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Quark structure from the lattice OPE P.E.L. Rakow

1. Introduction

W. Bietenholz has explained our procedure for extractintpd¥i coefficients from lattice mea-
surements in his proceedind$ [1]. In this report we will sHmw these coefficients can be used
to reconstruct Compton scattering amplitudes, and to extngir Nachtmann moments. We start
with a toy example, looking at the Nachtmann moments of béflisquarks in Landau-gauge back-
ground fields.

The calculations we report here are done with overlap fammin a quenched background.
Overlap fermions were chosen for their superior chiral swimnproperties. The negative mass
parameter ig = 1.4. We used a x 48 lattice, with a lattice spacing= 0.095 fm. The results
shown here all have bare maamsy = 0.028. We have always taken the scattering momergum
along a lattice diagonat; I (1,1,1,1) for maximum lattice symmetry. We employ three different
values for the magnitude @fg?, so that we can begin to investigate scalingfnAll the Green’s
functions have bee®(a) improved using the prescription off [2]. The electromagnetirrent
Ju(X) is represented by the local currpitx)y, ¢/(x), with overlapO(a) improvement.

2. Operator Product Expansion

We express the electromagnetic scattering tevisgras a sum over local operators (the Oper-
ator Product Expansion or OPE). In each term we have a sepaddiscales, all dependence on the
quark momentum is in the matrix eleméut(p)|Jy (q)J\f(q)|w(p)>, all dependence on the photon
scaleq is in the Wilson coefficienCy, (g). At present we are only considering flavour non-singlet
processes, so we do not include any purely gluonic operatdhe sum,

Wav (p,0) = (@(P) 3 (@3} (a)[@(P) = Y CR (@) (W (p)| ™Y (p)) - (2.1)

We include quark bilinear operator8™ with up to 3 covariant derivatives in this sum. When all
possible Dirac structures are taken account of, there aenally 1360 different operators, and
1360 Wilson coefficient€],, in the sum. We reduce this number by exploiting lattice synm
tries. We choose along a lattice diagonal, i.e 0 (1,1,1,1). With this choice there are only 67
independent Wilson coefficients in the expansion of a diagjelement ofV, such asVy, [B].

Wy (p,0) is a fairly complicated object, it depends png, i, v and on the Dirac indices of
the incoming and outgoing quark.

We simplify by just looking at unpolarised quarks (later, plan to analyse spin-dependent

guantities too). Taking the trace

T (p.0) = 5 TH{S (M (P.0)} (17 +117), 22)

whereS™1 is the inverse quark propagator, removes the Dirac-indexctsire. The propagator
cancels allZy, factors, the only renormalisation we need is a factaZpfo correct for using local
currents forJ,.

If we consider unpolarised quarks there are 4 tensor stegtuhich can occur in the scattering
tensor:

Tuv = SuuWi + pu puWo + (PuQy + Ou Py )Wa + 0u vk . (2.3)
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(W5 andW; are reserved for structures possible in neutrino scatfeniml the polarised target case.)
TheW form factors can only depend on invarianfs p-q, p?>. When we consider scattering on
physical hadrons, we can use electromagnetic gauge incari@ reduce the expansion from four
terms to two, namely; andF,. When however we consider an off-shell quark this argument n
longer applies, and all four structures are independent.

As a first simple case we consider the polarisation track,of

Tup = AW+ pPPWo + 2p- g\ + W5 (2.4)

Advantages of this choice are that averaging over the dwecif J, (the photon polarisation)
simplifies the rotation group theory considerably, and th& quantity only involves diagonal
elements oW, which we have analysed more completely. (We have gathextedosh off-diagonal
componentsu # v, but this has not yet been fully analysed.) Summing over alhnisations
also increases the symmetry, there are only 22 independisan/¢oefficients in the OPE i,
which is a considerable reduction compared to the 67 coefiisineeded for a single diagonal
component such aR4.

In [A] Nachtmann proposed some quantities (the Nachtmarments) with particularly sim-
ple Operator Product Expansions. Nachtmann considergtng from on-shell targets, but we
are interested in off-shell targets, so we have to generétis formulae in[[4]. The Nachtmann
moments Uy, are defined by splitting up into components of definite spim,

2\ 2
Tuu(P 0,07, p) =2y <%> Un(cos8) in(c?, p?) (2.5)

neven

where@ is the angle betweepandq,

p-g=p| q| cosb (2.6)

andU,, is a Chebyshev polynomial of the second typk, [5]. Uhare the 4-dimensional equivalent
of the familiar 3-dimensional spherical harmonics. We caa arthogonality of the Chebyshev
polynomials to project out single Nachtmann moments frprg)(2

Tdoe . 2 2 p* 2 2 2
[7%2 sit?6 nteost) Tuu(p 0. p?) = (5 ) (et 7). @7)

The Euclidean integra[(2.7) involves real valuegefj in the range-|p||q| < p-q < |p||q.

Following [4] we can relate the integral to Minkowski physiby allowing p- q to become
complex, while keeping botlp?> and ¢? real and positive, see Fjyj.1. Ignoring the possible com-
plications due to confinement, we expect the amplitlide have branch-points at the thresholds
for producing on-shell quarks, @t q = £3(g? + p?+ m?), with cuts reaching out to infinity. We
define the discontinuity across these cuts by

21D (p- 4,07, p%, M) = Tyu(p-q+i€, o2, p%) — Tuu(p-a— i€, o2, p?) . (2.8)

For colour singlet hadrons this discontinuity is a phydjcaheasurable total cross-section, but
of course the cross-section for deep inelastic scattenmgrooff-shell quark target is something
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Figure 1: The complex pq plane, for g, q? both positive (space-like). The Euclidean integral (20f)the
Nachtmann moment, runs between pg= —|p||g| and p-q= +|p||q|. the Minkowski integral (2.9) runs
along the cut from the threshold at g= 2 (2 + p?+ ) to .

we can only measure as@edankenexperimentAssuming thafl is an analytic function of the
complex variablgp- q we can write down dispersion relations which give the resiithe Euclidean
integral (2.]7) as an integral involving the discontinuital{d for evenn, n > 2).

oo D(p-q,¢?, p?) ()"
Hn(P, p?) = 2/@ d(p-a) (P-3.6%P) () i (2.9)
(p-a+v(p-a2— PP@)
where0 is the threshold for the production of on-shell particles,
O = 3(g?+ p?+md). (2.10)

In general the Minkowski integra[ (2.9) is complicated, buthe Bjorken limit, when(p- g)2 >>
p2g?, we can simplify [2]9) by changing to the integration valéab

P
X= . 2.11
2p-q (2.11)
Eqg. (2.9) becomes
[ n—1 2 2 1
x"*D(p-q,0°, .
un(qz,pz):/zedx (p-9.0°p )n+l —>/0 dx ¥ 1D(p-q, ¢, p) (2.12)

© [B+dy1-4me ]

and we see that the Nachtmann moment tends to a sknpEment.

In the rest of this report we concentrate on the smallestéstig spinh = 2. From [2.1R)
we see that at large?, p» corresponds tox).

In our discussion of Nachtmann moments we have assumedfation symmetry. However,
lattice operators are classified under the hypercubic grangh will normally be mixtures of repre-
sentations of the full Euclidean rotation group. The 22 afms present in the expansionWf,
fall into three hypercubic classes
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spin 0, spin 4, + higher 8 operators
spin 2, spin 4, + higher 13 operators
spin 4, + higher 1 operator

For our first look at spin 2, we simply keep all the operatorthimmiddle group, and discard the
others. The leading spin 2 operator (fpi] (1,1,1,1) ) has the form

; P(yuDy + WD)y (2.13)
U#V
i.e. itis a symmetric, off-diagonal tensor.

We now reconstruct a projected spin 2 amplitu@®,,]spin2, by taking the product of the
matrix elements of the 13 spin 2 operators with their Wilsoefficients, as determined ifi [1].

Figure 2: The 4-dimensional spherical harmoniégdU,(cosf) = 4(p-q)? — p?g?. The main lobes point
along the directionstq. There are nodes when p6€° and 12(° from q; the equatorial ‘donut’ has the
opposite sign to the main lobes.

Because we have averaged over quark spin and photon potargsahe only direction left in
our problem ig 0 (1,1,1,1) and the only spin-2 4-d spherical harmonic that contribiges

p*ePUz(cosB) = 4(p-a)® — PP, (2.14)
which is illustrated in Fidg]2. When we put in the fact tiogf (1,1,1,1)
4(p-a)? — p°q® — 2(pLP2+ PLP3+ - + Papa) O . (2.15)

Spin 2 operators, such ds (3.13), should have an expectatioe proportional to[(2.15).
We can find theu, for the quark from|[(2]7),

o [Tuu]spmg =2 (Z Pu pv) Hz (2.16)

v

so if we plotg? [T““]spin‘z against 2(5 -, puPv) We should see a straight line passing through the
origin, with a slope equal ta,.

We have data for three differegtvalues, and from 15 to 3@ values (depending ar), chosen
to give a good coverage of directions, so we can see wheth@rtlected amplitude really follows
the spherical harmonic, and fing for a quark.
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3. Reaults
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Figure 3: The trace § [T““]Spirrz plotted agains® (., puPy), in lattice units. These points should fall
on a straight line through the origin, with a slope proporia to 1>, the Nachtmann moment corresponding
to (x), see eq.(2.16). The black squares are data frém=qr’/(2.25a°) ~ 19 Ge\?, blue circles, § =

%/ (4a%) ~ 10.6 Ge\?, red triangles § = 1%/ (9a2) ~ 4.7 Ge\~.

In Fig3 we show the spin-projected Compton amplitude etbtigainst 2(zu<v Pu pv). The
guantity 2 (zu<v Pu pv) is positive for momenta in the main lobe of the harmonic infFigero
for momenta in the node, and negative for momenta in the edahting.

At eacho? value the amplitudes follow a straight line rather closeSeveral quarks have
momenta at exactly 80angle toqg, these fall on the node of the spherical harmonic, (zero en th
horizontal axis), and they have amplitudes very close tosOpradicted. Data from all threg
values are plotted, we see that they scale fairly wglchanges by a factor of 4, from 4.7 G
19 Ge\~2.

Rough values for the Nachtmann momemt(which is a measure dk) at a scale- ¢?) are

o = 4.7 Ge\ Uz = 0.44(9)
¢ = 10.6 Ge\? 1o = 0.73(5)
o? = 19 Ge\? 1> = 0.60(5)

These values probably include fairly large lattice artefata?g?. We will try to correct for these
by looking at tree-level lattice artefacts, which mightdea significant numerical changes.
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4. Conclusions and Prospects

We have seen how we can project out spin components for Nadmtmoment operator ex-
pansions. In the channel we looked at (spin 2), simply filggidon the lattice symmetry seems to
work fairly well, we don’t see any sign of spin 4 contaminataistorting the straight-line behaviour
of Fig[3.

We don't see any strong dependenceusfon the quark virtualityp?, this may be a little
unexpected.

There are several more things we could do. Here we have coatemh on the Nachtmann
moment coming from the polarisation tradg,,, we should also look at the moments for the other
components ofV,,. Particularly interesting in the context of off-shell gksuwould be to look
at the OPE fog,W,vqy. This should give a combination of operators which can bezeso for
off-shell quarks, but which should vanish on-shell. Theéipoint functions for this combination
of operators should show contact terms, but no plateau @rexgially decaying terms.

The antisymmetric parts of the scattering ten¥dy, — W, contain the information needed
to investigate spin-dependent structure functions. We lallected the data needed for this calcu-
lation.

From looking at our problem in tree level we see tBga°g?) artifacts may be important in
some channels. We want to investigate these artifactsdfiy@ind see whether we can use tree-level
results to reduce their severity.
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