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We have reported elsewhere in this conference on our continuing project to determine non-

perturbative Wilson coefficients on the lattice, as a step towards a completely non-perturbative

determination of the nucleon structure. In this talk we discuss how these Wilson coefficients can

be used to extract Nachtmann moments of structure functions, using the case of off-shell Landau-

gauge quarks as a first simple example. This work is done usingoverlap fermions, because their

improved chiral properties reduce the difficulties due to operator mixing.
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1. Introduction

W. Bietenholz has explained our procedure for extracting Wilson coefficients from lattice mea-
surements in his proceedings [1]. In this report we will showhow these coefficients can be used
to reconstruct Compton scattering amplitudes, and to extract their Nachtmann moments. We start
with a toy example, looking at the Nachtmann moments of off-shell quarks in Landau-gauge back-
ground fields.

The calculations we report here are done with overlap fermions on a quenched background.
Overlap fermions were chosen for their superior chiral symmetry properties. The negative mass
parameter isρ = 1:4. We used a 243�48 lattice, with a lattice spacinga= 0:095 fm. The results
shown here all have bare massamq = 0:028. We have always taken the scattering momentumq
along a lattice diagonal,q ∝ (1;1;1;1) for maximum lattice symmetry. We employ three different
values for the magnitude ofa2q2, so that we can begin to investigate scaling inq2. All the Green’s
functions have beenO(a) improved using the prescription of [2]. The electromagnetic current
Jµ(x) is represented by the local currentψ(x)γµ ψ(x), with overlapO(a) improvement.

2. Operator Product Expansion

We express the electromagnetic scattering tensorWµν as a sum over local operators (the Oper-
ator Product Expansion or OPE). In each term we have a separation of scales, all dependence on the
quark momentum is in the matrix elementhψ(p)jJµ (q)J†

ν(q)jψ(p)i, all dependence on the photon
scaleq is in the Wilson coefficientCm

µν(q). At present we are only considering flavour non-singlet
processes, so we do not include any purely gluonic operatorsin the sum,

Wµν(p;q) � hψ(p)jJµ(q)J†
ν (q)jψ(p)i = ∑

m
Cm

µν(q)hψ(p)jOmjψ(p)i : (2.1)

We include quark bilinear operatorsOm with up to 3 covariant derivatives in this sum. When all
possible Dirac structures are taken account of, there are potentially 1360 different operators, and
1360 Wilson coefficientsCm

µν , in the sum. We reduce this number by exploiting lattice symme-
tries. We chooseq along a lattice diagonal, i.e.q ∝ (1;1;1;1). With this choice there are only 67
independent Wilson coefficients in the expansion of a diagonal element ofW, such asW44 [3].

Wµν(p;q) is a fairly complicated object, it depends onp;q; µ ;ν and on the Dirac indices of
the incoming and outgoing quark.

We simplify by just looking at unpolarised quarks (later, weplan to analyse spin-dependent
quantities too). Taking the trace

Tµν(p;q) � 1
4

Tr
�

S�1(p)Wµν(p;q)	 (p2+m2) ; (2.2)

whereS�1 is the inverse quark propagator, removes the Dirac-index structure. The propagator
cancels allZψ factors, the only renormalisation we need is a factor ofZ2

V to correct for using local
currents forJµ .

If we consider unpolarised quarks there are 4 tensor structures which can occur in the scattering
tensor:

Tµν = δµνW1+ pµ pνW2+(pµqν +qµ pν)W4+qµqνW5 : (2.3)
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(W3 andW6 are reserved for structures possible in neutrino scattering and the polarised target case.)
TheWi form factors can only depend on invariantsq2; p �q; p2. When we consider scattering on
physical hadrons, we can use electromagnetic gauge invariance to reduce the expansion from four
terms to two, namelyF1 andF2. When however we consider an off-shell quark this argument no
longer applies, and all four structures are independent.

As a first simple case we consider the polarisation trace ofTµν ,

Tµµ = 4W1+ p2W2+2p�qW4+q2W5 : (2.4)

Advantages of this choice are that averaging over the direction of Jµ (the photon polarisation)
simplifies the rotation group theory considerably, and thatthis quantity only involves diagonal
elements ofW, which we have analysed more completely. (We have gathered data on off-diagonal
components,µ 6= ν , but this has not yet been fully analysed.) Summing over all polarisations
also increases the symmetry, there are only 22 independent Wilson coefficients in the OPE ofTµµ ,
which is a considerable reduction compared to the 67 coefficients needed for a single diagonal
component such asT44.

In [4] Nachtmann proposed some quantities (the Nachtmann moments) with particularly sim-
ple Operator Product Expansions. Nachtmann considered scattering from on-shell targets, but we
are interested in off-shell targets, so we have to generalise the formulae in [4]. The Nachtmann
moments,µn; are defined by splittingT up into components of definite spin,n,

Tµµ(p�q;q2; p2) = 2 ∑
n even

�
p2

q2

� n
2

Un(cosθ)µn(q2; p2) (2.5)

whereθ is the angle betweenp andq,

p�q= jpj jqj cosθ (2.6)

andUn is a Chebyshev polynomial of the second type, [5]. TheUn are the 4-dimensional equivalent
of the familiar 3-dimensional spherical harmonics. We can use orthogonality of the Chebyshev
polynomials to project out single Nachtmann moments from (2.5),Z π

0

dθ
π

sin2θ Un(cosθ) Tµµ(p�q;q2; p2) =� p2

q2

� n
2

µn(q2; p2) : (2.7)

The Euclidean integral (2.7) involves real values ofp�q in the range�jpj jqj � p�q� jpj jqj.
Following [4] we can relate the integral to Minkowski physics by allowing p � q to become

complex, while keeping bothp2 andq2 real and positive, see Fig.1. Ignoring the possible com-
plications due to confinement, we expect the amplitudeT to have branch-points at the thresholds
for producing on-shell quarks, atp �q= �1

2(q2+ p2+m2), with cuts reaching out to infinity. We
define the discontinuity across these cuts by

2π iD(p�q;q2; p2;m)� Tµµ(p�q+ iε ;q2; p2)�Tµµ(p�q� iε ;q2; p2) : (2.8)

For colour singlet hadrons this discontinuity is a physically measurable total cross-section, but
of course the cross-section for deep inelastic scattering on an off-shell quark target is something
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Figure 1: The complex p�q plane, for p2;q2 both positive (space-like). The Euclidean integral (2.7) for the
Nachtmann momentµn runs between p�q=�jpj jqj and p�q=+jpj jqj, the Minkowski integral (2.9) runs
along the cut from the threshold at p�q= 1

2(q2+ p2+m2) to ∞.

we can only measure as aGedankenexperiment. Assuming thatT is an analytic function of the
complex variablep�q we can write down dispersion relations which give the resultof the Euclidean
integral (2.7) as an integral involving the discontinuity (valid for evenn, n� 2).

µn(q2; p2) = 2
Z ∞

Θ
d(p�q) D(p�q;q2; p2) (q2)n�

p�q+p(p�q)2� p2q2
�n+1 (2.9)

whereΘ is the threshold for the production of on-shell particles,

Θ� 1
2(q2+ p2+m2) : (2.10)

In general the Minkowski integral (2.9) is complicated, butin the Bjorken limit, when(p �q)2 �
p2q2, we can simplify (2.9) by changing to the integration variable

x� q2

2p�q : (2.11)

Eq. (2.9) becomes

µn(q2; p2) = Z q2

2Θ

0
dx

xn�1D(p�q;q2; p2)h
1
2 + 1

2

q
1�4p2

q2 x2
in+1 ! Z 1

0
dx xn�1D(p�q;q2; p2) (2.12)

and we see that the Nachtmann moment tends to a simplex moment.
In the rest of this report we concentrate on the smallest interesting spin,n = 2. From (2.12)

we see that at largeq2, µ2 corresponds tohxi.
In our discussion of Nachtmann moments we have assumed full rotation symmetry. However,

lattice operators are classified under the hypercubic group, and will normally be mixtures of repre-
sentations of the full Euclidean rotation group. The 22 operators present in the expansion ofWµµ

fall into three hypercubic classes
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spin 0, spin 4, + higher 8 operators
spin 2, spin 4, + higher 13 operators

spin 4, + higher 1 operator

For our first look at spin 2, we simply keep all the operators inthe middle group, and discard the
others. The leading spin 2 operator (forq ∝ (1;1;1;1) ) has the form

∑
µ 6=ν

ψ(γµDν + γνDµ)ψ (2.13)

i.e. it is a symmetric, off-diagonal tensor.
We now reconstruct a projected spin 2 amplitude,[Tµµ ℄spin 2, by taking the product of the

matrix elements of the 13 spin 2 operators with their Wilson coefficients, as determined in [1].

Figure 2: The 4-dimensional spherical harmonic p2q2U2(cosθ ) = 4(p �q)2� p2q2. The main lobes point
along the directions�q. There are nodes when p is60o and120o from q; the equatorial ‘donut’ has the
opposite sign to the main lobes.

Because we have averaged over quark spin and photon polarisations, the only direction left in
our problem isq ∝ (1;1;1;1) and the only spin-2 4-d spherical harmonic that contributesis

p2q2U2(cosθ) = 4(p�q)2� p2q2 ; (2.14)

which is illustrated in Fig.2. When we put in the fact thatq ∝ (1;1;1;1)
4(p�q)2� p2q2 ! 2(p1p2+ p1p3+ � � �+ p3p4)q2 : (2.15)

Spin 2 operators, such as (2.13), should have an expectationvalue proportional to (2.15).
We can find theµ2 for the quark from (2.7),

q2�Tµµ
�

spin2 = 2

 
∑

µ<ν
pµ pν

!
µ2 ; (2.16)

so if we plotq2
�
Tµµ
�

spin2 against 2
�
∑µ<ν pµ pν

�
we should see a straight line passing through the

origin, with a slope equal toµ2.
We have data for three differentq values, and from 15 to 32p values (depending onq), chosen

to give a good coverage of directions, so we can see whether the projected amplitude really follows
the spherical harmonic, and findµ2 for a quark.
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3. Results

Figure 3: The trace q2
�
Tµµ

�
spin2 plotted against2

�
∑µ<ν pµ pν

�
, in lattice units. These points should fall

on a straight line through the origin, with a slope proportional to µ2, the Nachtmann moment corresponding
to hxi, see eq.(2.16). The black squares are data from q2 = π2=(2:25a2) � 19 GeV2, blue circles, q2 =
π2=(4a2)� 10:6 GeV2, red triangles q2 = π2=(9a2)� 4:7 GeV2.

In Fig.3 we show the spin-projected Compton amplitude plotted against 2
�
∑µ<ν pµ pν

�
. The

quantity 2
�
∑µ<ν pµ pν

�
is positive for momenta in the main lobe of the harmonic in Fig.2, zero

for momenta in the node, and negative for momenta in the equatorial ring.
At eachq2 value the amplitudes follow a straight line rather closely.Several quarks have

momenta at exactly 60o angle toq, these fall on the node of the spherical harmonic, (zero on the
horizontal axis), and they have amplitudes very close to 0, as predicted. Data from all threeq
values are plotted, we see that they scale fairly well.q2 changes by a factor of 4, from 4.7 GeV2 to
19 GeV2.

Rough values for the Nachtmann momentµ2 (which is a measure ofhxi at a scale� q2) are

q2 = 4:7 GeV2 µ2 = 0:44(9)
q2 = 10:6 GeV2 µ2 = 0:73(5)
q2 = 19 GeV2 µ2 = 0:60(5)

These values probably include fairly large lattice artefacts ∝ a2q2. We will try to correct for these
by looking at tree-level lattice artefacts, which might lead to significant numerical changes.
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4. Conclusions and Prospects

We have seen how we can project out spin components for Nachtmann moment operator ex-
pansions. In the channel we looked at (spin 2), simply filtering on the lattice symmetry seems to
work fairly well, we don’t see any sign of spin 4 contamination distorting the straight-line behaviour
of Fig.3.

We don’t see any strong dependence ofµ2 on the quark virtualityp2, this may be a little
unexpected.

There are several more things we could do. Here we have concentrated on the Nachtmann
moment coming from the polarisation traceWµµ , we should also look at the moments for the other
components ofWµν . Particularly interesting in the context of off-shell quarks would be to look
at the OPE forqµWµνqν . This should give a combination of operators which can be non-zero for
off-shell quarks, but which should vanish on-shell. The three-point functions for this combination
of operators should show contact terms, but no plateau or exponentially decaying terms.

The antisymmetric parts of the scattering tensor,Wµν �Wν µ contain the information needed
to investigate spin-dependent structure functions. We have collected the data needed for this calcu-
lation.

From looking at our problem in tree level we see thatO(a2q2) artifacts may be important in
some channels. We want to investigate these artifacts further, and see whether we can use tree-level
results to reduce their severity.
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