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Abstract

An openUq(sl2)–invariant spin chain of spinS and lengthN with inhomogeneous coupling is
investigated as an example of a non–Hermitian (quasi–Hermitian) model. For several particular
cases of such a chain, the ranges of the deformation parameter 
 are determined for which the
spectrum of the model is real. For a certain range of
, a universal metric operator is constructed
and thus the quasi–Hermiticity of the model is established.The constructed metric operator
is non–dynamical, its structure is determined only by the symmetry of the model. The results
apply, in particular, to all known homogeneousUq(sl2)–invariant integrable spin chains with
nearest–neighbour interaction. In addition, the most general form of a metric operator for a
quasi–Hermitian operator in finite dimensional space is discussed.

Introduction

A bounded linear operatorH in a complex Hilbert spaceH equipped with the inner producthx; yi
is said to besymmetrizableif there exists a Hermitian operator� such that� 6=0 and�H = H�� : (1)

Symmetrizable operators have been studied in mathematicalliterature since long ago [Za, Re, He,
Di, S1, S2]. Following Dieudonne [Di], we will say that a symmetrizable operatorH is quasi–
Hermitian if the symmetrizing operator� is positive definite.

If � is invertible then a quasi–Hermitian operatorH is similar to a Hermitian one and hence it has
a real spectrum (the spectrum ofH can be not entirely real if� is positive definite but not invert-
ible, see [Di, S2]). This enables an interpretation [SGH] ofan irreducible set of quasi–Hermitian
operators as quantum mechanical observables if they share acommon symmetrizing operator�.
In this context� is called ametric operatorsince the observables become Hermitian operators
with respect to the modified inner producthx; yi� � hx; �yi. Interesting motivating examples of
non–Hermitian operators with a real spectrum are the Hamiltonian of the lattice Reggeon field
theory [CS], the Hamiltonian of the Ising quantum spin chainin an imaginary magnetic field [Ge],
the Hamiltonians of affine Toda field theories with an imaginary coupling constant [Ho], and the
Schrödinger operator with an imaginary cubic potential [BZ]. The latter example was generalized
[BB2] to a large class of symmetrizable Hamiltonians possessing the PT (parity and time–reversal)
symmetry and having, according to Wiegner’s theory [Wi] of anti–unitary operators, (partially)
real spectra. Since then a lot of research in physical literature has been devoted to symmetrizable
and, in particular, quasi–Hermitian Hamiltonians, leading to the construction of numerous inter-
esting examples and the (re)discovery of many mathematicalaspects; see [Be, M2] for reviews.
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The HamiltonianH of a physical model is often given by the sum or, more generally, a linear
combination of local HamiltoniansHn, n=1; : : :; N with real coefficients (coupling constants)H = NXn=1 anHn ; an 2 R : (2)

Here we face an immediate difficulty not present in the theoryof Hermitian operators: no gen-
eral criterion is known that would determine whetherH is a quasi–Hermitian operator given that
all Hn are quasi–Hermitian operators (it is not assumed that they share a common symmetrizing
operator). This problem naturally arises for Hamiltoniansof various spin chains where the inter-
action between adjacent sites is described by quasi–Hermitian operators. For instance, the reality
of spectra and the existence of metric operators for such compound chains have been investigated
for the Ising chain in an imaginary magnetic field [Ge, CF], the Jordanian twist of the Heisenberg
chain [KS], and the homogeneous XXZ model of spin12 [KW]. In the present paper we will ad-
dress the problem of quasi–Hermiticity for an open spin chain of spinS with nearest–neighbour
HamiltoniansHn having most general form respectingUq(sl2) symmetry.

The paper is organized as follows. In Section 1.1, we providethe necessary facts about quasi–
Hermitian operators, and in Section 1.2, discuss the most general form of a metric operator. In
Section 2.1, we recall the basic notions related to the quantum algebraUq(sl2), discuss the phe-
nomenon of non–Hermiticity for the tensor product of its representations in the case ofq= ei
 ,
 2R, and introduce an openUq(sl2)–invariant spin chain of lengthN with inhomogeneous cou-
pling. In Sections 2.2 and 2.3, we investigate the reality ofspectra of particular cases of such a
chain forN =3; 4; 5 by considering the minimal polynomials of the corresponding Hamiltonians.
Extrapolating our results, we formulate two conjectures onthe range of
 in which the spectrum
is real. In Section 2.4, we construct a multi–parametric family of universal, i.e. independent
of coupling constants, symmetrizing operators for the mostgeneralUq(sl2)–invariant open spin
chain with a nearest–neighbour interaction. The construction exploits solely the quantum alge-
braic symmetry of the model and is formulated in terms of related algebraic objects such as the
R–matrix and the comultiplication. For a one–parametric subfamily of symmetrizing operators,
we determine the range of
 in which it contains positive definite operators and thus theHamilto-
nian of the model is quasi–Hermitian. In Conclusion we summarize and briefly discuss our results.
Appendix contains proofs of the statements given in the maintext and some technical details on
R–matrices and projectors on irreducible subspaces in tensor products.

1 Quasi–Hermitian operators and metric operators

1.1 Preliminaries

Consider the eigenvalue problem for a quasi–Hermitian operatorH,H!j = �j !j ; h!j ; !ji = 1 : (3)

Let f!jg be the set of normalized eigenvectors ofH and Spe
(H) � f�jg be the set of the
corresponding eigenvalues. Here and below we will restrictour consideration to the case of finite
dimensional Hilbert space,d � dimH<1. In this case, the metric operator� is invertible and the
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quasi–Hermitian operatorH is similar to a Hermitian operator� 12H�� 12 . Whence it is immediate
thatSpe
(H) � R, and the setf!jg is a complete set of vectors inH.

Remark1. The converse is also true, see [S1, Thm. 3.3]: if a linear operator H in a finite di-
mensional complex Hilbert spaceH has a real spectrum and the setf!jg of its eigenvectors is
complete, thenH is quasi–Hermitian. A metric operator for a givenH can be constructed as fol-
lows (see e.g. [M1]): take an arbitrary orthonormal basisfejg in H and define a linear operator

such that
!j = ej . Then
 is invertible andH0=
H
�1 is Hermitian. Whence it follows that�0 =
�
 is a metric operator forH. Note that�0 does not actually depend on the choice of the
basisfejg.
Remark2. In physical literature on PT–symmetric models [BBJ, Be, M2,AF], one considers
alsopseudo–Hermitianoperators, i.e. symmetrizable operators for which� is invertible but not
positive definite. Pseudo–Hermiticity ofH implies only that, if�2Spe
(H), then��2Spe
(H),
as for instance in the case ofH = � i 00 �i �, � = ( 0 11 0 ). Furthermore, the set of the eigenvectors of
a pseudo–Hermitian operator is not necessarily a complete set of vectors inH, as another simple
example demonstrates:H = ( 1 10 1 ), � = ( 0 11 0 ).

The eigenvectorsf!jg of a quasi–Hermitian operatorH provide anon–orthogonalbasis inH.
Consider the correspondingGram matrixG with entriesGkn = h!k; !ni. The matrixG is invert-
ible, Hermitian (with respect to the conjugate transpose operation), and positive definite. The set
of vectorsf~!jg, where~!j = Pdn=1(G�1)nj!n, provides another non–orthogonal basis inH. Its
Gram matrix isG�1. The basesf!jg andf~!jg form abi–orthogonalsystem:h!k; !ji = Ækj ; h!k; ~!ji = Ækj ; h~!k; ~!ji = (G�1)kj : (4)

Remark3. Note that~!j are, in general,not normalized. Indeed, positive definiteness ofG�1
implies only that(G�1)jj > 0 for all j.

Any vectorx 2 H defines a linear functionalxy : H 7! C such thatxy(y) = hx; yi. Sincef!jg
andf~!jg are bases inH, any linear operatorA acting inH can be written in the formA = dXk;n=1O(A)kn!k !yn = dXk;n=1 ~O(A)kn~!k ~!yn ; (5)

whereO(A) and ~O(A) are complex matrices (we will call themsymbolsof A). It is useful to
observe thatO(A�) = �O(A)��, ~O(A�) = � ~O(A)��, andO(AB) = O(A)GO(B) ; ~O(AB) = ~O(A)G�1 ~O(B) ; (6)~O(A) = GO(A)G ; ~O(A)O(A�1) = E ; (7)

whereE is the identity matrix, and the last relation makes sense ifA is invertible.
Let Pj and ~Pj denote projectors inH on !j and ~!j, respectively, i.e.Pj !k = Æjk !j and~Pj ~!k = Æjk ~!j. Relations (4) imply that these projectors are given byPj = !j ~!yj = dXn=1(G�1)jn !j !yn = dXn=1Gnj ~!n ~!yj ; ~Pj = P�j = ~!j !yj : (8)

The resolutions of the unity,
dPj=1Pj = 1= dPj=1P�j , are due to the completeness of the setsf!jg

andf~!jg.
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1.2 General form of metric operator

Consider a quasi–Hermitian operatorH which hasd0 � d distinct eigenvaluesf�jgwith multiplic-
ities�j � 1, so that we have

Pd0j=1 �j = d. The eigenvectors corresponding to a given eigenvalue�j span the subspaceHj � H. Letf!j;kg, k=1; : : :; �j be a basis ofHj (it is not unique if�j > 1)
and letPj;k denote the projector on!j;k.

Proposition 1. a) For a quasi–Hermitian operatorH which has the spectrumf�jg with multiplic-
ities �j, fix some basisf!j;kg in each subspaceHj . Then, for thisH, the most general form of a
metric operator and its inverse is the following� = d0Xj=1 �jXk;n=1��j�kn ~!j;k ~!yj;n ; ��1 = d0Xj=1 �jXk;n=1���1j �kn !j;k !yj;n ; (9)

where�j are arbitrary Hermitian positive definite matrices of size�j��j.
b) For a quasi–Hermitian operatorH which has the spectrumf�jg with multiplicities�j, take
some metric operator�. Then there exists a choice of basesf!j;kg of subspacesHj such that the
given operator� and its inverse are given by� = d0Xj=1 �jXk=1�j;k P�j;k Pj;k ; ��1 = d0Xj=1 �jXk=1 e�j;k Pj;k P�j;k ; (10)

where�j;k are arbitrary positive numbers ande�j;k = �(G�1)fj;kg;fj;kg�j;k��1.
Remark4. It is natural to regard metric operators differing only by a positive constant scalar
factor as equivalent. Thus, formulae (10) describe(d� 1)–parametric families of operators. If the
spectrum of a quasi–Hermitian operatorH is simple, then these formulae give the most general
form of the corresponding metric operator and its inverse.

Remark5. As noted in the previous Remark, the partsa) andb) of Proposition 1 are just different
forms of the same statement if the spectrum ofH is simple. The difference appears if the spectrum
of H is degenerate. Indeed, although any given metric operator can be brought to the form (10)
which involves only the projectors on the eigenvectors ofH, this requires a change of the basis
in the Hilbert spaceafter we have chosen the metric operator. But if we work with afixedbasis,
then the most general form of a metric operator (9) cannot in general be re–expressed only in
terms of the projectors on the eigenvectors ofH if it has a degenerate spectrum. This is so becauseP�j;kPj;n = Gfj;kg;fj;ng~!j;k~!yj;n, and the corresponding entry of the Gram matrix can be zero. (In
fact, it is zero, if we choose an orthonormal basis in the subspaceHj .)
Remark6. If all �j are identity matrices, then (9) yields the operator�0 considered in Remark 1.
Indeed, it easy to see that
�1 =Pdj=1 !j eyj , whence��10 = 
�1(
�)�1 =Pdj=1 !j !yj .
Remark7. If H has a simple spectrum, we can rewrite formulae (10) using Eqs. (54) into a form
that does not use eigenvectors explicitly:� = dXj=1�j � dYn 6=j(H� � �n 1)� � dYm6=j(H� �m 1)� ; (11)��1 = dXj=1 e�j � dYm6=j(H� �m 1)�� dYn 6=j(H� � �n 1)� ; (12)
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where�j are arbitrary positive numbers ande�j = �(G�1)jj �j��1.
As an example, consider the following operator acting inC 2 (it is related to the Hamiltonian (93)

in [Be] by a change of variables which ensures reality of the spectrum):H =  ei� sinh z sin � 
osh zsin � 
osh z e�i� sinh z! = (sinh z) ei��3 + (sin � 
osh z)�1 ; �; z 2 R: (13)

Here and below we use the standard notations for the Pauli matrices: �1 = ( 0 11 0 ), �2 = � 0 �ii 0 �,�3 = � 1 00 �1 �. Operator (13) is not Hermitian but has real eigenvalues�� = 
os � sinh z � sin �.
Observe that its spectral resolution can be written in the following formH = �+P+ + ��P� ; P� = e� z2�2 (1� �1)2 e z2�2 ; (14)

which makes it obvious thatH = 
�1H0
, where
= e z2�2 andH0 is Hermitian. Whence,
by Remark 1, we have�0=
�
= ez�2 , whereas (10) yields a one parametric family of metric
operators. Namely, taking�� = e�'=
osh z, where' 2 R, we obtain�' = e z2�2 e'�1 e z2�2 : (15)

In this form, positive definiteness of�' is self–evident, and we recover�0 for '=0.

2 Spin chains with inhomogeneous coupling

2.1 Spin chains withUq(sl2) symmetry

We will consider one dimensional lattice models (open chains with free boundary conditions)
which haveUq(sl2) symmetry. Recall that the algebraUq(sl2) has the following defining relations[E;F ℄ = K2�K�2q�q�1 ; KE = qEK; KF = q�1FK: (16)

A comultiplication consistent with these relations can be chosen as follows:�(E) = E 
K�1 +K 
E ; �(F ) = F 
K�1 +K 
 F ; �(K) = K 
K : (17)

LetS be a positive integer or semi–integer number, and letq= ei
 , where
 2R and2Sj
j<�.
Let V S ' C 2S+1 be an irreducible highest weightUq(sl2) module andf!kgSk=�S be its canonical
orthonormal basis in whichK is diagonalized. We will consider the standard representation �S ofUq(sl2) onV S: �S(E)!k =p[S�k℄[S+k+1℄!k+1;�S(F )!k =p[S+k℄[S�k+1℄!k�1; �S(K)!k = qk !k; (18)

where [t℄ � sin 
tsin 
 . In particular, � 12 (E)= �+� 12(�1+ i�2), � 12 (F )=��� 12(�1� i�2),� 12 (K) = ei 
2 �3 . For 2Sj
j<�, the non–zero matrix entries of�S(E) and�S(F ) are positive,
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and these matrices are conjugate transposed to each other. Therefore, Eqs. (18) can be regarded as
a representation of the algebraUq(sl2) with the involutionE� = F ; F � = E ; K� = K�1 : (19)

However, the algebraUq(sl2) with such an involution is not a Hopf�–algebra, i.e.,
��(X)�� 6=�(X�) in general. Instead we have

��(X)�� = P�(X�)P, whereP is the operator of permuta-
tion of the tensor factors inUq(sl2)
2. This is the origin of non–Hermiticity of models that will
be considered below.

The comultiplication (17) determines the decompositionV S 
V S =�2Ss=0V s, where eachV s
is an irreducibleUq(sl2)–submodule. The inner product onV S gives rise to an inner product onV S 
V S : h!k
!m; !k0 
!m0i = Ækk0Æmm0 . A basis forV S 
V S can be taken to bef!s;kg,
wheres=0; : : :; 2S, and, for givens, vectors!s;k, k= � S; : : :; S comprise the canonical basis
of V s.

An important difference between the casesq2R andjqj=1 is that in the latter case vectors from
different submodules can be non–orthogonal. For instance,the basis forV 12 ' C 2 is ! 12 = �10�,!� 12 = �01�, and the basis forV 12 
V 12 =V 0�V 1 is!0;0 = 1p{0� 0q� 12�q 120 1A ; !1;1 = � 1000� ; !1;0 = 1p{0� 0q 12q�120 1A ; !1;�1 = � 0001� : (20)

For q2R, these vectors are orthogonal, and normalization requiresto set{= [2℄. For jqj=1, the
vectors are normalized if{=2, and we haveh!0;0; !1;0i= i sin
.

Remark8. Only those basis vectors from different submodules can be non–orthogonal that have
equal eigenvalues under the action ofK12=(�S 
�S)�(K). Indeed, it follows from (17) and (19)
thatK12 is unitary,K�12=K�112 . Therefore, ifK12!= qk! andK12!0= qk0!0, thenh!0;K12!i =qkh!0; !i and henceq�kh!; !0i = h!;K�12!0i = h!;K�112 !0i = q�k0h!; !0i, which implies thatqk = qk0 if h!; !0i 6= 0.

Let PS;s denote the projector onto the irreducible submoduleV s in V S 
V S . Some details on
the structure of these projectors are given in Appendix A.2.In particular, the projectorsPS;s are
not Hermitian but they are symmetrizable operators:�PS;s�� = PS;s ��q!q = PPS;s P : (21)

In fact, by Remark 1, it is evident that these projectors are quasi–Hermitian operators.
Consider a one dimensional lattice which containsN nodes, each node carries an irreducible

moduleV S as a local Hilbert space. For an operatorA in V S or in (V S)
2, we will use the standard
notationsAn andAnm for its embedding in operators inH= �V S�
N that act non–trivially only
in then–th or in then–th andm–th tensor components, respectively. The following operatorHS;sfa1;:::;aN�1g = N�1Xn=1 an PS;sn;n+1 ; an 2 R ; (22)

can be regarded as the Hamiltonian of an open spin chain withinhomogeneouscoupling. This
Hamiltonian commutes with the global action ofUq(sl2) in H, i.e. we have (see Appendix A.2)�HS;sfa1 ;:::;aN�1g; �
NS ��(N�1)(X)� � = 0 ; for any X 2Uq(sl2) : (23)
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Here and in the rest of the text we use the abbreviation�
NS � (�S 
 : : : 
�S).
Recall that the positive integer power of the comultiplication used in (23) is defined recursively:�(1)�� and�(N)=�N;n Æ�(N�1). Here and below we denote�N;n� idn�1
�
 idN�n,

wheren can be taken any from1 toN thanks to the coassociativity of�, i.e.�2;1 Æ�=�2;2 Æ�.

Remark9. The Hamiltonian (22) is pseudo–Hermitian in thehomogeneouscase (a1= : : := aN�1)
for anyN and in thetwo–periodiccase (a2n+1= a1, a2n= a2) for evenN . The symmetrizing
operator for these cases is given by�=P1;NP2;N�1 : : :.

In general, a lattice model with Hamiltonian (22) is not integrable. However, its homoge-
neous case is integrable fors=0. The corresponding R–matrix is constructed by a Baxteriza-
tion of the Temperley–Lieb algebra (see, e.g. [Ku]). In particular, for S= 12 ands=0, settinga1= a2= : : :=� 
os 
, we recover the Hamiltonian of the well known XXZ model of spin 12
(which is an integrable deformation of the Heisenberg chain),H 12 ;0f� 
os 
;:::g =N�1Xn=1�12(�+n ��n+1 + ��n �+n+1) + 
os 
4 ��3n�3n+1 � 1�+ i sin 
4 (�3n � �3n+1)�: (24)

2.2 N = 2 andN = 3
We commence by studying spectra of short chains. SinceH is finite dimensional, we haveSpe
H = �� : PH(�)= 0	, wherePH(�) is the minimal polynomial forH, i.e. the least degree
non–zero polynomial such thatPH(H)= 0. In the simplest case,N =2, we haveHS;sfa1g = a1PS;s12 .

The corresponding minimal polynomial isPS;sa1 (�)= �2� a1�, which shows that the spectrum
consists of points0 anda1 and thus is real.

ForN = 3, we haveHS;sfa1;a2g = a1PS;s12 + a2PS;s23 . Let us consider first the cases=0. In this
case the projectors satisfy the relations of the Temperley–Lieb algebra [BB1, B2]:PS;0n�1;n PS;0n;n+1 PS;0n�1;n = �S PS;0n�1;n ; �S = 1[2S+1℄2 : (25)

Using these relations (see Appendix A.3), we find the minimalpolynomial forHS;0fa1 ;a2g:PS;0a1;a2(�) = � ��2 � (a1+ a2)�+ a1a2 (1� �S)� : (26)

Hence it follows that all eigenvalues ofHS;0fa1;a2g are real iffDS;0 � (a1� a2)2 + 4a1a2�S is
non–negative, that is iff � sin (2S+1)
sin
 �2 � � 4a1a2(a1 � a2)2 : (27)

Clearly, this condition holds always ifa1 anda2 are both positive (or both negative). Ifa1a2< 0,
then the spectrum ofHS;0fa1 ;a2g is not real for those values of
 where (27) does not hold. Note that
the r.h.s. of (27) attains the maximal value equal to 1 whena2=�a1. Hence we infer that, even
for a1a2< 0, the spectrum ofHS;0fa1;a2g is guaranteed to be real for sufficiently small values of
,
namely forj
j<
S;0, where 
S;0 = �2(S+1) (28)

is the minimal positive solution of the equationsin (2S+1)
 = sin
.
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For s 6= 0, the projectorsPS;s do not satisfy relations of the type (25). However, by evaluating
(57) and (60) in the representation (18), one can find an explicit matrix form of these projectors
and then search for the coefficients of the minimal polynomial for HS;sfa1;a2g. The author performed

these steps forS=1; 32 ands� 2S usingMathematicaTM . The polynomials obtained are:PS;sa1;a2(�) = ��S;sYk ��2 � (a1+a2)�+ a1a2 (1� dS;sk )� ; (29)

where the coefficientsdS;sk are listed in Appendix A.4. In (29) we have�S;s=0 if there isdS;sk =1
in the list for givenS ands (which occurs fors=2S) and�S;s=1 otherwise.

From (29) we infer that all eigenvalues ofHS;sfa1;a2g are real iff allDS;sk � (a1� a2)2+4a1a2dS;sk
are non–negative, that is iff �dS;sk ��1 � � 4a1a2(a1 � a2)2 : (30)

Thus, we see that, for the considered values ofS, the spectrum ofHS;sfa1;a2g is real ifa1a2> 0 and is

not real for some values of
 if a1a2< 0. In the latter case, the spectrum ofHS;sfa1;a2g is guaranteed

to be real forj
j < 
S;s= mink 
fkgS;s , where
fkgS;s is the minimal positive solution of the equationdS;sk = 1. In Appendix A.4, the coefficientsdS;sk are listed in such a way thatk=1 corresponds
to the minimal value among
fkgS;s . The list (65) of resulting values
S;s together with formula (28)
allows us to conjecture the following.

Conjecture 1. For a1a2< 0, the spectrum ofHS;sfa1;a2g is real for j
j<
S;s, where
S;s = �2(s+S+1� Æs;2S) : (31)

Remark10. Appearance of the correction fors=2S in (31) seems to be related to the fact thatPS;2S = 1�Ps 6=2S PS;s. In particular, (31) yields
 12 ;1 = 
 12 ;0, as should be anticipated becauseH 12 ;1fa1;a2g andH 12 ;0fa1;a2g differ only by a sign and a shift by a real multiple of the identity operator.

2.3 N = 4 andN = 5 for s = 0
For N = 4 and s=0, a computation analogous to that in Appendix A.3 yields the following
minimal polynomialPS;0a1;a2;a3(�) =� ��2 � (a1+ a2+ a3)�+ (a1+ a3) a2 (1��S)� (32)���3 � (a1+ a2+ a3)�2 + �a1a3 + a2(a1+ a3)(1��S)��� a1a2a3 (1� 2�S)� :
Analysis of the reality of the roots of the cubic factor is fairly complicated. Therefore, we restrict
our consideration to the casea3= a1 (which, in particular, includes the homogeneous case). In
this case, (32) simplifies and acquires the following form:PS;0a1;a2;a1(�) =� (�� a1)��2 � (a1+ a2)�+ a1a2 (1� 2�S)� (33)� ��2 � (2a1+ a2)�+ 2a1 a2 (1��S)� :
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It follows from (33) that all eigenvalues ofHS;0fa1;a2;a1g are real iff both ~DS;01 � (2a1�a2)2 +8a1a2�S and ~DS;02 � (a1� a2)2+8a1a2�S are non–negative. Thus, we conclude that the spec-
trum ofHS;0fa1;a2;a1g is real ifa1a2> 0 and is not real for some values of
 if a1a2< 0. In the latter

case, we note that~DS;01 � ~DS;02 = a1(3a1� 2a2)> 0. Therefore, fora1a2< 0, the spectrum ofHS;0fa1;a2;a1g is real iff ~DS;02 > 0, that is iff� sin (2S+1)
sin
 �2 � � 8a1a2(a1 � a2)2 : (34)

The r.h.s. of (34) attains the maximal value equal to 2 whena2=�a1. Thus, fora1a2< 0, the
spectrum ofHS;0fa1;a2;a1g is guaranteed to be real forj
j < ~
S;0, where~
S;0 is the minimal positive

solution of the equationsin2 (2S+1)
 = 2 sin2 
. Taking into account that, forS� 12 , we havesin (2S+1)
= sin 
 >p2 on some interval that contains the point
=0, the value~
S;0 can be
equivalently determined as the minimal positive solution of the equationU2S(
os 
) = p2 ; (35)

whereUn(t) is the Chebyshev polynomial of the second kind (U1(t)= 2t, U2(t)= 4t2� 1, etc.)
In particular, we have~
 12 ;0 = �4 ; ~
1;0 = ar

os p1+p22 � 0:217� : (36)

For N = 5 and s=0, even in the reduced casea3= a1, a4= a2, the minimal polynomialPS;0a1;a2;a1;a2(�) contains factors which are fourth and fifth degree polynomials in �. However, fora1= a3= a, a2= a4=�a, it simplifies and acquires the following formPS;0a;�a;a;�a(�) =� ��4 + a2(3�S � 2)�2 + a4 (�2S � 3�S +1)� (37)� ��4 + a2(6�S � 5)�2 + a4 (5�2S � 10�S +4)� :
The first bi–quadratic factor here has only real roots iff�S � 3�p52 . For this range of�S , the
second bi–quadratic factor has also only real roots. Thus, the spectrum ofHS;0fa;�a;a;�ag is guar-
anteed to be real forj
j < ~
S;0, where~
S;0 is the minimal positive solution of the equationsin (2S+1)
 = �3+p52 �1=2 sin
, or, equivalently, of the equationU2S(
os 
) = 1 +p52 : (38)

In particular, we have ~
 12 ;0 = ~
1;0 = �5 ; ~
 32 ;0 � 0:172� : (39)

Equations (28), (35), and (38) allow us to make the followingconjecture about a chain with
alternatingcoupling (a1=�a2= a3=�a4= : : :).
Conjecture 2. For an alternating chain withN� 3 nodes, the spectrum ofHS;0fa;�a;a;�a;:::g is real
for j
j < ~
S;0, where~
S;0 is the minimal positive solution of the equationU2S(
os 
) = 2 
os �N : (40)
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Remark11. For the alternating chain of spinS= 12 and lengthN , Eq. (40) yields~
 12 ;0 = �N ; (41)

which is the most natural extrapolation of the values~
 12 ;0 given by Eqs. (28), (36), and (39).

2.4 A universal metric operator

The most general form of aUq(sl2))–invariant open spin chain Hamiltonian with a nearest–
neighbour interaction and an inhomogeneous coupling is thefollowingHSN = N�1Xn=1 2SXs=0 bn;s PS;sn;n+1 ; bn;s 2 R : (42)

The previously considered Hamiltonian (22) is a particularcase of (42) corresponding to the
choice bn;s0 = anÆss0 . A particular homogeneous case of (42) corresponding to thechoicebn;s=(sin
)Psk=1 
ot(
k) recovers the Hamiltonian of the integrable XXZ model of spinS
(see e.g. [B1]). For spinS=1, another integrable model recovered as a homogeneous case of (42)
is the spin chain generated by the Izergin–Korepin R–matrix[IK].

Now our aim is to construct auniversalmetric operator�N for the Hamiltonian (42), i.e. such
that relation (1) holds irrespective of the choice of the coupling coefficientsbn;s. As seen from
Eq. (21), it suffices to find such�N that the relation�N PS;sn;n+1 = �PS;sn;n+1�� �N = PS;sn+1;n �N (43)

holds for alln = 1; : : : ; N � 1.
Recall that the Hopf algebraUq(sl2) is quasi–triangular [D1], i.e. it possesses a universal R–

matrix which is an invertible element of (a completion of)Uq(sl2)
2 with the following propertiesR�(X) = �0(X)R ; for any X 2 Uq(sl2) ; (44)(�
 id)R = R13R23 ; (id
�)R = R13R12 ; (45)

where�0(X) � P�(X)P. In fact, there exist two universal R–matrices because, ifR+�R
satisfies (44)–(45), then so doesR� = P�R+��1P. The explicit form of the universal R–matricesR� consistent with the comultiplication (17) is given in Appendix A.5.

Let us denoteR� � (�S 
 �S)R�. Eq. (44) along with the fact thatPS;s is a function of(�S 
 �S)�(C) (see Eq. (60)) implies that the projectorsPS;s are symmetrizable byR�, i.e.R�n;n+1 PS;sn;n+1 = PS;sn+1;n R�n;n+1 : (46)

Eq. (68) implies that�S2 (�)= ei� R++ e�i� R� is a Hermitian operator if�2R. This, along with
(46), means that�S2 (�) is a one–parametric family of symmetrizing operators for a chain of lengthN =2. We will extend this observation to a chain of arbitrary length as follows (a proof is given
in Appendix A.6).
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Proposition 2. a) For a chain of lengthN , the following operators satisfy relations (43)��N = RN : : :  R2; where
 Rn= Rn�1;n : : :R1;n : (47)

b) These operators can also be represented as follows��N =!R1 : : : !RN�1; where
!Rn= Rn;n+1 : : :Rn;N : (48)

c) These operators are conjugate to each other,��+N �� = ��N : (49)

Remark12. The proof of Proposition 2 is facilitated by an observation that the operation���R�� is coassociative (but note that it is not an algebra homomorphism) and that the oper-
ators (47) can be expressed in terms of its power:��N =�
NS ��(N�1)� (1)�, see Lemma 2.

As seen from (49), the symmetrizing operators��N are not Hermitian. However, we can utilize
them to build a multi–parametric family of Hermitian symmetrizing operators as follows:�SN(�1; : : :j�1; : : :) =Xn�1�n�ei�n �+N �(��N )�1 �+N �n�1 + e�i�n ��N �(�+N )�1 ��N �n�1�; (50)

where all�n and�n are real. Here we used a simple fact: if�, �0, and�00 are symmetrizing
operators for an operatorH, then so is�(�0)�1�00 if �0 is invertible. In our case,��N are invertible
because so are the universal R–matrices.

Note that, for
=0, we haveR�= 1
 1 and��N = 1N . Therefore, for sufficiently small values
of 
 and appropriately chosen coefficientsf�ng, f�ng, operator (50) is positive definite and, thus,
is a metric operator for the Hamiltonian (42).

For
 6=0, it is not straightforward to determine the values off�ng andf�ng for which (50) is
positive definite. In the present article, we restrict our consideration to a one–parametric family,�SN(�) = ei� �+N + e�i� ��N ; � 2 R : (51)

Let 
(�) denote the maximal positive value of
 for which (51) is positive definite for given�,
and let
̂S � sup� 
(�). At least one of the eigenvalues of�SN(�) vanishes at
= 
̂S. Therefore,
̂S can be determined from the conditiondet��SN(�)�=0.

Lemma 1. The following relation holdsdet��SN(�)� = SNYs=s0�ei�qs(s+1)�NS(S+1) + e�i�qNS(S+1)�s(s+1)�(2s+1)�s ; (52)

where �s are the multiplicities of the irreducible submodules in thedecomposition�V S�
N = NS�s=s0 �sV s. Heres0=0 if NS is integer ands0= 12 if NS is half–integer.

The range of
 that includes the point
=0 and in which (52) does not vanish is maximal if we
set�=�0 � 
2 �NS(2S+1�NS)� s0(s0+1)�. Then we havedet��SN(�0)�> 0 for j
j< 
̂S,
where 
̂S = �(NS� s0)(NS+ s0+1) : (53)

Since 12�SN(0)= 1 for 
=0, we conclude that�SN(�0) is positive definite forj
j< 
̂S. Thus, we
have established the following.
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Proposition 3. The HamiltonianHSN given by (42) is quasi–Hermitian for any choice of the cou-
pling constantsbn;s provided thatj
j< 
̂S, where
̂S is given by (53).

Conclusion

It is well known that for a given quasi–Hermitian operatorH there are many metric opera-
tors [SGH, Be, M2]. In the physical literature on non–Hermitian Hamiltonians, the one most
frequently discussed is the operator�0 considered in Remark 1. For the case ofH having a simple
spectrum, a generalization of�0 to an operator of the type (9) was given in [ZG]. In the present
article, we have given the most general form of a metric operator for a finite dimensional quasi–
Hermitian operatorH not assuming its spectrum to be simple.

As an example of a compound operator (2) given by the sum of quasi–Hermitian operators,
we studied the Hamiltonians (22) and (42) of an openUq(sl2)–invariant spin chain of spinS
and lengthN . For these Hamiltonians, we constructed two symmetrizing operators��N in terms
of products of local R–matrices (let us note that similar products appeared in a different context
in [TV]). From the operators��N we built a multi–parametric family of metric operators. These
metric operators are universal, i.e. independent of the coupling constants, and thus non–dynamical,
i.e. their construction does not require the knowledge of the eigenvectors of a Hamiltonian.

By optimizing the value of the free parameter in a one–parametric subfamily of universal metric
operators, we obtained an estimate (53) on the range of the deformation parameter
 in which the
considered Hamiltonians are quasi–Hermitian. Note that this range is in general narrower than the
ranges of
 for which the short chains considered in Section 2.2 and 2.3 have real spectra. We
expect that better estimates of the quasi–Hermiticity range can be obtained by using the multi–
parametric family (50).

It is worth mention that the most general family (42) of Hamiltonians includes, in particular, all
known (see, e.g. [B2]) integrableUq(sl2)–invariant spin chains with nearest–neighbour interac-
tion: the XXZ model of spinS, the Temperley–Lieb spin chain of spinS, and, for spin1, the spin
chain generated by the Izergin–Korepin R–matrix. So our construction of the metric operators
applies also to these cases.

Let us conclude with several remarks on the “experimental” data obtained in Section 2.2 and 2.3
for the ranges of
 in which the Hamiltonian (22) has a real spectrum. First, it is very interesting
to note that the value of~
 12 ;0 in (41) for an alternating XXZ chain of spin12 is exactly the same
as the boundary of the quasi–Hermiticity range for a homogeneous XXZ chain of spin12 found
in [KW] by means of the path basis technique. Actually, the results for short chains seem to
indicate that, for givenS andN , the alternating chain (a1= � a2= a3= � a4: : :) is the most
non–Hermitian one, at least in the subclass of chains with a two–periodic coupling (a2n+1= a1,a2n=a2). Thus, we have a reason to expect that Conjecture 2 may hold not only for alternating
but also for two–periodic chains and, possibly, even for arbitrary ones.

Finally, let us remind that in the generalN =3 case and the two–periodicN =4 case the spectra
are always real if all coupling constants are positive. Thisobservation is supported by numerical
checks in a number of other cases. It is thus tempting to suggest the following.

Conjecture 3. For j
j < �2S , the Hamiltonian (22) of a spin chain with inhomogeneous coupling
has a real spectrum if allan > 0.
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A Appendix

A.1 Proof of Proposition 1

The spectral resolutions of a quasi–Hermitian operatorH and its adjoint areH= Pd0j=1 �jPj ,H�= Pd0j=1 �jP�j , wherePj = P�jk=1 Pj;k are the projectors onto the subspacesHj . Hence

Pj = d0Yn 6=j H� �n1�j � �n ; P�j = d0Yn 6=j H� � �n1�j � �n : (54)

It follows from relation (1) that�Hn=(H�)n� for all n2N. Therefore�f(H)= �f(H)���,
wheref(t) is an arbitrary polynomial with real coefficients. Along with (54) it implies that a
positive definite operator� is a metric operator forH iff�Pj = P�j � ; j = 1; : : : ; d0: (55)

As the basis ofH we take a naturally ordered setf!1;1; : : :; !1;�1 ; !2;1; : : :; !d0;�d0g. Then, ac-
cording to (8), we have~O(Pj) = GEj and ~O(P�j ) = EjG, whereEj is a diagonal matrix
with �j consecutive entries equal to 1 and others being 0; the identity matrix has the resolutionE =Pd0j=1Ej . Using (6), we find that~O(�Pj) = ~O(�)Ej and ~O(P�j�) = Ej ~O(�). Therefore,
(55) holds iff ~O(�) commutes withEj for all j, that is iff ~O(�) is a block diagonal matrix. The
second relation in (7) implies thatO(��1) is inverse to~O(�) and so it is also a block diagonal
matrix. Whence Eqs. (9) follow. The Hermiticity of� is equivalent to( ~O(�))�=( ~O(�)) which
implies that blocks�j in (9) must be Hermitian. Since� is invertible, it is positive definite when-
ever��1 is so. The latter condition requires, in particular, thathxj ; ��1xji> 0, for any non–zero
vectorxj 2Hj . Which is equivalent to

P�jk;n=1���1j �kn �k�n> 0, where�k�h!j;k; xji can be
arbitrary (but not all zero). Thus,��1j must be positive definite, and hence so does�j.

To prove the part b), we fix some basesf!0j;kg of subspacesHj . Consider� and��1 given by
(9) with some matrices�0j . Let Uj be such unitary matrices that�j = Uj�0jU�1j are diagonal.
Then, introducing new basis vectors,!j;k = Pn(U�1j )kn!0j;n, we achieve that, in the new basis,
the symbolO(��1) becomes a diagonal matrix. The second relation in (7) implies that ~O(�) also
becomes a diagonal matrix. It remains to use formulae (8) to obtain Eqs. (10).

A.2 ProjectorsPS;s
Let q = ei
 . The algebra (16) has the following Casimir element:C = 12�E F + F E�� 
os 
4 sin2 
 �K �K�1�2 : (56)

Its value in an irreducible representationV S is �S(C) = [S℄[S+1℄, where theq–numbers are
defined as[t℄ � sin 
tsin 
 . The tensor Casimir element is an operator inV S 
V S given byCS;S = (�S 
�S)�(C) = (�S 
�S)�(K E)
 (F K�1) + (F K�1)
 (K E) (57)+ 12 sin2 
 �(1
 1+K2 
K�2) 
os 
 � (1
K�2 +K2 
 1) 
os�
(2S + 1)���:

13



Obviously, we have[CS;S; (�S 
�S)��(X)�℄ = 0 for anyX 2Uq(sl2). Furthermore, we have[CS;Sn;n+1; �
NS ��(N�1)(X)�℄ = 0 ; (58)

for anyX andn=1; : : :; N � 1. This can be verified by evaluating�
NS ��N�1;n(Y )�, whereY = [Cn; ��(N�2)(X)�℄ = 0.
With respect to the involution (19), the tensor Casimir element is not Hermitian but is a sym-

metrizable operator, �CS;S�� = CS;Sq�1 = PCS;S P : (59)

HereCS;Sq�1 is the tensor Casimir element of the algebraUq�1(sl2) (which is obtained by the map-
pingE!E, F !F , K!K�1, q! q�1).

The projectorsPS;s can be constructed as follows (see e.g. [B1])PS;s = 2SYl=0l6=s CS;S � [l℄[l + 1℄[s� l℄[s+ l + 1℄ : (60)

In particular, forS= 12 we haveP 12 ;0 = 1�  0 q�1 �1�1 q 0! ; P 12 ;1 = 1� � � q 11 q�1 �� ; �= q+ q�1:
Note that matrix entries ofPS;s can have singularities at some values of
. This means that at

these points the Gram matrix of the basis ofV S 
V S is not invertible (cf. Eq. (8)) and some basis
vectors become linear dependent. We shall exclude such values of
 from consideration.

SincePS;s are polynomials (with real coefficients) inCS;S, they satisfy the same relations (58)
and (59), i.e.,[PS;sn;n+1; �
NS ��(N�1)(X)�℄ = 0 ; �PS;s�� = PS;sq�1 = PPS;s P : (61)

The first equality in the second relation implies, in particular, that~!s;k'!s;kjq!�q =!s;k, where'
means equality up to a normalization (recall that~! are, in general, not normalized, cf. Remark 3).
Using this relation and formulae (8), we can write down a moreexplicit expression forPS;s,PS;s = sXk=�sPs;k = sXk=�s 1�s;k !s;k !ys;k ; (62)

where�s;k = h!s;k; !s;ki= jj!s;kjj2q2R, which is the norm of!s;k for q2R. Consider, for instance,
the case ofs=0. The corresponding submoduleV 0 is one dimensional and it is easy to find its
basis vector!0;0 (which is annihilated by both(�S 
�S)�(E) and(�S
�S)�(F )),!0;0 = SXk=�S (�1)S�k q�kp2S + 1 !k 
 !�k ; (63)

so that�0;0 = [2S+1℄2S+1 . Substituting!0;0 in (62) and identifying!k' eS+1�k, whereek is a vector
in C 2S+1 such that(ek)r = Ækr, we obtain the following matrix form ofPS;0,PS;0 = 2S+1Xm;n=1 (�1)m+n qm+n�2S�2[2S + 1℄ Em;n 
E2S+2�m;2S+2�n ; (64)

whereEm;n are matrices of size2S+1 such that
�Em;n�kl = ÆmkÆnl.

14



A.3 Minimal polynomial PS;0a1;a2
ForH = a1PS;012 + a2PS;023 we haveH2 = a21PS;012 + a22PS;023 + a1a2(PS;012 PS;023 + PS;023 PS;012 ) :
Multiplying this expression byH and using (25) we findH3 = a31PS;012 + a32PS;023 + a1a2(a1+ a2)(PS;012 PS;023 + PS;023 PS;012 ) + �S a1a2H :
WhenceH3 � (a1+a2)H2 = (�S � 1) a1a2H. Thus, the minimal polynomial forH is (26).

A.4 CoefficientsdS;sk for minimal polynomials PS;sa1;a2
Let us denote[t℄� sin 
tsin 
 andftg� 2 
os 
t. The coefficientsdS;sk in (29) are given byS=1; s=1 : d1;11 = 1f2g2 ; d1;12 = � f3gf1gf2g�2;S=1; s=2 : d1;21 = 1f2g2 ; d1;22 = � 1f2g[3℄�2; d1;23 = 1;S=32 ; s=1 : d 32 ;11 = � [3℄f2g[5℄�2; d 32 ;12 = 1f2g2 ; d 32 ;13 = � [2℄[6℄� 1[4℄[5℄ �2;S=32 ; s=2 : d 32 ;21 = 1f3g2 ; d 32 ;22 = 1f2g2 ; d 32 ;23 = � f5gf2gf3g�2; d 32 ;24 = � [5℄� 2f2gf3g�2;S=32 ; s=3 : d 32 ;31 = 1f3g2 ; d 32 ;32 = � f1gf3g[5℄�2; d 32 ;33 = � 1f2gf3g[5℄�2; d 32 ;34 = 1:
The minimal positive solutions
S;s of the equationdS;s1 =1 are the following:
1;1 = 
1;2 = �6 ; 
 32 ;1 = �7 ; 
 32 ;2 = 
 32 ;3 = �9 : (65)

Let us mention in passing an interesting pattern in the minimal positive solutions of the equationdS;sk =1 for s=2S: we have
f1g1;2 = �6 , 
f2g1;2 = �5 , and
f1g32 ;3= �9 , 
f2g32 ;3= �8 , 
f3g32 ;3= �7 .

A.5 Universal R–matrix

Drinfeld has shown [D1] that relations (44) and (45) are satisfied forR+ andR��P(R+)�1P,
whereR+ is given byR+ = qH
H 1Xn=0 q 12 (n2�n)Qnk=1[k℄q �(q� q�1)F 
E�n qH
H : (66)

HereH is related toK viaK = qH . Relations (44)–(45) imply the Yang–Baxter equation,R�12R�13R�23 = R�23R�13R�12 : (67)

Note thatR+��q!q�1= �R+��1. Therefore, forjqj=1 we have�R+�� = R� : (68)
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A.6 Proof of Proposition 2

Let us introduce an operation���R�� and define its action onX 2Uq(sl2)
N by the following
formula:��N;n(X)�R�n;n+1�N;n(X) (recall that�N;n was defined after Eq. (23)).

Lemma 2. a) �� is coassociative, i.e.��2;1 Æ�� = ��2;2 Æ�� : (69)

Therefore, a positive integer power of�� can be defined in the same way as it is done for�, i.e.����(N)=��N;n Æ ����(N�1) : (70)

The operations�+ and�� are conjugate to each other in the following sense:��+(X)��=��(X�) ; (71)

for anyX 2Uq(sl2).
b) The symmetrizing operators (47) can be equivalently represented as follows��N+1 = �
N+1S ���N;n �~��N �� = �
(N+1)S �����(N) (1)� ; (72)

where~��N are given by (47) withR�nm instead ofR�nm, and~��1 � 1.
In (70) and (72),n can be taken any from1 toN .

Proof. a)The coassociativity of�� follows from the coassociativity of� along with the Yang–
Baxter equation:��2;1 Æ��(X) = ��2;1�R��(X)� (45)= R�12R�13R�23�2;1(X)(67)= R�23R�13R�12�2;2(X) (44)= ��2;2�R��(X)� = ��2;2 Æ��(X) :
The property (71) is easily checked:��+(X)�� = �R+�(X)�� (68)= �0(X�)R� (44)= R��(X�) = ��(X�) :
b) First, we will prove the first equality in (72) by an inductionin the case ofn=N � 1. The
base of the induction, forN =2, holds by the definition of�� and the relation�(1)= 1
 1.
The inductive step (which can be regarded as an extension of the lattice by an additional node) is
checked as follows��N+1 (47)=  R�N+1 R�N ��N�1 = R�N;N+1R�N�1;N+1 : : :R�1;N+1R�N�1;N : : :R�1N ��N�1= R�N;N+1(R�N�1;N+1R�N�1;N : : :R�n;N+1R�n;N : : :R�1;N+1R�1;N ) ��N�1(45)= �
(N+1)S �R�N;N+1�N;N(R�N�1;N : : : R�1N ) ~��N�1�= �
(N+1)S �R�N;N+1�N;N ( R�N ~��N�1)� (47)= �
(N+1)S ���N;N(~��N )�:
Whence��N+1 =�
(N+1)S ���N;N Æ��N�1;N�1 Æ � � � Æ��1;1(~��1 )� (70)= �
(N+1)S �(��)(N)(1)�. That
is, we have proved the equality of��N+1 to the last expression in (72). The latter in turn is equal
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to the middle expression in (72), becausen in the definition (70) can be any from1 to N . This
completes the proof of the Lemma 1.

Proof of Proposition 2.
We commence by proving the partb). Choosingn=1 in (72), we can write��N+1 as follows:��N+1 =�
N+1S �(��)(N)(1)� = �
N+1S ���N;1 Æ ��N�1;1 Æ � � � Æ ��1;1(1)�. Then expressions (48)
can be obtained by an induction analogous to that was performed in the proof of Lemma 1 but this
time one should use the first relation in (45).

Relation (49) in the partc) of Proposition 2 is an immediate consequence of applying relation
(71) to formula (72).

To prove the parta) of Proposition 2, we show first that��N are symmetrizing operators for the
tensor Casimir element:��N Cn;n+1 (72)= �
NS �R�n;n+1�N�1;n(~��N�1 Cn)� = �
NS �R�n;n+1�N�1;n(Cn ~��N�1)�(72)= R�n;n+1 Cn;n+1 �R�n;n+1)�1 ��N (44)= Cn+1;n ��N :
Therefore��N are symmetrizing operators also for an arbitrary polynomial in Cn;n+1 with real
coefficients. Whence, taking formula (60) into account, we conclude that relation (43) holds.
Thus, Proposition 2 is proven.

A.7 Proof of Lemma 1

The bialgebra defined by relations (16)–(17) turns into a Hopf algebra if the antipodeS (an anti-
homomorphism) is defined as follows:S(E)= � q�1E, S(F )= � qF , S(K)=K�1.

The R–matrix (66) has the following form:R+= Pa r(1)a 
 r(2)a . Consider the element�=K2 �Pa S(r(2)a )r(1)a �. From the results of [D2], it follows that� is a central element, which
acquires the valueq�2S(S+1) on an irreducible moduleV S , and that� satisfies the following
relation: �1 �2�(��1) = �R���1R+ : (73)

Let us prove that �1 : : : �N �(N�1)(��1) = �~��N ��1 ~�+N : (74)

ForN =2, this relation coincides with (73). ForN � 3, it is verified by induction:�1 : : : �N+1 �(N)(��1) (73)= �R�12��1R+12�N;1��1 : : : �N �(N�1)(��1)�(74)= �R�12��1R+12�N;1�(~��N )�1��N;1�~�+N � = ���N;1(~��N )��1�+N;1(~�+N ) (72)= �~��N+1��1 ~�+N+1:
If q is not a root of unity, the center of the algebraUq(sl2) is generated by the Casimir ele-

ment (56). Therefore, there exists a function'q such that�='q(C). Consequently, the operator�(N�1)(�)='(�(N�1)(C)) acts in each irreducible submoduleV s� (V S)
N as multiplication
by q�2s(s+1). This, along with formula (74), implies that���N ��1�+N = NSXs=s0 q2s(s+1)�2NS(S+1) Ps ; (75)
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where Ps denotes the projector of rank�s(2s+1) onto the reducible invariant subspace��sV s� (V S)
N .
Using (75), we derive formula (52):det�ei��+N + e�i���N � = det(��N ) det�ei�(��N )�1�+N + e�i� 1�(75)= det� NSXs=s0(ei�q2s(s+1)�2NS(S+1) + e�i�)Ps�= �N;S SNYs=s0�ei�qs(s+1)�NS(S+1) + e�i�qNS(S+1)�s(s+1)��s(2s+1) ;

where �N;S � QSNs=s0 q�s(2s+1)(s(s+1)�NS(S+1)) =1, which follows from (75) and the relationdet ��N =1 (note thatdetR�=1).
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