2,21)0[aG g1, (2, Z4) - (3.2)

In the high energy limit, the highest contribution comes from the first two terms. For the coupling
of the two gravitons to the upper currents one can define the double stress-energy tensor

T(14)W,pcr = (Oup Ovwr + Opw 00 ) (0ppr 0ot + 6po O pr)
[ZgygaZ[ur G)\]j1 (Z? fl)ay[p/ aZ[V! GA]T] (Z7 y)ay[al GT],j4 (y? "f‘l)

1 . o
—izgygéwra%(}wl (z, xl)ay[p, BZ[QG)‘]T] (z, y)Gay[U, G11.js (Y, 1)

1 R S
_iygzgég,p, 82[;/ Gz\]j1 (Z, :Ul)ay[ﬁaz[u, G,\].,-] (Z, y)ay[ﬁGT]j4 (y, 564)

1 IR N
+Zy§'z§50'0’ 5#’1” az[a GA]]& (27 xl)ay[g az[a GA]T] (27 y)ay[ﬁ GT]]'4 (y, 1‘4)] . (33)

In the high energy limit, only the first term contributes to the leading power in energy. The
expressions for the propagators are listed in Ref. [11].

Let us now specify d = 4. Using the expressions for the propagators presented in Ref. [IT] we
rewrite the formulae in the momentum space. We define Fourier transform of stress-energy tensors
as

T(14),W(Z) = ﬁ/d[lpl/dzlm e (=81 gmipa-(F-34) T(14)uv (205 P15 P4) 5 (3.4)
and
Trayumpe (23) = (27:)12 / dpy / dipy / dhp —iF(F=T1) i (7—74) o—if(7-)
T4)ypv,po (20, Y03 D1, D, Pa) - (3.5)
This gives

Ty (20,51, 51) & =201, G, (20, 51)Pag, Gagjs (20, 1)

_ngl [VGA]pl (20,171)174 [MGA]]L; (20,174) ) (3-6)

2The correlation functions and amplitudes are calculated up to multiplicative constants, which can be easily
restored from the action 27).



with pry = 0., and
T(14)vpr (20,90 1, 5, 01) - = 259501, Gy (20, PL)DPw Garel (20, Yo; D)Pay Gy g (Yo, Pa) (3.7)
+2005P1 1, Gy (20, 1) D1pP1u Gy (20, Y03 P)Pagy Gl (W0, i)
+Zgygpl [”G)\]jl (207 ﬁl )p[ap[VGA]T] (207 Yo; ﬁ)p4[pGr],j4 (y07ﬁ4)
+2595p1 1, Gty (20, 1) Dlo DG lr) (20, Y0; )Pag, Gl s (W0, Pa)

with 0z, = —ip;, Oy, = —iDi, Po = 10s,, Po = 10y,, P1g = 10s,, Pag = 10y, In the above formulae the
approzimation indicates that we omit terms which, in the high energy limit, are power suppressed.
Finally, our expression in the four-dimensional momentum space takes the following form

6
4) 2G,planar N H 4, A—iTD;j 2G,planar __
(sz Aj1j2j3j4j5j6 (p) - d zje I =
i =1

- dyo dUo dwo dZo — — S
= (271-)46(4) (Z pl) / / — T(14 Yuv,po (207 yO)plapl + D2 + p57p4)
- 0
k2
G vy (20, wo; P2 + P5) Tas) v (W05 P2, D5 ) G porspr o (Y0, V03 3 + P6)T(36) 00 (V05 D3, D6) -

3.2 The high energy limit

In the high energy limit, the leading contribution can be obtained exactly in the same way as it
was done for four point functions [IT]. For the incoming R-boson propagators, the only important
parts are those proportional to py, namely

PiGyj(20,0) = z0(Prdiy — pidei) 1P K1 (201P]) = 20pkdi; [P K1 (20]P]) (3-8)

pGoyj(20,0) = iz0(6k;1P” — pjpr) Ko(z0|pl) ~ —izopjpe Ko(20]p1) , (3.9)

where 0z, = —ip;, po = 10,,. Making use of the Ward identity, i.e. shifting the polarization vectors
(listed in [11], Appendix A), we can remove terms without py. To simplify the notation of the
bulk-to-bulk R-boson propagator we introduce

S zomoll \*
Ka(z0,905|P1) = Kopya(Pl\/25 +v5), (3.10)

and

Ka (20, y0; 91) i o ot |7
@170, 70> kZOI‘k+1+a)F(k+1) 2+

2k+a
) Kopya(IPl\/25 +95) - (3.11)
This allows us to rewrite the bulk-to-bulk R-boson propagators as
Guj(20,90,p) = %%jzoyokl - %pj%ozoyglcn, (3.12)
and
Guo(20,50,0) = %0u0(25 + y3)K1 — §6u02090K0 + £p;duj25y0Ko - (3.13)

Furthermore, in the high energy limit the leading term of the graviton propagator is given by

Gul/;u’u’ (207 wOam ~ (6uu’ 6111/’ + 6;“/’ 61/u’ )g(207 UJO;ﬁ) ) (314)



with

G(20,w0;9) = Ka=2(20,wo;[P]). (3.15)
To calculate the scattering amplitude we have to contract the resulting expression with the polar-
ization vectors, namely
- (Aa) - (As)
2G,pl Xa) /= G,pl Ap) /=
AP e = D [ e (@) (A2 Py daisie LLE B0) - (3.16)

A" b=4

Substituting the expressions for the propagators, the double stress-energy tensor reads as
T(14)uu7pa (207 yO;ﬁlaﬁﬁél) ~ _%Z([)lygpl klpkzpk3p4k4 (6;”01 51/](23 + 6uk3 5Vk1)(5pk2 50194 + 6pk4 50192)

Z Wi, (P, 1) Ko (20|51 ) Ko (20, 903 [P) K (woFa]) ,  (3:17)

m=0,1

where we have introduced the vector

—

P = P+ P2+ Ps. (3.18)
The tensor part, namely
erlnj4 (D1,04) = (8 ja|D1]|P4|6m 1 _p1j1p4j45m,0) ) (3.19)
in the basis of polarization vectors basis (cf. [11]), can be written as

- o A - A o\ % - o
WA, @G5 = Y e @)l (@) W (51, 5a)
J1,ja

D1 11P4](Omr 1001, 1Oxs ke + Oy 001,100, 1) - (3.20)

Q

In analogy with [11], we introduce the impact factor for the coupling of two gravitons

®xoxa (1B 181 Pals 20,90) = Y WAL, (B, 1) Ko (20151 ) Ko (20, 03 1) Ko (wola]) - (3:21)

m=0,1

We rewrite eq. (B.I7) as

—

T(14yuwpo (20, Y03 D1, Pi 1) & —220Y0P1 ko, PhaPhsPa g, (ks Oukg + Oputeg Ovky)
(OpkaOoks + Opkaoks) Prina (IP1]; [P, [Pal; 20,90) - (3.22)

For the lower stress-energy tensors we make use of the impact factors introduced in [II]

®rox (12], [Bslsw0) = Y WL, (B, 5) Ko (wo 2|} K (wo |5 ) - (3.23)
m=0,1

With this notation, the lower stress-energy tensors can be written in the form

Tiasyurv (w03 P, ) & 2wopa gy Psgr (8ky O ks, + Orie uriy) Paans (1521, |51 wo) (3.24)
and

T(s6)pror (V03 B3, D6) = 2090311 P61y (Oprky 007 ky, + Oprky Orks) Bagng (1731 |65 v0) - (3.25)

We note that, similarly to the four point correlators in [11], helicity is conserved in all impact
factors. With the vector p= p) + p> + s from eq. (BI8) and with

M2 = —j? (3.26)



we now perform the Wick rotation to positive M?: |p] — iM. In the limit of large s; and sy we
thus arrive at:

G,pl
AGplmar g2 / dzo / dyo / dwy / dvo 28y8wivd B, . (71, iM, |fal; 20, 90)

G (20, wo; P2 + P5)G (Yo, vo; P3 + Do) Pasxs ([P2], D515 wo) Pagxe (IB31; P65 v0) - (3.27)

This formula summarizes our results for the high energy limit of the planar amplitude in fig. Bl
The second Witten diagram with crossed bulk-to-bulk graviton propagators can now be obtained
very easily. Introducing the vector
7 = P+ Ps+ P, (3.28)
with
71> = M?+t—ti —to+ |5 P + |5 = M? + |51 + |5 (3.29)

the high energy limit of the crossed diagram has the form

o0 o0 o0 [ee]
2G,crossed _ 2.2
AA1A2A3A4A5A6 = 25152/ dZO/ dZ/O/ dwo/ duo Zoyowovo @, (1915 7', 17415 20, 90)
0 0 0 0

G (o, wo; P2 + P5)G (20,05 P3 + D) Pasxs (|P2]; [D5]5 o) Pagae (1531, [P6];v0) - (3.30)

For large M? we could substitute |§'| — M, but for the moment we keep M? finite.

3.3 Analytic structure of the two graviton impact factor

In the last section we have identified the two graviton impact factor ([B.2I) as one of the new
building blocks for the planar amplitude. Let us pause for a moment and have a closer look at
its analytic structure. We are interested in the region where M? = —|p]? is positive and we have
substituted |p] = —iM. The impact factor contains the function K, (20, yo; |f]) that arises from
the intermediate bulk-to-bulk R-boson propagator and is defined as the analytic continuation of
I@m(zo,yo; M). Since I@m(zo,yo; M) is defined as an infinite sum over modified Bessel functions,
see eq. (B.I0)), its analytic continuation

(FiM)"Kp(FiM) = —ZM"(V, (M) FiJy(M)), (3.31)

has a cut for positive M? with a branching point at M? = 0, its discontinuity being given by
7M™ J,(M). While the upper sign corresponds the region above the cut which is related to the
Feynman propagator, the lower sign is valid below the cut.

The analytic structure becomes more transparent if we make use of another representation of
the bulk-to-bulk R-boson propagator [27, 28]

_ *© wdw
K (20,903 [9]) = /0 m m(wz0)Jm (wyo)

Ko (2010 Im (401P1)0(20 = y0) + K (y0l D)) Im (2070 (w0 — 20) , (3.32)

where K, (z) and I,(z) are modified Bessel functions. The subscripts m = 1 and m = 0 correspond
to the transverse and longitudinal polarization, respectively. Making use of the first line on the
right hand side of eq. (832)), one can rewrite the two graviton impact factor as a superposition of
products of single graviton impact factors

R o w dw
B (LI o) = [ S 3 R Kl ) (20)
0 p m=0,1

T (wyo) Kom (yolpal) - (3.33)
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Using eq. (8.20), the second line on the right hand side can be rewritten as

. - 1 © wdw L -
x (181L] 191 194 20,90) = |ﬁ1||ﬁ4|/ 22+ | Z Wi, (P, Pa) K (20]P1|) Jim (w20)
0 m=0,1

ST oW, B Ba) T (wo) K (yolal) . (3.34)

m’'=0,1

Performing the Wick rotation, substituting |p] — iM and comparing with the single graviton
impact factor in eq. (3:23)) we identify the right hand side as a dispersion integral over the product
of the imaginary parts of two single graviton impact factors, where one of the currents has been
analytically continued into the time like region

. . . 4 1 *© wdw . R )
(I)A1>\4(|p1|a _7'Ma |p4|7 20, yO) = F |ﬁ1||ﬁ4| / OJ2 — M2 Im(lqu)\1>\4(|p1 |a —lWw; ZO)) X
0

X Im(im<I>>\1>\4(—iw, |ﬁ4|; yo)) . (335)

On the other hand the dispersion integral is given by

o0
B (7]~ ) = = [ O (@ (7~ 7l 0, 00) - (330
T Jo w?-—M
Comparing the previous two equations we conclude that the imaginary part of the two graviton

impact factor is equal to the product of imaginary parts of two single graviton impact factors.

Finally, it is also interesting to investigate the behavior of the two graviton impact factor for
large values of M2. Making use of the integral representation ([3.32) of the R-boson propagator
along with the completeness relation for Bessel functions, one can expand the propagator for large
M to obtain

. 8(z0 — y 1 [
ch (207y0; ) |ﬁ|) = % - W /0 dWWSJep (WZO)JGP (wyO) +. (337)

A similar analysis also applies to the crossed amplitude. For large M? we have |[f'|> ~ M?2.
Therefore the leading contributions proportional to 1/M? cancel from the sum of the two diagrams.
We are left with the asymptotic behavior ~ 1/M* of the combined amplitude. This behavior of the
two graviton impact factor (8:2I]) may be compared with the analogous impact factor on the weak
coupling side, ®47¢t in eq. (LH). It is curious to observe that the latter has the same asymptotic
behavior ~ 1/M* for large values of M?2.

3.4 The deep inelastic limit

In this subsection we turn to the diffractive cross section which is given by the discontinuity of the
six-point correlator across the positive M? cut. For this discussion we specialize on the kinematic
limit where the virtualities of the upper bosons are much larger than the virtualities of the lower
ones, namely

1L, 184l > |21, 19517, 1957, [Ps] - (3.38)
For further simplification we set

> = 1> = Q% (3.39)

and

|15'2|2 = |15'3|2 = |ﬁ5|2 = |ﬁ6|2 = Q2B- (3-40)
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This is the kinematic limit probed in, e.g., deep inelastic electron proton scattering; for this reason
we name this limit as ’deep inelastic limit’. This limit will allow us to perform the integrations
over the fifth coordinates and to obtain explicit analytic expressions. In particular, this limit will
allow us to study the large-AM? behavior of the imaginary part of the impact factor which, in the
diffractive cross section, determines the large-M? behavior of the cross section.

To simplify notation we define dimensionless variables

zm = 20M, ym = yoM, vy = voM, wy = woM, (3.41)
the ratios
= Qa/M, B = @Qp/Qa. (3.42)
and
er = |@l/@B, & = Po+pPs, @ = P3+ - (3.43)

With these definitions we rewrite the the planar amplitude (327 as

2 2
A2G,planar - 9 S1 52 16 pd y—2 ood Ood Ood ood 3.3 .3.3
AaABiAB2 Q_i Q_?A « ﬂ QA o Ym o UM o W N . ZMWy O Z Y v

Km(AA) (ZMa)Km()\A) (ZMa Ynr; _i)Km(AA) (yMa)
G(zmr, war;e1aB)G (ym, vars e2a3)
Km(/\Bl) (wMaB)Km()\BQ (’IUMOéB) m(Ap2) (’UMQB) m(AB2) (’UMaﬁ) (344)

Here we have inserted the definitions of the impact factors. Making use use of helicity conservation
we can rename the helicity variables such that Ag = A1 = Ay and Agy = Aa = A5, A2 = A3 = ).
Furthermore, m(\) = 0 for longitudinal polarization, and m(\) = 1 for transverse polarization.
We have also a similar expression for the crossed diagram.

As a first step of simplification let us consider the forward limit

er =0, (3.45)

for k=1,2,ie. t; =ty — 0, so that the graviton propagator

1 w? 22
g(ZM,U}M;O) = Z(ZTMO(ZM—U}M)+1U—J¥0(1UM—ZM)) (346)
M M

Then

G,planar 1 S1 2
AiA;\D;al}\aB2 -3 Q_,%l Q_A 165462 dyM d'UM de dzMwMUMzMyM

Kooy (2m@) Koy (zars yars =) Kx ) (yara)

wi, v, 22, v,
—9(2M war) —5-0(ysm — vnr) + w—Qe(wM —2m) 5 0(ym —vm)

ZM Ym M Ym
w} Yir Zir Yir
+—0(ZM war)=5-0(var — ynr) + —5-0(war — ZM)T9(UM - yM)>
M Upm Wiy Upm
Km(ABl)(wMaB) m(ABl)(wMaﬂ) >\B2)(,UMaﬂ) >\B2)(vMa/8) (347)

Making use of expressions given in the Appendix [Alis is possible to do the integrals over wys and
var, and with the saddle point method described in Appendix [C] one can investigate the large M?
limit. However, we chose another way.
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We turn to the DIS limit (33]), which implies 8 — 0, and we expand in powers of . Due
to the fast vanishing of the Bessel functions of the two graviton vertex (which do not contain the
B variable) one can the lower impact factors in powers of 8 and perform the integrals over wys
and vys. In the case of transverse polarizations of the lower R-currents, the small-3 behavior of
the Bessel functions gives rise to logarithmic divergences for small . The appearance of such
logarithms is known already from the single graviton exchange [II]. For two gravitons we have
maximally two logarithms in 5. Using eq. ([8.32]) one can then perform the integrals over zj; and
yr- Thus, the amplitude of the planar diagram becomes

2 2
G,planar — S1 52 m m —
A o~ =M (Q—E) <Q_?4> Ih(—a?) logmAsi)mQe) (3=2) (3.48)
where the function I (—a?) stands for the result of the integrals over 2y and yas
5 Oé_2 0 [e%¢] "
I(-a”) = 55 dZM/ dynt 25y Kooy (20) Ky (e /0, yar [ o =) Ko ) (yar ) -
0 0

(3.49)

The integrations can be done analytically leading to
—a?(-a?) = (p" +p{ log(—a?) + pf log(p))p_l : (3.50)

The functions pg‘i) are rational functions in « and p, and their detailed form is presented in Appendix
B Due to the In(—a?), the function I, has a cut for real positive a? = Q% /M?, i.e a right cut
in M? starting at M> = 0. There no no poles in M?2. If we would have taken the virtualities of
the currents p; and p to be different from each other, we would have obtained also logarithms in
the ratio p) /p>. For further details we refer to Appendix C.

The contribution related to the crossed diagram is obtained by substituting: —M?2? — M2 =
M4t —ty—to+ |12+ |51, ie. A3 %0 is obtained from the analytic continuation of A0 ¥120
in the M? plane. As we have already discussed before, in the large-M? limit the leading term of
Aiﬁ';;(is;e;, is of the order M2 ~ —M 2, and it cancels with the leading term of Aiﬁfﬁ&z2
This means that the sum is of the order M %,

2 2 2
2G,planar 2G,crossed __ Q S1 52 » m(\ m(\ —
A)\A/{)Bi/\i;z +'A)\A/\C301$/\Slegz - _Vi <Q_?4> <Q_?4> IA(QQ)IOg (Aa)+m( B)(B 2)'
The function
IAA(aQ) = a_Q(IA(—aQ) - I>\((oz_2 + 2)_1)) , (3.51)

describing the sum of the planar and crossed impact factor has both right and left hand cuts in
M?2. The absolute value of a*ly(a?) is shown fig. Bl and B, both for transverse and longitudinal
polarizations. In both cases, there is a maximum at the beginning of the M?-cuts. In contrast
to the transverse impact factor, the longitudinal one is logarithmically divergent at M? = 0 and
M? = 0. These divergences come from the logarithmic behavior of the longitudinal R-boson
propagator (ZII). In the large M? limit the leading term of I\ (a2 = 0) is of the form

Iya?=0) = /Ooo drrT K2, (r) = %r@ —m(A)T (4 +m(N). (3.52)

From eq. (3:50), with the explicit form of pf\l) being given in the appendix, it is straightforward
to determine the discontinuity of the amplitude (3.48) across the right hand cut in M?
576a'% (a®> — 1) 7 (a® — 1)

discpp2 IT(—a?) = G @ (3.53)

3In the appendix we discuss the more general case |pi| # |pa| and consider the function T as a function of «
and p = |p1|/|pa|. The results of this section are obtained by taking the limit p = 1.
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M?/Q%

Figure 5: The logarithm of the absolute value of a*Iy(a?) plotted as a function of a2 = M?/Q%.

08 r ]
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0~ : x —
4 3 2 0 1 2

M?/Q%

Figure 6: The phase of the upper impact factor, namely 7! arg(—a‘lf)‘ (a?)), plotted as a function
of @™ = M?/Q%. For M? > 0 we present the branch above the cut while for M? < 0 we show
the phase below the cut.
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and

64a'0 (ot —4a® +1 1 _ 40?2 +1
diSCMZIL(—OéQ) - (Oé a = )7T(Oé = a ) (3.54)
(a2 +1)° (a2 +1)

For M — 0 the discontinuity for transversely polarized R—bosons vanishes as M?2, while the
longitudinally polarized one goes to a constant. For large M2, the imaginary part of Aiff;al‘}\a;
is proportional to M2 (M%) for the longitudinal (transverse) polarization. Finally, one can
also notice that the rescaled imaginary part, a~*Im I, (—a?), is invariant under the substitution
a’ (o)7L

We end this section with a comment on the diagram on the rhs of fig.4. It contains a direct
coupling of two gravitons to the upper R boson, and it does not depend upon M?2. At the end of
the following section we will show that its dependence upon s; and ss is quite similar to the triple

graviton diagram to which we turn in the following section.

4 The triple Regge limit: triple graviton exchange

There are two more Witten diagrams that can contribute to the six-point correlators of R-currents,
namely the two terms that are depicted in fig. [ The first one involves the triple graviton vertex.
We will construct the vertex in the following subsection before we evaluate the Regge limit of the
entire diagram in subsection 4.2. The second diagram in fig. [ is the subject of subsection 4.3.
It contains a vertex between two gravitons and two R-bosons. Through our analysis, the only
term that could contribute to the discontinuity in M? is found to vanish. Furthermore, we shall
show that the remaining M2-independent terms from the two diagrams in fig. @ are subleading
compared to the contributions from the Witten diagrams in fig. Bl

4.1 Triple graviton vertex

In order to analyze the first diagram of fig. [ we need an expression for the three graviton vertex.
This vertex was derived before in Ref. [26]. In the following, we re-derive the vertex at prepare for
the high energy limit. As usual, our task is to expand the Einstein Hilbert action

1

S = —
2K3,4

/ddﬂz\/gR, (4.1)

in small fluctuations h,, of the metric g,, = guv + hu around the metric g,, of the AdS
background. In order to fix our conventions we recall that the curvature, Ricci tensor and Riemann
tensor are defined through

R = nguv = Ruaﬂugw’gaﬁa (42)

Ruasy = GunBlg = 9un(05T0, — 8,0, + 1,18, — 7,10, (4.3)

where the Christoffel symbols are given by

I3, = %gap(aﬁgw + 0v98p — 0,95+) - (4.4)

In the following calculation we need to expand both the inverse metric ¢®? and the determinant g
up to third order in the fluctuation h,,. For the inverse metric we find

gaﬁ = gaﬁ - gaulhﬂll’lgylﬁ + gamhulvlgylu2hu2l/2gy26 - gamhulmgmmhu2u2§l’2u3hu3”3gy36 B
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while
VI = explnyg ~ VG(L+ L1577 hpe — 1577, 57 hpy o + 27 hpo)? +
+%§aphpz/1§ylpl hp1uzgu2p2hpzo - %(gophpulgylplhp1cr)§u3p3hpal/3 + 43( Uphpcr) ) (4-5)

After the substitution g,, = guv + huw we can expand the Langrangian of the Einstein Hilbert
action,

~ ViR = —V3 (R +HO 4 O 4 H<3>) , (4.6)
to third order in the fluctuation field h,,. The constant term is determined by the AdS curvature
—R = —d(d+1). The first order corrections to the curvature R involve the quantity
1 -
HY = —23(d—2)(d - 1)hoo(2) + 220((d 3)d + 4)h — 23(d — 4)doh
+232(d — 2)0ahao + 25 (0aOah — 0a0shas) (4.7)

where h = hyq is the trace of the fluctuation field. After multiplication with the factor V9, we can
write these terms as a total derivative, in agreement with the fact that we are expanding around
a solution g of the Einstein Hilbert action. The equation of motion for the fluctuation field A is
related to the second order terms H(?) in the expansion of the Lagrangian. We have reproduced an
explicit expression in Appendix What we really need here is the form of the terms that appear
in the third order,

1 1 1 _
H®) = w(@-1d+ 36)20h° — gzo((d —11)d + 34)hooh® + +5(d- 11)dz8hhaohao
1 ~ 1
+§((11 —d)d — 40)z5haphash + Zzg((d — 11)d + 38)haghashoo

1 1 .
—25(d — 8)(d — 3)hashaohso + E((d —11)d + 48)z5hasharhay + 5zghac,hc,gemg7
6 7 7 _ 1 7 _ 7.2 7 1 8 _ B2

+15z0haohaoh + 925 hoyhasOyhas 8z0(d 8)h*doh + 8zoaaagha5(2hw,hw h?)

1 . 1 , _ _
+Zzg(d — 6)h%0ahao + 5zg(d — 8)hhoaOuh — 25 (d — 6)hhoadshas

—Zg(d — Q)Bhagaohag — Zg(d — 5)7Lha38ah30 — ngho’yhgaa’yhga
—20(d = 8)hoahsaOsh + 225 (d — 6)hoahsaOyhay + 228 (d — 5)hoahs, 0y hsa

1 -1
+20(d + 2)hapharOohsy + Zzg(d — 8)hashasloh — §zg(d —6)hashasdyhyo
3 1

+25h5a0phapOshyy + §Zgh6aavhﬁp Oyhap = 25h5a05N+p Oy hap — §Z§hﬁaavhﬁp Iphary

1 4 -1, - 3
—520}7,3&67}1&5 87h - Zzohgaaah th - Zohgahm,a thap + Zohgaagh,yp Ou hp'y

+28h5005hay Ovh — 225 h5a0shay Ophyp + 25 hsahiay 050vh — 225 hgahay 040,hs,

+25hgahay 0,0phay + 25 h3a0yhas Ophap + 250500y hay Ogh — 25h5a0yhay Oyhs,

_ 1 - 1 -
+28hhp,0500hay — §Z§hh578aaah57 - §z§h6aha583h - —206 Oah(2hyph-, — h?)
——Zgha hagOyhag + zoha hgy0sha~y + Zohahah - —z Shhg,050,h . (4.8)
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In the following analysis we shall now specialize to d = 4. Having spelled out the third order terms
H®) | we can now read off the triple graviton vertex VT®, In order to spell out the answer, we
shall split the vertex into four different contributions,

TR TR,11 TR,20
Vu1V17u2V27u3V3 (Q1,Q2,Q3) = Vull’l,uwz,uava (Q1,Q2,Qs) + VM1V17H2V27H3V3 (Q1,Q2,Q3)
TR,10 TR,00
+ V[l,11/1,[l,21/2,[l,31/3 (Qh QQa QS) + Vp,l V1,[t2V2, L33 (Qla QQ: QS) . (49)

Here, we group terms according to the number of the Kronecker deltas which connect different
gravitons, i.e. Kronecker deltas of the form ¢, ,, and those involving internal (summed) labels are
not counted. Explicitly, the terms that contribute to V7220 are given by

TR,20
Vp,l V1,1V, k313 (Qla Q27 QS)

3 1
_ 3 3
- _§6H17ﬂ26l’l7V26H37V3Q17VQ27VZ0 - 561117u261’17'/26#37"3@27"@27"'20
350000 Q2.0 Q3.1 28 4 0y 13O0 12 Q2,115 Q305 20
4 H2:vaUrz,s 2,11 &30, 20 p1,v20v1 00 W2,u5 &3,05 20
16 1) 0 346 1) 3
_5 p1,v2%v1, 10 u37V3Q27VQ37VZ0 + Opy s V17M3Q37M2Q3,V2Z0
1 3 1 3
+15#17M25V1,V2Q3,M3Q3,V3ZO - 15#17}126V1,V25M3,V3Q3,VQ3,VZO
56 1) 0 2456 1) 1) 2
_5 w1,p29v1,v2 uaﬂ/aQ?,OZO + 9045 ,u30us,v3 07M1Q37V1Z0

2 2
+6M17M2 61’1,1/2 50,113 Q37M3 20 — 5#1 ,#251/1,1/26#3,'/3 Q&OZO

3 5

_§5ﬂ17M25V1,V25#37V320 + 5(5#2#3(5,,2,,,3(50,”1(50,,,1 20 - (410)

All terms we displayed contract the indices among two of the three fluctuation fields. Terms in
which the contractions involve all three graviton fields are collected in

TR,11
Vul V1,2V, (k3 V3 (Qla Q27 QS)

— 3 3
- _5111,#361/2,"3@2,#1 Q3,H2Z0 - 5611417#261’17#3 Q27V3Q37V2Z0
3 3
_261/1,#251/27#3 Q27M1 Q3,V3ZO - 5#1#351117#2 Q2,V2Q37V320

+§5 1) ) Q2.,Q3.,728 — 6 ) Q3..,Q 3

9 ka2 Ovi, s Cr2,vs 2,v&3,020 v1,m3Ou2,vs W 3,11 3,02 20

3 3
_2511«17#3 51/17!12 Q3,V2 Q3,V3 2y + 5#1 M3 61’17#«2 51/2,1’3 Q37VQ37VZ0

2 2
_251/1 W3 5#2 K3 50,#1 Q3,V2 2y — 451’1 W2 5#2 JH3 50,#1 Q37V3 20

10

2
+65H1 13 61’1 12 51/2 V3 Q?),UZO + ? 5#1 K2 51/1 V3 51/2 320

+45u17u25V17u3607V250,V3Z0 . (4-11)
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Hi, V1

Q1
H2, V2 M3, V3

Figure 7: The three graviton vertex.

Terms in which only two of the graviton fields are contracted directly through a single contraction
are grouped together into the vertex

TR,10
Vp,l V1, laVa, 1l V3 (Qla Q27 QS)

1 1
_ 3 3
- Zéul,@ 61/1 B2 6#2701 5#371/3 Ql,cfl Q2702 2y + 5511«1 01 61/171/2 6#2,02 6#371/3 QLUl Q2702 20

3 3
+5u1 01 51’171/25#2,02 5#3,1/3 Q2,U1 Q2,02 zp + 5#1 ,0251/17#2 51’2,01 5#3,1/3 Q27U1 Q3702 20
3 3
+6u1 01 61’17#2 51/2,02 5#3,1/3 Q2,U1 Q3,02 ) + 6#1 01 61’17#2 61’2,02 5#3,1/3 Q37U1 Q3702 20
2 2
+25l/«17l/«2 51/2,01 6113711350,1/1 Q2701 2y + 5#1,01 61/17!/«2 5#371’3 5071/2 Q270'1 20

+45V1,V2 6#2701 6#3,1/3 60#1 Q3701 Zg + 6#1#2 6#3,113 60,1/1 60,1/2 20 - (4'12)

What remains are those terms of the three graviton vertex that contain no direct contractions of
two different graviton fields,

TR
V,ul U’R([),bgllg,[l,gllzg (Qla Q?a QS)

1
_ 3 3
- _§6M17015V1,026M2,V26u3,V3Q1,01Ql,azZO + §5M1,V15#271/25#37”3501,02621,01Ql,ﬂzzo
16 0 0 ) 3 0 ) 0 ) 3
_5 p1,01%1,02%u2,v2 ,U«3,V3Q1,0'1Q2,0'2Z0 + g p1,v1%pu2,v2%us,vs 01,02Q1,01Q2702Z0
1 3 1 3
_§5IL1701 51/1,025#2,1/26#3,1/3622,01 Q2,¢Tzzo - 15M1,025V1,016}12,1125#371/3622,01 Q3702’ZO
16 ) 0 1) 29§ 0 0 1) 2
+ 5 001,01 Ops,v2Ouz,vs 0701Q1,01Z0 — “Yu1,01%u2,v2%03,v3 0,V1Q2701Z0
2
1 2
_5205#1,111 5#271/250,1/1 Q?),ﬂs + 65ﬂ1,V1 5#2,1/25#371/320
3
_16u27l’25u3,v3 607u150,l/1 20 - (4.13)

The symbols (), denote five dimensional derivatives acting on k-th external graviton propaga-
tors (k runs from 1 to 3, cf. fig. [7),
Qi =0z, - (4.14)
Before turning to the high energy limit, we still have to symmetrize these expressions. This can
be done in two steps. To begin with, we symmetrize the two indices (u,vy) for each graviton
(labelled by k). Then, in a second step, we also symmetrize in the label k.
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4.2 The triple Regge limit

So far we have worked in configuration space. The Fourier transform is defined as before, and
derivatives in configuration space, as before, turn into external momenta, pj,...,ps. When com-
puting the scattering amplitude in the triple Regge limit one notices that the large energy variables,
s1 and so, are constructed by contracting large momenta contained in the stress-energy tensors
via Kronecker deltas from the graviton propagators and from the triple graviton vertex. Since the
graviton vertex involves at most two contractions of external indices from two different gravitons,
the amplitude with the triple graviton vertex provides terms proportional to s7, s2, or s1sy plus
lower order contributions. In fact, the leading contribution from the triple Regge limit comes form
the terms (@I1) and (@I0). While the former leads to terms which are proportional to sqs2, the
latter provides two types of terms which are either proportional to s? or to s3.

We compare this result with one expects from general arguments [I8]. In the notation of
Regge theory, the kinematic limit which we referred to as the ’triple Regge limit’ is a mixed Regge-
helicity limit. For this high energy limit the Steinmann relations allow for four sets of non-vanishing
energy discontinuities. Following the arguments in [18] as well as eq. (4.24) of the same paper, one
expects the six-point scattering amplitude to consist of four terms. If we label the leading angular
momentum singularities in the three ¢ channels by j, ji, and js, respectively, the four terms have
the following energy dependence

(i) (M2)i—ri2glgl> and

(ii) S% . (iii) ng"l‘jl —j2)/255j+j2—j1)/2 , (iv) S{. ,
The only term which contributes to the discontinuity in M? is the first one: This is the six-point
amplitude in QCD (or N' = 4 SYM) which we have described in the introduction. In the weak
coupling limit, the leading singularities in the angular momentum plane are given by the BFKL
Pomeron. Returning to graviton exchange we have computed the complete (i.e. not restricted
ourselves to the M?-dependent piece) six-point correlator in the supergravity approximation. The
leading singularities are at j = j; = jo = 2, and the three terms we have found are in agreement
with the energy dependence of (ii) - (iv). The first term is absent, i.e. in the Witten diagram with
‘elementary’ graviton exchange, the triple graviton vertex is found to vanish.

From the point of view of Feynman diagrams, this result can also be understood as follows.
In [I1] it has been demonstrated that the helicity structure of graviton exchange at high energies
can be viewed as the exchange of two spin one bosons, each of them being in a circular polarized
t-channel helicity state. Correspondingly, in our high energy limit where the graviton exchanges
above and below the triple vertex can be viewed as double-boson exchanges, the triple graviton
vertex acts like a product of two triple boson vertices. A simple look at the triple gluon boson
vertex of QCD shows that - in the triple Regge limit - the six-point amplitude with three gluon
exchange comes with two terms: One of them is proportional to s; while the other is proportional
to s2. Again, no term proportional to s;s»(M?)~! appears. Consequently, the product of two such
three gluon exchanges produces three terms, proportional to s7, s3, and s; SQQD

A similar result can also be found in flat supergravity [30} [31]. In the zero slope limit the
triple graviton vertex decouples. A non-vanishing triple graviton exchange is expected to appear
only once the gravitons are reggeized. This, however, requires a genuine string calculation and
thus goes beyond the scope of this paper.

41t is interesting to note that a nonzero triple vertex of reggeizing gluons in QCD has been found [29]. After
integration over M? this vertex becomes zero, thus restoring signature conservation.
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4.3 The coupling of two gravitons and two R—bosons

There is one more diagram we need to compute, namely the second one depicted in fig. 4. In the
high energy limit it will turn out to contribute to the same order as the triple graviton exchange.
The analysis follows the same steps we have described at great length in the first two subsections.
Hence, we can be rather brief now. Copying our derivation of the triple graviton vertex, one can
calculate the vertex with two R—bosons and two gravitons, i.e. the vertex that appears in the
second diagram of fig. [ Making use of egs. (£2)-(@35) we expand the kinetic term of R—bosons

~ VIF, F" = G(F® + FY) + F®), (4.15)
where F(©) = —28F,,F,, and the stress-energy tensor is defined by
1
FY = (2:2F,,F,, — Enggngpa,w)zghW = Tu2ohpuw - (4.16)

The coupling of two gravitons and two R—bosons can be read from

1 1 1
F(Q) = <ZFPUFPU(§M1M26V1V2 - gFPUFPU(SIthl 6#2112 + 5 PH2FPV26M1V1
1 8
+§ P FpV1 6#2!/2 - FM1V2FV1M2 - 2FM1M2FV1V2 ZOhulVl hu2l’2 . (4'17)

In the high energy limit, the diagram under consideration can only give subleading contribution
which are proportional to s?, s2, or s1s». In fact, as we have argued previously, powers of s; and s,
appear if and only if momenta (derivatives) from the field strength tensors F),, are contracted by
the Kronecker deltas coming with the graviton propagators. In the coupling (£1I7) of two gravitons
and two R—bosons, each term involves only two field strength tensors. Since each field strength
tensor contains only one momentum that is contracted with the graviton by using eqs. (3.8)-(33),
contributions proportional to s7s3 are impossible to obtain. The first two terms of the vertex lead
to traces over the graviton propagator and hence they furnish constant contributions to high energy
scattering. The remaining terms behave as s;s;, at most. Hence, at high energies, the six-point
correlator of R-currents is dominated by the two diagrams in fig. Bl The two diagrams in fig. €l
are subleading.

5 Summary

In this paper we have investigated the correlation function of six R-currents at high energies and
in the strong coupling limit. Interest in such six-point functions comes from the observation that
graviton exchanges at high energies need to be unitarized. As a first step, we need to compute
the coupling of two gravitons to the R-current. Such a coupling appears as a part of the six-point
function. We have two classes of Witten diagrams, one containing the two graviton exchanges
depicted in fig. Bl the other one containing the three graviton exchange in fig. @ The latter one
represents the triple Regge limit. These Witten diagrams have their analogues on the weak coupling
side, i.e. in the high energy behavior of R-current correlators in N’ = 4 SYM: The diagrams in
fig. B correspond to the exchange of two BFKL Pomerons on the weak coupling side, see fig. 2] left
figure. On the other hand, the triple graviton diagram in fig. @ has its weak coupling counterpart
in the triple Pomeron diagram on the right hand side of fig. @l It is remarkable that the existence
of the former contribution is a consequence of the supersymmtric structure of A" = 4 SYM, and
it does not hold for (nonsupersymmetric) QCD. The study of the present paper can be viewed as
the strong coupling analogue of an earlier paper [17].
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Beginning with the two graviton exchange, the correlation function has the same structure
as on the weak coupling side, a convolution of impact factors and exchange propagators. The
integration is over the position of the impact factors in the direction of the fifth coordinate. One
of our main results is the new impact factor which describes the coupling of two gravitons to the
upper R-boson. Similar to its weak coupling counterpart (which consists of a closed loop of spinors
and scalars in the adjoint representation of the color group), it has a cut in the mass variable M?2,
is maximal for small M? and, for large M?, falls off as M 4.

In the second part we have considered the three graviton diagram. We derived an expression for
the triple graviton vertex, and found that the coupling of three elementary gravitons vanishes in
the triple Regge limit. In agreement with the Steinmann relations, we obtained three terms which
grow as s2, 53, and s s, respectively. We expect that the triple graviton vertex will be nonzero
once the attached gravitons reggeize. This, however, requires genuine string scattering amplitudes
and thus goes well beyond the analysis of Witten diagrams. Note that the triple vertex of the
BFKL Pomeron in weakly coupled QCD possesses a non-trivial inner structure. This is linked to
the fact that the BFKL Pomeron is a composite object. Hence, it is tempting to expect some kind
of reggeization for the dual graviton so as to match its triple vertex with that of the Pomeron.

As we have said at the beginning, our present study was mainly motivated by the interest
in two-graviton exchange. As a first step, we have investigated the coupling of two gravitons to
the R-current. The existence of the direct coupling hints at the importance of eikonalization.
Nevertheless, the triple graviton diagram also needs further investigation.

Our study of higher order R-current correlators should be seen also within another context.
One of the most important ingredients in the analysis of gauge/string dualities is the remarkable
appearance of integrability. For multi-color QCD is was shown many years ago, see [32,33,[34], that
the BKP Hamiltonian, i.e. the operator that encodes the rapidity evolution of n-gluon ¢ channel
states, corresponds to a closed spin chain and is integrable. Such BKP states enter the high energy
limit of scattering amplitudes with more than eight external legs. Our study of the six-point
amplitude therefore also serves as a preparation for pursuing further studies in this direction.
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A Integrals for the forward case

To calculate the forward case as well as the OPE limit we have found the following integrals

v (Ko(yv) Ky (v) = vKo(v)Ki(yv)) _ vlog(y)
(=D +1) 7 -1

+0 (v2)
(A.1)

o0
7/ dvavaKo(va)Ko(vay) = —v

and

v (YKo(yv) K1 (v) — Ko(v) Ki(yv))
(v+D(y -1

'y/ dUAUAKl(UA)Kl('UA'Y) =

= log(v™h) + (log(2) — vg) + % +0 (v*) (A2)
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as well as

/vdvAvZKo(vA)Ko(vA'y) = <—4 ('y + 1)211 — 32 ('y +47 _Zl) ! > Ko(v)Ko(yv)
0 (72 —1) (v* =1
v 16 (292 1) 0 64(’)/44—4’)/2—}—1)1))}{ K (v
+<72—1+ (v2 - 1)° (2 —1)° )
e 167 (v2 +2) v® B 64(75-1-473-1-7)1;) Ko (VK (v
+<1—72 (o2 -1 (7 =1 oY)
8yv* 96('73+7)U2>K v) K1 (yv
: ((72 P T A
L32(=3 2y + 42 + 1) log(y) +3) (A.3)
(v? -1
and
v B 8yv' 96 (v* + ) v*
; dvavy Ky (va)K1(vay) = ((72 1y + (1) ) Ko(v)Ko(yv)
yv° 87 7%+ 5) v? 192 (v +7)v
+ (1 72 e 1) 2 1)5 > K1 (v)Ko(yv)
57 +1)03 192 (v* +92)v . .
s (72 T R ) Ko()Ki (70)
. 4P+t 16 (v +1072:1) v2> Ky ) Ky ()
(2 —1) (v* - 1)
L1607 +971 =997 —12 (7! + %) log(1) - 1) (A4)
y(2—1)°

The above results can be also used to perform integrals from [11].

B Integrals appearing in the DIS limit

In this appendix we present further details of the six-point amplitude, restricting ourselves to the
limit of deep inelastic scattering. We will be slightly more general than in section 3.4, by allowing
the external virtualities to be less restricted. In particular, we allow |71 |, |71] > [P2], |73, |55 |P6]s
without the constraints |pi| = |p4| etc., and we define

a = |pl/M, B = |pl/loil, p = |Pal/lBil,  pr = |Bsl/lPal, p2 = |P6l/IPs].  (B.1)

As a result, our integrals depend also upon the variables p, p1, p2. Thus, the exchange defined by
planar diagram reads as

2 2
Cplanar —M() ( |) In(=0®, ) Dags (B p1) D (Bop), (B2)

AMABLAB2 |91 [P D1 (1P
where the integrations over lower vertices give

Plog(ﬂ2)>1_m(>\3) (B.3)

— m(Ag)(p—2
Lan(5.p) = tog™)(572) (2L
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while contribution coming from the integral over upper vertices, I (—a?, p), is defined by
0 1 2
—a’pIi(—a?,p) = P +p| log(—a?) +p§ log(p). (B.4)
For the transverse polarization we found that

(0) 960> p*
@+ 17 (2~ 1) (022 + 1)°

(p° (p* +1) (p*? — 9p"° +17p" — 858 + 17p* — 9p* + 1) a™*

—2p% (5p"% — 39p"" + 172p'? + 1333p'% + 2938p° + 1333p° + 172p" — 39p” + 5) a'?
+p (p* +1) (p*5+ 11p** — 261p"2 — 4081p'° — 8980p° — 4081p° — 261p* + 11p* + 1) a'°
—2 (p'7 + 42p™® + 1609p™® + 7020p"" + 12056p° + 70209 + 1609p° + 42p° + p) o
—p(p® +1) (18p'"* + 883p'% + 6856p° + 13886p° + 6856p" + 883p> + 18) af

—4p (8p" +437p"" + 21250° + 3680p° + 2125p" + 437p” + 8) o’

—p (p* +1) (23p° + 1298° + 3238p" + 1298p” + 23) ®

—2p (3p° + 178p° + 478p* + 178 + 3)) (B.5)
5760 (a? — 1) p7 (a2p? — 1
oy = ( ) p" (o®p i ) (B.6)

(a2 +1)" (a2p? +1)

(2) 1152a2p7
(p* = 1) (a2p? +1)°

(10a® (5p" + 18p* 4 5) p'° + a® (145p™ + 669p° + 334p° — 36p* + 9p* — 1) p?

+20 (p® + 6p* +6p” + 1) + a® (94p° + 534p° + 464p" + 34p” — 6)
at (171p"° + 897p% + 632p° — 18p" — 3p* + 1)) (B.7)
while for the longitudinal polarization

(0) _ 192a2p6
r (@ +1)" (02 = 1)% (a2p? +1)"

(p (p'" — 8p™ + 28p'* — 186p'" — 510p” — 186p" + 28p" — 8p® + p) a'*
—(p*+1) (p16 — 4p™ — 8p'% + 612p™° + 1738p° + 612p° — 8p* — 4p> + 1) o*?
+ (5p"% — 34p™* — 688p"? — 455290 — 7102p° — 4552p° — 688p* — 349 + 5) a'?
=2 (p? +1) (3p"* + 236p'" + 1704p° + 3464p° + 1704p" + 236p> + 3) o®
—2(62p™ + 791p'° + 3653p° + 5688p° + 3653p" + 791p* + 62) o
—6 (p> + 1) (41p° + 336p° + 716p" + 336p> + 41) *
—2(93p® + 743p% + 1268p" + 743p> + 93) ®
0

—10 (p* +1) (5p* +32p* +5)) (B.8)

23



1 64a!? (a4 —4a® + 1) p° (a‘lp4 —4a%p? + 1) (B.9)
o (@ + 1) (@22 + 1)° ‘

128a%pS
(p* = 1)" (a?p? +1)°

(p* (100p'? + 1125p"° 4+ 1251p® + 16p° + 36p* — 9p” + 1) o®

W o= -

+p* (275p"% + 3681p'° + 5652p° + 512p° — 63p" + 27p* — 4) o°

+ (316p"% + 4617p'° + 8523p° + 1888p° — 252p* + 27p* + 1) a*

+9 (195" + 293p° + 608p° + 208p* — 7p* — 1) o?

+36 ((0° +2) (p* +14p> +8) p* + 1)) (B.10)

One can notice that the poles in a-plane are spurious, i.e. all poles of pg\k) (a2, p) cancel each other
in the sum.
The contribution related to the crossed diagram is defined by the formula with —M? — M? =
o o G,c d . . . . G,pl .
M? +t —t; —ta + |1 + [Pa]?, namely AiAfgis;em is analytic continuation of AiAfBalI;\a; in M?

plane. In the large M? limit the leading terms of A2Gcrossed “pich is of M2 & M2 order,

AaAB1AB2’
cancels with the leading term of Aiﬁ/{’;al’j\a; This means that the sum is of M ~* order
A2G,planar A2G,crossed _ |ﬁl||ﬁ4| S1 2 52 2 f S I I
AaAB1AB2 + AaiBiAB2 M4 |p’1||ﬁ4| |ﬁl||ﬁ4| )\(Oé ,,0) ABl(val) AB2 (B:p?)v

(B.11)

where t; = t; = t = 0. The function describing the sum of the planar and crossed upper impact
factor reads as

A

L(e?p) = a?p H{In(=a?p) = L((@ 2 +1+p°) 1), (B.12)

In the large M? limit, its value is defined by

I(a? =0,p) = p4/0 drr" K., (r)K., (rp), (B.13)

and it is plotted in fig. B as a function of the ratio of upper virtualities, i.e. p. The function reminds
the Gaussian profile with maximum at |py| = |p4].
Making use of eq. (3.32) one can find that the imaginary part of R-boson propagator

T Ko, (sar o,y /s Fi) = 45Ty (2ar/0) ey (yar/0) (B.14)

This allows to calculate simply the imaginary part of the amplitude (B.2)) related to discontinuity
along M? > 0, namely
576a!% (a® — 1) mp® (a?p® — 1)

discpp2 I7(—a?, = B.15
M?2 T( P) (a2 + 1)5 (a2p2 + 1)5 ( )

and

discye I (—a,p) = _640410 (a4 —40® + 1) Tp° (o/*,o4 —4a%p? + 1) (B.16)
’ (a2 +1)" (a2p? +1)°
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The roots, which are related to the change of the amplitude phase, appear at

|p1| /M, |ps| /M =1 for the transverse part, (B.17)

|p1|/M, |ps| /M = %(\/3 +1) for the longitudinal part.
Also, similarly to the p = 1 case we can observe the symmetry of

p 2ot ImIy(—a%p) under pa® & (pa®)t, (B.18)

3

where pa® = %. Thus, the discontinuity multiplied by (pa®)~3 is invariant under the inversion

in the M?/(|p1||ps]) variable.

C The saddle point method for large M? expansion

In this appendix we calculate the real part of the integral

o0 o0
Lia%p) = La?p / don / s 230 Ko (2ar) Ko (yps p)Koes (a1 fov, yar s 1) (C.1)
1] 0

from eq. (348) in large M? limit making use expression for the propagator K. L (zar,yar; 1) defined
by eq. (BI1)). Let us change variables zp; = rsin(¢) and yar = r cos(¢) and |J| = r. Analyzing eq.
(CI) one can find that in its first two order expansion in small « the leading contribution comes

from the region where k¥ ~ a~2. Thus we can apply the saddle point method with the large k
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parameter, i.e.

& > 4_k_3(2—6)\+2(1—6>\)k)
T 2 _ d —ex—2k—2 114+2k+¢€y .5
A p) / r) o Tk+DIO(k+2) p

w/2 r
/0 dpK., 1or (a) K., (rpcos(¢)) K., (rsin(p)) cos” T (¢) sin®tex (¢)(sin(¢) cos(gb))mc

- 47F3(2 — ey + 2(1 — e2)k) r
—ex—2k—2 114+2k+e€y 5 2
= / dry o NS CE P’ Keyt2k (—j ) h(r,k),  (C.2)

where
w/2 w/2

hrk) = / dbgr(9) M@ = / d6 (g:(d0) + g1(60) (& — d0) + 14" (Do) (6 — d0)” +...)
0 0

ok F(B0) RS (60) (9—00)+37KF" (60) (6—00)*+ 37k F"" (60) (6—00)°+ 1 kF ™) (60) (6= 0) "+ , (C.3)
with

9:(9) = Ke\(rpcos(9))Ke, (rsin(g)) cos™ () sin® > (¢), (C.4)

and

£(9) = 2log(sin(6) cos(s)) = 2log (cos(d) sin(6)) + 4c0t(260) 6 — o)
—45¢3(200)(6 — 0)? + 5 cot(2d) 5 (200)(6 — )°

~2 ((cos(460) +2) esc(200)) (6 — 60)* + O (6= 0)°) . (C.5)

Since we are going to calculate the first two orders we have to expand f(¢) to fourth order and
g(®#) to second order. The saddle point corresponds to zgp = yo, i.e. o = w/4. It is defined by
cot(2¢0) = 0, so that f'(¢o) = f"(po) = 0. To integrate out ¢ we use

w/2 o 8 .4 .
0

212
- —\/_k"——\/_k"+£\/7_rk*%+0(k*%) (C.6)
768 ’
and
/2 3\/§ 3k 3k
274k¢7k¢ _ 3k/4 sl 2Z) - K, [ 22
[ e Vo (1 (F) x4 (7))
- —flm——f "+£\/7_rk’%+0(k*%) (C.7)
128 2048 ’
which results
o'} o 276)\74]0717 r
I, (o? = - d 2(ex — Dk =2 Uy, —
) = - f 'Y TG T 26~ D= VA Ko ()

(0" (ot () (0 (25) i ()

+K., (%) (((,;2 +1) 1% — 166y + 32k — 44) K., (%)

+2v2(ex + 1)rpKe, 41 (%))) T (C.8)
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Since the dominant contribution for small « is defined in the region where
kE = k/a® with & = fixed, (C.9)

one can exchange sum over k by integral over k. We substitute the large k£ expansion of Bessel
functions, i.e.

L/r -2k T(ex+2k—3) [ 2\’
K2k+6>\ (T'/O{) ~ 5 (—) W <_W> 5 (C].O)

and making use of

(2k)I=x T(ex — j + 2k) N a? n (26,\2 —2(2j+ Dex +2j(j + 1) — 9) a® +..(C.11)
272k D(ET(k+2) —  2632xm 16k5/2\/10 e
we resum j. Finally, one can find that
La?p) = IV(p) + L (p)pa® + ..., (C.12)
where
5 o8] o]
(0) _ P 11 r rp R
I = K — | K, — ~ 1
x(p) 8192/0 drr K, <\/§> o <\/§>/0 dre sx k=7, (C.13)
o 00 _r2
v = 4/ drrH/ dr—S "
V=, o 20971522k
r rp rp\\
16r K. — ) (2(ex + VK., ( —= ) — V2rpK. (—))n
(1678 (75) (2er + 085 () = Vs (5
r AP
+ K, | — 32(ex + 1)rpK, — | K C.14
A(\/ﬁ)((eA )p A+1<\/§> ( )
+V2 (1" +16(ex — 1)rr? + 8k ((p* + 1) 1 + 8(ex — T)ex — 48)) K-, (%))) :
Moreover we perform the integrals over «, i.e.
Oy — P 7 g
1) = & ant K, (1)K, 0p) (C.15)
0
(1) <t
B0) = [ e (Ko (1) (e + Doy () = 200K 1 ()
+Ke, (r) (((0* + 1) r* +4(ex — 3)ex — 16) K., (rp)
+2(ex + 1)rpKe, 11 (rp))) . (C.16)
and over r. For €y = 1 we get
192p*
V) = (297”1)8 (3p° + 178p° + 478p" + 178p% + 3)
p? —
192p%1 2
—609(’.;70?55) (0° + 60" +6p° +1) , (C.17)
p2 —
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and

96°
I (p) = W(p10 + 12708 + 71200 + T12p* +127p% + 1)
B 1152p° log(p?)

(p* —1)°

while for €y = 0 the resulting expression looks like

(3p° + 33p° + 68p* + 33p” + 3) , (C.18)

1920p°
(p> - 1)°
1 5 2
191920 log(gp )
(p* - 1)

190 = - (50° + 37p" + 37p% + 5)

+ (p® +16p° + 36p" +16p> + 1) , (C.19)

_ 384p*
(p? = 1)°

+57694 log(p*)
(> —1)°

Moreover, the integral from eq. (351 reads

() = (7p% +97p°% +212p* +97p° +7)

(p"° +27p% + 1125 + 112p* + 27p” + 1) . (C.20)

=00 = 1) =(p+p 1" () —21"(p), (C.21)
so that
7(0) o 384p? 6 s ) 4608p°log (p*) , , ) o
D) = ol (0 +20p" 200 +1) - 2B (32 1) (C22)
(p* —1) (p* - 1)
R 384p* 1152p* log (p?
90 = —7"6 (11p* +38p + 11) + 152" o (p?) (P + 90" +9p* +1) .(C.23)

(P* = 1) (p* = 1)

D Variations of the action

The second variation of the action reads as , i.e.

1 1 _
H® = 23(d-5)(d - 2)haohao — ~24((d — 7)d + 20) haghas + gzg((d —7)d +16)h?

4
1 - i}
—523((d —7)d + 14)hooh + 25 (d — 6)hao0ah — 225 (d — 4)haoOshas
1 o _
+25(d — T hapBohas — 225(d — 3)hasdahso — 5zg’(d — 6)hdoh + 25 (d — 4)hdahao
3 6 1 6 1 6 7 7 6 7 6
—Zzoaahgv Bahm + §Zoaah57 agha,y + Zzoaah O h — Zohagaaagh + 2z0h576a65h£w
_ 1 .- S
—Zghgwaaaahgw — Zgaahag th + Zgaahcw 8Bh37 + §z8h8aaah - EZghaathaB (D.l)
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