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Abstract

An openU,(sl,)—invariant spin chain of spi§ and length/V with inhomogeneous coupling is
investigated as an example of a non—Hermitian (quasi—Hermimodel. For several particular
cases of such a chain, the ranges of the deformation panamate determined for which the
spectrum of the model is real. For a certain range, & universal metric operator is constructed
and thus the quasi—Hermiticity of the model is establish&de constructed metric operator
is non—dynamical, its structure is determined only by tharmsetry of the model. The results
apply, in particular, to all known homogeneolig(sis)—invariant integrable spin chains with
nearest—neighbour interaction. In addition, the most gdrferm of a metric operator for a
guasi—Hermitian operator in finite dimensional space isudised.

Introduction

A bounded linear operatdt in a complex Hilbert spac# equipped with the inner produ¢t, y)
is said to besymmetrizabléf there exists a Hermitian operatgrsuch that; # 0 and

nH=H". 1

Symmetrizable operators have been studied in mathembt#rature since long ago [Za, Re, He,
Di, S1, S2]. Following Dieudonne [Di], we will say that a syratrizable operatoH is quasi—
Hermitianif the symmetrizing operatay is positive definite.

If n is invertible then a quasi—Hermitian operakbis similar to a Hermitian one and hence it has
a real spectrum (the spectrumtdfcan be not entirely real if is positive definite but not invert-
ible, see [Di, S2]). This enables an interpretation [SGHawofirreducible set of quasi—-Hermitian
operators as quantum mechanical observables if they st@mimon symmetrizing operatar
In this contextn is called ametric operatorsince the observables become Hermitian operators
with respect to the modified inner produat, y), = (z,ny). Interesting motivating examples of
non—Hermitian operators with a real spectrum are the Hanméh of the lattice Reggeon field
theory [CS], the Hamiltonian of the Ising quantum spin chimian imaginary magnetic field [Ge],
the Hamiltonians of affine Toda field theories with an imaginmeoupling constant [Ho], and the
Schrodinger operator with an imaginary cubic potenti&]Bl he latter example was generalized
[BB2] to a large class of symmetrizable Hamiltonians posisesthe PT (parity and time—reversal)
symmetry and having, according to Wiegner’s theory [Wi] ofiaunitary operators, (partially)
real spectra. Since then a lot of research in physical titezehas been devoted to symmetrizable
and, in particular, quasi-Hermitian Hamiltonians, leadia the construction of numerous inter-
esting examples and the (re)discovery of many mathematsgacts; see [Be, M2] for reviews.
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The HamiltonianH of a physical model is often given by the sum or, more gengrallinear
combination of local Hamiltoniand,,, n =1, ..., N with real coefficients (coupling constants)

N
H=> anH,, a,€R. )
n=1

Here we face an immediate difficulty not present in the theadridermitian operators: no gen-
eral criterion is known that would determine whetlieis a quasi—-Hermitian operator given that
all H,, are quasi—Hermitian operators (it is not assumed that thagesa common symmetrizing
operator). This problem naturally arises for Hamiltoniafisarious spin chains where the inter-
action between adjacent sites is described by quasi-Hamaperators. For instance, the reality
of spectra and the existence of metric operators for suctpoand chains have been investigated
for the Ising chain in an imaginary magnetic field [Ge, CF§ flordanian twist of the Heisenberg
chain [KS], and the homogeneous XXZ model of séiﬂ(\/\/]. In the present paper we will ad-
dress the problem of quasi—Hermiticity for an open spinmclwdispin S with nearest—neighbour
HamiltoniansH,, having most general form respectitig(slz) symmetry.

The paper is organized as follows. In Section 1.1, we prothidenecessary facts about quasi—
Hermitian operators, and in Section 1.2, discuss the mostrgeform of a metric operator. In
Section 2.1, we recall the basic notions related to the quarmtgebral/,(sl2), discuss the phe-
nomenon of non—Hermiticity for the tensor product of itsresentations in the case @f= e,

v € R, and introduce an opdl, (sl2)—invariant spin chain of lengtiv with inhomogeneous cou-
pling. In Sections 2.2 and 2.3, we investigate the realitgpctra of particular cases of such a
chain forN =3, 4, 5 by considering the minimal polynomials of the correspogdiamiltonians.
Extrapolating our results, we formulate two conjecturegh@range ofy in which the spectrum
is real. In Section 2.4, we construct a multi-parametricitfiarof universal, i.e. independent
of coupling constants, symmetrizing operators for the ngesterallU, (slz)—invariant open spin
chain with a nearest—neighbour interaction. The constmiaxploits solely the quantum alge-
braic symmetry of the model and is formulated in terms ofteglaalgebraic objects such as the
R-matrix and the comultiplication. For a one—parametrigfamily of symmetrizing operators,
we determine the range ofin which it contains positive definite operators and thusHlaenilto-
nian of the model is quasi—Hermitian. In Conclusion we sumzeaand briefly discuss our results.
Appendix contains proofs of the statements given in the rteaihand some technical details on
R—matrices and projectors on irreducible subspaces ioitgmeducts.

1 Quasi—Hermitian operators and metric operators
1.1 Preliminaries
Consider the eigenvalue problem for a quasi—-HermitianaipeH,
Hwj=Xjwj,  (wjwj) = 1. ©)

Let {w;} be the set of normalized eigenvectors tbfand Spec(H) = {\;} be the set of the
corresponding eigenvalues. Here and below we will restictconsideration to the case of finite
dimensional Hilbert spacd,= dim $) < co. In this case, the metric operatpis invertible and the

2



guasi—Hermitian operatdt is similar to a Hermitian operator% Hn—%. Whence it is immediate
thatSpec(H) C R, and the sefw,} is a complete set of vectors i
Remarkl. The converse is also true, see [S1, Thm.3.3]: if a linearaipeH in a finite di-
mensional complex Hilbert spade has a real spectrum and the $et;} of its eigenvectors is
complete, the is quasi—-Hermitian. A metric operator for a giveincan be constructed as fol-
lows (see e.g. [M1]): take an arbitrary orthonormal bdsig in §) and define a linear operator
such thatQw; = e;. Then( is invertible andH, = QHQ~! is Hermitian. Whence it follows that
=Q*Q is a metric operator foH. Note thaty, does not actually depend on the choice of the
basis{e;}.
Remark2. In physical literature on PT—symmetric models [BBJ, Be, ME], one considers
alsopseudo—Hermitiaroperators, i.e. symmetrizable operators for whicis invertible but not
positive definite. Pseudo—Hermiticity of implies only that, ifA € Spec(H), then\ € Spec(H),
as for instance in the case df= ({ %), n = (). Furthermore, the set of the eigenvectors of
a pseudo—Hermitian operator is not necessarily a compdetef ¥ectors in$, as another simple
example demonstratet = (3 1), n = (9}).

The eigenvectorgw; } of a quasi-Hermitian operatst provide anon—orthogonabasis ins).
Consider the correspondirigram matrixG with entriesGy,, = (wg, wy, ). The matrixG is invert-
ible, Hermitian (with respect to the conjugate transposeration), and positive definite. The set
of vectors{w, }, wherew; = S (G™"),jwn, provides another non-orthogonal basisjinlts

n=1

Gram matrix isG~'. The basegw,} and{@;} form abi—orthogonalsystem:
(Whywj) = Okjs  (wh,@5) = Ohj, (O, @5) = (G iy - 4)
Remark3. Note thatw; are, in generalpot normalized Indeed, positive definiteness 6f !
implies only that(G—1);; > 0 for all j.
Any vectorz € $ defines a linear functional’ :  — C such thate(y) = (z,y). Since{w;}
and{w;} are bases i, any linear operatoA acting insy can be written in the form

A= " OA)gnwrwh Z O(A) kntoy, @ 5)

where O(A) and O(A) are complex matrices (we will call thesymbolsof A). It is useful to
observe thaD(A*) = (O(A))*, O(A*) = (O(A))", and

O(AB) = O(A) GO(B), O(AB) = O(A)G~'O(B), (6)
O(A) = GO(A)G, OAOAHY=E, 7

whereF is the identity matrix, and the last relation makes sengeisfinvertible.
Let P, and P; denote projectors iy on w; andw;, respectively, i.e.P;w, = d;,w; and
P;w, = d;, ;. Relations (4) imply that these projectors are given by

d d
=S (G N jwjw :Z jOn@l,  Pj=Pi=a;0l. (8)
n=1 n=1

d
The resolutions of the unity) P;=1= Z P*, are due to the completeness of the deis}

7=1 7=1
and{w,}.



1.2 General form of metric operator

Consider a quasi—Hermitian operatbwhich hasi’ < d distinct eigenvalue$); } with multiplic-
itiesp; > 1, so that we havgj;l':l p; = d. The eigenvectors corresponding to a given eigenvalue
A; span the subspadg; C . Let{w;;}, k=1,...,u; be abasis ofy; (it is not unique ify; > 1)

and letP; ;. denote the projector on; .

Proposition 1. a) For a quasi—-Hermitian operatdf which has the spectrugi; } with multiplic-

ities 115, fix some basi$w; 1 } in each subspac;. Then, for thisH, the most general form of a
metric operator and its inverse is the following

d  Hj d 1
7=1kn=1 j=1kn=1

where®; are arbitrary Hermitian positive definite matrices of sjzex ;.

b) For a quasi-Hermitian operatoH which has the spectrurfi\;} with multiplicities .;, take
some metric operatoy. Then there exists a choice of bades ;} of subspace$; such that the
given operatom and its inverse are given by

d 1 d K
nm= Z Z Dk PikPik nt= Z Z Dk Pjk Pl (10)
J=1k=1 j=1k=1

where®; ;. are arbitrary positive numbers andl; x = ((G~") ¢ xy.14) i) "

Remark4. It is natural to regard metric operators differing only by @siive constant scalar
factor as equivalent. Thus, formulae (10) descf(idbe- 1)—parametric families of operators. If the
spectrum of a quasi—Hermitian operatéiis simple, then these formulae give the most general
form of the corresponding metric operator and its inverse.

Remarks. As noted in the previous Remark, the pajsandb) of Proposition 1 are just different
forms of the same statement if the spectrurilag simple. The difference appears if the spectrum
of H is degenerate. Indeed, although any given metric operatobe brought to the form (10)
which involves only the projectors on the eigenvectordipthis requires a change of the basis
in the Hilbert spacafter we have chosen the metric operator. But if we work witlixad basis,
then the most general form of a metric operator (9) cannoteimegal be re—expressed only in
terms of the projectors on the eigenvector$iaf it has a degenerate spectrum. This is so because
P kPin = G{j’k}’{j’n}&’]jyk@;’n, and the corresponding entry of the Gram matrix can be zémo. (
fact, it is zero, if we choose an orthonormal basis in the gatss);.)

Remark6. If all ®; are identity matrices, then (9) yields the operafpconsidered in Remark 1.
Indeed, it easy to see that'! = 0| w; e;‘-, whencen, ! = Q1)L =Y w; w;-.

Remark?. If H has a simple spectrum, we can rewrite formulae (10) using 43 into a form
that does not use eigenvectors explicitly:

=36, (ﬁ(H*—Anl))(ﬁ(H—Aml)), (12)

j=1 n#j m#j
d d d
77t =308 (TTH- D) (T - 21), (12)
j=1 m#j n#j



where®; are arbitrary positive numbers afg = ((G1);; ©;) '

As an example, consider the following operator actinGr(it is related to the Hamiltonian (93)
in [Be] by a change of variables which ensures reality of {rectum):

H— e sinhz  sin# cosh z
sinf coshz e sinhz

) = (sinh z) €73 + (sin cosh z) o, , f,ze R (13)

Here and below we use the standard notations for the Paulicesito, = (9}§), 0. = (9 77),

oy = (¢ 2 ). Operator (13) is not Hermitian but has real eigenvalies= cos 6 sinh z + sin6.
Observe that its spectral resolution can be written in tlieviding form
(]. + O'l) z

3 e22 , (14)

z

H:>\+P++>\_P_, Pizeiﬁgz

which makes it obvious thatl = Q~'H,(, whereQ) =272 and Hy is Hermitian. Whence,
by Remark 1, we haveg, = Q*Q = ¢*?2, whereas (10) yields a one parametric family of metric
operators. Namely, takingg4 = et¥ /cosh z, wherep € R, we obtain

Ny = €27 e 32, (15)

In this form, positive definiteness qf, is self-evident, and we recovegy for ¢ =0.

2 Spin chains with inhomogeneous coupling

2.1 Spin chains withU,(sl;) symmetry

We will consider one dimensional lattice models (open chaiith free boundary conditions)
which havel, (sl;) symmetry. Recall that the algellig(sl2) has the following defining relations

B, F)=%-K° KE=qEK, KF=q 'FK (16)

A comultiplication consistent with these relations can besen as follows:
AE)=E®K '+K®FE, AF)=FK '+KoF, AK)=KoK. (17)

Let S be a positive integer or semi—integer number, and fe&"?, wherey € R and2S|y| < .
Let V¥ ~ C?5+! be an irreducible highest weight, (sl2) module and{w,}7__ ¢ be its canonical
orthonormal basis in whickK is diagonalized. We will consider the standard represiemtat; of
U,(sly) onV*:

ws(E) wk = \/[S—k][S+k+1] wiy1,
) s (K) wi = ¢* . (18)
ws(F) wy = \/[S+E][S—k+1] wi_1,
sinyt

where [t] =

sinvy *

In particular, 7y (E) = ot = 3(0, +i03), 73(F)=0 =3(0y —ioy),
a

T (K) = ¢'275. For2S|y| < m, the non—zero matrix entries af,(E) andr(F) are positive,
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and these matrices are conjugate transposed to each ofieeefdre, Eqs. (18) can be regarded as
a representation of the algelyg(slz) with the involution

E*=F, F*=F, K*=K!'. (19)

However, the algebr&/,(slz) with such an involution is not a Hopf-algebra, i.e.(A(X))" #
A(X*) in general. Instead we hay@\ (X))" = PA(X*)P, whereP is the operator of permuta-
tion of the tensor factors it (sl2)®2. This is the origin of non—Hermiticity of models that will
be considered below.

The comultiplication (17) determines the decomposifioh® V° = ®2%,V*, where eacl’*
is an irreduciblel, (sl;)-submodule. The inner product &n” gives rise to an inner product on
VISRV (wk ® W, Wi ® Wyy) = Sk - A basis forV¥ @ V' can be taken to béws 1.},
wheres =0,...,2S, and, for givens, vectorsw, i, k= — S,...,.S comprise the canonical basis
of V5.

An important difference between the cagesR and|g| =1 is that in the latter case vectors from
different submodules can be non-orthogonal. For instatheebasis for/’ 3 ~C? is w; = (1),

w_y=(9),and the basis foF : @ Vi =V'a@ V'is ‘

0
0 L 0
, Wi =19, Wi,0 = 1 W1 =19 |- (20)
5 NZ% g2 J

Forgq € R, these vectors are orthogonal, and normalization reqtorestsc = [2]. For|q| =1, the
vectors are normalized i = 2, and we havéw, o, w, o) =isin~.

0
_ 1 a
wo,o—ﬁ

[N

—-q
0

Remark8. Only those basis vectors from different submodules can beorthogonal that have
equal eigenvalues under the actiorkef = (75 ® WS)A( ). Indeed, it foIIows from (17) and (19)
thatKyo is unltary,K*{Q_ K12 Therefore, ifKiow = ¢*w andKsw' = ¢, then(w', Kjow) =
¢*(w',w) and hencey ¥ (w,w') = (w,Kiw') = (w, K w') = ¢ *(w,w’), which implies that
¢ = ¢" if (w,w') #0.

Let P denote the projector onto the irreducible submodufdén V° @ V. Some details on
the structure of these projectors are given in Appendix Anparticular, the projectorB* are
not Hermitian but they are symmetrizable operators:

(PF*)" =P%*| L =PP*P. (21)
In fact, by Remark 1, it is evident that these projectors aiEsg-Hermitian operators.

Consider a one dimensional lattice which contaMisiodes, each node carries an irreducible
moduleV * as alocal Hilbert space. For an operaidn V' or in (V¥)®2, we will use the standard
notationsA,, andA,,,,, for its embedding in operators # = (V5)®N that act non—trivially only
in the n—th or in then—th andm~th tensor components, respectively. The following operat

H{ah san—1} Z Gn Pifﬂrl’ an € R, (22)

can be regarded as the Hamiltonian of an open spin chainimhttmogeneousoupling. This
Hamiltonian commutes with the global actionl@f(slz) in £, i.e. we have (see Appendix A.2)

[H* ¥ (AND(X))] =0,  forany X € U,(sls). (23)

{at,an—1}’
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Here and in the rest of the text we use the abbreviatigh = (175 ® ... @ 7s).

Recall that the positive integer power of the comultipiiatused in (23) is defined recursively:
A=A andAM) = Ay, 0o AN=1. Here and below we denotiy ,, =id,—1 ® A @idy—_p,
wheren can be taken any fromto IV thanks to the coassociativity &, i.e. Ay 0o A=Ay 50 A,

Remarl9. The Hamiltonian (22) is pseudo—Hermitian in tamogeneousase ¢; =...=an_1)
for any N and in thetwo—periodiccase 2,11 = a1, ao, = a9) for evenN. The symmetrizing
operator for these cases is givenipy Py yPonv—1 .. ..

In general, a lattice model with Hamiltonian (22) is not grable. However, its homoge-
neous case is integrable fe=0. The corresponding R—matrix is constructed by a Baxteriza-
tion of the Temperley—Lieb algebra (see, e.g. [Ku]). In jcatar, forS:% and s =0, setting
a1 =as=...=—cosvy, We recover the Hamiltonian of the well known XXZ model ofra;p%i
(which is an integrable deformation of the Heisenberg dhain

N-1
;70 _ _ ..
HE oy = 2 (3 oy + onoity) + 52 (0o, — 1) + 2820} = 0)). (24)
n=1

22 N=2and N =3

We commence by studying spectra of short chains. Sinde finite dimensional, we have
SpecH = {X : Pu()) =0}, wherePy()) is the minimal polynomial foH, i.e. the least degree

non-zero polynomial such th@y(H) = 0. In the simplest caséy =2, we havel—l“{gjl} =a Pfﬁs.

The corresponding minimal polynomial S;S(A) =A% —a; )\, which shows that the spectrum
consists of point® anda; and thus is real.
For N = 3, we haveH* . = a,P}; + ayP5;. Let us consider first the case=0. In this

{a1,a2}

case the projectors satisfy the relations of the Tempelkiep-algebra [BB1, B2]:

S0 pS0 S0 _ 5,0 —
Pn—l,n Pn,n—l—l Pn—l,n = Hs Pn—l,n ’ s = m . (25)
Using these relations (see Appendix A.3), we find the minipodynomial forH{S"l? as}
Py (A) = A (A = (a1 +ag) A + araz (1 — pg)) - (26)

Hence it follows that all eigenvalues of -0

(1,00} AT€ real iff D50 = (a1 —a2)? + daraspug is
non—negative, that is iff

(sin(2.5'+1)'y>2 > dajas ‘ 27)
sin -y (a1 — ag)?

Clearly, this condition holds always dfi andas are both positive (or both negative).dfas <0,
then the spectrum dﬂf&?,az} is not real for those values gfwhere (27) does not hold. Note that
the r.h.s. of (27) attains the maximal value equal to 1 wies —a;. Hence we infer that, even
for ajas < 0, the spectrum oH:*° . is guaranteed to be real for sufficiently small valuesyof

{a1,a2}
namely for|y| < s, where
T

YS,0 = m (28)

is the minimal positive solution of the equatigim (25+1)y = sin~.
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Fors # 0, the projector®%* do not satisfy relations of the type (25). However, by eviga
(57) and (60) in the representation (18), one can find an @kpfiatrix form of these projectors
and then search for the coefficients of the minimal polynd)lfniaHf(i 0} The author performed

these steps fof = 1, % ands < 2S5 usingMathematic@”. The polynomials obtained are:
Party(A) = X9 [T(A? = (a1 +a2) X + @102 (1 — d})) (29)
k

where the coefficientd,f’s are listed in Appendix A.4. In (29) we have, =0 if there isdf’s =1
in the list for givenS ands (which occurs fors = 2S5) andes , = 1 otherwise.

From (29) we infer that all eigenvalues Hf&i,ag} are real iff allD;"* = (a; — ag)?+4ajasd,”
are non—negative, that is iff

_ 4@1@2

a3t > T2 30
(@) 2 e 0
S,s
{a1,a2}

not real for some values ofif a1a2 < 0. In the latter case, the spectruml-d)ﬁf1 a5} is guaranteed
to be real forly| < s, = min, v5", whereyl'} is the minimal positive solution of the equation

Thus, we see that, for the considered valueS,dhe spectrum offl isreal ifajas >0 and is

d,f’s = 1. In Appendix A.4, the coefficientd,f’s are listed in such a way that=1 corresponds
to the minimal value amongg“s}. The list (65) of resulting valuegs ; together with formula (28)
allows us to conjecture the following.

S,s
{a1,a2}

Conjecture 1. For aqas < 0, the spectrum ofl is real for |y| < vg,s, Where

T
s+S4+1—0505)

VS5 = 5 ( (31)

Remark10. Appearance of the correction fer=2S in (31) seems to be related to the fact that
P25 =1— % .5 P%*. Inparticular, (31) yields: ; = v1 ,, as should be anticipated because
2 29

11 10
H? andH?

{a1,a2} {a1,a2}

differ only by a sign and a shift by a real multiple of the idgnoperator.

23 N=4and N =5for s=0

For N = 4 ands=0, a computation analogous to that in Appendix A.3 yields théoing
minimal polynomial

P,le’?amag()\) =\ ()\2 — (a1 +az+a3z) A+ (a1 +a3) as (1 — ,us)) (32)
x (A% = (a1 + a2+ a3)A? + (a1a3 + az(a1 +a3) (1 — pg)) A — arasaz (1 — 2ug)) -

Analysis of the reality of the roots of the cubic factor igfiacomplicated. Therefore, we restrict
our consideration to the casg = a; (which, in particular, includes the homogeneous case). In
this case, (32) simplifies and acquires the following form:

P e V) =A(A—a1) (A2 = (a1 +a2) A+ araz (1 - 2uy)) (33)
X ()\2 — (2(11 +CLQ) A+ 2(11 as (1 - :U‘S)) .



T avayy @r€ real iff bothD} = (2a1 —as)? +

8aiazpg and 2525’0 =(a; —a2)®+ 8aiazpg are non—negative. Thus, we conclude that the spec-
trum of H*° is real ifa;as > 0 and is not real for some values®if a,a, < 0. In the latter

It follows from (33) that all eigenvalues df

{a17a27a1}
case, we note thait)f’0 —DQS’O = a1(3a1 —2a3) > 0. Therefore, fora;as <0, the spectrum of
H3:0 is real iff D5 > 0, that is iff
{a17a27a1} 2

(sin(25’+1)'y>2 S _( 8ajas (34)

sin -y a; —ag)?’
The r.h.s. of (34) attains the maximal value equal to 2 wlea —a;. Thus, fora;as <0, the
spectrum OHf&?,az,al} is guaranteed to be real fpy| < 75, whereys o is the minimal positive
solution of the equatiorin? (25+1)y = 2sin?~. Taking into account that, fof > 1, we have
sin (2S+1)v/siny > /2 on some interval that contains the poipt=0, the valueysy can be
equivalently determined as the minimal positive solutibthe equation

Uas(cosy) = V2, (35)

whereU,,(t) is the Chebyshev polynomial of the second kil (() = 2¢, Us(t) = 4t* — 1, etc.)
In particular, we have

S

s 1+

= 1,0 = arccos YIY2 ~ 0.217 7. (36)

For N = 5 ands=0, even in the reduced casg =a;, a4 = as, the minimal polynomial
Pf’;?awlm(k) contains factors which are fourth and fifth degree polyndsrim\. However, for
a1 = a3 =a, as = a4 = —a, it simplifies and acquires the following form

P e =X (M 4 a?(3pg —2) A2 + a* (uf — 3ug + 1)) 37)
x (A +a®(6ug —5) A? + a’ (5u% — 10pg +4)) .

The first bi-quadratic factor here has only real rootsuiff< 3‘2—‘/5 For this range of:¢, the

second bi—quadratic factor has also only real roots. THgsspectrum oHS’O_ _ | is guar-
{0’7 0’70’7 a’}

anteed to be real fopy| < 75,0, Whereys is the minimal positive solution of the equation
sin (25+1)y = (%)1/2 sin -y, or, equivalently, of the equation

1++/5
Uzs(cosy) = —5—. (38)
In particular, we have
- - 7r -
7%,0 =71, = g’ 7%,0 ~0.1727. (39)
Equations (28), (35), and (38) allow us to make the follomamgpjecture about a chain with
alternatingcoupling @1 = —as =as=—aq4 =...).
Conjecture 2. For an alternating chain withV> 3 nodes, the spectrum bl"{gf_a ty—a,..} is real
for |y| < 4s,0, whereys g is the minimal positive solution of the equation
Uss(cosy) = 2 cos . (40)

N



Remarkll For the alternating chain of spiti= % and lengthiV, Eqg. (40) yields

gl ; (41)

=]~

0=

M=

which is the most natural extrapolation of the valt:”y%,% given by Egs. (28), (36), and (39).

2.4 A universal metric operator

The most general form of &,(sly))—invariant open spin chain Hamiltonian with a nearest—
neighbour interaction and an inhomogeneous coupling iflleving

N-1

S _
HY = >
n=1

The previously considered Hamiltonian (22) is a particudase of (42) corresponding to the
choice b, ¢ =andsy. A particular homogeneous case of (42) corresponding toctisce
bn,s = (sinvy) 7 _, cot(yk) recovers the Hamiltonian of the integrable XXZ model of sfin
(see e.g. [B1]). For spif = 1, another integrable model recovered as a homogeneousfqds® o
is the spin chain generated by the Izergin—Korepin R—m§iik

Now our aim is to construct aniversalmetric operator;, for the Hamiltonian (42), i.e. such
that relation (1) holds irrespective of the choice of thepimg coefficientsh, ;. As seen from
Eqg. (21), it suffices to find suchy that the relation

28
bnsPitiis  bns €R. (42)
0

S, (S, _pS
YAy Pn,fb—l—l = (Pn,fz—i—l)* NN = Pn-il,n N (43)
holds foralln =1,...,N — 1.
Recall that the Hopf algebré,(si2) is quasi-triangular [D1], i.e. it possesses a universal R—
matrix which is an invertible element of (a completion bf)(sl2)®? with the following properties

RA(X)=A'(X)R, forany X € Ug,(slz), (44)
(A®id)R = Ri3Ry3, (id®A)R = Ri3R2, (45)

where A’'(X) = PA(X)P. In fact, there exist two universal R—matrices becaus&if= R
satisfies (44)—(45), then so doBs = ]P(R+) ~'P. The explicit form of the universal R—matrices
R* consistent with the comultiplication (17) is given in ApjienA.5.

Let us denoteR* = (rs ® ms)R*. EQ. (44) along with the fact tha&®** is a function of
(ms ® m5)A(C) (see Eq. (60)) implies that the project®$* are symmetrizable bR, i.e.
Rin—i—l Pi:fzﬂ = Piim Rinﬂ . (46)
Eq. (68) implies that (o) = €’* RT + ¢~'* R~ is a Hermitian operator ifi € R. This, along with
(46), means that; («) is a one—parametric family of symmetrizing operators fohaic of length
N =2. We will extend this observation to a chain of arbitrary léngs follows (a proof is given
in Appendix A.6).
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Proposition 2. a) For a chain of lengthV, the following operators satisfy relations (43)

B — «—
Ny =Rn ... Ro, where R,= Rn—l,n R Rl,n . 47

b) These operators can also be represented as follows

L — —
Ny =R1... Rn-1, where R,= Rn,n+1 - Rn,N . (48)

¢) These operators are conjugate to each other,

()" =nx - (49)

Remark12. The proof of Proposition 2 is facilitated by an observatidrattthe operation
A* = R*A is coassociative (but note that it is not an algebra homohismp) and that the oper-
ators (47) can be expressed in terms of its powgr= 72" (A(iN -U (1)), see Lemma 2.

As seen from (49), the symmetrizing operatgfsare not Hermitian. However, we can utilize
them to build a multi—-parametric family of Hermitian symmiihg operators as follows:

ny(on,. B ) =3 Bul(e uf ()~ )" + ey ()t an)" ), (80)
n>1
where all«,, and ,, are real. Here we used a simple fact:pify’, andn” are symmetrizing
operators for an operatét, then so is)(n') 1y if i is invertible. In our case;i are invertible
because so are the universal R—matrices.

Note that, fory =0, we haveR* =1 ® 1 andni =1,. Therefore, for sufficiently small values
of v and appropriately chosen coefficiekts, }, { 5, }, operator (50) is positive definite and, thus,
is a metric operator for the Hamiltonian (42).

For~ #0, it is not straightforward to determine the values{af,} and{z,,} for which (50) is
positive definite. In the present article, we restrict ounsideration to a one—parametric family,

ny(a) =ent +e ny, acR. (51)

Let v(«) denote the maximal positive value gffor which (51) is positive definite for given,
and letys = sup, y(a). At least one of the eigenvalues 9f («) vanishes aty =45. Therefore,
4 can be determined from the conditidat (n3 («)) =0.

Lemma 1. The following relation holds

i 1)=NS(S+1 ja NS(S+1 1y) Zs+1)vs
det(n;(a)) = H <€zaqs(s+ )—NS(S+ )+ e~iog (S+1)—s(s+ )) ’ (52)

$=8o

where v, are the multiplicities of the irreducible submodules in thiiecomposition
NS

(V)Y = '@ 1,V*. Heres, =0 if NS is integer ands, = 5 if N'S is half-integer.

S=8o
The range ofy that includes the poing = 0 and in which (52) does not vanish is maximal if we
seta=ay = 3(NS(2S+1—NS) — so(so +1)). Then we havelet(n3 (a)) > 0 for || <4s,

where
Vs

Yo = . 53
TS T (NS — o) (NS +50+1) (3)
Since$n$ (0) =1 for v =0, we conclude tha$ («) is positive definite forty| < 4s. Thus, we

have established the following.
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Proposition 3. The HamiltonianHSN given by (42) is quasi—Hermitian for any choice of the cou-
pling constants,, ; provided thaty| < s, whereys is given by (53).

Conclusion

It is well known that for a given quasi—-Hermitian operatdérthere are many metric opera-
tors [SGH, Be, M2]. In the physical literature on non—Heiarit Hamiltonians, the one most
frequently discussed is the operatgrconsidered in Remark 1. For the casdddhaving a simple
spectrum, a generalization gf to an operator of the type (9) was given in [ZG]. In the present
article, we have given the most general form of a metric dperfar a finite dimensional quasi—
Hermitian operatoH not assuming its spectrum to be simple.

As an example of a compound operator (2) given by the sum daigdarmitian operators,
we studied the Hamiltonians (22) and (42) of an o&stsls)—invariant spin chain of spi¥
and lengthN. For these Hamiltonians, we constructed two symmetrizipgratorsys: in terms
of products of local R—matrices (let us note that similarduais appeared in a different context
in [TV]). From the operatorg® we built a multi-parametric family of metric operators. ke
metric operators are universal, i.e. independent of thplawgconstants, and thus non—dynamical,
i.e. their construction does not require the knowledge efdigenvectors of a Hamiltonian.

By optimizing the value of the free parameter in a one—pataogibfamily of universal metric
operators, we obtained an estimate (53) on the range of fbengigtion parametey in which the
considered Hamiltonians are quasi—Hermitian. Note thatr#inge is in general narrower than the
ranges ofy for which the short chains considered in Section 2.2 and 2@ eal spectra. We
expect that better estimates of the quasi—Hermiticity eacen be obtained by using the multi—
parametric family (50).

It is worth mention that the most general family (42) of Haomians includes, in particular, all
known (see, e.g. [B2]) integrablé,(slz)—invariant spin chains with nearest—-neighbour interac-
tion: the XXZ model of spinS, the Temperley—Lieb spin chain of sp#h and, for spinl, the spin
chain generated by the lzergin—Korepin R—matrix. So oursttantion of the metric operators
applies also to these cases.

Let us conclude with several remarks on the “experimentafa d@btained in Section 2.2 and 2.3
for the ranges ofy in which the Hamiltonian (22) has a real spectrum. Firss itery interesting
to note that the value of o in (41) for an alternating XXZ chain of spi%u is exactly the same
as the boundary of the quasi—Hermiticity range for a homeges XXZ chain of spin} found
in [KW] by means of the path basis technique. Actually, theutes for short chains seem to
indicate that, for givers and N, the alternating chaina{ = — a2 =a3= — aq4...) iS the most
non—Hermitian one, at least in the subclass of chains withoa-periodic couplingdsa,+1 = a1,
as, =as). Thus, we have a reason to expect that Conjecture 2 may labldnty for alternating
but also for two—periodic chains and, possibly, even foiteaty ones.

Finally, let us remind that in the generdl= 3 case and the two—periodi¢ = 4 case the spectra
are always real if all coupling constants are positive. Tiservation is supported by numerical
checks in a number of other cases. It is thus tempting to stigige following.

Conjecture 3. For |y| < 55, the Hamiltonian (22) of a spin chain with inhomogeneousptiog
has a real spectrum if alt,, > 0.
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A Appendix

A.1 Proof of Proposition 1

The spectral resolutions of a quasi—Hermitian operétand its adjoint areH = Zf’ 1B,
H* = 23 L A8, where; = 3717 P, are the projectors onto the subspaggsHence

¢l Al

t= _. 54

T Ml

Aj— A
n#j n#£j

B =

It follows from relation (1) that) H” = (H*)"n for all n. € N. Thereforenf(H) = (f(H))
where f(t) is an arbitrary polynomial with real coefficients. Along if54) it implies that a
positive definite operatay is a metric operator foi iff

77(133':‘43;77, jzla"'ad,' (55)

As the basis ofy we take a naturally ordered s@by 1, ...,w1u,, w21, -, Wa 4, f- TheN, ac-
cording to (8), we have®(B;) = G E; andO(P;) = E;G, whereEj is a diagonal matrix
with p; consecutive entries equal to 1 and others being 0; the tgenttrix has the resolution
E = Z] , E;. Using (6), we find thaO (n Bi) = O(n VE; andO(‘B* ) = EjO(n). Therefore,
(55) holds iff O(n) commutes withF; for all 4, that is iff O(7) is a block diagonal matrix. The
second relation in (7) implies th@(n!) is inverse toO(n) and so it is also a block diagonal
matrix. Whence Egs. (9) follow. The Hermiticity gfis equivalent ta(O(n))* = (O(n)) which
implies that blocksp; in (9) must be Hermitian. Sincgis invertible, it is positive definite when-
evern~! is so. The latter condition requires, in particular, thﬁjt,?’]_1$j> > 0, for any non—zero
vectorz; € $;. Which is equrvalent t 1 (®; ') 1, BB >0, Wherepy = (w1, z;) can be
arbitrary (but not all zero). Thu@; ! ;- must be positive definite, and hence so dbes

To prove the part b), we fix some bas{es}?’k} of subspaces);. Considem andn~! given by
(9) with some matrice®}. Let U; be such unitary matrices thét; = thb;’-U]fl are diagonal.
Then, introducing new basis vectots; , = Zn(Uj‘l)knw;’n, we achieve that, in the~new basis,
the symbolO(n ') becomes a diagonal matrix. The second relation in (7) iraghiatO(n) also
becomes a diagonal matrix. It remains to use formulae (8ptaio Egs. (10).

A.2 Projectors P5*

Letq = 7. The algebra (16) has the following Casimir element:

C=3(EF+FE) -3 (K-K 2. (56)

Its value in an irreducible representatidf is 75(C) = [S][S + 1], where theg—numbers are
defined agt] = S“”t . The tensor Casimir element is an operatoVin® V* given by

C59 = (5 @ m5) A(C) = (ms ®7rs)((K E)o(FK )+ (FK ")®(KE) (57)

+ 101+ K29 K2 cosy— (1@ K2 +K2®1) cos(7(25'+1)))>.

o
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Obviously, we havéC®5, (rs ® 7s) (A(X))] =0 for any X € U,(slz). Furthermore, we have
[Con ™ (ANTD0)) =0, (58)

forany X andn=1,..., N —1. This can be verified by evaluatirvf’N(AN_Ln(Y)), where
Y =[Cy, (AN2(X))]=0.
With respect to the involution (19), the tensor Casimir edairis not Hermitian but is a sym-
metrizable operator,
(C¥%)" =25 =PCSP. (59)
HereCj’_Sl is the tensor Casimir element of the algebia. (sl2) (which is obtained by the map-

pngE - E,F—-F, KK, ¢g—q¢".
The projector® % can be constructed as follows (see e.g. [B1])

25 CSS [l + 1]

= e

(60)

=0
l#s

In particular, forS = § we have

0 K
lo__1 g ! -1 1 _ 1 qg 1 _ —1
P2 _E< 1 ¢ y P = % lq_l ) H—Q“l—q .
0 K

Note that matrix entries d?»* can have singularities at some valuesyofThis means that at
these points the Gram matrix of the basid/of ® V*° is not invertible (cf. Eq. (8)) and some basis
vectors become linear dependent. We shall exclude suchsraly from consideration.

SinceP** are polynomials (with real coefficients) &, they satisfy the same relations (58)
and (59), i.e.,

Prs X (ANN(X) =0,  (PY)" =P = PP P (61)

n,n+1°"s

[N

The first equality in the second relation implies, in pafacuthat, ; ~ w; i |q—g = @s k, Where~
means equality up to a normalization (recall thadre, in general, not normalized, cf. Remark 3).
Using this relation and formulae (8), we can write down a nexlicit expression foP =,
S S
PSs = Z Ps,k: = L Ws k wi,k’ (62)

Ks,k
k=—s k=—s

wherek , = (Ws , Ws k) = ||ws,k||§eR, which is the norm olu, ;, for ¢ € R. Consider, for instance,

the case o =0. The corresponding submodulé is one dimensional and it is easy to find its
basis vectotu, , (which is annihilated by botlirs ® 75)A(E) and(7s ® ms) A(F)),

(<15 kg
= 2 e ®w_p, 63
w0,0 k:Z_S \/m (Uk W k ( )

S0 thatr , = 2o, Substitutingw,, in (62) and identifyinguy, ~ e 1_, whereey, is a vector

in C25*1 such thatey,), = 0, we obtain the following matrix form o<,

2541 (_1)m+n m+4n—25-2

PS,O — Z q

= 25 + 1]

Epmn® E2542-m25+2-n (64)
whereE,, ,, are matrices of sizeS+1 such that( Ep, ) ., = i Oni-
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A.3 Minimal polynomial P5?°

a1,a2

S,0
P53 we have

ForH = o Pféo + a9
H? = atPy’ + a3P3y + a1aa (PR P3Y + P5 PTY).
Multiplying this expression by and using (25) we find
H? = aiP%) + a3P5” + arag(ar + a2) (P33 Poy 4+ PoPY) + g aragH .

WhenceH? — (a1 4+ a2) H? = (ug — 1) ajazH. Thus, the minimal polynomial fd is (26).

A4 Coeﬁicientsdf’s for minimal polynomials P2+

ay,a2

Let us denotét] = 822 and{t} =2 cos yt. The coefficientsd,f’s in (29) are given by

sin -y
1 {3} \?
=1, s=1 : dy' = dbt — .
e “p 4= ()
1 1 2
S=1, s=2 : d;* = A= (—), 42—
oo ({2}[3]> ’
31 3] \2 31 1 31 [2][6] — 1\2
S=3,s=1: d}" = 3" =—, di =5
? ' ({2}[ ]> S P E ( [4][5 )
3.9 39 1 39 {6} \2 39 [5] —2\2
S=3,s=2: d}" = , d}T=——, di" = , dy
? ' {3}2 {212 ({2}{3} ! ({2}{3}>
33 1 33 {1} \2 33 1 2 33
S=3,s=3: d}"=—=, di" =(—+—=), & =(=x=), d" =1
? R C ({3}[5]> ’ ({2}{3}[5]> !
The minimal positive solutionss s of the equationif’s =1 are the following:
s s s
MI=M2=¢r YT V2 =Viz =g (65)
Let us mention in passing an interesting pattern in the mihimsitive solutions of the equation
4 =1for s =25: we havey('y =%, 13 = andy{l} = 7@2} = 7@3} =

A.5 Universal R—matrix

Drinfeld has shown [D1] that relations (44) and (45) ares$iatil for R* andR~ =P(R*) !
whereR™ is given by

TL*TL

b Z N —¢ WF@E)"¢"®". (66)

HereH is related taK via K = ¢’. Relations (44)—(45) imply the Yang—Baxter equation,
Rfcz th?, Rzi?, = Rgt?, Rf% RE : (67)
-1
Note thatR*| .= (R*)" . Therefore, foig| =1 we have

(R*)"=R". (68)
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A.6 Proof of Proposition 2

Let us introduce an operatiah™ = R*A and define its action o € U,(sl2)®" by the following
formula: Ay, (X) = R, Ann(X) (recall thatA v, was defined after Eq. (23)).

Lemma 2. a) A% is coassociative, i.e.
A o AT = AF,0 AT, (69)
Therefore, a positive integer power Af- can be defined in the same way as it is doneor.e.
(25) ™ =ag, 0 (a%) Y. (70)

The operationsA ™ and A~ are conjugate to each other in the following sense:

(AT(X))" =A7(x7), (71)
forany X € Uy(sls).
b) The symmetrizing operators (47) can be equivalentlyesgmted as follows
mi = (AL, @) = 70 (9™ ), (72)
wheresji are given by (47) wittR;t instead o}, andﬁli =1.

In (70) and (72),n can be taken any frorhto V.

Proof. a) The coassociativity of\* follows from the coassociativity oA along with the Yang—
Baxter equation:

(45)
Ay 0 AF(X) = Ay, (RTA(X)) = Ri3 Ri3 Ry Aa1(X)

(67) (44)

Ry B Riy Dap(X) = Agp (RTA(X)) = Ay, 0 AX(X).

The property (71) is easily checked:

(44)

(A+(0)" = (RFAX) E ax) - E R AKX = A7(x).

b) First, we will prove the first equality in (72) by an inductiam the case ofi =N — 1. The
base of the induction, folV = 2, holds by the definition oA* and the relatiomA(1) =1® 1.
The inductive step (which can be regarded as an extensidredéttice by an additional node) is
checked as follows

+ e+ S+ 4+ ot + + + + 4+
Mver = Ryt Ry vo = Ry vt Ry v - R Ry v - - Riv v
bt + + + + + + +
= RN,N+1(RN—1,N+1RN—1,N RN Ry R1,N+1R1,N) My -1

(45) & + + + \~t
= mg (RN,N-HAN:N(RN—I,N - Riy) -y

eyl (47) N
= W§(N+l> (Rﬁ,NJrlAN,N(Rﬁ 771%71)) = W§(N+l> (Aﬁ,N(ﬁﬁ))

Whencert,, =n8™ (A% Lo AL | oo A (7)) T 22N (AF)M (1)), That
is, we have proved the equality qf?H to the last expression in (72). The latter in turn is equal
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to the middle expression in (72), becaus@é the definition (70) can be any fromto N. This
completes the proof of the Lemma 1.

Proof of Proposition 2.
We commence by proving the pdsj. Choosingn=1 in (72), we can writeyi,, as follows:
Mg =m& " ((AF) (1)) = 7@V (A§ 0 Ay_y, 0 -+ 0 AT(1)). Then expressions (48)
can be obtained by an induction analogous to that was pegfbimthe proof of Lemma 1 but this
time one should use the first relation in (45).

Relation (49) in the pant) of Proposition 2 is an immediate consequence of applyiratiosl
(71) to formula (72).

To prove the para) of Proposition 2, we show first thaf: are symmetrizing operators for the
tensor Casimir element:

(72) _ _
771% Crmt1 = o (Rin+1AN—l,n(771i§4 Cn)) =" (RinHAN—Ln(Cn 77;?1))

(72) _ (44)
= RTjL:,TL+1 Cn:n+1 (Rriz,,n+1) ! 771:\5 = Cn+1,n 771:\5 .

Thereforeni are symmetrizing operators also for an arbitrary polyndnmaC,, ,, 1 with real
coefficients. Whence, taking formula (60) into account, waatude that relation (43) holds.
Thus, Proposition 2 is proven.

A.7 Proof of Lemma 1

The bialgebra defined by relations (16)—(17) turns into aftédgebra if the antipod& (an anti-
homomorphism) is defined as followS{E)= — ¢ 'E,S(F)= — ¢F,S(K)=K ..

The R-matrix (66) has the following formR*= " ri’ ®r{’. Consider the element
x=K2%(3,S(re)re”). From the results of [D2], it follows thag is a central element, which
acquires the valug—2°(“+1) on an irreducible modul&®, and thaty satisfies the following
relation:

xix2Alx™Y) = (R7) " R*. (73)

Let us prove that

_ _ ~ 1~
Xi---xn AN V() = (A7) ab. (74)

For N =2, this relation coincides with (73). FdY > 3, it is verified by induction:

X1--- XN+1 A™) (Xﬁl) (E) (Rl_z)_lRE AN,1 (Xl - XN A(1\]71)()(71))
74 N = I ~ _ W\ — ~ . —1
@ (B) 'R Awa (%)) Awa (7F) = (A5, @0) AL 6 ) (7m0) Vit

If ¢ is not a root of unity, the center of the algeliva(slz) is generated by the Casimir ele-
ment (56). Therefore, there exists a functipnsuch thaty = ¢, (C). Consequently, the operator
AN=D(y) = (AN-1(C)) acts in each irreducible submodul& C (V)Y as multiplication
by ¢~25(s+1)_ This, along with formula (74), implies that

NS
(7’];)717]; _ Z q25(s+1)*2]\75(5+1) 7)8’ (75)

$=So
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where P, denotes the projector of rank(2s+1) onto the reducible invariant subspace
QrVS C (VS)eN,
Using (75), we derive formula (52):

det (" + "y ) = det(ny) det (e (ny) 'y +e71)

NS
(75) det(z(ez’anS(s—i—l)—QNS(S—l—l) +e—z‘a)735>

$=S8o

shiyy 1)- NS(S+1 i NS(S+1 1)) 7s(2s+1)
= prs [ (g DS g gmiagNS(s ) =s(e) ,

$=So

where py s = [To2, ¢s2sHD6EFD=NS(E+1) =1 which follows from (75) and the relation
det ni¥ =1 (note thaidet R* = 1).
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