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1 Introduction

In the era of the LHC, a thorough understanding of the strong-interaction dynamics in

proton-proton collisions is an imperative. Whereas the determination of parton distribution

functions and the computation of hard-scattering processes at parton level are becoming

fields of precision physics, other aspects remain much less well understood, both at a

conceptual and a practical level. Among these aspects are multiparton interactions, where

in a single proton-proton collision more than one parton in each proton participates in a

hard scattering. Multiparton interactions can give sizeable contributions both to signal

and to background processes, notably to Higgs production [1], to electroweak processes

[2–10] and to multijet production [11–18]. They are also of interest in their own right from

the point of view of hadron structure, because they contain information about correlations

between partons inside the proton.

Experimental evidence for hard multiparton interactions has been found at the ISR

[19], the SPS [20] and the Tevatron [21–25]. Due to the rapid increase of parton densities at

small momentum fractions, one expects these interactions to be even more prominent at the

LHC, and first results have indeed been reported [26], with more studies being expected

in the future [27]. Substantial effort has gone into the modeling and implementation

of multiparton interactions in Monte-Carlo generators [28–34]. A mini-review on earlier
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developments of the subject is given in [31], and an overview of current developments can

be found in the conference proceedings [35, 36]. Recently there has been renewed interest in

understanding the theoretical foundations of multiple hard scattering [37–47], with many

issues remaining to be clarified or worked out.

The simplest assumption one can make when computing multiple hard scattering is

that the different partons in the proton are uncorrelated with each other. This leads to

very compact results, but it certainly is a simplification whose validity and limitations

need to be investigated. Recent phenomenological studies of different types of correlation

effects in multiparton interactions can be found in [17, 34, 48–52]. In this work we focus on

correlations between the polarization of two partons in an unpolarized proton and on their

consequences for the overall rate and for final-state distributions in double hard scattering

processes. We build on the observations made in [40] and extend the results of [46]. The

relevance of spin correlations for multiple interactions was pointed out long ago in [53], but

that work have not been followed up until recently.

We perform our study for double Drell-Yan production, where two electroweak gauge

bosons (γ∗, Z,W±) are produced in two independent quark-antiquark annihilation pro-

cesses. This has long been recognized as a prototype for multi-parton interactions [54–56].

Unfortunately, recent phenomenological estimates [8, 9, 57] find that rates for double Drell-

Yan production at the LHC will likely be too small to allow for a detailed experimental

investigation of final-state distributions. We nevertheless choose this process for our inves-

tigation, given that it is among the simplest double scattering process from the theoretical

point of view but still exhibits a wealth of nontrivial features. The results we obtain for

double Drell-Yan production will have their analogs for processes with higher rates, such

as the production of four jets or the production of one gauge boson plus a dijet. (Note

that up to a global factor the tree-level graph for the production and subsequent decay of

a gauge boson is identical to the graph for q1 q̄2 → q3 q̄4 with a gluon in the s-channel.)

Even if two partons in a proton are unpolarized, there can be correlations between

their transverse positions and their longitudinal momentum fractions. There are indeed

reasons to expect such correlations, see e.g. [34] and section 2.6 of [40], but not much

is currently known about them. In the spirit of an exploratory study, we will calculate

these correlations in a simple model of the proton and discuss their consequence for the

transverse-momentum spectrum of double Drell-Yan production.

This paper is organized as follows. In the next section we recall the basic formalism

for computing double parton interactions, define double parton distributions that describe

spin correlations between the two partons and give the polarization dependent parton-level

cross sections. In section 3 we give our results for the cross section of the double Drell-Yan

process. In section 4 we investigate the correlation between transverse and longitudinal

variables in double parton distributions within a simple model. Section 5 summarizes our

findings, and in an appendix we list the coupling factors entering the cross section formulae

in section 3.
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2 Double parton scattering

Consider the production of two gauge bosons V1, V2 = γ∗, Z,W in a pp collision, followed

by the leptonic decays γ∗, Z → ℓ+ℓ− or W → ℓν. Four-momenta are assigned as p(p) +

p(p̄) → V1(q1) + V2(q2) +X. We are interested in the fully differential cross section of the

four-lepton final state and restrict ourselves to the kinematic region where the transverse

momenta q1 and q2 of the gauge bosons in the pp center-of-mass are much smaller than

their invariant masses, i.e. we assume q21, q
2
2 ≪ q21, q

2
2 . It is in this kinematics that double

parton scattering is not power suppressed compared with the production of the gauge

boson pair by a single hard scattering [39]. In the calculation of the cross section, the

invariant masses Qi = (q2i )
1/2 will serve as the hard scale necessary for the application of

factorization. For simplicity we shall not assume any particular hierarchy in size between

q1 and q2 or between Q1 and Q2.

We assume that the double hard scattering cross section factorizes into the product

of a double parton distribution (DPD) in each proton and a parton-level cross section for

each of the two hard scatters. This factorization has not been proven, but several elements

of such a proof have been given in [40]. Schematically, the double parton scattering cross

section then reads [39, 40]

dσ
∏2

i=1 dxi dx̄i d
2qi dΩi

∣

∣

∣

∣

DPS

=
1

C

dσ̂1
dΩ1

dσ̂2
dΩ2

∫

d2z1

(2π)2
d2z2

(2π)2
e−iz1q1−iz2q2

×
∫

d2y F (x1, x2,z1,z2,y) F̄ (x̄1, x̄2,z1,z2,y) (2.1)

with a combinatorial factor C equal to 2 when the final states of the two hard interactions

are identical and equal to 1 otherwise. Here dσ̂i/dΩi denotes the cross section for quark-

antiquark annihilation into a lepton pair via the gauge boson Vi, taken differential w.r.t.

the lepton angles in the appropriate boson rest frame (see section 2.2). In the pp center-

of-mass we define the z axis to point into the direction of the proton momentum p and

use light-cone coordinates v± = (v0 ± v3)/
√
2 and v = (v1, v2) for any four-vector v.

The kinematic variables xi = q+i /p
+ and x̄i = q−i /p̄

− determine the longitudinal parton

momentum fractions in the DPDs, which we denote by F for the proton with momentum

p and by F̄ for the proton with momentum p̄. The arguments zi and y of the distributions

determine where the hard-scattering processes take place in transverse configuration space.

As indicated in figure 1, y is the transverse distance between the two scattering partons in a

proton (and hence between the two annihilation processes) if one takes the average between

the scattering amplitude and its conjugate. As shown in [39, 40] zi is the Fourier conjugate

variable to the transverse momentum of parton i (again averaged between amplitude and

conjugate amplitude). F (x1, x2,z1,z2,y) is thus the Fourier transform of a transverse-

momentum dependent DPD. The factorization formula (2.1) generalizes the expression

for single Drell-Yan production in terms of transverse-momentum dependent single-parton

densities [58, 59].
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Figure 1. A graph for the double Drell-Yan process, where two quarks in the right-moving pro-

ton interact with two antiquarks in the left-moving proton. The figure shows the assignment of

four-momenta (p, p̄, q1, q2), of light-cone momentum fractions (xi, x̄i) and of transverse position

arguments as explained in the text. The dotted vertical line denotes the final-state cut.

Integrating (2.1) over the transverse boson momenta q1 and q2 one obtains

dσ
∏2

i=1 dxi dx̄i dΩi

∣

∣

∣

∣

DPS

=
1

C

dσ̂1
dΩ1

dσ̂2
dΩ2

∫

d2y F (x1, x2,y) F̄ (x̄1, x̄2,y) . (2.2)

Here F (x1, x2,y) and F̄ (x̄1, x̄2,y) are transverse-momentum integrated (also called col-

linear) DPDs, which were introduced long ago in [55, 60]. Naively, they are obtained by

setting z1 = z2 = 0 in the distributions that appear in (2.1). Closer analysis reveals that

transverse-momentum dependent and collinear DPDs (just as their counterparts for single

partons) require different types of regularization and subtractions of divergences. As a

result the distributions depend in different ways on an ultraviolet renormalization scale,

and (with the exception of specific distributions) also on a rapidity parameter which is

closely related to Sudakov logarithms. This is discussed in [40] and will be tacitly implied

in the remainder of the present work.

Equations (2.1) and (2.2) are schematic in that they omit labels for and summation over

the quantum numbers of the partons (quarks vs. antiquarks, flavor, polarization and color).

This information will be restored in section 2.3. We emphasize that these equations only

give one contribution to the cross section for four-lepton production. Further contributions

need to be added from the familiar single hard-scattering mechanism (where the four

leptons are produced in a single parton-level process), the interference between single and

double hard scattering, as well as double hard-scattering graphs with fermion number

interference [40]. The single hard-scattering contribution is straightforward to compute

(see e.g. [57]), whereas the different interference contributions are not. As argued in [40],

the fermion number interference contribution should become relatively unimportant at

small momentum fractions xi, x̄i.
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2.1 Double parton distributions

We now briefly specify the DPDs necessary for our study, referring to [40] for more detail.

For two quarks in an unpolarized right-moving proton we write

Fa1a2(x1, x2,z1,z2,y) = 2p+
∫

dz−1
2π

dz−2
2π

dy− eix1
z−
1
p++ix

2
z−
2
p+ 〈p| Oa2(0, z2)Oa1(y, z1) |p〉 ,

(2.3)

where an average over the proton polarization is implied. The operators

Oai(y, zi) = q̄i(y − 1
2zi) Γaiqi(y +

1
2zi)

∣

∣

∣

z+
i
=y+=0

(2.4)

for quarks of flavor qi are understood to include appropriate Wilson lines between the two

quark fields, as well as appropriate regularization and subtractions as mentioned above.

Notice the correspondence of position arguments in (2.3) and (2.4) with figure 1. The Dirac

matrices

Γq =
1
2γ

+ , Γ∆q =
1
2γ

+γ5 , Γj
δq =

1
2 iσ

j+γ5 (j = 1, 2) (2.5)

select different polarizations of the quarks in the proton, with q corresponding to unpolar-

ized quarks, ∆q corresponding to longitudinal polarization and δq to polarization in the

transverse direction j. Notice that the labels ai in (2.3) specify both the flavor and the

polarization of the quarks. In full analogy one can define DPDs Fā1,ā2 for two antiquarks,

as well as quark-antiquark distributions Fā1,a2 and Fa1,ā2 .

The quark coupling to gauge boson V1 need not have the same flavor in the scattering

amplitude and its complex conjugate, because a mismatch in flavor can be compensated by

the quark coupling to gauge boson V2. For example, the quarks with transverse positions

y + 1
2z1 and −1

2z2 in figure 1 can be u quarks if the quarks with transverse positions 1
2z2

and y − 1
2z1 are d quarks. The DPDs describing this type of quark flavor interference are

given by

F I
a1a2(x1, x2,z1,z2,y) = 2p+

∫

dz−1
2π

dz−2
2π

dy− eix1
z−
1
p++ix

2
z−
2
p+

〈

p| OI
a2(0, z2)O

I
a1(y, z1) |p

〉

(2.6)

with the product of operators

OI
a2(0, z2)O

I
a1(y, z1) = q̄1(−1

2z2) Γa2 q2(
1
2z2) q̄2(y − 1

2z1) Γa1 q1(y + 1
2z1)

∣

∣

∣

z+
1
=z+

2
=y+=0

.

(2.7)

We note that these distributions are complex valued and that their imaginary part changes

sign when one interchanges the flavor (but not the spin) assignments and replaces zi → −zi,

e.g.

F I
q1∆q2(x1, x2,z1,z2,y) =

[

F I
q2∆q1(x1, x2,−z1,−z2,y)

]∗
. (2.8)

As we shall see, this ensures that physical cross sections are real-valued.
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Let us now classify the different combinations of quark polarization, taking into account

the constraints of parity invariance [40]. For unpolarized and longitudinally polarized

quarks we have

Fqq = fqq(x1, x2,z1,z2,y) , F∆q∆q = f∆q∆q(x1, x2,z1,z2,y) ,

Fq∆q = gq∆q(x1, x2,z1,z2,y) , F∆qq = g∆qq(x1, x2,z1,z2,y) , (2.9)

where f denotes scalar and g pseudoscalar functions. For transverse quark polarization the

parton distributions carry a transverse index and can be decomposed as

F i
∆qδq = M

(

yif∆qδq + ỹig∆qδq

)

, F i
δq∆q = M

(

yifδq∆q + ỹigδq∆q

)

,

F i
qδq = M

(

ỹifqδq + yigqδq
)

, F i
δqq = M

(

ỹifδqq + yigδqq
)

, (2.10)

where the scalar and pseudoscalar functions depend on the same variables as in (2.9). Here

ỹi = ǫijyj is a transverse vector orthogonal to yi, defined in terms of the two-dimensional

antisymmetric tensor ǫij (with ǫ12 = 1). Factors of the proton massM have been introduced

in order to have the same mass dimension for all distributions f and g. For two transversely

polarized quarks we finally write

F ij
δqδq = δijfδqδq +M2

(

2yiyj − y2δij
)

f t
δqδq

+M2
(

yiỹj + ỹiyj
)

gsδqδq +M2
(

yiỹj − ỹiyj
)

gaδqδq . (2.11)

Decompositions analogous to (2.9) to (2.11) hold for antiquarks and for flavor interference

distributions.

Corresponding definitions apply for two partons in a left-moving proton, with + and −
components interchanged in (2.3) to (2.7). Note that the covariant expression of the two-

dimensional antisymmetric tensor in terms of the four-dimensional one is ǫij = ǫ+−ij (with

ǫ0123 = 1). In the analogs of (2.9) to (2.11) for left-moving partons one hence needs to

change the sign of ỹ and of the pseudoscalar functions g (which can be written as ǫij

contracted with a parity even tensor constructed from z1, z2 and y).

All distributions discussed so far allow for two color structures, one where the two

fields in the operator Oai are coupled to a color singlet and one where they are coupled to

a color octet. This requires a further index on all distributions, which we will not display

in the present work for brevity.

2.2 Reference frames

Let us now introduce the reference frames and coordinate axes needed to describe the

angular dependence of the cross section.

In the pp center-of-mass we have the z axis pointing along the momentum p. The

four-vector defining this axis is hence Zµ = (p− p̄)µ/
√

2pp̄, where here and in the following

we neglect the proton mass. We choose a fixed four-vector Xµ orthogonal to p and p̄ to

define the x axis. The precise choice does not matter for our purpose, but one may for

instance adopt the convention to have the x direction point towards the center of the LHC
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p
z

x ϕi

lepton plane

θi

li

l̄i

p̄

Figure 2. Coordinate system in the rest frame of vector boson Vi. The z axis bisects the angle

between the spatial components of the momenta p and −p̄, and the x axis corresponds to a fixed

reference direction as explained in the text. (In general, the proton momenta are therefore not in

the x-z plane.) li and l̄i are the momenta of the lepton and the antilepton from the boson decay,

respectively. θi denotes the polar and ϕi the azimuthal angle of the lepton. Note that ϕi is negative

in this example.

ring. The y axis is then defined such as to obtain a right-handed coordinate system; the

corresponding four-vector can be written as Y µ = ǫµνρσ X
ν p̄ρpσ/(pp̄).

The kinematics of the gauge boson decays into lepton pairs is conveniently described

in the rest frame of the respective gauge boson. The z axis in the rest frame of the boson

Vi is defined by the four-vector

Zµ
i =

1

2

√

Q2
i + q2

i

[

pµ

pqi
− p̄µ

p̄qi

]

, (2.12)

where qi is the transverse boson momentum in the pp center-of-mass as before. As illus-

trated for one boson in figure 2, the z axis bisects the angle between the spatial components

of p and −p̄ in the boson rest frame. The x axis is specified by

Xµ
i =

1
√

1 + (Xqi)
2/Q2

i

[

Xµ − Xqi
Q2

i

qµi

]

(2.13)

and the y axis is again defined so as to obtain a right-handed coordinate system, i.e. by

Y µ
i = ǫµνρσ Z

ν
i X

ρ
i qσi /Qi. With these reference axes we define the polar and azimuthal

angles θi and ϕi of the lepton (as opposed to the antilepton) in the decay of Vi, i.e. of ℓ
−

in the decay of a γ∗, Z or W− and of νℓ in the decay of a W+.

Noting that Xqi is the x component of qi in the pp center-of-mass, we see in (2.13)

that X1, X2 and X differ from each other by amounts of order |qi|/Qi, which is a small

parameter in our calculation of the cross section. Likewise, one finds differences of order

|qi|/Qi between Y1, Y2 and Y . As we shall see shortly, this greatly simplifies the discussion

of azimuthal angles in our calculation.

Readers familiar with the analysis of single Drell-Yan production will recognize that

our choice of z axes is the same as in the Collins-Soper frame [61]. Useful information
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about this frame can e.g. be found in [62, 63]. By contrast, we define x axes (and thus the

azimuthal angles ϕi) starting from a fixed direction in space, whereas in the Collins-Soper

frame the x axis is defined such that the proton momenta lie in the x-z plane. The latter

choice becomes undefined when the transverse boson momentum in the pp center-of-mass

goes to zero. For unpolarized single Drell-Yan production this is not a problem because in

this limiting case all azimuthal dependence in the cross section must vanish due to rotation

invariance. However, in the double Drell-Yan process there can be an azimuthal dependence

even if q1 or q2 or both go to zero, as we shall see. Choosing one of these vectors (or any

linear combination of them) to define x axes would therefore entail ill-defined azimuthal

angles at some point in phase space where there can be a nontrivial azimuthal dependence.

The physical cross section must of course not depend on the arbitrary fixed direction

specified by Xµ. To understand how this happens, we anticipate that our results will

depend only on the difference of azimuthal angles whose definition depends on Xµ, such

as for instance ϕ1 − ϕ2. These angles are defined in different frames, but to the accuracy

of our calculation we can replace them with the azimuthal angles of the leptons in the pp

center-of-mass. This is easily seen by writing trigonometric functions of ϕi in terms of

invariant products Xi li and Yi li, where li is the four-momentum of the lepton from the

decay of Vi. When calculating the cross section we neglect terms of order |qi|/Qi and can

hence approximate Xi li ≈ Xli and Yi li ≈ Y li, which gives azimuthal angles in the pp

center-of-mass as announced.

2.3 Hard-scattering cross sections

If we restore labels for quarks and antiquarks, their flavor and their polarization, the cross

section formula (2.1) reads

dσ
∏2

i=1 dxi dx̄i d
2qi dΩi

=
1

C

∑

a1a2a3a4

∫

d2z1

(2π)2
d2z2

(2π)2
e−iz1q1−iz2q2

∫

d2y

×
[

dσ̂a1ā3
dΩ1

dσ̂a2ā4
dΩ2

Fa1a2F̄ā3ā4 +
dσ̂a1ā3
dΩ1

dσ̂ā2a4
dΩ2

Fa1ā2 F̄ā3a4

+
dσ̂ā1a3
dΩ1

dσ̂a2ā4
dΩ2

Fā1a2 F̄a3ā4 +
dσ̂ā1a3
dΩ1

dσ̂ā2a4
dΩ2

Fā1ā2 F̄a3a4

]

+ {flavor interference} , (2.14)

where here and in the following we omit the label “DPS” for double parton scattering.

In all terms the DPDs have arguments as in (2.1), which will be omitted henceforth for

brevity. To distinguish the distributions for the left- and right-moving proton we use the

notation F and F̄ and a corresponding notation for the scalar and pseudoscalar functions

f, f̄ and g, ḡ introduced in section 2.1. The first subscript in dσaiāj and dσāiaj denotes the

right-moving parton and the second subscript the left-moving one. The sum over a1 to a4
runs over quark flavors and polarizations (q,∆q, δq).

The flavor interference terms involve the interference DPDs in (2.6) and corresponding

interference terms for the hard scattering. These interference terms only appear if the

produced bosons are both neutral or both charged, otherwise the quark and antiquark
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flavors in the annihilation processes do not match. We will return to this in the next

section.

Labels for the color structure of the DPDs are not displayed in (2.14). With the con-

ventions of [40], each factor F F̄ is to be replaced with the sum 1F 1F̄+8F 8F̄ of color singlet

and color octet distributions, without change in the hard-scattering cross sections. This

holds for the production of arbitrary color-neutral states in the hard-scattering processes.

It is straightforward to compute the tree-level cross section for quark-antiquark anni-

hilation into a gauge boson followed by its leptonic decay. In accordance with the power

counting scheme underlying the cross section formula (2.14), the transverse boson momenta

qi are set to zero in this calculation since by assumption they are small compared with

the invariant mass Qi. This also simplifies the kinematics of the gauge boson decays as we

already noticed in section 2.2.

Consider first the case where both quark and antiquark are unpolarized or longitudi-

nally polarized. The angular dependence of the cross section is then of the form

dσ̂aiāj
dΩi

=
(

1 + cos2 θi
)

Kaiāj (Qi) + 2 cos θiK
′
aiāj (Qi) , (2.15)

with ai = qi,∆qi and āj = q̄j,∆q̄j . The integration element reads dΩi = dϕi dcos θi as

usual. The factors K and K ′ depend on coupling constants and on Qi via the gauge boson

propagators. One easily finds

K∆qi∆q̄j = −Kqiq̄j , Kqi∆q̄j = −K∆qiq̄j (2.16)

and analogous relations for K ′, so that

dσ̂qiq̄j
dΩi

= −
dσ̂∆qi∆q̄j

dΩi
,

dσ̂qi∆q̄j

dΩi
= −

dσ̂∆qiq̄j

dΩi
. (2.17)

Because of chirality conservation for massless quarks one has vanishing parton-level cross

sections for the annihilation of a transversely polarized parton with an unpolarized or

longitudinally polarized one, dσ̂δqi q̄j = dσ̂δqi∆q̄j = dσ̂qiδq̄j = dσ̂∆qiδq̄j = 0. If both quark

and antiquark are transversely polarized, one finds

dσ̂kl
δqiδq̄j

dΩi
= sin2 θi

{

[

cos(2ϕi)Kδqiδq̄j (Qi)− sin(2ϕi)K
′
δqiδq̄j (Qi)

]

(

XkX l − Y kY l
)

+
[

sin(2ϕi)Kδqiδq̄j (Qi) + cos(2ϕi)K
′
δqiδq̄j (Qi)

]

(

XkY l+ Y kX l
)

}

(2.18)

with X and Y as defined in section 2.2. The transverse indices k, l in (2.18) refer to the

pp center-of-mass, where they are to be contracted with the corresponding indices of the

DPDs. We note that contraction of (2.18) with the transverse spin vectors sk, s̄l of the

quark and the antiquark gives the simple expression

dσ̂kl
δqiδq̄j

dΩi
sks̄l = sin2 θi

[

cos(ϕs + ϕs̄ − 2ϕi)Kδqiδq̄j + sin(ϕs + ϕs̄ − 2ϕi)K
′
δqiδq̄j

]

, (2.19)
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where ϕs and ϕs̄ are the azimuthal angles of the spin vectors in the pp center-of-mass and

our normalization convention is s2 = s̄2 = 1.

The preceding expressions hold for both neutral and charged vector bosons, and the

coupling factors Kaiāj and K ′
ai āj appearing in (2.15) and (2.18) are given in appendix A.

For neutral boson production the annihilating quark and antiquark have the same flavor.

In this case we will use dσ̂qiq̄j , dσ̂qi∆q̄j , . . . with i 6= j to denote the interference terms for

flavor qi in the amplitude and flavor qj in the conjugate amplitude. The relations (2.15)

to (2.19) remain valid for these interference terms. As can be seen in appendix A, the

corresponding coupling factors are complex, and their imaginary parts change sign when

the flavor (but not the spin) labels are interchanged, e.g.

Kq1q̄2 = (Kq2q̄1)
∗ , K ′

q1∆q̄2 = (K ′
q2∆q̄1)

∗ . (2.20)

We note that for invariant masses Qi far below the Z mass, the neutral boson channel is

well approximated by γ∗ production alone. The only nonzero coupling factors in this case

are Kqiq̄j = −K∆qi∆q̄j = Kδqiδq̄j .

For W boson production we use dσ̂qiq̄j , dσ̂qi∆q̄j etc. to denote cross sections with

different flavors qi, qj in the initial state. We do not need a separate notation for flavor

interference terms in this case, because the product dσ̂a1ā3 dσ̂a2ā4 of cross sections for WW

production is equal to the product of the corresponding interference terms, except for

CKM factors that can easily be identified. Using that W bosons only couple to left-handed

fermions, we find further simplifications for the coupling factors:

Kqiq̄j = Kqi∆q̄j , Kδqiδq̄j = 0 , K ′
a1ā2 = Ka1ā2 , (2.21)

where the second relation reflects that the operator Oδq for transverse quark polarization

corresponds to the interference between left- and right-handed quarks. Together with the

relations (2.16) we are thus left with only one independent coupling factor for W− and

only one for W+ production.

So far we have discussed cross sections and interference terms dσ̂aiāj for the annihilation

of a right-moving quark with a left-moving antiquark. The cross sections and interference

terms dσ̂ājai for right-moving antiquarks and left-moving quarks have the same form as in

(2.15) and (2.18). The associated coupling factors are given by

Kq̄jqi =
(

Kqiq̄j

)∗
, K ′

q̄jqi = −
(

K ′
qi q̄j

)∗
(2.22)

and analogous relations for the spin combinations ∆q∆q and δqδq, and by

Kq̄j∆qi = −
(

Kqi∆q̄j

)∗
, K ′

q̄j∆qi =
(

K ′
qi∆q̄j

)∗
(2.23)

and an analogous relation for the spin combination ∆qq.

3 The double Drell-Yan cross section

Inserting the hard-scattering cross sections (2.15), (2.18) and the DPD decompositions

(2.9) to (2.11) into the factorization formula (2.14), we obtain our final results for the

double parton scattering contribution to four-lepton production.
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For the production and decay of twoW bosons, the result has a simple structure thanks

to the relations (2.21),

dσWW

∏2
i=1 dxi dx̄i d

2qi dΩi

=
1

C

∑

q1q2q3q4

Kq1q̄3(Q1)Kq2q̄4(Q2)

∫

d2z1

(2π)2
d2z2

(2π)2
e−iz1q1−iz2q2

∫

d2y

×
[

(1 + cos θ1)
2 (1 + cos θ2)

2

× (fq1q2 + f∆q1∆q2 − gq1∆q2 − g∆q1q2)(f̄q̄3q̄4 + f̄∆q̄3∆q̄4 − ḡq̄3∆q̄4 − ḡ∆q̄3q̄4)

+ (1 + cos θ1)
2 (1− cos θ2)

2

× (fq1q̄4 − f∆q1∆q̄4 + gq1∆q̄4 − g∆q1q̄4)(f̄q̄3q2 − f̄∆q̄3∆q2 + ḡq̄3∆q2 − ḡ∆q̄3q2)

+ (1− cos θ1)
2 (1 + cos θ2)

2

× (fq̄3q2 − f∆q̄3∆q2 − gq̄3∆q2 + g∆q̄3q2)(f̄q1q̄4 − f̄∆q1∆q̄4 − ḡq1∆q̄4 + ḡ∆q1q̄4)

+ (1− cos θ1)
2 (1− cos θ2)

2

× (fq̄3q̄4 + f∆q̄3∆q̄4 + gq̄3∆q̄4 + g∆q̄3q̄4)(f̄q1q2 + f̄∆q1∆q2 + ḡq1∆q2 + ḡ∆q1q2)

+ {flavor interference}
]

, (3.1)

where the sum over q1 to q4 runs over quark flavors. The flavor interference terms are

obtained by replacing the DPDs in one or in both protons with their interference analogs

and by appropriately changing the CKM factors in the productKq1q̄3 Kq2q̄4 . Different types

of flavor interference terms are shown in figure 3. Taking into account the minus sign in the

definition of pseudoscalar distributions for left-moving partons, e.g. in F̄qi∆q̄j = −ḡqi∆q̄j ,

we recognize that the DPD combinations in (3.1) correspond to negative-helicity quarks

and positive-helicity antiquarks, as required by the left-handed nature of the charged weak

current.

We see that for W pair production the presence of longitudinal parton spin correlations

in the proton changes the overall rate of the cross section as well as the distribution in the

polar angles of the decay leptons.

For one or two neutral bosons (γ∗, Z) the structure of the cross section is more com-

plicated. We split the cross section (2.14) into three parts, σ(0) for the case without trans-

verse quark polarization and σ(1), σ(2) for the cases where one or two hard interactions

are initiated by transversely polarized quarks. The contribution with only unpolarized and

longitudinally polarized partons reads

dσ(0)

∏2
i=1 dxi dx̄i d

2qi dΩi

=
1

C

∑

q1q2q3q4

∫

d2z1

(2π)2
d2z2

(2π)2
e−iz1q1−iz2q2

∫

d2y

×
{

[

(1 + cos2 θ1)Kq1q̄3 + 2cos θ1K
′
q1q̄3

] [

(1 + cos2 θ2)Kq2q̄4 + 2cos θ2K
′
q2q̄4

]

×
(

fq1q2 f̄q̄3q̄4 + f∆q1∆q2 f̄∆q̄3∆q̄4 + gq1∆q2 ḡq̄3∆q̄4 + g∆q1q2 ḡ∆q̄3q̄4

)

+
[

(1 + cos2 θ1)Kq1∆q̄3 + 2cos θ1 K
′
q1∆q̄3

] [

(1 + cos2 θ2)Kq2∆q̄4 + 2cos θ2K
′
q2∆q̄4

]

×
(

fq1q2 f̄∆q̄3∆q̄4 + f∆q1∆q2 f̄q̄3q̄4 + gq1∆q2 ḡ∆q̄3q̄4 + g∆q1q2 ḡq̄3∆q̄4

)
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ds̄

u

d̄

c̄

d

c ū
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Figure 3. Hard-scattering graphs for the production of W+W+ (a, b) or of W+W− (c, d). The

labels q and q̄ indicate whether a parton corresponds to a quark field or a conjugate quark field in

the relevant DPD. Graphs (b) and (d) are multiplied with interference distributions for one of the

protons, whereas graphs (a) and (c) go along with interference distributions for both protons.

−
[

(1 + cos2 θ1)Kq1q̄3 + 2cos θ1 K
′
q1q̄3

] [

(1 + cos2 θ2)Kq2∆q̄4 + 2cos θ2 K
′
q2∆q̄4

]

×
(

gq1∆q2 f̄q̄3q̄4 + g∆q1q2 f̄∆q̄3∆q̄4 + fq1q2 ḡq̄3∆q̄4 + f∆q1∆q2 ḡ∆q̄3q̄4

)

−
[

(1 + cos2 θ1)Kq1∆q̄3 + 2cos θ1 K
′
q1∆q̄3

] [

(1 + cos2 θ2)Kq2q̄4 + 2cos θ2K
′
q2q̄4

]

×
(

gq1∆q2 f̄∆q̄3∆q̄4 + g∆q1q2 f̄q̄3q̄4 + fq1q2 ḡ∆q̄3q̄4 + f∆q1∆q2 ḡq̄3∆q̄4

)

}

+ {flavor interference}+ {qq̄ permutations} . (3.2)

The qq̄ permutation terms are obtained by permutation of the quark-antiquark assignments

in the DPDs and in the coupling factors K, K ′ as specified in (2.14). For neutral bosons

the annihilating quark and antiquark have the same flavor, i.e. one has q1 = q3 (q2 = q4) if

V1 (V2) is neutral. The flavor interference term for neutral boson pairs is then obtained by

replacing all distributions f , g, f̄ , ḡ with their interference analogs f I , gI , f̄ I , ḡI and by

interchanging 1 ↔ 2 in the second subscript of the coupling factors, e.g. Kq1q̄1K
′
q2∆q̄2 →

Kq1q̄2K
′
q2∆q̄1 . The relations (2.8), (2.20) and their analogs for other polarizations ensure

that the sum over all flavor assignments in (3.2) gives a real-valued cross section. Example

graphs for flavor interference are shown in figure 4.

We see in (3.2) that longitudinal parton spin correlations change the overall rate of

double parton scattering and the dependence on the polar angles of the leptons, due to
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ud̄

u

ū
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Figure 4. Hard-scattering graphs for the production of two neutral gauge bosons. The labels q

and q̄ have the same meaning as in figure 3.

the differences between the coupling factors Kqiq̄j , K
′
qi q̄j and Kqi∆q̄j , K

′
qi∆q̄j . Only in the

neutral boson channel at Qi values small enough to neglect Z production does one have a

fixed angular dependence dσ(0)/d cos θi ∝ 1 + cos2 θi.

We now turn towards the part of the cross section where one of the two annihilation

processes involves transverse quark polarization (and thus produces a neutral gauge boson).

It reads

dσ(1)

∏2
i=1 dxi dx̄i d

2qi dΩi

=
1

C
sin2 θ2

∑

q1q2q3

∫

d2z1

(2π)2
d2z2

(2π)2
e−iz1q1−iz2q2

∫

d2y y2M2

×
(

[

(1 + cos2 θ1)Kq1q̄3 + 2cos θ1K
′
q1q̄3

]

×
{

[

cos 2(ϕ2 − ϕy)Kδq2δq̄2 − sin 2(ϕ2 − ϕy)K
′
δq2δq̄2

]

× (fq1δq2 f̄q̄3δq̄2 − gq1δq2 ḡq̄3δq̄2 − f∆q1δq2 f̄∆q̄3δq̄2 + g∆q1δq2 ḡ∆q̄3δq̄2)

+
[

sin 2(ϕ2 − ϕy)Kδq2δq̄2 + cos 2(ϕ2 − ϕy)K
′
δq2δq̄2

]

× (fq1δq2 ḡq̄3δq̄2 + gq1δq2 f̄q̄3δq̄2 + f∆q1δq2 ḡ∆q̄3δq̄2 + g∆q1δq2 f̄∆q̄3δq̄2)
}

−
[

(1 + cos2 θ1)Kq1∆q̄3 + 2cos θ1K
′
q1∆q̄3

]

×
{

[

cos 2(ϕ2 − ϕy)Kδq2δq̄2 − sin 2(ϕ2 − ϕy)K
′
δq2δq̄2

]

× (fq1δq2 ḡ∆q̄3δq̄2 − gq1δq2 f̄∆q̄3δq̄2 − f∆q1δq2 ḡq̄3δq̄2 + g∆q1δq2 f̄q̄3δq̄2)

+
[

sin 2(ϕ2 − ϕy)Kδq2δq̄2 + cos 2(ϕ2 − ϕy)K
′
δq2δq̄2

]

× (fq1δq2 f̄∆q̄3δq̄2 + gq1δq2 ḡ∆q̄3δq̄2 + f∆q1δq2 f̄q̄3δq̄2 + g∆q1δq2 ḡq̄3δq̄2)
})

+ {flavor interference}+ {qq̄ permutations}+ {transv. pol. in interaction 1} , (3.3)

where the flavor interference and qq̄ permutation terms are obtained in the same way as in

(3.2). The terms for transverse polarization in interaction 1 are obtained by replacing labels

as 1 → 2, 2 → 1, 3 → 4 in the coupling factors and by making the same replacement in the

DPD subscripts after interchanging their order, i.e. fa1δq2 → fδq1a2 , ḡā3δq̄2 → ḡδq̄1ā4 etc.
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The azimuthal angle ϕ2 of the lepton produced in interaction 2 has already been de-

fined, and ϕy is the azimuthal angle of y in the pp center-of-mass. As anticipated in

section 2.2, the cross section depends only on the difference ϕ2 − ϕy of these angles, in

agreement with rotation invariance. The ϕy dependence in (3.3) arises from the uncon-

tracted vectors y and ỹ in the DPDs (2.10) for transversely polarized partons: it is hence

this polarization which enables a dependence of the cross section on the azimuthal angle

of the produced lepton.

The transverse distance y is integrated over in (3.3) and hence not measurable. The

y integration is nontrivial because the DPDs depend on the azimuthal angles between y

and z1 and z2, whose directions are in turn correlated with those of q1 and q2 through the

exponential e−iz1q1−iz2q2 . The integral over y, z1 and z2 in the cross section thus turns the

ϕy dependence into a dependence on the azimuthal angles of the transverse momenta q1 and

q2. All together we thus see that a correlation between y and the transverse polarization of

parton 2 in the DPDs leads to an azimuthal correlation between the lepton from interaction

2 and both transverse vector boson momenta. This is similar (but not identical) to single

Drell-Yan production, where a correlation between the transverse polarization of a parton

and its transverse momentum induces an azimuthal correlation between the momenta of

the vector boson and its decay lepton [64].

We finally turn to the case where both vector bosons are produced from transversely

polarized quarks. The corresponding contribution to the cross section is

dσ(2)

∏2
i=1 dxi dx̄i d

2qi dΩi

=
1

C
2 sin2 θ1 sin2 θ2

∑

q1q2

∫

d2z1

(2π)2
d2z2

(2π)2
e−iz1q1−iz2q2

∫

d2y

×
{

[

cos 2(ϕ1 − ϕ2) (Kδq1δq̄1Kδq2δq̄2 +K ′
δq1δq̄1K

′
δq2δq̄2)

− sin 2(ϕ1 − ϕ2) (K
′
δq1δq̄1Kδq2δq̄2 −Kδq1δq̄1K

′
δq2δq̄2)

]

× (fδq1δq2 f̄δq̄1δq̄2 − y4M4gaδq1δq2 ḡ
a
δq̄1δq̄2)

+
[

sin 2(ϕ1 − ϕ2) (Kδq1δq̄1Kδq2δq̄2 +K ′
δq1δq̄1K

′
δq2δq̄2)

+ cos 2(ϕ1 − ϕ2) (K
′
δq1δq̄1Kδq2δq̄2 −Kδq1δq̄1K

′
δq2δq̄2)

]

× y2M2 (fδq1δq2 ḡ
a
δq̄1δq̄2 + gaδq1δq2 f̄δq̄1δq̄2)

+
[

cos 2(ϕ1 + ϕ2 − 2ϕy) (Kδq1δq̄1Kδq2δq̄2 −K ′
δq1δq̄1K

′
δq2δq̄2)

− sin 2(ϕ1 + ϕ2 − 2ϕy) (K
′
δq1δq̄1Kδq2δq̄2 +Kδq1δq̄1K

′
δq2δq̄2)

]

× y4M4 (f t
δq1δq2 f̄

t
δq̄1δq̄2 − gsδq1δq2 ḡ

s
δq̄1δq̄2)

−
[

sin 2(ϕ1 + ϕ2 − 2ϕy) (Kδq1δq̄1Kδq2δq̄2 −K ′
δq1δq̄1K

′
δq2δq̄2)

+ cos 2(ϕ1 + ϕ2 − 2ϕy) (K
′
δq1δq̄1Kδq2δq̄2 +Kδq1δq̄1K

′
δq2δq̄2)

]

× y4M4 (f t
δq1δq2 ḡ

s
δq̄1δq̄2 + gsδq1δq2 f̄

t
δq̄1δq̄2)

}

+ {flavor interference}+ {qq̄ permutations} (3.4)
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and depends on the azimuthal angles ϕ1, ϕ2 and ϕy in addition to the polar angles θ1 and

θ2. The flavor interference and qq̄ permutation terms are again obtained as in (3.2).

The terms depending on ϕ1−ϕ2 describe a transverse correlation between the leptonic

decay planes of the vector bosons. By contrast, the terms with ϕ1 + ϕ2 − 2ϕy describe

an azimuthal correlation between the lepton momenta and the direction between the hard

interactions, which after integration over y, z1 and z2 turns into an azimuthal correlation

between the lepton momenta and the momenta of the two bosons.

3.1 Cross section integrated over transverse boson momenta

Integration over the transverse momenta of the two vector bosons yields cross sections ex-

pressed in terms of collinear double parton distributions F (x1, x2,y). Their spin structure

is as in (2.9) to (2.11) but without pseudoscalar functions g, because one cannot construct

a pseudoscalar with only one vector y.

Upon integration over q1 and q2, the cross section (3.1) for W pair production becomes

dσWW

∏2
i=1 dxi dx̄i dΩi

=
1

C

∑

q1q2q3q4

Kq1q̄3Kq2q̄4

×
{

(1 + cos θ1)
2 (1 + cos θ2)

2

∫

d2y (fq1q2 + f∆q1∆q2)(f̄q̄3q̄4 + f̄∆q̄3∆q̄4)

+ (1 + cos θ1)
2 (1− cos θ2)

2

∫

d2y (fq1q̄4 − f∆q1∆q̄4)(f̄q̄3q2 − f̄∆q̄3∆q2)

+ (1− cos θ1)
2 (1 + cos θ2)

2

∫

d2y (fq̄3q2 − f∆q̄3∆q2)(f̄q1q̄4 − f̄∆q1∆q̄4)

+ (1− cos θ1)
2 (1− cos θ2)

2

∫

d2y (fq̄3q̄4 + f∆q̄3∆q̄4)(f̄q1q2 + f̄∆q1∆q2)

}

+ {flavor interference} , (3.5)

where the arguments of the distributions are f(x1, x2,y) and f̄(x̄1, x̄2,y). In the general

case we have a contribution

dσ(0)

∏2
i=1 dxi dx̄i dΩi

=
1

C

∑

q1q2q3q4

×
{

[

(1 + cos2 θ1)Kq1q̄3 + 2cos θ1K
′
q1q̄3

] [

(1 + cos2 θ2)Kq2q̄4 + 2cos θ2K
′
q2q̄4

]

×
∫

d2y (fq1q2 f̄q̄3q̄4 + f∆q1∆q2 f̄∆q̄3∆q̄4)

+
[

(1 + cos2 θ1)Kq1∆q̄3 + 2cos θ1 K
′
q1∆q̄3

] [

(1 + cos2 θ2)Kq2∆q̄4 + 2cos θ2K
′
q2∆q̄4

]

×
∫

d2y (fq1q2 f̄∆q̄3∆q̄4 + f∆q1∆q2 f̄q̄3q̄4)

}

+ {flavor interference}+ {qq̄ permutations} (3.6)
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from unpolarized and longitudinally polarized partons. The contribution with transverse

quark polarization in one of the two hard interactions now vanishes,

dσ(1)

∏2
i=1 dxi dx̄i dΩi

= 0 . (3.7)

This is because integration of (3.3) over q1 and q2 sets z1 = z2 = 0, after which the y

integral gives zero due to the azimuthal dependence on ϕy. By contrast, the contribution

with transverse quark polarization in both hard interactions remains nonzero,

dσ(2)

∏2
i=1 dxi dx̄i dΩi

=
1

C
2 sin2 θ1 sin2 θ2

∑

q1q2

×
{

[

cos 2(ϕ1 − ϕ2) (Kδq1δq̄1Kδq2δq̄2 +K ′
δq1δq̄1K

′
δq2δq̄2)

− sin 2(ϕ1 − ϕ2) (K
′
δq1δq̄1Kδq2δq̄2 −Kδq1δq̄1K

′
δq2δq̄2)

]

∫

d2y fδq1δq2 f̄δq̄1δq̄2

}

+ {flavor interference}+ {qq̄ permutations} . (3.8)

According to (2.11) the distribution fδq1δq2 describes the correlation between the directions

of the transverse polarizations of two quarks in the proton. This correlation and its coun-

terpart for antiquarks induce a correlation between the leptonic decay planes of the vector

bosons, even if their transverse momenta are integrated over. Only if one integrates over

the azimuthal angle of at least one of the leptons does the contribution from transverse

quark polarization completely disappear from the cross section.

The cross section of the double Drell-Yan process with two photons was calculated

in [46], integrated over the transverse boson momenta and over the angles of the decay

leptons. The expression in equation (9) of [46] agrees with our result (3.6) (up to the

combinatorial factor 1/C, which was omitted in [46]).

4 Transverse position dependence of distributions

So far we have focused on spin correlations in DPDs and their consequences for the double

Drell-Yan cross section. Even for unpolarized partons, however, there can be correlations

between two partons in the proton, namely correlations affecting the dependence of DPDs

on the transverse variables y, z1 and z2 and the interplay between these variables and the

longitudinal momentum fractions.

In the present section we take a brief look at this issue by using a simple model in

which the proton is described by a three-quark wave function. This is clearly too simple

to describe the physics of small momentum fractions most relevant at the LHC, although

it may actually be used for modeling quark DPDs at momentum fractions in the valence

region. We proceed with this model in the spirit of an exploratory study.

Our model ansatz for the three-quark light-cone wave function of the proton is

Ψ(xi, bi − b) = Φ(xi) exp

[

− 1

4a2

3
∑

i=1

xi(bi − b)2
]

, (4.1)
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where a is parameter of dimension length, b = x1b1+x2b2+x3b3 is the transverse position of

the proton, and x1+x2+x3 = 1. The corresponding wave function depending on transverse

momenta is a Gaussian with exponent −a2
∑

i k
2
i /xi, which was long ago proposed in [65]

and is often used for the phenomenology of valence dominated quantities, see e.g. [66]. The

relation between the light-cone wave functions in transverse momentum and transverse

position representation can be found in [67]. We do not specify the longitudinal part Φ(xi)

of the wave function nor its spin-flavor dependence here, since the focus of our study is on

the transverse variables.

From the light-cone wave function (4.1) one can compute the contribution of the three-

quark Fock state to the DPD of two quarks in the proton, in full analogy to the well-known

case of single-parton distributions (discussed e.g. in [67]). Up to a factor depending only

on the longitudinal momentum fractions xi, the DPD is given by

F (xi,zi,y) ∝ exp

[

− 1

8a2

{

x1(1− x1)z
2
1 − 2x1x2z1z2 + x2(1− x2)z

2
2 +

4x1x2
x1 + x2

y2

}]

×
∫

d2b exp

[

− 1

2a2
x1 + x2

1− x1 − x2

(

b+
x1

x1 + x2
y
)2

]

, (4.2)

where b is the transverse position of the proton, averaged over the scattering amplitude

and its conjugate as specified in [40]. The second line in (4.2) just gives an xi dependent

factor after integration over b.

Inserting (4.2) into the cross section formula (2.1) and performing the integrals over

all transverse positions, one obtains a cross section for double hard scattering that depends

on the transverse boson momenta as

exp

{

−a2
[

q21 C11(xi, x̄i) + 2q1q2 C12(xi, x̄i) + q2
2C22(xi, x̄i)

]

}

(4.3)

with dimensionless functions Cij of the momentum fractions x1, x2 and x̄1, x̄2, which are

somewhat lengthy and will not be given here. The expression in square brackets is positive

definite, so that the transverse momentum dependence has a Gaussian falloff at large

transverse momenta. The coefficient C12 describing the correlation between q1 and q2 is

positive as well, so that one finds a preference for the two vector bosons to have opposite

transverse momenta. We see that even with the simple wave function ansatz (4.1) the

dependence of the cross section on the transverse momenta of the gauge bosons is not

independent of their longitudinal momenta.

An ansatz often made in phenomenology is to neglect correlations between partons

and to write a collinear DPD as the convolution of two single-parton distributions that

depend on the momentum fraction and the transverse position of the parton. This ansatz

can be extended to include zi dependent DPDs and then reads

F (xi,zi,y) ≈
∫

d2b f
(

x2,z2; b+
1
2x1z1

)

f
(

x1,z1; b+ y − 1
2x2z2

)

. (4.4)

The second argument of the single-parton distribution f is Fourier conjugate to the trans-

verse quark momentum and the third argument gives the transverse position of the proton
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with respect to the quark, both averaged over the scattering amplitude and its conjugate.

The shift of this argument by 1
2x1z1 or −1

2x2z2 is a consequence of Lorentz invariance

as explained in [39]. Evaluating the single-parton distributions for the light-cone wave

function (4.1) one obtains

F (xi,zi,y) ∝
∫

d2b exp

[

− 1

8a2
x2

1− x2

{

(1− x2)
2z2

2 + (2b + x1z1)
2
}

]

× exp

[

− 1

8a2
x1

1− x1

{

(1− x1)
2z2

1 + (2b+ 2y − x2z2)
2
}

]

∝ exp

[

− 1

8a2

{

x1(1− x1)z
2
1 + x2(1− x2)z

2
2

+
x1x2

x1(1 − x2) + (1− x1)x2

(

2y − x1z1 − x2z2

)2
}]

(4.5)

for the transverse dependence of the DPD. This is visibly different from the result (4.2)

of the direct calculation. Although the ansatz (4.4) involves the convolution of two single-

parton distributions, thus suggesting that the two partons are distributed independently,

it induces correlations between transverse and longitudinal variables in F (xi,zi,y).

Inserting the form (4.5) into the cross section formula one obtains again a Gaussian

behavior as in (4.3), but with different coefficients Cij. In particular, the sign of C12 is then

equal to the sign of (x1 − x̄1)(x2 − x̄2), so that depending on the longitudinal momentum

fractions the transverse boson momenta tend to be in the same hemisphere or in opposite

ones. This difference in qualitative behavior shows that the ansatz (4.4) must be used with

great care when one is interested in correlation effects.

Setting z1 = z2 = 0 in (4.2) and (4.5) gives collinear DPDs with a Gaussian depen-

dence on y. The Gaussian width depends on x1 and x2 and differs in the two cases,

F (xi,y)
∣

∣

∣

(4.2)
∝ exp

[

− 1

2a2
x1x2

x1 + x2
y2

]

,

F (xi,y)
∣

∣

∣

(4.5)
∝ exp

[

− 1

2a2
x1x2

x1 + x2 − 2x1x2
y2

]

. (4.6)

We see that, within our model, the ansatz (4.4) does not reproduce the interplay between

y and the momentum fractions. It does, however, provide a valid approximation unless x1
and x2 are both rather large.

5 Summary

Multiple hard interactions in pp collisions can yield substantial contributions to the pro-

duction of final states with high multiplicity in parts of phase space. In this paper we have

shown how spin correlations between two partons in the proton affect the rate and the

angular distribution of the final state in the production of four leptons via two electroweak

gauge bosons. We considered both the case where the transverse momenta of the bosons

are small (using transverse-momentum dependent factorization) and the case where they

are integrated over (using collinear factorization).
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We find that longitudinal spin correlations between the quarks or antiquarks in the pro-

ton affect the rate of double parton scattering, and in the presence of axial-vector currents

also the polar distribution of the produced leptons. Correlations involving transversely po-

larized quarks or antiquarks induce azimuthal correlations between the final state leptons.

A part of these correlations persists if the transverse momenta of the gauge bosons are

integrated over. Having two “independent” hard interactions in double parton scattering

does hence not imply that the final states produced by the two interactions are independent

of each other.

How large parton spin correlations inside a proton actually are remains an open ques-

tion that deserves further study. This also holds for possible correlations between the

transverse distribution and the longitudinal momentum fractions of the partons. We find

several such correlations in a simple model with a three-quark wave function. Within this

model we also find that the often used ansatz to represent double parton distributions as

convolutions of single-parton distributions is inadequate to describe details of the kinematic

dependence in double parton scattering.

Double Drell-Yan production involves a particularly simple hard-scattering subprocess

but nevertheless exhibits a rich pattern of angular effects induced by parton spin correla-

tions. It is natural to expect that other processes, in particular those involving multijets,

will share this feature. We note that the cross section dependence on angles between the

final-state particles implies a dependence on the invariant mass of particle pairs, which is

an important quantity in searches for new physics. An estimate of the possible size of such

effects would therefore be of great value.
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A Coupling Factors

In this appendix we list the coupling factors K and K ′ appearing in the double Drell-Yan

cross section. Further relations between these factors are given in section 2.3.

A.1 Charged vector bosons

For W+ production one has

Kqiq̄j =
α2

4Nc

|Vqiqj |2
(2 sin θw)4

Q2
i

(Q2
i −m2

W )2 +m2
WΓ2

W

, (eqi − eqj = 1) , (A.1)

and for W− production

Kqiq̄j =
α2

4Nc

|Vqjqi |2
(2 sin θw)4

Q2
i

(Q2
i −m2

W )2 +m2
WΓ2

W

, (eqi − eqj = −1) . (A.2)

Here Nc = 3 is the number of colors, Vqiqj a CKM matrix element, θw the weak mixing

angle, α the electromagnetic fine structure constant, and eqi the charge of quark qi in units

of the positron charge.

– 19 –



A.2 Neutral vector bosons

For a lepton pair ℓ+ℓ− produced via a γ∗, Z or their interference, one has coupling factors

Kqiq̄j =
α2

4Nc

{

eqieqj
Q2

i

−A(Qi) g
V
ℓ (eqig

V
qj + eqjg

V
qi )− iB(Qi) g

V
ℓ (eqig

V
qj − eqjg

V
qi )

+ C(Qi)
[

(gVℓ )
2 + (gAℓ )

2
]

(gVqig
V
qj + gAqjg

A
qi)

}

,

K ′
qiq̄j =

α2

4Nc

{

−A(Qi) g
A
ℓ (eqig

A
qj + eqjg

A
qi)− iB(Qi) g

A
ℓ (eqig

A
qj − eqjg

A
qi)

+ C(Qi) 2g
V
ℓ g

A
ℓ (g

V
qig

A
qj + gVqjg

A
qi)

}

,

Kqi∆q̄j =
α2

4Nc

{

−A(Qi) g
V
ℓ (eqig

A
qj + eqjg

A
qi)− iB(Qi) g

V
ℓ (eqig

A
qj − eqjg

A
qi)

+ C(Qi)
[

(gVℓ )
2 + (gAℓ )

2
]

(gVqig
A
qj + gVqjg

A
qi)

}

,

K ′
qi∆q̄j =

α2

4Nc

{

−A(Qi) g
A
ℓ (eqig

V
qj + eqjg

V
qi )− iB(Qi) g

A
ℓ (eqig

V
qj − eqjg

V
qi )

+ C(Qi) 2g
V
ℓ g

A
ℓ (g

V
qig

V
qj + gAqjg

A
qi)

}

(A.3)

and

Kδqiδq̄j =
α2

4Nc

{

eqieqj
Q2

i

−A(Qi) g
V
ℓ (eqig

V
qj + eqjg

V
qi )− iB(Qi) g

V
ℓ (eqig

V
qj − eqjg

V
qi )

+ C(Qi)
[

(gVℓ )
2 + (gAℓ )

2
]

(gVqig
V
qj − gAqjg

A
qi)

}

,

K ′
δqiδq̄j =

α2

4Nc

{

−B(Qi) g
V
ℓ (eqig

A
qj + eqjg

A
qi) + iA(Qi) g

V
ℓ (eqig

A
qj − eqjg

A
qi)

− iC(Qi)
[

(gVℓ )
2 + (gAℓ )

2
]

(gVqig
A
qj − gVqjg

A
qi)

}

. (A.4)

Here we have used the conventional vector and axial fermion couplings to the Z boson,

gVf = I3f − 2ef sin
2 θw , gAf = I3f , (A.5)

where I3f is the third component of the weak isospin of the left handed fermion f and ef
its charge in units of positron charge. Since we do not consider Z decays to neutrinos, ℓ is

always a negatively charged lepton. We have furthermore used the abbreviations

A(Qi) =
1

sin2 2θw

Q2
i −m2

Z

(Q2
i −m2

Z)
2 +m2

ZΓ
2
Z

, B(Qi) =
1

sin2 2θw

mZΓZ

(Q2
i −m2

Z)
2 +m2

ZΓ
2
Z

,

C(Qi) =
1

sin4 2θw

Q2
i

(Q2
i −m2

Z)
2 +m2

ZΓ
2
Z

. (A.6)

For the usual hard-scattering cross sections one has equal flavors qi = qj in the above

coupling factors and finds that their imaginary parts are zero. This is not the case for the

coupling factors describing flavor interference, where qi 6= qj.
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[34] R. Corke and T. Sjöstrand, JHEP 1105 (2011) 009 [arXiv:1101.5953].

[35] P. Bartalini et al., Proceedings of MPI 08, Perugia, Italy, October 27–31, 2008

[arXiv:1003.4220].

[36] P. Bartalini et al., arXiv:1111.0469.

[37] B. Blok, Yu. Dokshitzer, L. Frankfurt and M. Strikman, Phys. Rev. D83 (2011) 071501

[arXiv:1009.2714].

[38] B. Blok, Y. .Dokshitser, L. Frankfurt and M. Strikman, Eur. Phys. J. C 72 (2012) 1963

[arXiv:1106.5533].
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[40] M. Diehl, D. Ostermeier and A. Schäfer, JHEP 1203 (2012) 089 [arXiv:1111.0910].

[41] J. Bartels and M. G. Ryskin, arXiv:1105.1638.

[42] M. G. Ryskin and A. M. Snigirev, Phys. Rev. D83 (2011) 114047 [arXiv:1103.3495].

[43] M. G. Ryskin and A. M. Snigirev, Phys. Rev. D 86 (2012) 014018 [arXiv:1203.2330].

[44] J. R. Gaunt and W. J. Stirling, JHEP 1106 (2011) 048 [arXiv:1103.1888].

[45] J. R. Gaunt, arXiv:1207.0480.

[46] A. V. Manohar and W. J. Waalewijn, Phys. Rev. D 85 (2012) 114009 [arXiv:1202.3794].

[47] A. V. Manohar and W. J. Waalewijn, Phys. Lett. B 713 (2012) 196 [arXiv:1202.5034].

[48] G. Calucci and D. Treleani, Phys. Rev. D57 (1998) 503 [hep-ph/9707389].

[49] G. Calucci and D. Treleani, Phys. Rev. D60 (1999) 054023 [hep-ph/9902479].

[50] A. Del Fabbro and D. Treleani, Phys. Rev. D 63 (2001) 057901 [hep-ph/0005273].

[51] T. C. Rogers and M. Strikman, Phys. Rev. D81 (2010) 016013 [arXiv:0908.0251].
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