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2I. INTRODUCTIONThe Higgs-Yukawa setor of the Standard Model (SM) desribes the generation of fermion masses via the non-vanishingvauum expetation value (vev) aquired by the Higgs �eld whih ouples through a Yukawa oupling to the fermions.The essential element in this piture is that the oupling of the fermions to the Higgs �eld is hirally invariant whihleads to the gauge invariant eletroweak setor of the SM in the presene of gauge �elds.There are two ouplings in the Higgs-Yukawa setor. They are assoiated with the Yukawa and the quarti salar self-interation operators. These ouplings are diretly related to the fermion and the Higgs boson masses, respetively.In the senario that these masses are large, the orresponding ouplings grow strong, and it beomes unlear whetherthe theory an be analysed using perturbation theory or whether non-perturbative methods must be employed. Thereare indeed examples where the appliability of perturbation theory is questionable. The �rst is the upper Higgsboson mass bound whih is based on triviality arguments [1℄. Here the Higgs boson mass an beome large, resultingin a strong value of the quarti oupling suh that perturbation theory may not work anymore. The seond is thelower Higgs boson mass bound whih is based on vauum instability arguments [2{5℄. Here it is unlear whether thisinstability is not an artefat of perturbation theory applied at large values of the Higgs �eld suh that an expansionaround the minimum of the e�etive potential is not justi�ed anymore.It is important to stress that both the lower and the upper Higgs boson mass bounds are intrinsially related to theut-o� of the theory. Thus, a alulation of the Higgs boson mass bounds an in turn be used to determine the ut-o�up to whih the SM is valid, one the SM Higgs boson mass has been determined. If, for example, the reent resultfor a salar partile at the Large Hadron Collider (LHC) [6, 7℄ is on�rmed as a SM Higgs boson with a mass of about125 GeV, the SM ould be valid up to very high energies before violating the Higgs boson mass bounds, see Ref. [8℄for a reent analysis at next-to-next leading order of perturbation theory.Another example where non-perturbative alulations are neessary is the possibility of a heavy fourth fermion gener-ation [9, 10℄ whih would lead to a large value of the orresponding Yukawa oupling. Besides these onrete examples,it is oneptually very important to study the Higgs-Yukawa setor in a non-perturbative manner sine questions suhas the phase struture of the model, or the spontaneous breaking of the SU(2) 
 SU(2) symmetry whih underliesthe Higgs mehanism are of intrinsially non-perturbative nature.The need for a non-perturbative investigation of the Higgs-Yukawa setor of the SM has been realised already in theearly 1990's. A natural hoie of a non-perturbative tool is, of ourse, Eulidean lattie �eld theory. However, inthese early studies, the lattie formulations of the Higgs-Yukawa setor were laking a hirally symmetri form of theYukawa oupling term. The absene of a hirally invariant Yukawa oupling term in the Lagrangian led to severediÆulties in studying Higgs-Yukawa model on the lattie, see Refs. [11{17℄ and referenes therein.The situation hanged however, when it was realised that {based on the Ginsparg-Wilson relation [18℄{ there exists aonsistent formulation of an exat lattie hiral symmetry [19℄, whih allows the hiral harater of the Higgs-fermionoupling struture of the SM to be preserved on the lattie in a oneptually fully ontrolled manner. This triggereda number of lattie investigations of Higgs-Yukawa like models [20{28℄.In this artile, we report on the status of the lattie Higgs-Yukawa model using a lattie formulation that obeys anexat lattie hiral symmetry as will be explained in Se. II. In Se. III we will provide results for the lower and upperHiggs boson mass bounds as well as the resonane parameters of the Higgs boson [26{29℄. We also extend the studyof the Higgs boson mass bounds to the ase of a fourth quark generation [30℄. This alulation will result in rathersevere onstraints on the existene of a fourth fermion generation.This artile is organised as the following. In Se. II, we desribe the setting of our lattie simulations. Setion IIIontains results of our work on the Higgs boson mass bounds in the Higgs-Yukawa model. In partiular, we haveinvestigated the e�ets of the fermion mass on these bounds. In Se. IV, we present our study of the phase struture ofthe model. These inlude the bulk phase transitions at small values of the bare Yukawa oupling [23, 24℄, as well as inthe regime of strong-Yukawa oupling [31℄. We also show results and the status of our work on the �nite-temperaturephase struture in Se. IVD. Finally, we onlude in Se. V.All statistial errors we quote in this artile were obtained with a jakknife or bootstrap analysis, taking possiblee�ets of autoorrelations fully into aount. Statistial errors of the results presented in Se. IVC have also beenross-heked using the method in Ref. [32℄.



3II. LATTICE SETTING AND SIMULATION STRATEGYA. The ationThe Eulidean ation of the ontinuum Higgs-Yukawa model ontaining one doublet of fermions, denoted as t() andb(), and a omplex salar doublet, '(), isSont[ � ();  (); '()℄ = Z d4x�12 ���'()�y ���'()�+ 12m20'()y'() + �04 �'()y'()�2�+ Z d4xnt()=�t() + b()=�b() + yb0 ()L '() b()R + yt0 ()L ~'() t()R + h::o ; (1)where ~'() = i�2'() (�i are the Pauli matries); ()L = P� () = P�� t()b() � = �1� 52 �� t()b() � ;t()R = P+t() = �1 + 52 � t(); and similar for b()R :In the above equation, m0 is the bare mass, �0 labels the bare quarti oupling, and yt0=b0 denote the bare Yukawaouplings. The supersript, (), in the salar and spinor �elds indiates that these are dimensionful variables de�nedin the ontinuum. Here we stress that gauge �elds are not inluded in our study, and we perform alulations for onlyone doublet of fermions throughout this work. Moreover, if not stated otherwise, the Yukawa ouplings yt0 and yb0are set equal.It is straightforward to disretise the pure-salar omponent of the above ation to obtainSlatt� = 4X�=1(�Xx;� ��x��x+�̂ +Xx �12(8 + �m20)��x��x + �04 (��x��x)2�) ; (2)where x is a site on the spae-time lattie. The symbol �̂ denotes the unit vetor in the spae-time diretion �. Themass parameter, �m0 = am0 with a being the lattie spaing, is dimensionless. The real-valued �eld variables, f��xg,are rendered dimensionless by a proper resaling with a, and are de�ned on all lattie sites. These �eld variables arerelated to the disretised version of the omplex salar doublet, '(), in Eq. (1) througha'(latt) = � �2 + i�1�4 � i�3 � : (3)It is onvenient to rewrite the salar ation in Eq. (2) asSlatt� = 4X�=1(�2�Xx;� ��x��x+�̂ +Xx h��x��x + �̂ (��x��x � 1)2i) ; (4)with the hange of variables, �� = p2���; �0 = �̂�2 ; �m20 = 1� 2�̂� 8�� : (5)For the fermions we use the ationSlattf =Xx � x hDov + P+��x�y�diag(ŷt; ŷb)P̂+ + P�diag(ŷt; ŷb)��x��P̂�i x; (6)where ŷt=b = p2�yt0=b0 , and �1;2;3 = �i�1;2;3; �4 = 12�2 ; (7)



4where a summation over � is understood. The dimensionless spinor �eld  is, = a 32 � t(latt)b(latt) � ; (8)with t(latt) and b(latt) being the lattie version of t() and b(). For the fermion kineti term, we use the overlapoperator [33{35℄, Dov = ��1 + ApAyA� ; A = DW � �; (9)where � is a free, dimensionless parameter, restrited to 0 < � < 2r. The loality properties of the overlap operatorare optimal for � = 1 in the ase of vanishing gauge ouplings [35℄, and therefore we set it to this value in this work.The operator DW denotes the Wilson Dira operator de�ned asDW =X� �rs� � r2rb�rf�; (10)where rf;b;s� are the (respetively) forward, bakward and symmetrised lattie nearest-neighbour di�erene operatorsin diretion �, and the Wilson parameter r is hosen to be r = 1. The modi�ed hiral projetors are given by:P̂� = 1� ̂52 ; ̂5 = 5�1� 1�Dov� : (11)This ation now obeys an exat global SU(2)L�U(1)Y (with Y being the hyper-harge) lattie hiral symmetry withthe transformations: ! UY P̂+ + UY 
LP̂� ; � ! � P+
yLUyY + � P�U yY ; �! UY �
yL; �y ! 
L�yUyY ; (12)for any 
L 2 SU(2)L and UY 2 U(1)Y . B. ImplementationThe ations in Eqs. (4) and (6) are used in our numerial simulations. We perform alulations on asymmetri4-dimensional lattie volumes V4 = L3s � Lt; (13)where Ls and Lt are dimensionless spatial and temporal lattie sizes, respetively. In all our zero-temperatureomputations, we hoose Lt = 2Ls = 2L; (14)with L typially ranging from 8 to 32. We stress that it is essential to perform omputations for the Higgs-Yukawamodels on large volumes. This is beause the Goldstone bosons are (almost) massless and indue signi�ant �nite-sizee�ets proportional to L�2, in ontrast to the exponential e�ets known for a single-partile spetrum and matrixelements for theories suh as QCD with massive quarks. Figure 1 shows some examples of �nite-volume e�ets thatare present in quantities investigated in this work. It is lear from these plots that �nite volume e�ets an be verylarge in the alulation of the Higgs boson mass, while they may be mild in other quantities.
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0.2FIG. 1: Finite volume e�ets in the magnetisation as de�ned in Eqs. (15) and (16) (left), the fermion mass (middle), and theHiggs boson mass (right) at a ut-o� around 1:5TeV. The data are obtained at in�nite bare salar-quarti oupling, �̂, andfermion masses in the range mf � 200 � 700GeV. The lattie sizes used are L = Ls = 12; 16; 20; 24; 32. We show linear (solidlines) and quadrati (dotted lines) �ts in 1=L2.We implement the polynomial Hybrid Monte Carlo (pHMC) algorithm [36{38℄, with various improvements (seeRef. [39℄ for a summary), to perform non-perturbative alulations of the path integral. When ompared to simulationsin QCD using overlap fermions [40℄, it is the absene of gauge �elds that makes the appliation of the overlap operatornumerially feasible even on large latties, as it is diagonal in momentum spae.C. Basi observablesAs desribed in Se. II A, our simulations are performed using only dimensionless variables in the ation. This isahieved by resaling all the dimensionful quantities with appropriate powers of the lattie spaing, a. Therefore, tomake onnetion to the real world and to have basi understanding of the spetrum of the theory, it is essential todetermine the lattie spaing. This is normally arried out by omputing the vev of the salar �eld, and then settingit to the value of 246GeV. Before we desribe the details of this proedure, it should be notied that the salar vevis always zero in a �nite system. In priniple, one would have to introdue an external soure that ouples to thesalar �eld and breaks the O(4) symmetry expliitly, and perform the in�nite-volume extrapolation for every quantityomputed on the lattie, before taking the soure to zero. However, this proedure is numerially very demanding,and we resort to an alternative method in whih we \rotate" the omplex salar doublet in every �eld on�guration,suh that its ensemble average is given by h�̂roti = � 0v � ; v = p2�hmi; (15)with m = 1V4 Xx  X� j��x j2!1=2 (16)de�ned on eah on�guration. It an be shown that the magnetisation, hmi, is equivalent to the salar vev in thein�nite-volume limit [41{43℄.The renormalised salar vev is given by vr = vpZG ; (17)where ZG is the Goldstone-boson wavefuntion renormalisation onstant. This renormalisation onstant, and theHiggs-�eld wavefuntion renormalisation onstant ZH , an be extrated from the momentum-spae Eulidean prop-



6agators of the orresponding bosons [26, 28℄,GG=H(p2) = 1L2t � L6s Xtx;tyX~x;~y ei~p�(~x�~y)+ip4(tx�ty) DOG=H(~x; tx) OyG=H(~y; ty)Ep2�1�! ZG=Hp2 +m2G=H ; (18)with OG=H being the Goldstone and Higgs �elds, respetively, and all the masses and momenta are in lattie units.Through the investigation of the momentum dependene of the Goldstone boson propagator, ZG an be determined.This proedure an be improved by performing alulations in one-loop lattie perturbation theory and obtaining thepropagators to this order[44℄. The lattie spaing, whih is related to the inverse of the ut-o� sale, �, an now beobtained in natural units with, a = ��1; � = 246GeVvr : (19)The masses of the bosons are given by the pole of the Eulidean propagators in Eq. (18). They an also be extratedfrom the time dependene of the Eulidean orrelators with zero spatial momentum [26, 28℄,CG=H(�t) = 1Lt � L6s Xt X~x;~y DOG=H(~x; t+�t) OyG=H(~y; t)E�t�1�! AG=H exp��mG=HLt2 � osh�mG=H �Lt2 ��t�� (20)where AG=H are onstants that are proportional to ZG=H . This formula is valid when periodi boundary onditionsare imposed. Here we stress that this method is appliable only when the ground state is the target single-partilestate. Therefore, one has to be autious when studying the Higgs boson, sine it may deay into even number ofGoldstone bosons. The unstable nature of the Higgs boson and the alulation of its resonane parameters will bedisussed in more detail in Se. III A.Finally, to ompute the masses of the fermions, we resort to the orrelator [26, 28℄Cf (�t) = 1Lt � L6s Xt X~x;~y DTrnP̂� (t+�t; ~x) � � (t; ~y)P�oE ; (21)where the trae is over the spinor indies. By studying the time dependene of this orrelator,Cf (�t� 1) / exp��mfLt2 � osh�mf �Lt2 ��t�� ; (22)the fermion mass an be extrated. III. BOUNDS ON THE HIGGS MASSThe lattie tehniques desribed in the last setion an be applied to the alulation of Higgs boson mass bounds [28,30℄. In what follows, we study the model in the broken phase, i.e. where the vev of the salar �eld is non-zero.The Higgs boson mass is bounded from above by the triviality argument, whih reets the Gaussian nature of the�xed point of the theory. This bound is not universal and depends logarithmially on the UV ut-o� of the theory.Indeed variations in the triviality bound between di�erent lattie regularisations have been observed in the pure �4theory [45℄.



7There is also an argument from perturbation theory that the Higgs boson mass is bounded from below by a vauum-stability requirement. The piture for the lower bound in perturbation theory arises by examining the e�etivepotential. As the fermion �elds ontribute negatively to the e�etive potential, they have a destabilising e�et. Bydemanding the stability of the theory, this leads then to lower Higgs boson mass bounds. However, it is known thatthe perturbative expansion breaks down for Yukawa ouplings near or less than the tree level unitarity bound [46℄,whih is roughly 500 to 600GeV [47, 48℄. In addition, the perturbative instability ours at large values of the salar�eld where an expansion around the minimum of the e�etive potential may not be trustworthy. Therefore it isdesirable to have a non-perturbative alulation.Although also the lower Higgs boson bound is non-universal, it is expeted that it shows a muh milder dependene one�ets of the regularisation employed sine a typial ratio �=mH is of O(10) for the lower bound, while �=mH � 0:5for the upper bound. In the light of the reent disovery of a salar partile at the LHC, the lower bound beomesvery interesting: if this salar partile will turn out to be the Higgs boson, the lower mass bound an be used toestimate the breakdown sale of the SM, i.e. the sale where new physis must enter to preserve the stability of thetheory.In this work, we ompute the upper and lower bounds of the Higgs boson mass from non-perturbative, diret alu-lations using lattie �eld theory without relying on assumptions suh as triviality or vauum instability. From thestudy of the pure �4 theory, it is known [49{52℄ that the Higgs boson mass is a monotonially inreasing funtionof the quarti oupling � at �xed lattie spaing. This feature has been demonstrated to be present also in theHiggs-Yukawa theory [27℄ at �xed value of mf . Therefore, in this work the lower bounds for partiular values of mfand � are determined at �̂ = 0, while the upper bounds are obtained at �̂ =1.A. Calulating the Higgs boson massAs pointed out in Se. II C, alulating the mass of the Higgs boson is hallenging beause of its unstable nature, as itdeays into even numbers of Goldstone bosons. Extrating the masses and the widths of unstable states in lattie �eldtheory is subtle, beause the theory is formulated in Eulidean spae. It is further ompliated by the quantisationof spatial momenta in �nite volume, sine the kinematis may prevent a resonane state from deaying. Therefore, astate whih is unstable in in�nite volume an remain a stable eigenstate in �nite volume.However, below the inelasti threshold, the in�nite-volume phase shift of two-partile sattering an be determinedvia the investigation of �nite-size e�ets in the energy spetrum [53℄. Suh �nite-volume tehniques for studyingsattering states, albeit very hallenging to implement in pratie, an be used to extrat resonane masses andwidths in Eulidean quantum �eld theory [54℄.In this work, we �rst ompute the mass of the Higgs boson by assuming that its width is zero, therefore it is a stablepartile in �nite volume. To hek this assumption, we will later use the above-mentioned �nite-volume method toobtain results of the Higgs boson width, and on�rm that the widths is in fat small thus not a�eting the resultsassuming a stable Higgs boson. Under the zero width assumption, we extrat the Higgs boson mass using the twoapproahes desribed in Se. II C. Namely, we study the propagator in Eq. (18), and the orrelator in Eq. (20). Wethen extrat the Higgs boson mass by a �t of the propagator to a perturbation theory inspired formula [26, 28℄ andby a �t to an exponential form of the orrelator of Eq. (20). The Higgs boson mass obtained in these two proeduresare denoted mpH and mH , respetively. An example of the two methods for determining mH is illustrated in Fig. 2.We extrat the �tted values mpH and mH whih agree within one standard deviation and both �ts provide a suitabledesription of the data. The plots in this �gure are for mf = 195GeV. We note that we observe similar agreementbetween mpH and mH for all our hoies of simulation parameters.To hek the validity of the assumption that the Higgs boson is stable in our work, a alulation of the Higgs bosonresonane parameters has been performed in Ref. [29℄. Sine the �nite volume tehniques proposed in Refs [53, 54℄ areonly appliable below the inelasti threshold, external soures were introdued whih give a mass to the Goldstonebosons and break the O(4) symmetry expliitly. In the alulation the Goldstone boson energies were omputed atnon-zero momenta, using the original enter of mass frame [53, 54℄ as well as a moving frame [55, 56℄. By adjustingthe values of the external soure and the momenta, the Goldstone boson energies were tuned suh that2EG < mH < 4EG : (23)



8The sattering phase shifts from whih the resonane parameters were extrated are shown in Fig. 3, along with theposition of the inelasti thresholds. These phase shifts are used to �t the Breit-Wigner formula to determine theresonane mass and width.
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9�̂ � [GEV℄ mresonaneH �resonaneH �pertH mpH mH0:01 883(1) 0:278(3) 0:0018(14) 0:0054(1) 0:278(2) 0:274(4)1:0 1503(5) 0:383(6) 0:0169(4) 0:036(8) 0:386(28) 0:372(4)1 1598(2) 0:403(6) 0:037(9) 0:052(2) 0:405(4) 0:403(7)TABLE I: The results (taken from Ref. [29℄) of a study omparing the resonane parameters of the Higgs boson with the resultsof �ts to the temporal orrelation funtion and momentum spae Higgs boson propagator. Errors are statistial only. Exeptfor the ut-o� sale, all the results are in lattie units. The fermion mass is set to be the physial top-quark mass. Resultsfrom three values of the quarti oupling are presented. Also shown are the resonane mass and width from Breit-Wigner �tsto the sattering ross-setion. Finally, a perturbative estimate of the resonane width is inluded. We note that beause ofsome data losses the error on mpH at �̂ = 1:0 is larger than for the other parameters.B. Results of the Higgs boson mass boundsWe now turn to the results of the Higgs boson mass bound alulations disussed in the previous setion. We �rstdisuss the results of Ref. [28℄, where the upper and lower bounds were omputed at several hoies of the ut-o�sale, with the fermion masses at the physial top-quark mass, and also at mf � 676GeV. The main result fromRef. [28℄ is shown in Fig. 4. In the left graph, the situation for a SM top quark mass is shown. The right graph showsthe situation for a fermion mass of mf � 676GeV. It an be learly seen that while the upper bound is relativelyuna�eted when using a heavy fermion mass, the lower bound inreases substantially.
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FIG. 5: Left: The dependene on the fermion mass of the upper and lower Higgs boson mass bounds, at the ut-o� sale� = 1:5TeV. Data points from lattie alulations are shown. Results for the lower bound without in�nite-volume extrapolation,using only 243 � 48 latties, are also shown for omparison. The solid line results from a one-loop alulation of the e�etivepotential, as explained in the text. Right: e�ets of a �6 operator with oupling �6 for the lower bound of the Higgs bosonmass, at various fermion masses and the ut-o� sale � = 2TeV. Three values of the oupling onstant �6 are plotted.In addition to the numerial results, Fig. 5 also ontains the estimate of the lower bound from an e�etive potentialalulation, whih was performed using the same lattie regularisation as in our Monte Carlo simulation. In thisalulation, the e�etive potential was omputed to one-loop order in the large�Nf limit. Operationally, the one-loopalulations were arried out by numerially omputing the required momentum-mode summations in a series of �nitelattie volumes, and then extrapolating to the in�nite-volume limit. From this one-loop e�etive potential, V , theHiggs boson mass is determined by solving for the salar vev, v, and the Higgs boson mass in the gap equations,dd�V (�)j�=v = 0; d2d�2 V (�)j�=v = m2H : (24)To ompare to the numerially omputed lower Higgs boson mass bound, in the e�etive potential alulation thequarti oupling has been set to zero. In addition, the ut-o� and the fermion mass were �xed to the same valuesas in the simulations suh that a diret omparison is possible. For a standard model top quark mass it has beendemonstrated in [26, 27℄ that the lattie e�etive potential provides an exellent desription for the numerial datafor the lower Higgs boson mass bound.The left panel of Fig. 5 learly demonstrates that the trend of an inreasingly higher value of the lower bound withinreasing fermion masses, as suggested by the perturbative alulation is realised by the data up to very large valuesof mf , although the quantitative agreement is better at low mf . Based on this qualitative agreement, we an examinethe e�et of higher-dimensional operators in the e�etive potential using the same loop and 1=Nf expansion. To thisend we inlude the ontribution from the operator �6�6 in the e�etive potential with �6 the oupling onstant. Theaddition of suh an operator in the Lagrangian modi�es the solution to Eq. (24), and an therefore alter the lowerbounds on the Higgs boson mass in priniple.Here we stress that the ut-o� annot be removed in the Higgs-Yukawa model. Furthermore, any perturbativeexpansion in this model is only valid in the regime where the ut-o� sale, � = 1=a, is large enough ompared tolow-energy sales suh as the Higgs boson mass and the salar vev. In Ref. [49℄, it was demonstrated that m=� < 0:5(with m being a typial low-energy sale) is enough to ensure the appliability of perturbation theory to the pure�4 salar �eld theory. Here we impose the same ondition, but on the value of the salar �eld, in our perturbativealulation for the e�etive potential for the Higgs-Yukawa model inluding the �6�6 operator. This results in thestability riterion d2d�2 V (�) > 0; � < 0:5; (25)where � has been properly resaled to be in lattie units.



11In the right panel of Fig. 5, we show the results of our investigation of the lower bounds on the Higgs boson mass,using the one-loop e�etive potential inluding the ontribution from the �6�6 operator. It is lear that in the regimewhere the perturbative expansion is valid, a wide range of values of �6 lead to qualitatively very similar results.Finally, we also point out that exploratory numerial Monte Carlo simulations whih inlude the �6 operator agreewith the perturbative results for a large range of bare Yukawa ouplings [27℄.IV. STUDY OF THE PHASE STRUCTUREA. Purposes and strategy of the studyIt is an important task to explore the phase struture of the Higgs-Yukawa model to identify the phase struture ofthe theory and determine the ritial oupling onstant values where a ontinuum limit an be performed. In thissetion, we will disuss two aspets onerning the phase struture of the Higgs-Yukawa model onsidered here. The�rst are the loations of seond-order bulk phase transitions in the bare parameter spae whih an be identi�ed asthe ontinuum limits of the lattie theory. For weak values of the bare Yukawa oupling the phase struture hasbeen investigated in [23, 24℄ and its knowledge was very helpful to identify the simulation parameters for the desiredphysial situation, i.e. a �xed value of the ut-o� and the physial values of the fermion masses. Here we remarkthat the bounds on the Higgs boson and fermion masses as presented in Fig. 5 in Se. III B are obtained in this weakbare Yukawa oupling regime. In this setion, we fous now on the large bare Yukawa oupling region and explorethe phase struture of the theory in this regime of the parameter spae. The aim is to investigate, whether thephase transitions at large bare Yukawa oupling are governed by the same, Gaussian �xed point as at small Yukawaoupling. If we would �nd deviations from the Gaussian �xed point behaviour, this would open the possibility thatthe renormalised Yukawa oupling an remain strong up to a high ut-o� sale whih ould lead to heavy fermionmasses and even the existene of bound states. We have therefore been performing simulations at large values of bareYukawa oupling1, and the exploratory results will be presented in Se. IVC. As a seond aspet, we will presentan investigation of the �nite-temperature phase transition in understanding the role of, in partiular, heavy fermionmasses for the eletroweak phase transition, espeially with respet to questions onerning baryogenesis [60℄.Before detailing our on-going studies of the bulk and thermal phase transitions of the Higgs-Yukawa model in thefollowing two setions, here we desribe the general strategy in this work.It is natural to use the vev of the salar �eld to probe the phase struture. However, a naive omputation of this vevwill always lead to vanishing results in lattie alulations even in the broken phase, beause of the �nite volume asused in the simulations. As disussed in the beginning of Se. II C, it is appropriate to replae the salar vev with themagnetisation as de�ned in Eqs. (15) and (16).In order to probe the nature of phase transitions, we have to determine anomalous dimensions of the operators allowedby the symmetries. In �nite volume, seond-order phase transitions are washed out and beome ross-overs, and theorrelation length annot exeed the size of the system. Therefore, for the study of the phase struture, we resortto �nite-size saling tehniques. These tehniques were developed originally by solving the renormalisation groupequation (RGE) for �nite-volume lattie systems in ondensed matter physis [61℄. To draw analogy between �eldtheory and statistial mehanis, we also refer to these anomalous dimensions by alling them ritial exponents inthis artile, as usually done in statistial mehanis.It is hallenging to determine the anomalous dimension of the operator orresponding to the Yukawa oupling term,beause of the presene of fermions and the avour-hanging struture of the operator. We will postpone the disussionof this operator for future reports. Here we fous on ritial exponents in the salar setor. To start, we alulate thesuseptibility, �m = V4 �
m2�� hmi2� ; (26)1 In Ref. [58, 59℄, it was demonstrated that in the limit where the bare Yukawa oupling beomes in�nity, the Higgs-Yukawa model isequivalent to the pure O(4) salar model. However, our simulations are performed away from this limit.



12whih is the onneted two-point funtion in the salar setor. This quantity is proportional to the square of theorrelation length, �, and diverges at seond-order phase transitions in the in�nite-volume limit. Solving the RGE forthis orrelator for a �nite-size system at �xed ut-o� sale (lattie spaing) near a seond-order phase transition, oneobtains the saling law, �m (t; Ls) � L�=�s = g �tL1=�s � , with t = (T=T � 1) (27)where g is a universal saling funtion, Ls is the spatial extent of the lattie, and T is the ritial temperature inthe in�nite-volume limit, whih ould also be represented by the ritial value of a partiular oupling. The ritialexponents,  and � are related to the anomalous dimensions of the salar �eld and the mass operator, �2. This salingbehaviour is exat near the ritial point for spae-time dimension, d < 3. Therefore it is an appropriate tool in ourstudy of the �nite-temperature phase transition. However, in the investigation of the bulk phase struture, we havea d = 4 �eld theory, and the above saling relation should be modi�ed beause of triviality [62{66℄, if the transitionis governed by a Gaussian �xed point. These modi�ations appear as logarithmi orretions in Eq. (27). They arenot inluded in the analysis presented in this artile, but are being onsidered in our on-going work.As will be disussed in the following, the saling tests and the extration of anomalous dimensions using Eq. (27) areompliated beause of the number of free parameters that are involved in the methods for modelling the unknownuniversal funtion, g. In partiular, it is diÆult to aurately determine � using this proedure. This ompliationan be redued by studying Binder's umulant [67℄,QL = 1� 
m4�3 hm2i2 : (28)This quantity is simply the onneted four-point funtion, normalised by the square of the two-point funtion, in thesalar setor. Beause of the normalisation, QL is independent of the ritial exponent . Furthermore, it is relatedto the renormalised salar quarti oupling in the in�nite-volume limit by a proportionality fator V4=�4 [68℄. SineBinder's umulant is normalised to be dimensionless, its values omputed on di�erent (dimensionless) lattie sizeswith the same ut-o� sale will oinide with eah other at the ritial point. It is also expeted to exhibit mildersaling violations resulting from higher-dimensional operators [69, 70℄.In the next three setions, we disuss details of the investigation of the thermal and bulk phase strutures using thequantities de�ned in this setion. Errors on all the numerial results in this setion are statistial only.B. Bulk phase struture at small Yukawa ouplingsBefore reporting the details of our on-going investigation in the bulk phase struture of the Higgs-Yukawa model inthe strong-Yukawa regime, we briey summarise the results obtained in the region of weak-Yukawa oupling [24℄ inthis setion. The order parameters haraterising the di�erent phases are the magnetisation de�ned in Eqs. (15) and(16), and the staggered magnetisationhsi = * 1V4 Xx (�1)x1+x2+x3+x4  X� j��x j2!1=2+ : (29)The staggered magnetisation is relevant for the breaking of the symmetry,� �! ��;��x �! (�1)x1+x2+x3+x4��x ; (30)in the ation in Eq. (4).In the Higgs-Yukawa model, four phases have been observed:1. A symmetri (SYM) phase with hmi = hsi = 0.



132. A broken, or ferromagneti (FM), phase with hmi 6= 0 but hsi = 0.3. A staggered-broken, or anti-ferromagneti (AFM), phase with hmi = 0 but hsi 6= 0.4. A ferrimagneti (PI) phase with hmi 6= 0 and hsi 6= 0.Our urrent knowledge of the phase struture of the Higgs-Yukawa model in the weak-Yukawa regime is summarised inFig. 6. To make it onvenient in omparing results from numerial simulations to a large�Nf analyti alulation [23℄,we have performed the hange of variables,ŷ = ~yNpNf ; � = ~�N ; �̂ = ~�NNf ; � =pNf ~�; (31)in the plots in this �gure. The large�Nf alulation was arried out in the Nf !1 limit while keeping ~yN , ~�N and~� �xed. The left panel of Fig. 6 is the result from the large�Nf alulation, and the middle panel is the omparisonbetween this alulation and the numerial results from lattie simulations at Nf = 10. The right panel of this �gureshows the Nf dependene on the ritial values of � at the SYM�FM and FM�AFM transitions in our numerialalulation, with the Yukawa oupling set to ~yN = 0:1. It is observed that the Nf dependene appears to be mild.This indiates that the large�Nf analyti alulation may serve as a reasonable, qualitative, guide in hoosing thesimulation parameters for the numerial simulations. Although this analysis has been performed in the weak Yukawaoupling region, the good qualitative desription makes it possible to also use the large Nf expansion also in thestrong-Yukawa regime, whih was indeed observed in [23℄.
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14salar non-linear �-model at in�nite bare Yukawa ouplings [58, 59℄, and hene beomes trivial at a ertain ut-o�sale. However, it is not lear what happens at large but �nite Yukawa ouplings. To be able to detet any di�erenesfrom a Gaussian (trivial) theory the ritial exponents of the phase transition have to be extrated and omparedwith those of the O(4) model. If the strong-oupling regime is indeed di�erent from the weak-oupling one and henewould be governed by a non-trivial �xed point2, it would be very interesting to investigate the possibility of veryheavy fermions whih give rise to a fourth generation, while still maintaining a light Higgs boson in the theory. Insuh a senario it is unlear, whether an analysis as, e.g. [72℄ is appliable and also, whether the Higgs boson massbounds of setion III are valid.The magnetisation, de�ned in Eqs. (15) and (16), an at as an order parameter to identify and determine the orderof the phase transition. In Fig. 7, the magnetisation for the Higgs-Yukawa model obtained on di�erent lattie volumesis shown as a funtion of y for two � values. In addition, we show the magnetisation as a funtion of � for the O(4)model. The SYM and FM phases an be learly distinguished and the phase transition is washed out beause of �nitevolume e�ets as previously disussed.The absene of any disontinuities in the magnetisation is strong evidene for a seond-order phase transition in allthree depited ases. In general, seond-order phase transitions are lassi�ed through their ritial exponents and thequestion arises if these exponents are di�erent in the strong-Yukawa and pure O(4) models. To answer this question,a areful investigation of the suseptibility and Binder's umulant will be presented in the following.
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0.280.290.30.310.32FIG. 7: Magnetisation, hmi, for the Higgs-Yukawa model at � = 0:06 (left), � = 0:00 (middle) and the pure O(4) model (right)for various volumes. For the O(4) hmi is plotted as a funtion of dereasing � to math optially with the Higgs-Yukawa model.The absene of disontinuities in hmi is an evidene for a seond order phase transition.The ritial exponents an be alulated by using the �nite-size saling of the suseptibility, Eq. (26). The suseptibilityis shown in Fig. 8 for the Higgs-Yukawa and O(4) models. This quantity diverges at the ritial point in the in�nitevolume limit. Suh a divergene in in�nite volume is reeted in a bulk �nite-size saling behaviour in lattiealulations. As mentioned before in Eq. (27), the �nite-size saling is predited by renormalisation group theory,with modi�ations resulting from saling violation suh as that disussed in Ref. [61℄,�m (t; L) � L�=�s = g �t̂L1=�s � , with t̂ = hT=�T (L=1) � C � L�bs �� 1i ; (32)where C is a phenomenologial parameter and b is a shift exponent [61℄. This modi�ation omes from the fat thatthe position of the maximum of �m is volume dependent. From Eq. (27) the in�nite-volume ritial temperature anbe extrated diretly. For the O(4) model we do not observe any shift of the maximum and hene Eq. (27) is a gooddesription of our data in this ase. It should be stressed, that the temperature, T , in this setion is the ontrolparameter. In our work, it is either the Yukawa oupling, y, in the Higgs-Yukawa model or the hopping parameter,2 There has been early lattie work on the 3-dimensional Higgs-Yukawa model [71℄, attempting at �nding �x points that are di�erentfrom that of the pure salar �eld theory.



15�, in the pure O(4) model. To extrat the ritial exponents from the suseptibility, we perform a simultaneous �t ofall data obtained at all volumes to the partly-empirial formula [73℄,�m = A�L�2=�s +B hT=T (L=1) � C � L�bs � 1i2��=2 : (33)This formula was also used for a �t to �m of the O(4) model, but with the modi�ation of exluding the parameters Cand b beause of the reasons mentioned above. The �t results are summarised in Tab. II and will be disussed later.Notie that there may be logarithmi orretions to the saling behaviour of the suseptibility beause triviality maystill be present also in the strong-Yukawa model. These orretions should, in priniple, be inluded in Eq. (33)3.This is on-going work, and the result will be presented in a later publiation. Therefore, we onsider our presentvalues of the ritial exponents as preliminary and they should be taken with aution.
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16An alternative way of determining ritial exponents is via Binder's umulant, Eq. (28). One advantage of thisquantity over the suseptibility is its milder power-law saling violation whih is given byQL = gQL �tL1=�� ; (34)where gQL is a universal funtion and t is de�ned in Eq. (27). This behaviour an be observed in Fig. 10 where allvolumes interset at the phase transition point in in�nite volume where t = 0. Even for the Higgs-Yukawa model noshift an be observed and hene the parameters C and b an be ompletely negleted in the saling variable.
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17whih would allow to extrat � as a diret onsequene of the saling behaviour. The sum is taken over all datapoints, and RQL is minimal for the orret hoie of the parameters � and TL=1 . In the absene of any statistialand systemati errors the funtion RQL would beome zero.The saling funtion gQL is unknown. However, this an be overome by the observation that any volume, in thefollowing alled p, an at as a referene funtion for the orret hoie of parameters, taking thus over the role ofgQL . Instead of minimising Eq. (35), we minimise [74℄Pb = 24 1Nover Xp Xj 6=p Xi;over ���QLj � Ep �tijL1=�j ����2351=2 : (36)Here, the saling funtion is replaed by the interpolating funtion Ep whih is onstruted by interpolating the datapoints obtained on volume p to volume j for the values of the saling variable tijL1=�j , with the index i going throughall data points of volume j. In our ase, Ep is omputed by piking a point in j and taking the four nearest pointsin p as a basis for a quadrati interpolation. The normalisation fator Nover is the total number of points used toevaluate Ep. The results are summarised in Tab. III and the orresponding urve ollapse for Binder's umulant isshown in Fig. 11.In priniple, this method ould also be used for �m, but it would be neessary to minimise for �ve parameters.Our investigation shows that this leads to numerial instabilities and the extration of ritial exponents from thesuseptibility using this method is not possible hitherto.T (L=1) � interval� = 0:06 18.147(24) 0.550(1) 17.4, 18.8� = 0:00 16.667(27) 0.525(6) 16.0, 17.2O(4) 0.3005(34) 0.50000(3) 0.294, 0.314TABLE III: Curve ollapse results of Binder's umulant where the last olumn indiates the interval of the ontrol parameterin whih the proedure has been used. The parameter T stands either for y in the Higgs-Yukawa model or for � in the O(4)model. All errors are statistial only.
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-15-10-5051015FIG. 11: Saling behaviour of Binder's umulant at � = 0:06 (left), � = 0:00 (middle) and the O(4) model (right) for variousvolumes using the parameters listed in table III.At this point we an laim that we have found a seond order phase transition between the SYM and the FM phasesin the strong Yukawa oupling regime. The absene of disontinuities in hmi and the seond-order �nite size salingof �m are strong evidene for suh a statement. It is interesting to ompare the ritial exponents extrated from thesuseptibility and Binder's umulant with the ones of the weak-Yukawa model and the O(4) model.



18To be able to make a diret omparison of the O(4) model with the Higgs-Yukawa model, the same strategy has beenused to ompute observables in the pure salar setor of the theory. In partiular, the same analysis tehniques havebeen used. The results of the orrelated �t to �m are summarised in Tab. II. The errors quoted there are purelystatistial. Investigation of the dependene of the results on the �t interval leads to systemati unertainties whihare as large as the statistial errors roughly. It is not possible to laim a signi�ant di�erene in the ritial exponentsbetween the Higgs-Yukawa model and the O(4) model from this method so far.The urve ollapse method, however, an only provide us with information about one ritial exponent, namely �.The advantage of this method is the signi�antly smaller statistial error ompared to the �t to �m. However, itmust be used with are. The saling behaviour desribed in Eq. (34) is only true lose to the ritial point. If thismethod is applied at points too far away form the phase transition the result an be a�eted by saling-violatione�ets. One possibility to ahieve an impression of these e�ets is the dependene on the interval in whih the urveollapse method is applied. It was found, that the systemati unertainty is roughly a fator of �ve larger than thestatistial error. However, in the ase of � = 0:06 and of the O(4) model the total error is still a fator of �ve smallerompared to the �tting proedure. In the ase of � = 0:00 the total errors are ompatible.The results of the ritial exponent, �, in Tabs. II and III indiates that the strong-Yukawa model and the O(4)model may belong to di�erent universality lasses. However, in the proedure of using Eq. (32) to determine thisexponent, the di�erene of the two models an be as small as two standard deviations. We stress that it is alsoimportant to investigate the saling violation as pointed out in Refs. [62{66, 69, 70℄. In partiular, the observation ofthe multipliative logarithmi saling violation is diretly related to the triviality of the theory [62{66, 75℄. Presently,we are exploring suh analyses and performing omputations at additional parameter values. In the near future, wewill therefore be able to see whether the value of � in the strong bare Yukawa oupling regime is indeed di�erentfrom the one of pure O(4) model. If we would �nd a signi�ant di�erene, then it will be important to investigatethe strong-oupling regime loser and, in partiular, a omputation of the spetrum of the Higgs-Yukawa model inthe strong-oupling region will beome most interesting.D. Finite-temperature phase transitionOne important subjet in the study of the Higgs-Yukawa model is the �nite-temperature phase transition. In thissetion we desribe the status of our investigation of this transition. We are partiularly interested in determining theritial temperature where the system undergoes a phase transition from the symmetri phase with vanishing salarvev, v = 0, to the broken phase with non-vanishing v. Further interest lies in the determination of the order of thephase transition and the ritial exponents. Preliminary results reported in this artile are obtained at two values ofthe fermion mass, mf � 175GeV and mf � 700GeV.Choosing the boundary onditions in the Eulidean temporal diretion to be periodi for bosoni and anti-periodifor fermion �elds, the temperature T on the lattie is given byT = 1aLt = �Lt (37)where Lt denotes the dimensionless temporal extent of the lattie. For the study of the �nite-temperature phasetransition, we work at �xed bare Yukawa ouplings whih lead to the desired fermion masses. Results presented hereare from lattie simulations performed at �̂ =1. To vary the temperature, we hange the value of � at �xed Lt. Thisis equivalent to adjusting the lattie spaing while �xing the number of points in the temporal extent of the lattieorresponding then to a hange in the temperature.Our study shows that the �nite-temperature phase transitions in the Higgs-Yukawa model are onsistent with seond-order.. The order parameter is the magnetisation as de�ned in Eqs. (15) and (16). Sine the orrelation length is neverdivergent beause of �nite-volume e�ets, we resort to �nite-size saling tehniques to investigate the seond-order�nite-temperature phase transition in this work. In partiular, we analyse the saling behaviour of the suseptibilityof the magnetisation, Eq. (26). As in Ref. [73℄, we �t the suseptibility aording to the partly phenomenologiallymotivated funtion �m(�) = A�L�2=�s +B+=�(�� �)2��=2 ; � = 0:68;  = 1:38; (38)



19where A, B+=� , and � are free �t parameters (B+=� are oeÆients in the broken and the symmetri phases,respetively), and � and  are the ritial exponents of the three dimensional O(4) model whih are expeted toharaterise the seond-order phase transition. Note that we use the �t funtion of Eq. (38) with �xed values of theritial exponents only to extrat the ritial value of �, denoted as � whih in turn leads to the evaluation of theritial temperature. This approah is di�erent from that used for the investigation of the strong-Yukawa model asdesribed in Se. IVC. Sine � depends on the spatial volume, we perform simulations on various spatial lattie sizesand perform an in�nite volume extrapolation using the formula (D is an unknown onstant),�(L) = �(1) +D � L�� : (39)Having extrated � in the in�nite-volume limit, �(1), we an determine the lattie spaing at this � value byperforming zero-temperature simulations at exatly the same hoie of ouplings, and using Eq. (19). This thenallows us to predit the ritial temperature, T, through Eq. (37). In order to estimate the systemati e�ets in Tarising from the unertainty in �, we also arry out two additional zero-temperature simulations with � values hosento reet the error on �. In this proedure, it is very hallenging to maintain a onstant Higgs boson mass, sineit depends signi�antly on the � value. So far, we have not yet performed zero temperature runs for the presentedresults, but from the results found in [28℄ it is possible, to give a �rst estimate of the order of magnitude for theritial temperature and the orresponding Higgs boson masses in the ase of a physial top quark mass.1. Finite-temperature study at physial top quark massAs the �rst step, we investigate the ase of a degenerate fermion doublet with the quark mass lose to the physialtop quark mass. To this end we �x the bare Yukawa oupling aording to the tree-level estimate of y = mt=vr, whihhas been shown to be a good approximation in this region of ouplings [28℄. We perform simulations at two di�erenttemporal extents (Lt = 4; 6) for estimating the disretisation e�ets. In addition, three spatial extents, Ls = 16; 20; 24,are implemented in order to perform the in�nite-volume extrapolation.The results of the magnetisation at Lt = 4 and 6 are plotted in Fig. 12(a) and Fig. 12(d), respetively. It is obvious thatthere is a transition from the symmetri to the broken phase for eah hoie of Lt. The orresponding suseptibilitiesare shown in Figs. 12(b) and 12(e). The L�dependene of �(L) is well desribed by Eq. (39), as an be seen inFig. 12() and (f).Our �nite-temperature study at a fermion mass lose to physial top-quark mass is an on-going projet at an earlystage. Presently, the simulations using Lt = 4 and 6 both result in the Higgs boson mass, mH � 600GeV, and theritial temperature, T � 400GeV. Those values are obtained from �:�(1; Lt = 4) = 30460(29) �(1; Lt = 6) = 0:30003(25) (40)by a omparison with the results shown in [28℄. To make our preditions more preise, we are performing additionallattie omputations. In partiular, we are planning zero-temperature simulations with larger spatial extent. Thiswill allow us to have better ontrol of the in�nite-volume extrapolation.
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0 0.005 0.01 0.015 0.02(d) (e) (f)FIG. 12: Results of our �nite-temperature study at the physial top quark mass with the quarti oupling �̂ = 1. Plots (a)and (d): The magnetisation for temporal extents of Lt = 4 and Lt = 6. Plots (b) and (e): The orresponding suseptibilitieswith the �t funtion in Eq. (38). Plot () and (f): In�nite-volume extrapolation of � using Eq. (39). Note that for the ase ofzero temperature L2 denotes pV4 with V4 = L3sLt and Lt = 2Ls.2. Status of �nite-temperature study at a quark mass of about 700GeVIn this setion we present the status of our work on the ritial temperature in the Higgs-Yukawa model with oneheavy fermion doublet with a mass of about 700GeV. We follow the same strategy as in the previous setion. Here thezero-temperature simulations are still in progress. Thus, the lattie spaings for this alulation are not yet availableto us.Results of the suseptibility, and the in�nite-volume extrapolation for � an be found in Fig. 13. From the phasestruture presented in Fig. 6 and the value of ŷ � 2:8, it is lear that the ritial value of � is in the FM phase of thezero temperature theory, as expeted. We also notie that the values of � in the Lt = 6 alulation are smaller thanthat in the Lt = 4 analysis. This means that the Lt = 6 simulations are arried out loser to the FM�SYM phaseboundary, and are thus performed at larger values of the ut-o�.
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0 0.005 0.01 0.015 0.02(a) (b) ()FIG. 13: Plots (a) and (b) show the suseptibility as funtion of � at the large fermion mass of about 700GeV. Plot () is thein�nite-volume extrapolation for �. V. OUTLOOKIn this artile we have provided an overview of non-perturbative lattie alulations of the Higgs-Yukawa setor ofthe Standard Model and its extension with a fourth fermion generation. The phase diagram of the model has beenstudied and a omplex and interesting struture has been revealed. At small values of the bare Yukawa oupling theproperties of the phase transitions are onsistent with the standard model expetation [23, 24℄. However, we alsoestablish an additional phase transition at very large values of the bare Yukawa oupling [23, 24, 31℄. This o�ersthe very interesting possibility to investigate a strongly interating Higgs-Yukawa model. We performed a detailedstudy of the properties of the phase transitions at strong bare Yukawa oupling and determined the ritial exponentsharaterising the phase transitions through a �nite size saling analysis. Although there are presently indiationsthat these ritial exponents may di�er from the standard model ones, at this stage of our investigations it is tooearly to say that in the strong bare Yukawa oupling region indeed a non-Standard-Model-like phase struture exists.As an interesting diretion we have also examined the Higgs-Yukawa model at non-zero temperature for fermionmasses ranging from 175GeV to 700GeV [57℄. We �nd that the transition is always of seond order and that theritial temperature is higher for inreasing fermion mass.For a Standard Model top quark mass we have established lower and upper Higgs boson mass bounds as a funtion ofthe (lattie) ut-o� of the theory [26{28℄. We also performed a detailed resonane analysis of the Higgs boson whihon�rmed that the Higgs boson mass bounds whih assumed a stable Higgs boson are not a�eted by the resonaneharater of the Higgs boson [29℄. Furthermore, we �nd that the Higgs boson deay width into massive Goldstonebosons is never larger than 10% of the Higgs boson mass and in good agreement with perturbative estimates. As aonsequene of our lattie study of the lower and upper Higgs boson mass bounds within the Higgs-Yukawa setor ata physial value of the top quark mass, we an, in priniple, estimate the energy sale at whih the standard modelhas to break down.We extended the study of the Higgs boson mass bound to a possible fourth generation of quarks onsidering fermionmasses up to 700GeV [30℄. We found that the upper Higgs boson mass bound shows only a moderate shift by about20% at suh a fermion mass when ompared to the bound for a Standard Model top quark mass. However, thelower Higgs boson mass bound is altered signi�antly and an be as high as 500GeV for a fermion mass of 700GeV.We omplemented our non-perturbative lattie simulations with a lattie perturbative alulation of the lower Higgsboson mass bound from the e�etive potential. We found very good agreement with the lattie simulation data. Thisenabled us to test the stability of the lower bound against additions of higher dimensional operators. As a resultwe observed that the lower bound is not a�eted by inluding suh additional operators. This �nding puts severeonstraints on the fourth generation if the partile with a mass of 125GeV seen at the LHC is the standard modelHiggs boson.Let us disuss the onsequenes of our lattie study of the Higgs-Yukawa setor of the standard model and its extensionto a fourth fermion generation, assuming that the partile deteted at the LHC [6, 7℄ is a Higgs boson with a mass of



22125GeV. For the standard model suh a Higgs boson mass leads to rather small values of the renormalised quarti andYukawa ouplings and it seems therefore that the eletroweak setor of the standard model an be desribed perfetlywithin perturbation theory. Therefore, the perturbative analysis of Ref. [8℄ provides the result that the energy sale,up to whih the Standard Model an be valid, is very high. Considering the extension of a fourth fermion generation,the lower Higgs boson mass bound together with the phenomenologial lower bound of the fourth generation fermionmass provides very severe onstraints on the existene of the fourth generation.As a onlusion, our �ndings suggest that the eletroweak theory of the Standard Model is a perfet desription ofpartile interation up to very high energies as disussed in Ref. [8℄. Furthermore, a simple extension of the standardmodel by adding only a fourth fermion generation is most likely not realised. However, as disussed in Ref. [76℄the addition of a singlet salar �eld ould hange the situation. As shown in Ref. [76℄, the lower Higgs boson massbound an be lowered signi�antly in the presene of suh an additional salar �eld. Of ourse, in Ref. [76℄ only aperturbative alulation has been performed for the senario of adding suh a singlet salar �eld and non-perturbativealulations, suh as the ones presented here, to srutinise this piture are highly desirable.We have demonstrated that with lattie �eld theory tehniques generi strongly interating Higgs-Yukawa theories anbe studied in a ontrolled and aurate way. This beame possible through a oneptual breakthrough of formulatinghiral invariant theories on the lattie together with a muh improved understanding of systemati e�ets suh as �nitesize e�ets or determining resonane parameters. Sine in addition the existing omputing power of present superomputers is learly adequate to perform alulations of Higgs-Yukawa models, lattie omputations an ontributeto our understanding of Higgs-Yukawa models, in partiular in the strongly interating regime.AknowledgmentsThis work is supported by Taiwanese NSC via grants 100-2745-M-002-002-ASP (Aademi Summit Grant), 99-2112-M-009-004-MY3, 101-2811-M-033-008, and 101-2911-I-002-509, and by the DFG through the DFG-projet Mu932/4-4,and the JSPS Grant-in-Aid for Sienti� Researh (S) number 22224003. Simulations have been performed at theSGI system HLRN-II at the HLRN superomputing servie Berlin-Hannover, the PAX luster at DESY-Zeuthen,and HPC failities at National Chiao-Tung University and National Taiwan University. We thank the Galileo GalileiInstitute for Theoretial Physis for hospitality and the INFN for the partial support during the ompletion of thiswork.
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