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On the Relation between Hybrid andPure Spinor String Theory

Sebastian Gerigka and Ingo Kirshb �a Institut f�ur Theoretishe Physik, ETH Z�urihWolfgang-Pauli-Strasse 27, CH-8093 Z�urih, Switzerlandb DESY Hamburg, Theory Group,Notkestrasse 85, D-22607 Hamburg, GermanyAbstratIn this paper we revisit Berkovits' pure spinor formalism in lower dimensions. We are partiularlyinterested in relating a six-dimensional pure spinor ation previously onstruted in the literatureto other superstring formalisms. In order to gain some insight into six-dimensional pure spinors,we �rst derive their ation by gauge-�xing the lassial six-dimensional Green-Shwarz ation.We then onsider a hybrid pure spinor onstrution in whih the spaetime symmetries of six ofthe ten dimensions are desribed in pure spinor variables, while the remaining four dimensionsare parameterized in terms of RNS variables. We relate this pure spinor formalism to theBerkovits-Vafa-Witten hybrid formalism of string theory on R6 � T 4.1 IntrodutionIn the past ten years alternative superstring formalisms have been developed to surmountthe shortomings of the Ramond-Neveu-Shwarz (RNS) and Green-Shwarz (GS) for-malisms. The most prominent among them is Berkovits' pure spinor formalism [1{3℄,see [4{6℄ for reviews and letures. As the GS formalism, the pure spinor theory exhibitsmanifest super Poinar�e invariane but in ontrast to the former it an be quantised in astraightforward manner.Naturally one is also interested in ompati�ations of the pure spinor formalism tolower dimensions and their relation to standard superstring theories. Pure spinor modelsin d = 2; 4; 6 (at) dimensions were onstruted in [3, 7, 8℄, see also [9℄ for non-ritialpure spinor superstrings. The d = 10 pure spinor theory has been related to the RNSsuperstring by twisting the ten spin-half RNS fermions using an SO(10)=U(5) pure spinor�email: gerigk�phys.ethz.h, ingo.kirsh�desy.de
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original BVW6D hybrid ation (3.1)

6D hybrid ation with manifestN = 1 supersymmetry (3.2)
+ rede�ning �eldsgauge-�xing f� = 0gauge-�xing ��1 = 0 inluding D� = 0 onstraints

6D Pure Spinor ation (3.9)Figure 1: Shematial illustration of the equivalene of the 6D hybrid formalism and the6D pure spinor formalism as introdued in [7, 8℄.variable [10℄. In the same paper [10℄ it was also shown that the d = 10 formalism anbe obtained by gauge-�xing the GS superstring. Unlike the d = 10 ase, the relation oflower-dimensional models to known string theories is rather elusive and has not yet beenproven.In this paper we fous on the d = 6 pure spinor theory in at spae [7,8℄. In setion 2we show along the lines of [10℄ that the d = 6 pure spinor ation an be obtained bygauge-�xing the six-dimensional GS ation. The latter is known to ontain 4 �rst-lassand 4 seond-lass onstraints. After an appropriate splitting of the ghost variables,the 4 seond-lass onstraints an be onverted into 2 �rst-lass onstraints, giving 6�rst-lass onstraints in total. Gauge-�xing the orresponding Lagrange multipliers willthen introdue six bosoni ghosts. Five of them make up the pure spinor, whih has �veindependent omponents in six dimensions. After removing the sixth ghost by a similaritytransformation, the resulting ation beomes the d = 6 pure spinor ation.In setion 3 we then disuss the relation to the six-dimensional Berkovits-Vafa-Wittenhybrid formalism for superstring theory on R6 � T 4 [11℄. For this, we supplement thesix-dimensional pure spinor theory of [7, 8℄ with a four-dimensional ation for the om-pati�ation on the four-torus T 4. The internal part on T 4 is formulated in RNS variablesand is the same as in the hybrid formalism. We therefore only need to show that the ex-ternal part on R6 of the hybrid ation (plus the ation for the hiral bosons � and �) anbe replaed by the six-dimensional pure spinor ation of [7, 8℄.In order to show the equivalene of both formalisms, we perform a series of manipula-tions of the original hybrid ation. An overview is given in �gure 1, whih begins with theoriginal hybrid ation (left box) rewritten with manifest six-dimensional supersymmetry(top box) and ends at the pure spinor ation (right box). In the original hybrid ationonly half of the N = 1 superspae variables are manifest, i.e. four out of eight � variables.We therefore follow [12℄ and add four further �'s and four \harmoni" onstraints D�2



to the ation, giving the hybrid ation with manifest N = 1 supersymmetry (top box).These onstraints are �rst-lass and allow the additional �'s to be gauged away [12℄. In-stead of gauging them away, we add the four onstraints D� to the ation using Lagrangemultipliers f�. We then gauge-�x the f� to zero, whih introdues four bosoni ghost�elds. Another ghost �eld of the same kind omes from the �-�-setor of the hybrid a-tion. After an appropriate �eld rede�nition, the four plus one ghost �elds ombine to givethe �ve omponents of the six-dimensional pure spinor, and the hybrid ation turns intothe pure spinor ation (right box). We also show that the same �eld transformation mapsthe BRST operators into eah other. We lose with some remarks on the ohomology.2 Green-Shwarz versus pure spinor formalism in sixdimensionsIn this setion we derive the pure spinor ation in six dimensions by gauge-�xing thesix-dimensional Green-Shwarz ation, whih is onsistent on the lassial level. Theimpatient reader, who is interested only in the onnetion to the hybrid string, may wishto immediately proeed to setion 3 after reading the general introdution on pure spinorsin six dimensions in setion 2.1.2.1 Pure spinors in six-dimensionsPure spinors in six dimensions are disussed in detail in [7,8℄. Here we only review some oftheir basi properties. Six-dimensional pure spinors are given by two SO(6) Weyl spinors��I (I = 1; 2; � = 1; :::; 4) whih are subjet to the onstraint"IJ��I�m����J = 0 ; (2.1)where the �m are the antisymmetri 4�4 o�-diagonal bloks of the six-dimensional gammamatries given in appendix A. They satisfy�(m���n)� = �mnÆ� : (2.2)The orresponding matries with upper indies are de�ned by �m�� = 12"��Æ�mÆ.We may now go to light-one gauge by de�ning �� = �0 � �5. This indues a sym-metry breaking of SO(6) down to SO(4) under whih the Weyl spinor representation 4sdeomposes into 2s � 2. Expliitly, the spinor an be solved by writing ��I = (�AI ; � _AI )with A; _A = 1; 2. The pure spinor onstraint (2.1) then deomposes into"IJ�AI "AB�BJ = 0 ; "IJ� _AI " _A _B� _BJ = 0 ; "IJ�AI � _BJ = 0 : (2.3)As shown in [7℄, the seond and third onstraints are solved by� _BI = h _B(0)A�AI (2.4)3



provided the �rst onstraint is satis�ed. The �eld h _B(0)A onsists of four degrees of freedom.However, there is an in�nite number of gauge symmetries (n = 0; 1; :::)Æh _B(n)A = "IJ"AB� _B(n)I�BJ ; Æ� _B(n)I = h _B(n+1)A�AI ; (2.5)whih redue the number of degrees of freedom of � _BI to 4�4+4�4+::: = 4Pk(�1)k = 2.At the same time the �rst onstraint redues the number of degrees of freedom of �AI tothree. The six-dimensional pure spinor therefore has only �ve independent omponents.2.2 Equivalene of the pure spinor formalism and the Green-Shwarz ation in six dimensionsFor N = (1; 0) supersymmetry in d = 6 the left-moving (holomorphi) matter worldsheet�elds are (xm; ��I ; pI�), where ��I is a doublet (I = 1; 2) of four-omponent Weyl spinors,and pI� are their onjugate momenta (� = 1; :::; 4).The six-dimensional Green-Shwarz ation in �rst-order form is given byS = Z d2z �12�xm ��xm + pI� ����I � e(12�xm�xm + pI����I )� ; (2.6)where m = 0; :::; 5. Sine the ation is in onformal gauge, the Virasoro onstraint T = 0has been added to the ation using a Lagrange multiplier e. The ation is also supple-mented by the onstraintsdI� = pI� � 12"IJ(�m�J)���xm + 14"KL(�K�m��L)� : (2.7)Setting dI� = 0 and substituting the resulting equation for the onjugate momentum pI�bak into (2.6) yields the standard form of the Green-Shwarz ation.Using the identity (A.1), the onstraints (2.7) an be rewritten asdI� = pI� � 12"IJ(�m�J)��xm � 14"IJ"KL"��Æ��J�K��ÆL : (2.8)They satisfy the OPE [7℄ dI�(z)dJ�(w) = �(z � w)�1"IJ =��� ; (2.9)where =� = �m�m. Sine =�2 = 0, dI� separate into four �rst-lass and four seond-lassonstraints, denoted by dIA and dI_A, respetively.We now inorporate the GS-onstraints (2.8) into the ation (2.6) by introduingLagrange multiplier terms f�I dI�. The �rst-lass onstraints an be eliminated by gauge-�xing fAI = 0 in f�I dI� = fAI dIA + f _AI dI_A. This introdues four �--systems with weights(1; 0), denoted by �IA and AI . Introduing also the usual gauge-�xing term b�� for e = 0,we get S = Z d2z �12�xm ��xm + pI� ����I + f _AI dI_A + b��+ �IA ��AI � : (2.10)4



Next, we need to express the four seond-lass onstraints dI_A in terms of two �rst-lassonstraints. For this, we regroup the ghosts AI ! (~; �AI ) into �AI , whih is subjet tothe �rst onstraint of (2.3) and therefore has three independent omponents, and oneomponent ~. We then de�ne the �rst-lass onstraintsHM � "IJ��I (���M)� _�d _�J = "IJ�AI �MA _Ad _AJ (2.11)with M = 1; 2; 3; 4. Here we used that the matries ���M are 4 � 4 are matries of thetype �0 �M0 0 � ; (2.12)where �M are the standard 2�2 Pauli matries (with one of them the identity operator 12).As the four �M -matries give a basis of 2 � 2 matries, the onstraints in Eq. (2.11) areequivalent to the four onstraints �IJ�AI d _AJ = 0 : (2.13)These an be solved by d _AJ =M _A(0) _B� _BJ (2.14)for any linear mapping M , whih has four degrees of freedom. However, as in (2.4) and(2.5), there is an in�nite number of gauge symmetries whih redue the number of degreesof freedom to two. Thus, only two of the four onstraints HM are independent.We may therefore write f _AI dI_A = hMHM , where only two of the four Lagrange multi-pliers hM are non-vanishing, say those forM = 0; 1. Gauge-�xing them to zero yields twofurther bosoni �--systems whih we denote by wM and �M (now e.g. M = 0; 1 only).The ation is thenS = Z d2z �12�xm ��xm + pI� ����I + wM ���M + b��+ wIA ���AI + ~� ��~� : (2.15)Here the last two terms desend from the last term in (2.10) aording to the deompo-sitions AI ! (~; �AI ) and �IA ! ( ~�; wIA).The spinors �M (two degrees of freedom) and �AI (three degrees of freedom) thenmake up the pure spinor ��I (�ve independent omponents). Note that the two degrees offreedom of �M an be rearranged into the pure spinor omponents � _AI , whih has also twoindependent omponents, as shown in setion 2.1. As in the ten-dimensional ase [10℄,an appropriate similarity transformation of the ation removes the ghost terms b�� and~� ��~. The ation an then be written in terms of the pure spinor ��I asS = Z d2z �12�xm ��xm + pI� ����I + wI� ����I � ; (2.16)whih is the six-dimensional pure spinor ation of [7, 8℄.Let us �nally determine the entral harges. The pure spinor �elds w; � formallyrepresent �ve (bosoni) �--systems with weights (1; 0). The fermions p; � orrespond toeight (fermioni) b--systems of weight (1; 0). The entral harges are therefore w;� =5 � 2 = 10, p;� = 8 � (�2) = �16 and x = 6. The total entral harge is thus zero.5



3 From hybrid to pure spinor formalismIn this setion we derive the pure spinor ation in six dimensions [7,8℄ from the Berkovits-Vafa-Witten hybrid formalism for string theory on R6 � T 4 [11℄. More preisely, we showthat the external part on R6 of the hybrid ation (plus the ation for the bosons � and �)an be replaed by the six-dimensional pure spinor ation found in [7,8℄. The internal parton T 4 is desribed in RNS variables and remains the same in the pure spinor formalism.We proeed as outlined in the introdution and summarized in �gure 1. In setion 3.1we rewrite the N = 2 hybrid ation suh that N = 1 supersymmetry beomes mani-fest [12℄. In setion 3.2 we disuss the orresponding gauge-�xed ation. In setion 3.3 wewill then show that, after an appropriate �eld rede�nition, the gauge-�xed hybrid ationturns into the six-dimensional pure spinor ation. Finally, in setion 3.4 we relate theorresponding BRST operators.3.1 Hybrid formalism with manifest N = 1 superspae variablesThe (holomorphi part of the) hybrid ation in its original form is given by [11℄Shybrid = Z d2z �12�xm ��xm + p� �����+ SB + SC ; (3.1)where the external part on R6 is desribed by the six bosons xm (m = 0; :::; 5), fourfermions �� and their onjugates p� (� = 1; :::; 4) and an ation SB for the two hiralbosons � and � appearing in the hybrid formalism. The ation SC desribes the internalpart on T 4 in RNS variables. Here we have assumed that the reader is familiar with thehybrid formalism [11℄. A summary of the �elds and their properties is given in appendix B.Unlike in the Green-Shwarz formalism, only half of the usual eight ��I variables, say�� = ��2 , of six-dimensional N = 1 supersymmetry are manifest. However, as suggestedin [12,13℄, it is possible to add ��1 to the hybrid variables, as well as onstraints D�, whihallow the additional variables ��1 to be gauged away.Then, the hybrid ation may be written asShybrid = Z d2z �12�xm ��xm + pI� ����I �+ SB + SC : (3.2)Equivalene to the original hybrid ation (3.1) requires that ��1 and p1� satisfy the �rst-lassonstraints [13℄ D� = d1� � e���i�d2� = 0 ; (3.3)where x�� = (�m)��xm and dI� de�ned as before. Sine D�(z)��1 (w) � Æ��(z � w)�1, theadditional variables ��1 transform asÆ��1 (w) = I dz "�(z)D�(z)��1 (w) = "�(w) (3.4)under the gauge invariane generated by D�, as required for superspae variables. Thegauge invariane may be used to gauge-�x ��1 = 0, in whih ase (3.2) redues to (3.1).Note that gauge �xing ��1 = 0 does not produe any ghosts sine the generating algebrahas trivial antiommutation relations. 6



3.2 Gauge-�xed hybrid ationWe now implement the onstraints of (3.3) into the ation (3.2) by introduing Lagrangemultipliers f�. The extended ation then has the formShybrid = Z d2z �12�xm ��xm + pI� ����I � f�D��+ SB + SC (3.5)with D� as in (3.3). Both the onstraints D� and Lagrange multipliers f� are �elds ofonformal weight 1.On general grounds it an be shown that every onstraint indues a gauge symmetryon the extended ation [14℄. This gauge symmetry is given byÆDF (w) = ICw dz ��(z)D�(z)F (w) (3.6)for any �eld F in (3.5) exept for the Lagrange multipliers f�. The gauge transformationating on f� an then be de�ned suh that Shybrid is gauge invariant. The general formof ÆDf� an be found in [14℄. Sine the onstraints antiommute with eah other, ÆDf�simpli�es a lot to ÆDf� = ���� : (3.7)We now gauge-�x this symmetry suh that f� = 0.1 By the usual Faddeev-Popovmethod the resulting funtional determinant �FP = det(��Æ2(z � w)Æ�� ) an be rewrittenas a funtional integral over ghost �elds, here �� and �. The full ation then readsShybrid = Z d2z �12�xm ��xm + pI� ����I + �� ����+ SB + SC : (3.8)The �elds �� and � are bosoni ghosts of onformal weight 1 and 0, respetively, andtransform in the Weyl representation 4s of SO(6).3.3 Equivalene of the pure spinor and hybrid ationsThe next step will be to relate the hybrid ation in its gauge-�xed form (3.8) to the purespinor ation Sps = Z d2z �12�xm ��xm + pI� ����I + wI� ����I �+ SC ; (3.9)whih orresponds to the six-dimensional pure spinor ation (2.16) plus a ompat part,SC , in RNS variables.The pure spinor onstraints in six dimensions require two independent spinors, eahin the 4s of SO(6) [7, 8℄. For the following it is onvenient to temporarily break SO(6)down to U(3) suh that 4s � 4s ! 3� 3� 1� 1 : (3.10)1Note that this gauge-�xing is di�erent from that of the previous subsetion, �1 = 0, whih led bakto (3.1). 7



We an write this deomposition under the subgroup U(3) expliitly as �� = (�+; �a)with a = 1; 2; 3. As it is shown in [8℄, the pure spinor onstraint (2.1) implies�a2 = �+2�+1 �a1 : (3.11)Therefore one of the 3 representations is ompletely determined by the remaining 3�1�1representation, whih in turn an be interpreted as the U(3) invariant representation ofpure spinors. This gives exatly �ve degrees of freedom for the pure spinor, as required.Using the expliit solution (3.11) of the pure spinor onstraint in terms of U(3)-invariant representations, the pure spinor part of the ation (3.9) an solely be expressedin terms of the �ve pure spinor degrees of freedom �+1 ; �a1 and �+2 as!I� ����I = �!1� + �+2�+1 !2�� ����1 + ���1!2�� �� ��+2�+1 � : (3.12)We may now dedue the hybrid ation in the form (3.8) from the pure spinor ation(3.9) using (3.12). It is natural to assume that four of the �ve pure spinor degrees offreedom, ��1 , are related to the four ghosts � in the hybrid formalism. We therefore set� = ��1 ; �� = !1� + �+2�+1 !2� (3.13)and the pure spinor ation simpli�es toSps = Z d2z �12�xm ��xm + pI� ����I + �� ��� + w ����+ SC : (3.14)The variables � and w orrespond to the �fth omponent of the pure spinor and itsonjugate momentum and are de�ned by � � �+2�+1 and w � ��1!2�.While the �rst three terms in (3.14) already agree with those of (3.8), the �fth ompo-nent of the pure spinor still needs to be related to the hybrid variables. A single omponentof the pure spinor w�-system has entral harge  = 2. In the hybrid formalism thereare two bosoni ghosts � and � with total entral harge � + � = �26 + 28 = 2. Wemay therefore onjeture that � and � make up the �fth omponent of the pure spinor.Indeed, as we will show now, they an be obtained by bosonising the w�-system in theappropriate way.The w�-system is formally a bosoni ghost system with onformal weights [�℄ = 0 and[w℄ = 1 and energy-momentum tensorTw� = (�w)�� �(w�) : (3.15)Eah bosoni ghost system an be deomposed into a free boson, whih in the followingwe denote by �, and an antiommuting b system. In partiular, we may rewrite w and �as w = e�� ; � = e��b : (3.16)8



In order to identify � with the orresponding ghost in the hybrid formalism, we hooseQ� = 3 as the bakground harge for � suh that its entral harge beomes � = 1+3Q2� =28, as required. Sine, in general, [en�℄ = �n22 + n2Q� for the onformal weight of en�, weget [e�℄ = 1 and [e��℄ = �2, and therefore [b℄ = 2 and [℄ = �1, whih are the onformalweights of a standard b system.As usual, one an go further and bosonise the b system as b = e�i� and  = ei�, withentral harge given by � = 1 � 3Q2� = �26 for Q� = 3. The onformal weights are[ein�℄ = n22 � n2Q�. The energy-momentum tensor (3.15) an then be rewritten in termsof � and � as T �;� = �12���� � 12���� � 32�2(� + i�) ; (3.17)whih is idential to the energy-momentum tensor orresponding to the ghost ation SBin the hybrid formalism [11℄. The term R d2z w ��� in (3.14) is therefore idential to theghost ation SB in the hybrid formalism. The ation (3.14) is thus equivalent to thehybrid ation (3.8), Sps = Shybrid.3.4 Comments on the BRST operatorsAs a ritial N = 2 theory, the hybrid string an be reformulated as a N = 4 topologialstring theory [11,15℄. Reall that every N = 2 superonformal theory with entral harge = 6 gives rise to a ritial N = 4 superonformal �eld theory. The orrespondingN = 4 algebra is generated by the energy momentum tensor T , four fermioni urrentsG� and eG�, and three SU(2) urrents Ja (a = 1; 2; 3). These urrents an be de�nedfrom the N = 2 urrents [T;G+; G�; J ℄ by T , G+; G�; eG+ � [e� R J ; G+℄; eG� � [eR J ; G�℄,and J , eR J , e� R J . Expliit expressions for these generators with manifest six-dimensionalsuperspae variables an be found in [12℄.Open N = 4 string physial vertex operators in hybrid string theory satisfy the phys-ial state onditions2;3G+0 � = eG+0 � = (J0 � 1)� = 0 ; Æ� = G+0 eG+0 �� : (3.18)Sine the ohomology of eG+0 is trivial [11, 15℄, � an be written as� = eG+0 V ; G+0 eG+0 V = J0V = 0 (3.19)with gauge invariane ÆV = G+0 � + eG+0 e�. This gauge invariane an be �xed suh thatG�0 � = eG�0 � = T0� = 0 (3.20)is automatially satis�ed [11℄.We now need to take into aount that we introdued additional � variables andadded the Lagrange multiplier term f�D�. The gauge-�xing f� = 0 requires us to impose2G+0 is the harge (zero mode) orresponding to the urrent G+, et.3Analogous onditions hold for the losed superstring [11℄.9



a further ondition on the physial states. Sine D�(z)D�(w) � 0, the gauge symmetriesgenerated by D� are abelian suh that the additional ondition has the simple form �D�.After gauge-�xing, a physial state must also satisfyQhybrid� = 0 ; (3.21)where Qhybrid = I dz (�D�)= I dz ��d1� � e���i��d2�� : (3.22)In the seond line we used the de�nition of D� given by (3.3). For the following it is usefulto hange the minus sign in (3.22) into a plus sign by exploiting the symmetry �2 ! ��2and d2 ! �d2, see [8℄.The operator (3.22) an be shown to be equivalent to the BRST operator of the purespinor formalism. For that, we use the �eld rede�nition of the previous subsetion,��1 = � ; � = �+2 =�+1 = e���i� ; (3.23)or, equivalently, by Eq. (3.11), ��1 = � ;��2 = e���i�� : (3.24)Substituting this into (3.22), we getQhybrid = I dz ��I dI� = Qps ; (3.25)whih is exatly the pure spinor BRST operator Qps, as de�ned in [7, 8℄. Reall thatnilpotene of Qps is ensured by the pure spinor onstraint (2.1) [7, 8℄.We lose with a few omments on the vertex operators in both theories. Let us restritto the massless open string vertex operator whih is independent of the ompati�ationvariables. In hybrid string theory this operator is obtained by solving the physial stateonditions (3.18) and the `harmoni' BRST-like ondition (3.21). As found in [12,13℄, suhan operator desribes the six-dimensional on-shell degrees of freedom of six-dimensionalN = 1 super Yang-Mills theory. The orresponding integrated vertex operator is givenby4 �hybrid = Z dz ��mAm + ���I AI� + dI�W �I + 12(�(�mn)����)Fmn� (3.26)4The last term involving the ghost � and its onjugate �� was later added in [1℄, see footnote 3therein. 10



where �m are the superspae momenta,W �I the superspae spinor �eld strengths and Am,AI� the superspae gauge �elds [12, 13℄. Fmn is a superspae �eld strength whose lowestomponent is the gluon �eld strength. Eah �eld depends on the superspae oordinates(xm; ��I ). Vertex operators of this form were �rst disussed in ten dimensions in [16℄.The vertex operator �hybrid needs to be ompared with the orresponding vertex op-erator in the pure spinor formalism. It is important to note that, as for the hybrid string,we need to impose both the pure spinor BRST ondition (3.25), Qps� = 0, as well asthe physial state onditions (3.18), now rewritten in terms of pure spinor variables. Theondition (3.25) alone does not put the theory on-shell.Consider for instane the massless ompati�ation-independent open string vertexoperator whih is obtained by solving Qps� = 0. In six dimensions it has the form�ps = ��IAI�(x; ��I ) ; (3.27)where the ghost-number one spinor super�eld AI� ontains the Yang-Mills degrees offreedom. As repeatedly stated [4, 7℄, Qps only selets the o�-shell �eld ontent of six-dimensional N = 1 super-Yang-Mills. Qps� = 0 implies��I ��JDI�AJ� = 0 ; (3.28)where DI� = ����I + 12"IJ(m�J)� ��xm .Sine ��I ��J is a symmetri tensor under the exhange of (I; �) and (J; �), it projetsDI�AJ� onto its symmetri part under this involution. This part deomposes asDI�AJ� +DJ�AI� = "IJ�m��Am + ::: ; (3.29)i.e. into a vetor Am and other n-form ontributions indiated by ellipses. Note here thatin six dimensions a general antisymmetri bispinor f�� (�; � = 1; :::; 4) is related to avetor Am (m = 0; :::; 5) by f�� = �m��Am. By substituting this into (3.28) and usingthe pure spinor onstraint (2.3), one an show that all n-form ontributions vanish, i.e.all terms in the ellipses in (3.29) are zero. Then, (3.29) beomes exatly the linearisedonstraint F IJ�� = 0, whih is imposed on the superspae �eld strength F IJ�� , f. withEq. (3.17) in [17℄. Unlike in ten dimensions, this onstraint is o�-shell sine one annotdedue the equation of motions from it. (Sine Qhybrid = Qps this implies that also Qhybridselets only the o�-shell �eld ontent.) It is therefore natural to assume that the onditions(3.18) put the pure spinor theory on-shell, as it does in hybrid string theory.5In onlusion, we have shown that for superstring theory on R6 � T 4 a gauge-�xedversion of the hybrid string is related to a (hybrid) pure spinor string theory by a simple�eld rede�nition given by Eq. (3.24). In partiular, this transformation identi�es boththe ations as well as the hybrid string BRST-like ondition (3.22) and the pure spinorBRST operator (3.25). These BRST operators determine the o�-shell �eld ontent ofN = 1 six-dimensional super Yang-Mills. We argued that in order to put the hybrid purespinor theory on-shell a physial vertex operator also has to satisfy the onditions (3.18).Of ourse, for this the physial state onditions (3.18) must be rewritten in pure spinor5A di�erent method to put the pure spinor theory on-shell was proposed in [18℄.11



variables using the identi�ations (3.24), whih we have not done expliitly. We are fairlyoptimisti though that the onditions (3.18) will then provide the required equations ofmotion for the gauge �eld AI�(x; ��I ), as it does for the orresponding hybrid string vertexoperator. The hybrid version of the pure spinor string then provides the appropriateframework for six-dimensional pure spinors.An open question is the relation of the four-dimensional pure spinor ation to theorresponding hybrid string on R4�T 6 [19℄. Here we enounter a puzzle [10℄: The entralharge of the pure spinor theory parameterizing the part on R4 is zero [7, 8℄. If we wishto desribe the six internal diretions in RNS variables, we obtain a (topologial) N = 2string with ̂ = 3 ( = 9). However, a ritialN = 2 string has ̂ = 2 ( = 6), and the purespinor theory annot be related to hybrid strings in a simple way. Possibly suh a naiveompati�ation of the pure spinor theory desribes the BPS setor of the ompati�edsuperstring [3℄. More work is needed here to make the relation preise.AknowledgementsWe would like to thank Matthias Gaberdiel, Stefan Hohenegger, Peter R�nne, VolkerShomerus and Nilas Wyllard for useful disussions related to this work. We are alsograteful to Nathan Berkovits for helpful omments on a preliminary version of this paper.This researh has been supported by the Swiss National Siene Foundation.AppendixA Six-dimensional gamma matriesWe give an expliit realisation of the matries �m�� used throughout this paper satisfying(2.2). They an be hosen to be�0 = �i1
 � 2 �3 = � 2 
 � 3�1 = � 2 
 � 1 �4 = �i� 2 
 1�2 = i� 1 
 � 2 �5 = �i� 3 
 � 2 ;where � i are the usual two-dimensional Pauli matries. The Weyl indies are raised bythe epsilon tensor aording to the rule(�m)�� = 12"��Æ�mÆ :A useful identity is (�m)��(�m)Æ = �2"��Æ : (A.1)
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B Summary of �elds in RNS, hybrid and pure spinorformalismIn this appendix we summarize the �elds ourring in the three worldsheet formalisms ofstring theory on R6 � T 4.In the RNS formalism the external part on R6 is desribed in terms of six bosons andfermions, xm and  m (m = 0; :::; 5), while the internal part on T 4 is parameterized by fourbosons and fermions, Y i and �i (i = 1; :::; 4). The ghost setor is given by the standardb and � systems. These �elds and their properties are listed in the upper left box oftable 1.RNS  h "6 bosons xm 6 1 �16 fermions  m 3 12 +12 bosons �;  11 32 ;�12 �12 fermions b;  �26 2;�1 +1T 4 Y i, �i 6 1; 12 �1 �! hybrid  h "6 bosons xm 6 1 �18 fermions p�; �� �8 1; 0 +11 boson � 28 0 �11 boson � �26 0 +1T 4 Y i, �i 6 1; 12 �1#pure spinor  h "6 bosons xm 6 1 �116 fermions pI�; ��I �16 1; 0 +15 pure spinors ��I ; wI� 10 0; 1 �1T 4 Y i, �i 6 1; 12 �1Table 1: Overview of the �elds in the RNS, hybrid and pure spinor formalism of stringtheory on R6 � T 4.  and h denote the ontribution to the total entral harge andthe onformal weight of the �elds. The value " = +1 (" = �1) refers to Fermi (Bose)statistis.The hybrid formalism is obtained from the RNS formalism [11℄ by �rst embedding theritialN = 1 RNS string into a ritialN = 2 string and then, after twisting, performingthe following �eld rede�nition. The bosons xm are the same as in the RNS string. Thefermions and ghosts are reorganised into eight fermions p�; �� (� = 1; :::; 4) and two hiralbosons, � and �. The latter are obtained by bosonising both the b as well as the �system in the standard way, i.e. as (b; ) = (e�i�; ei�) and (�; ) = (e��+���; e���). Theorresponding bakground harges are Q� = 1, Q� = 2 and Q� = 3 ("� = �"� = 1). Then� and � are de�ned by �� = ib ; � = �2�� i�� iHRNSC ; (B.1)where HRNSC = H4+H5 are the bosonised fermions of T 4. Both �elds are spaetime bosonsof onformal weight zero but have opposite statistis, "� = �"� = 1. Their ontributionto the entral harge is  = 1�"3Q2 with bakground harges Q� = Q� = 3, and therefore13



� = �26 and � = 28. The fermions p�; �� are de�ned in terms of the RNS variables as�� = [e 12��+++++; e 12����+++; e 12���+�++; e 12��+��++℄ ;p� = [e� 12�������; e� 12��++���; e� 12��+�+��; e� 12���++��℄ ; (B.2)where � is the �-boson and �� is the spin �eld of onformal weight 58 de�ned by�� = e i2P5I=1 �IHI ; (B.3)with �I = �1. The bosons H1;2;3 and H4;5 are obtained by bosonising the fermions  mand �i, respetively. Sine en� has weight �n22 � n, whih is �58 and 38 for e��=2, p� and�� form four (fermioni) b-systems with weights (1; 0). Their ontribution to the entralharge is  = 4�(�2) = �8.6 The internal part on T 4 is the same as in the RNS formalism.The �elds of the hybrid formalism are summarized in the upper right box of table 1.7The pure spinor formalism requires again six bosons xm and now sixteen fermions pI�and ��I (I = 1; 2;� = 1; :::; 4), twie as many as in the hybrid formalism. The pure spinorpart onsists of the �elds ��I ; wI�, whih beause of the pure spinor ondition formallyrepresent �ve (bosoni) �-systems with weights (0; 1). Their ontribution to the entralharge is therefore  = 5 �2 = 10. The internal part is again as in the RNS formalism. Theonnetion between the hybrid and the pure spinor formalism is desribed in setion 3.The �elds and their properties are shown in the lower box of table 1.Referenes[1℄ N. Berkovits, Super-Poinare ovariant quantization of the superstring, JHEP 0004,018 (2000) [arXiv:hep-th/0001035℄.[2℄ N. Berkovits, Multiloop amplitudes and vanishing theorems using the pure spinorformalism for the superstring, JHEP 0409, 047 (2004) [arXiv:hep-th/0406055℄.[3℄ N. Berkovits, Pure spinor formalism as an N = 2 topologial string, JHEP 0510(2005) 089 [arXiv:hep-th/0509120℄.[4℄ N. Berkovits, ICTP letures on ovariant quantization of the superstring,arXiv:hep-th/0209059.[5℄ Y. Oz, The Pure Spinor Formulation of Superstrings, Class. Quant. Grav. 25, 214001(2008) [arXiv:0910.1195 [hep-th℄℄.[6℄ O. A. Bedoya and N. Berkovits, GGI Letures on the Pure Spinor Formalism of theSuperstring, arXiv:0910.2254 [hep-th℄.6For b (�) systems the anomaly ontribution of the ghosts is  = �2"(6�(�� 1) + 1), where � = hb(h�) and " = 1 (�1).7The table lists only the matter part of the N = 2 hybrid string. Note that the ritial entral hargefor the matter part of an N = 2 string is  = 6. 14
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