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1. IntrodutionThe high energy limit of nonabelian gauge theories, in partiular of QCD, has been ex-tensively studied in a variety of perturbative and nonperturbative approahes. In thegroundbreaking work of [1, 2℄ the perturbative resummation of leading logarithms of theenter-of-mass energy ps was performed. The resulting leading logarithmi approximation(LLA) is enoded in the elebrated BFKL equation. It ollets all perturbative terms ofthe order (�s log s)m in whih the smallness of the strong oupling onstant �s is ompen-sated by large logarithms of the energy. For the sattering amplitude of 2 ! 2 sattering{ 1 {



proesses, this leading logarithmi approximation orresponds to resumming diagrams inwhih two interating reggeized gluons are exhanged in the t-hannel. This bound stateof two gluons, the Pomeron, an hene be represented diagrammatially by a gluon ladder.Based on Gribov's work on the Reggeon alulus [3℄ it was immediately lear that, onesuh moving Regge singularities exist, the high energy behavior of nonabelian gauge theo-ries an be formulated in terms of an e�etive 2+1 dimensional �eld theory, alled Reggeon�eld theory. It lives in the two transverse dimensions of the sattering proess, and rapidityan be understood as a timelike parameter. Steps towards expliitly formulating this e�e-tive high energy desription inlude the generalization of the BFKL approximation to theevolution of n-gluon states, known as the BKP equations [4, 5℄, and a further generalizationwhih enompasses number-hanging proesses during the t-hannel evolution. The latteris known as the (extended) generalized leading logarithmi approximation, (E)GLLA, andwill be desribed in some detail later in this paper. It has been used to derive a 2 ! 4gluon vertex that ontains the triple Pomeron vertex [6, 7, 8℄, as well as a higher order2 ! 6 gluon vertex funtion [9℄. A systemati approah of deriving, for nonabelian gaugetheories, the elements of Reggeon �eld theory, is the e�etive ation developed in [10, 11℄,see [12℄. Other approahes to the problem of understanding the high energy limit of QCDinlude the Wilson line operator expansion [13℄-[16℄, the dipole piture of high energy sat-tering [17℄-[20℄, and the olor glass ondensate approah, see for example [21℄. In the limitN ! 1 the latter three approahes as well as the EGLLA all give rise to the same non-linear evolution equation, known as the BK equation [13, 22, 23℄. All approahes mentionedhere are of perturbative nature. A nonperturbative derivation of a Reggeon �eld theoryfrom QCD still appears prohibitively diÆult.Among the most remarkable features of Reggeon �eld theory for QCD are the on-formal invariane in the two-dimensional transverse oordinate spae [24, 25, 26℄, and theintegrability in the large-N limit [27, 28, 29℄. Both properties, so far, have been estab-lished only for the leading order of the resummation in the LLA and (E)GLLA. A fullunderstanding of the fate of these symmetries in next-to-leading order is still missing.With the advent of the AdS/CFT orrespondene, whih relates the maximally super-symmetri nonabelian gauge theory in four dimensions, that isN = 4 super Yang-Mills the-ory (SYM) with gauge group SU(N), to type IIB superstring theory on a �ve-dimensionalAdS spae [30, 31, 32℄, the natural question appears whether Reggeon �eld theory has adual analog on the string (or supergravity) side. As a �rst step, one identi�es satteringamplitudes or orrelators whih are de�ned on both sides of the orrespondene: in QCD,a lean environment for studying the dynamis at high energies has been found in ��sattering, i. e. in the four-point orrelators of eletromagneti urrents. In N = 4 SYM,it has been suggested [33℄ to onsider, as a substitute for the U(1) urrent of eletromag-netism, the R-urrents whih result from the global SUR(4) R-symmetry. One is thus ledto investigate, in suitable high energy limits, orrelators of R-urrents, both for N = 4SYM and for the dual string theory.On the gauge theory side, existing QCD alulations provide a natural starting pointfor a systemati investigation of this orrespondene. It is, however, lear that ertaindi�erenes exist between (non-supersymmetri) QCD and N = 4 SYM, and one has to{ 2 {



study their onsequenes. For the high energy behavior of urrent orrelators, it is theimpat fators whih are sensitive to supersymmetry: in QCD, the fermions (quarks) belongto the fundamental representation of the gauge group, whereas in N = 4 SYM all partiles(gluons, Weyl fermions and salars) are in the adjoint representation of the gauge group.On the other hand, sine in quantum �eld theory the high energy behavior is dominatedby the exhange of partiles with the highest spin { that is the gluons in both theories {the leading logarithmi approximation in N = 4 SYM should be quite similar to QCD.As the very �rst step, the elasti sattering of two R-urrents in N = 4 SYM hasbeen studied in [34℄. Apart from the new impat fators, it has been veri�ed that thehigh energy behavior is dominated by the familiar BFKL Pomeron. Turning to elements ofReggeon �eld theory beyond the BFKL two-gluon ladders, the e�et of supersymmetry isexpeted to be more severe. As a theoretial environment for extrating the triple Pomeronvertex alulations on the QCD side have made use of six-point funtions. This motivates,for the extension to N = 4 SYM, to investigate six-point orrelators of R-urrents. Itis the purpose of the present paper to study the high energy behavior of suh R-urrentorrelators in the extended generalized leading logarithmi approximation. As a resultwe will �nd that N = 4 SYM provides a new element in Reggeon �eld theory whih isnot present in non-supersymmetri QCD. On the other hand, the triple Pomeron vertexremains the same as in QCD. We emphasize that throughout this paper we keep N �nite,and we only briey omment on the large-N limit at the end.Parallel to this investigation of the gauge theory side, it is interesting to study theR-urrent orrelators in the same kinemati limit also on the string side. Here, in thesimplest approximation, one onsiders the zero slope limit and arrives at Witten diagramswith graviton exhanges. For the elasti sattering this has been done in [35℄, while for theproblem of the six-point funtion work along these lines is in progress.Our paper is organized as follows. In setion 2 we de�ne the triple-Regge limit ofsix-point orrelators, �rst for virtual photons in QCD, then for R-urrents in N = 4 SYMtheory. In setion 3 we onsider the R-urrent impat fators, onsisting of the sum of aWeyl fermion loop and a salar loop in the adjoint representation with n gluons attahed.We derive the relation of these impat fators to the orresponding impat fators onsistingof quark loops in the fundamental representation, and present them expliitly for up tofour gluons. We put speial emphasis on the reggeization of the impat fators. Furtherin that setion we point out that the Odderon deouples from impat fators ontainingpartiles in the adjoint representation. In setion 4 we write down the integral equationswhih sum all diagrams ontributing to the (extended) generalized leading logarithmiapproximation. In setion 5 we study these integral equations, traing in partiular theonsequenes of the new impat fators obtained before. In setion 6 we �nally present ourresult for the six-point orrelator whih di�ers from the result in QCD. Setion 7 ontainsour onlusions and an outlook. Appendix A deals with some su(N) olor identities. Intwo further appendies we onsider higher n-gluon amplitudes and their reggeization inN = 4 SYM: In appendix B we generalize our �ndings for the four-gluon amplitude to �vegluons. In appendix C, �nally, we make some steps towards a alulation of the six-gluonamplitude. These �rst steps already allow us to draw some onlusions about the 2-to-6{ 3 {



gluon transition funtion in N = 4 SYM. Some results presented in this paper have beenpublished in a letter [36℄.2. Six-point orrelation funtions at high energiesIn this setion we de�ne the high energy limit of six-point funtions in N = 4 SYM. Asis well known, the high energy behavior of sattering amplitudes in the Regge limit is de-termined by the exhange of partiles with the highest spin whih, in the ase of N = 4SYM, are the gauge bosons with spin 1. Studies of the high energy behavior of Yang-Millstheories in the leading logarithmi approximation show that, apart from the impat fators,the high energy behavior is entirely determined by the gauge bosons. This implies that, inthis approximation, in a supersymmetri extension of non-supersymmetri SU(N) gaugetheory, e. g. in N = 4 SYM with the same gauge group, the di�erene between the super-symmetri and the non-supersymmetri theory resides in the impat fators. Spei�ally,in supersymmetri theories the fermion �elds are in the adjoint representation, and in ad-dition to the impat fators onsisting of losed fermion loops we have also those omposedof salar partiles. Apart from the impat fators, the interations of the exhanged gluonsare the same as in the non-supersymmetri ase.2.1 Six-point amplitudes in QCDIn QCD, sattering amplitudes with more than 4 external partiles arise naturally in theontext of deep inelasti sattering on a weakly bound nuleus. A simple example is deepinelasti sattering (DIS) on a nuleus onsisting of two weakly bound nuleons (that is adeuteron), see �gure 1. The total ross setion of this sattering proess is obtained from

Figure 1: Sattering of a virtual photon on a weakly bound nuleusthe elasti sattering amplitude, T�(pn)!�(pn), via the optial theorem,�tot�(pn)!�(pn) = 1S ImT�(pn)!�(pn) ; (2.1)where S = (q + p1 + p2)2 denotes the total energy of the sattering proess. In order toobtain an entirely perturbative environment, we an think of replaing the two nuleons byvirtual photons. As a result, we are led to six-point orrelators of (o�-shell) eletromagneti{ 4 {



urrents, T���!��� , where the oupling between the external eletromagneti urrentsand the exhanged gluons is mediated by three photon impat fators.Let us start with the amplitude T�(pn)!�(pn). The kinematis is illustrated in �gure 1:the amplitude depends upon three energy variables, s1 = (q + p1)2, s2 = (q0 + p02)2, andM2 = (q + p1 � p01)2. In the high energy limit that we are interested in, s1 ' s2 ' sand all these variables are of the same order as S = (q + p1 + p2)2 ' 2s. All theseenergies are assumed to be muh larger than the momentum transfer variables t = (q�q0)2,t1 = (p1 � p01)2, and t2 = (p2 � p02)2 and the virtuality of the photon, Q2 = �q2,s1; s2 �M2 � Q2;�t1;�t2;�t : (2.2)We will distinguish between s1 and s2, but at the end we set s1 = s2 = s and t = 0.Throughout this paper we use Sudakov variables with the lightlike referene vetors qAand pB, suh that s = 2qA � qB , S = 4qA � pB = 2s, q = qA � xpB with x = Q2=(2qA � pB)and xP = M2 +Q2 � t1s ' M2s � 1 : (2.3)Negleting the nuleon masses we havep1 = p2 = pB ; p01 = pB(1� xP ) + p1? ; p02 = pB(1 + xP ) + p2? : (2.4)Internal momenta are then written aski = �iqA + �ipB + ki? (2.5)with k2i? = �k2i . The fat that the two nuleons are in a weakly oupled bound state impliesthat we will allow the two nuleons to have small losses of longitudinal and transversemomenta, i. e. we will integrate over xP and p1? = �p2? = k?. The integration over xP isequivalent to the integration over the mass squared M2, and the latter will be kept muhsmaller than s.A onvenient way of omputing the elasti sattering amplitude T�(pn)!�(pn) in thehigh energy limit is to use dispersion relations and Regge theory, for a review of thesetehniques see [37℄. For our ase1 the sattering amplitude an be written in the formT3!3(s1; s2;M2; t1; t2; t)= Z dj1dj2dj(2�i)3 sj11 �(j1)s2j2�(j2)(M2)j�j1�j2�(j; j1; j2)F (j1; j2; j; t1; t2; t) (2.6)with the signature fators �(j) = �� e�i�j+1sin�j , �(j; j1; j2) = �� e�i�(j�j1�j2)+1sin�(j�j1�j2) . Given therepresentation (2.6), there is an easy way of omputing this amplitude. Namely, we takethe triple disontinuity in s1, s2, and M2,diss1 diss2 disM2T3!3 = �3 Z dj1dj2dj(2�i)3 sj11 s2j2(M2)j�j1�j2F (j1; j2; j; t1; t2; t) ; (2.7)1This representation holds for the sattering of salar partiles. Beause of heliity onservation (whihis a onsequene of supersymmetry), this representation an also be used for our ase, where we onsiderthe sattering of external vetor urrents. { 5 {



and see that the partial wave F (j1; j2; j; t1; t2; t) whih in our kinemati region is real-valued(i. e. has no internal phases) an be omputed from the triple Mellin transform of the (real-valued) triple energy disontinuity. Using unitarity, this triple energy disontinuity is easilyobtained from high energy prodution proesses.To obtain the ross setion (2.1) for deep inelasti sattering on the deuteron from eq.(2.6) it is needed to take the imaginary part, i. e. the disontinuity inM2, to set s1 = s2 = sand t = 0 (whih implies p1? = �p2? = k?), and to integrate over the phase spae of thetwo nuleons, i. e. over xP =M2=s and k?,�tot�(pn)!�(pn)(s) = 12s Z 1x dxP Z d2k2(2�)3 disM2T3!3(s; s;M2 = xP s;�k2;�k2; 0)= 12 Z dj1dj2dj(2�i)3 sj�1�(j1)�(j2) 1j � j1 � j2 + 1 Z d2k2(2�)3 F (j1; j2; j;�k2;�k2; 0) ;(2.8)where due to the nuleon form fators the integration over k2 = �t1 = �t2 remainsrestrited to a small range.For the disussion of this paper, however, we fous on the orrelator of six urrents,T3!3(s1; s2;M2; t1; t2; t), and the integrations over xP and k will not be onsidered. In thefollowing it will be onvenient to introdue instead of the angular momenta j, j1, j2 thevariables ! = j� 1, !1 = j1� 1, !2 = j2� 1, and we will write F (!1; !2; !; t1; t2; t) insteadof F (j1; j2; j; t1; t2; t).In order to form, in the leading logarithmi approximation, olor singlet t-hannelstates whih ouple at the top to the virtual photon and at the bottom to two photons, oneis led to QCD diagrams with four t-hannel gluons at the lower end and two, three, or fourgluons at the upper end. A few examples of suh diagrams are shown in �gure 2. Wavyt-hannel gluon lines stand for reggeized gluon propagators, and horizontal lines betweenthe t-hannel gluons denote on-shell s-hannel gluons (that is real gluon prodution in theinteration kernel). For the omputation of the triple energy disontinuity we proeed inthe same way as for the LO BFKL ladders. We use multipartile amplitudes in the multi-Regge kinematis: T2!n and, more generally, Tn!m, where all inoming and outgoingpartiles are separated by large rapidity gaps. These diagrams represent, for the six-pointamplitude in the triple Regge limit, the (generalized) leading logarithmi approximation:for eah gluon loop we have a logarithm of a large energy variable.As to the general struture of the diagrams, at the lower end we start from 4 reggeizedgluons (two olor singlets) whih ouple to the two impat fators at the bottom. Atthe upper end, given by the upper photon impat fator, we end with a t-hannel stateonsisting of two, three, or four gluons. We thus enounter t-hannel states with 2, 3,or 4 gluons: their propagation is desribed by the BFKL equation for the ase of twogluons, and by the BKP equations in the ase of three and four gluons. When movingfrom the bottom to the top, the number of t-hannel gluons never inreases. Transitionsbetween the di�erent states are desribed by kernels K2!3 and K2!4 whih we desribe insetion 4.3 below. There are three di�erent t-hannels (t, t1, t2), and eah of them has itsown angular momentum !, !1, !2, respetively. As seen from �gure 2, there is always a{ 6 {



Figure 2: A few ontributions to the triple energy disontinuity in eq. (2.6)`lowest' interation, whih we all `branhing vertex', below whih the diagrams split intothe t1 and t2 hannels. It is therefore onvenient to split the diagrams of �gure 2 intothree piees: below the branhing vertex we have two disonneted BFKL Pomerons, D2,depending on !1 and !2, respetively. At and above the vertex we have an amplitude withfour gluons, D4, whih depends upon !: it satis�es an integral equation whih, for thease of QCD, has been disussed in [8℄, and has been further studied in [9℄. One of themain results of that analysis is the appearane of the M�obius invariant 2! 4 gluon vertex.Together with the BFKL kernel it represents one of the fundamental building bloks ofQCD Reggeon �eld theory. The investigation of the analogous amplitude in N = 4 SYM,D 4(!), will be the main goal of the present paper. In partiular, we will study the inueneof the supersymmetri partile ontent of the impat fators on the solution of the integralequation for that amplitude.It is straightforward to generalize this disussion of six-point amplitudes to eight-point,ten-point amplitudes et. In the same way as the six-point amplitude leads to 4 gluonsin the t-hannel, the eight-point amplitude ontains up to 6 gluons. As in the previousase, in QCD suh amplitudes arise very naturally in the ontext of the sattering of aphoton on nulei onsisting of three or more weakly bound nuleons. From the theoretialpoint of view, these multipartile orrelators provide a natural environment for olor singletBKP states. When deriving and analyzing these higher order BKP states within QCD,new transition verties of reggeized gluons appear whih are elements of QCD Reggeon�eld theory. In this paper we restrit ourselves to the six-point amplitude ontaining fourgluons. We will, however, present a few results also on the �ve- and six-gluon states.2.2 Six-point orrelators of R-urrents in N = 4 SYMAfter this brief review of QCD alulations we now want to turn to analogous satteringamplitudes in N = 4 SYM. In terms of omponent �elds, this theory ontains the vetor�eld A�, 4 hiral spinors �I , and 6 real salars XM . They all transform in the adjoint{ 7 {



representation of the gauge group SU(N), and generially we an write the �elds as � =�ab = �(T )ab, with the generators of the adjoint representation, (T )ab = �ifab. Thefab are the SU(N) struture onstants whih our also in the algebra of the generators taof the fundamental representation, [ta; tb℄ = ifabt. Our onvention for the normalizationof the ta is suh that tr (tatb) = Æab=2. For the generators in the adjoint representation wehave [T a; T b℄ = ifabT  and tr (T aT b) = NÆab.The Lagrangian of N = 4 SYM theory is [38℄L = tr�� 12F��F �� +D�XMD�XM + 2i�I��D���I� 2ig�I [�J ;XIJ ℄� 2ig��I [��J ;XIJ ℄ + 12g2[XM ;XN ℄[XM ;XN ℄� : (2.9)The XM and XIJ are related by the SU(4) �= SO(6) sigma symbols,XIJ = �12(�M )IJXM ; XIJ = 12(��1M )IJXM ; (2.10)with tr (�M��1N ) = 4ÆMN , whih implies that XMXM = XIJXIJ . Capital indies trans-form under the R-symmetry group SU(4). In partiular, A;B;C; ::: = 1; :::; 15 are indiesof the adjoint representation, I; J;K; ::: = 1; :::; 4 transform under the fundamental, andM;N; ::: = 1; :::; 6 under the vetor representations of the R-symmetry. Small indiesa; b; ; ::: = 1; :::; N2 �1 are adjoint representation indies for the gauge group SU(N). Theovariant derivative D� and the gauge �eld strength tensor F�� are de�ned in the usualway by (writing � generially for any �eld in the theory)D�� = ���� ig[A�;�℄ ; (2.11)F�� = ��A� � ��A� � ig[A�; A� ℄ : (2.12)The theory enjoys a SUR(4) global symmetry, alled R-symmetry, whih transformsthe di�erent superharges. Under these transformations, the �elds A�, �I , XM belongto the salar, fundamental, and vetor representation, respetively. More spei�ally, theLagrangian (2.9) is invariant under the global R-symmetry transformationÆ�a�I = i�A�a�J (TA)JI ;Æ��a _�I = � i�A(TA)IJ ��a _�J ;ÆXaM = i�A(TA)MNXaN ; (2.13)where �A are small parameters, and TA are the SUR(4) generators in the appropriaterepresentation.2 The orresponding Noether urrent isJA�R = i �L�(���)�A� = tr �����TA��� iXTAD�X� ; (2.14)where �A� is obtained from (2.13) with the de�nition Æ� = i�A�A� for an in�nitesimalR-transformation.2In our notation the generators of SUR(4) are labeled by apital letters so that they are distinguishedfrom the generators of SU(N) whih arry small letters.{ 8 {



In [33℄ it has been suggested that in N = 4 SYM this global urrent an be usedas a substitute for the eletromagneti U(1) urrent in QCD. To be more preise, oneshould hoose an abelian subgroup of the global SUR(4), for example the one generated byT 3 = diag(12 ;�12 ; 0; 0). The simplest appliation of this proedure is the supersymmetrianalog of elasti �� sattering: the elasti sattering of two R-urrents [34℄. In QCDthis proess, when evaluated at energies muh larger than the photon virtualities, providesone of the leanest environments for studying the BFKL Pomeron. With the onjeturedAdS/CFT duality, the orrelator of four R-urrents therefore o�ers the possibility to studythe dual of the BFKL Pomeron on the string theory side.As a next step along this line, one may address higher orrelators, e. g. the six-pointfuntion for whih the QCD side has been disussed above. Giving labels A, B1, B2 to thethree inoming virtual photons (and analogous primed labels to the outgoing ones) in theamplitude T���!��� , one is led to onsider an analogous proess in N = 4 SYM byde�ning the momentum spae six-point funtion (see �gure 3)i(2�)4Æ(q + p1 + p2 � q0 � p01 � p02)T �A�B1�B2�A0�B01�B023!3= Yi=A;:::;B02 Z d4xi e�iq�xA�ip1�xB1�ip2�xB2+iq0�xA0+ip01�xB01+ip02�xB02hJA�AR (xA)JB1�B1R (xB1)JB2�B2R (xB2)JA0�A0R (xA0)JB01�B01R (xB01)JB02�B02R (xB02)i : (2.15)Following the disussion of the previ-
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2Figure 3: The momentum spae six-point fun-tion of 3! 3 R-urrent sattering.

ous subsetion, we will be interested in the(generalized) leading logarithmi approxi-mation of the six-point funtion T3!3 in thetriple Regge limit, where we will make useof the analyti representation (2.6).The only plaes where the supersym-metri ontent of N = 4 SYM beomesvisible in the above expression are the im-pat fators. Compared to the QCD ase,there are two novel features:(i) the (Weyl)fermions are in the adjoint representation,(ii) in addition to the fermion loop, we havethe salars whih our in the adjoint representation as well. In [34℄ these impat fatorshave been alulated for the four-point funtion where two t-hannel gluons are oupledto the external urrents. For the six-point funtion, new impat fators with three or fourt-hannel gluons appear as well. They have not been alulated yet, and their omputationonstitutes one of the main goals of this paper.The struture of these novel impat fators has quite important onsequenes. Inthe QCD analysis the integral equations whih formally sum all the Reggeon diagramsan partially be solved and simpli�ed. The key ingredients to this are the reggeizationof the gluon and the validity of bootstrap equations. The latter ones strongly depend{ 9 {



upon the struture of the impat fators whih { in QCD with quarks in the fundamentalrepresentation { are simple (Dira) fermion loops. In QCD it has been shown that allontributions with more than two t-hannel gluons are absorbed into reggeizing piees,and, at the end, only two-gluon ontributions remain. This result is losely onneted withthe struture of the 2! 4 gluon vertex. In the ase of N = 4 SYM the fermions are in theadjoint representation, and the impat fators also ontain ontributions from the salars:the struture of the impat fators with three or more t-hannel vetor partiles is di�erent,and it is a priori not obvious how this a�ets the solution of the integral equations. Weshall investigate this issue in the present paper.3. Impat fators3.1 Four-point funtions in N = 4 SYMIt will be useful to briey reapitulate the two-gluon impat fator whih was studied indetail in [34℄, some properties of this impat fator were also disussed in [39, 40℄. Itspreise de�nition is given byD a1a2;�A�A0(2;0) (k1;k2) = p�1B p�2Bs2 Z 10 d~s2� dis~sA�A�A0 ;�1�2;a1a2RAg1!RA0g2 ��A�A(q)��A0�A0 (q0) : (3.1)Here A�A�A0 ;�1�2;a1a2RAg1!RA0g2 is the amplitude for sattering of the R-urrent A with Lorentz index�A and a gluon with momentum �k1, Lorentz index �1 and olor label a1 into the R-urrent A0 with Lorentz index �A0 and a gluon with momentum k2, Lorentz index �2 andolor label a2. ~s = (q � k1)2 ' q2 � k21 � s� is the total enter-of-mass energy squaredof the R-urrent-gluon system. ���(k) are the polarization vetors of the R-urrents withpolarizations � = L; h where L denotes longitudinal and h = 1; 2 transverse polarizations.We begin our disussion with the fermioni part of the R-urrent impat fator whihonsists of Weyl fermions in the adjoint representation of SU(N). Compared to Dirafermions in the fundamental representation (that is the usual QCD ase), we have toonsider the following hanges. Instead of N fundamental quarks we now have N2 � 1adjoint partiles, i. e. the olor trae tr (tatb) = Æab=2 is replaed by tr (T aT b) = NÆabwhere (T a)b = �ifab are the generators in the adjoint representation. Next, we have toonsider the U(1) harges eF of the global SUR(4) symmetry of the Weyl fermions whihare the analogs of the eletri harges eq in QCD. With our hoie of the U(1) subgroup,T 3 = diag(12 ;�12 ; 0; 0), we an take are of these harge fators by multiplying the QCDamplitude by RF = P e2FP e2q = 12P e2q ; (3.2)sine here P e2F = tr 4(TATA) = 12 . Furthermore, we identify the left- and right-handedomponents of a massless Dira fermion withWeyl fermions in the standard way, and we anonlude that the impat fator with a massless Dira fermion is twie the orrespondingimpat fator with a Weyl fermion. Compared to a Dira fermion in the fundamental{ 10 {



representation in QCD, we therefore have for the fermioni ontribution in N = 4 SYMthe relative weight 2NR with R = 12RF = 14P e2q : (3.3)The momentum struture, inluding the integration over the loop momentum, on the otherhand, remains the same in eah individual diagram and is not a�eted by the hange ofthe olor representation of the quarks. Finally, we have the salar ontribution for whihthere is no ounterpart in QCD.In the following we often ompare with the QCD ase, i. e. with the ase of Dirafermions in the fundamental representation. In order to make a lear distintion betweenthe impat fators (and, later on, also the gluon amplitudes) in the two theories we willdenote n-gluon impat fators in QCD with fundamental quarks by normal letters, forexample D(n;0), while those in N = 4 SYM will be denoted by blakboard-style letters, forexample D (n;0).The full N = 4 SYM impat fator D (2;0)(k1;k2) for the sattering of two R-urrentswith two exhanged gluons in the t-hannel has been omputed in [34℄. The omputationof the fermioni part inludes the four diagrams shown in �gure 4. We onsider the dison-
F1 F2 F3 F4Figure 4: The fermion diagrams for the impat fators.tinuity in s and therefore two propagators are set on-shell. Due to the ut only diagrams inwhih the gluon lines do not ross have to be inluded. The external urrents are projetedonto di�erent polarizations, longitudinal or transverse. For simpliity we give the resultof the fermion impat fator, the sum of the four diagrams in �gure 4, only for transversepolarization of the R-urrents:D a1a2 ;hh0F;(2;0) (k1;k2) = Æa1a2 N�s2 Z 10 d� Z d2l(2�)2� ��4�(1� �)�(h) ��N 1D1 � N 2D2 ��N 01D01 � N 02D02 � � �(h0)�+ �(h) � �(h0)��N 1D1 � N 2D2 ��N 01D01 � N 02D02 �� : (3.4)Here h and h0 denote the transverse polarizations (whih we will often suppress in thenotation of the amplitudes D n) and �(h) denotes the orresponding polarization vetor. aand a0 are the olor labels, and k1 and k2 with q = k1 + k2 are the transverse momentaof the gluons. The trae over the two generators of the SUR(4) group is inluded in theimpat fator. For fermions in the fundamental representation it istr 4(TATA) = 12 ; (3.5)
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as it appeared already in the relative fator RF , see (3.2). The integrations whih areleft are over the transverse momentum l and the Sudakov omponent �, belonging to thelongitudinal momentum qA, see (2.5), of the fermion loop. The propagators and numeratorsare given by (i 2 f1; 2g) N 1 = lN 01 = l� (1� �)qN 2 = l� kN 02 = l� k+ �qDi =N 2i + �(1 � �)Q2AD0i =N 02i + �(1 � �)Q2A0 : (3.6)
Note that D F;(2;0)(k1;k2) is symmetri in its two momentum arguments and vanishes if oneof them vanishes (i 2 f1; 2g): D a1a2F;(2;0)(k1;k2)���ki=0 = 0 ; (3.7)whih is a onsequene of the gauge invariane of the impat fator.The salar ontribution to the impat fator in N = 4 SYM onsists of nine diagrams,shown in �gure 5, and all diagrams are neessary to satisfy the Ward identities at �niteenergies. But at high energies the diagrams S5-S9 are suppressed [34℄, and the leadingdiagrams for the salar impat fator are S1-S4, whih are similar to the fermioni ones.The salar part of the impat fator with transversely polarized R-urrents is

S1 S2 S3 S4

S5 S6 S7 S8

S9Figure 5: The salar diagrams for the impat fators.D a1a2;hh0S;(2;0) (k1;k2) = 2Æa1a2 N�s Z 10 d� Z d2l(2�)2 �(1 � �)� �(h) � �N 1D1 � N2D2 ��N 01D01 � N 02D02 � � �(h0)� (3.8)
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with the propagators and numerators given in (3.6). The trae over the SUR(4) generatorsfor salars in the vetor representation, that is inluded here, givestr 6(TATA) = 1 ; (3.9)di�erent from the fermioni ase. Also the salar ontribution D S;(2;0)(k1;k2) to the impatfator is symmetri in its two momentum arguments and vanishes if one of them vanishes(i 2 f1; 2g): D a1a2;hh0S;(2;0) (k1;k2)���ki=0 = 0 : (3.10)We obtain the full impat fator in N = 4 SYM asD a1a2;hh0(2;0) � D a1a2;hh0F;(2;0) + D a1a2;hh0S;(2;0) ; (3.11)and obtain for the example of transversely polarized R-urrentsD a1a2;hh0(2;0) = Æa1a2Æhh0N�s2 Z 10 d� Z d2l(2�)2 �N 1D1 � N 2D2 � � �N 01D01 � N 02D02 � : (3.12)D (2;0) is symmetri in its two momentum arguments, and as a onsequene of (3.7) and(3.10) we have D a1a2;hh0(2;0) (k1;k2)���ki=0 = 0 : (3.13)It has been observed in [34℄ that due to supersymmetry the heliities of the satteringR-urrents are onserved. In partiular, unlike the QCD ase, heliity onservation holdsfor the R-urrent impat fator also in the non-forward diretion t 6= 0. In the following wewill keep in our notation the di�erent polarizations �A and �A0 expliit, while we keep inmind that the impat fator is always proportional to Æ�A�A0 . This also justi�es a posteriorithe use of the analyti representation (2.6) for the analysis of the six point funtion (2.15).3.2 Six-point funtions in N = 4 SYMThe next step is to go to higher orrelation funtions, e. g. six-point funtions (2.15). Againfermions and salars ontribute to the impat fator D (n;0). They generalize (3.1) to anarbitrary number of gluons and are de�ned asD a1a2:::an;�A�A0(n;0) (k1; : : : ;kn)= p�1B : : : p�nBsn Z 10 d~s12� : : : Z 10 d~sn�12� dis~s1 : : : dis~sn�1A�A�A0 ;�1:::�n;a1:::anRAg1!RA0g2:::gn ��A�A(q)��A0�A0 (q0) ;(3.14)with ~si = (q � Pij=1 kj)2, i = 1; : : : n � 1. One possible diagram with fermion loopsontributing to the six-point funtion is depited in �gure 6. The omplete impat fatorsare again given by the sum over all possible ways in whih the gluons an ouple to thefermion and salar lines.In the following disussion of amplitudes with more gluons the olor fators will playa ruial role, in partiular when we explain how amplitudes with di�erent numbers of{ 13 {



Figure 6: A fermioni ontribution to the six-point funtiongluons are related to eah other via reggeization. We will invoke known results from QCDin order to derive these relations for the ase of N = 4 SYM. When omparing the fermioniontributions we will always �nd the overall fator R of (3.3) when omparing an N = 4SYM amplitude to its analog in QCD. The olor fator, on the other hand, will have a riherstruture, suh that the main strutural di�erene between the two theories originates fromthe olor representations of the partiles. In the following we will therefore sometimes (inslight abuse of language) speak of the `adjoint' and `fundamental' representation when weatually refer to N = 4 SYM and QCD, respetively. In fat, the results obtained belowfor the fermions an be used for onsidering a theory like QCD with adjoint instead offundamental quarks by just dropping the fator R wherever it ours.3.2.1 Fermioni impat fatorFor the ase of fundamental quarks in QCD the impat fators with up to six gluons havebeen given expliitly in [8, 9℄. There it has been found that the impat fators with ar-bitrarily many gluons an be related to the two-gluon impat fator D(2;0). A detailedaount of how this reggeization of the impat fators results from the orresponding dia-grams has been given in [41℄. Here we want to relate the Weyl fermion impat fators inthe adjoint representation to those of the fundamental representation. In aordane withthe notation of the previous setion we assign olor labels ai and transverse momenta kito the gluons.To understand the main di�erene between QCD and N = 4 SYM we have to take aloser look at the traes in olor spae. Inspetion of the possible diagrams ontributing tothe n-gluon impat fator shows that these diagrams ome in pairs: for eah diagram thereis another diagram with the same momentum integration but with the generators ourringin opposite order in the trae in olor spae. The relative sign between these two diagramsturns out to be positive for even numbers of gluons and negative for odd numbers of gluons.It further turns out that the full impat fators an be written ompletely in terms of themomentum part of the two-gluon impat fator, see [8, 9℄. (In that representation thediagrams with all gluons attahed to the same quark line our several times with di�erentolor fators but anel in the sum over two-gluon impat fators suh that the original twodiagrams of this type are orretly ounted.) It is straightforward to hek, following forexample the derivation presented in [41℄, that this result holds also in the ase of adjoint{ 14 {



fermions.Let us �rst de�ne the momentum part of the two-gluon amplitude by separating itfrom the olor tensor, Da1a2(2;0)(k1;k2) = Æa1a2D(2;0)(k1;k2) ; (3.15)and analogously for D a1a2(2;0).For three gluons a pair of diagrams as desribed above omes with the di�erene oftwo traes over generators of the respetive representation. For the adjoint representationwe have for instane tr (T a1T a2T a3)� tr (T a3T a2T a1) = iNfa1a2a3 ; (3.16)while in the fundamental representation (i. e. in QCD) we hadtr (ta1 ta2ta3)� tr (ta3 ta2ta1) = i2fa1a2a3 (3.17)instead, giving again rise to a relative fator 2NR in the N = 4 SYM ase as ompared tothe QCD ase. This applies to all pairs of diagrams. Invoking the known deomposition ofthe fundamental impat fator D(3;0) into a sum over D(2;0) [7, 8℄,Da1a2a3(3;0) (k1;k2;k3) = 12gfa1a2a3 [D(2;0)(12; 3) �D(2;0)(13; 2) +D(2;0)(1; 23)℄ ; (3.18)we �nd for the adjoint representation in N = 4 SYMD a1a2a3F;(3;0)(k1;k2;k3) = 2NRDa1a2a3(3;0) (k1;k2;k3)= 12gfa1a2a3 [D F;(2;0)(12; 3) � D F;(2;0)(13; 2) + D F;(2;0)(1; 23)℄ : (3.19)Here we have made use of the shorthand notation for the momentum arguments of D (2;0)and D(2;0) originally introdued in [9℄ in whih the momenta are replaed by their indies,and a string of indies stands for the sum of momenta, for exampleD(2;0)(12; 3) = D(2;0)(k1 + k2;k3) : (3.20)In the following this notation will also be used for other funtions. Note that we haveexpressed both three-gluon impat fators here in terms of the momentum part of the two-gluon impat fator whih does no longer ontain the olor fator Æab. We observe that thethree-gluon impat fator in the adjoint representation (3.19) di�ers from the one in thefundamental representation (3.18) only by a fator 2NR. As a onsequene the relationbetween the three-gluon impat fator and the orresponding two-gluon impat fator isthe same in both representations, ompare the seond line of (3.19) with (3.18). What weobserve here is the reggeization of the gluon in the impat fator. In eah term in the sumin (3.19) or (3.18) two gluons ombine to at as a single gluon.For four gluons the situation beomes more interesting. In the fundamental represen-tation, the olor struture of a typial pair of diagrams with the same momentum strutureis given by the tensor dabd = tr (tatbttd) + tr (tdttbta) : (3.21){ 15 {



Taking the quarks to be in the adjoint representation gives us the same two traes withthe fundamental generators ta replaed by adjoint generators T a,tr (T aT bT T d) + tr (T dT T bT a) = 2Ndabd + ÆabÆd + ÆaÆbd + ÆadÆb ; (3.22)where we have used (A.3) and (A.5) in order to express this sum of traes in terms of thetensor in (3.21) known from the fundamental representation. We notie that in the aseof four gluons we �nd a further part in addition to reproduing 2N times the tensor fromthe fundamental representation. Using the known result for the four-gluon impat fatorin the fundamental representation [8℄,Da1a2a3a4(4;0) (k1;k2;k3;k4) = � g2da1a2a3a4 [D(2;0)(123; 4) +D(2;0)(1; 234) �D(2;0)(14; 23)℄� g2da2a1a3a4 [D(2;0)(134; 2) +D(2;0)(124; 3) �D(2;0)(12; 34)�D(2;0)(13; 24)℄ ; (3.23)and (3.22) we hene arrive atD a1a2a3a4F;(4;0) (k1;k2;k3;k4)= 2NRDa1a2a3a4(4;0) (k1;k2;k3;k4) + D a1a2a3a4F;(4;0) dir(k1;k2;k3;k4)= � g2da1a2a3a4 [D F;(2;0)(123; 4) + D F;(2;0)(1; 234) � D F;(2;0)(14; 23)℄� g2da2a1a3a4 [D F;(2;0)(134; 2) + D F;(2;0)(124; 3) � D F;(2;0)(12; 34) � D F;(2;0)(13; 24)℄+ D a1a2a3a4F;(4;0) dir(1; 2; 3; 4) : (3.24)Here the additional part D F;(4;0) dir originates from the additional delta tensors in (3.22):later on it will be shown that this piee { in ontrast to the other terms in eq. (3.24) { givesrise to a diret oupling of the four-gluon state in the t-hannel to the external urrents.Expliitly, it beomesD a1a2a3a4F;(4;0) dir(k1;k2;k3;k4)=� g2 12N (Æa1a2Æa3a4 + Æa1a3Æa2a4 + Æa1a4Æa2a3)� �D F;(2;0)(123; 4) + D F;(2;0)(124; 3) + D F;(2;0)(134; 2) + D F;(2;0)(1; 234)�D F;(2;0)(12; 34) � D F;(2;0)(13; 24) � D F;(2;0)(14; 23)� : (3.25)The fator (2N)�1 appears beause we have expressed the r.h.s. in terms of D F;(2;0) insteadof D(2;0). Interestingly, due to the symmetry of D F;(2;0), this additional term is ompletelysymmetri in its olor and momentum arguments. We furthermore observe that due to(3.13) it vanishes if one of the gluon momenta vanishes, that is for all i we haveD a1a2a3a4F;(4;0) dir(k1;k2;k3;k4)���ki=0 = 0 : (3.26)We will disuss the physial interpretation of this additional piee in setion 5 below.3.2.2 Salar impat fatorIn N = 4 SYM salars provide a ontribution to the full impat fator also for largernumbers of gluons. A salar ontribution to the six-point funtion is shown in �gure 7.
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In this setion we argue that it is possible to relate
Figure 7: A salar ontribution tothe six-point funtion

the salar impat fators for n gluons, D S;(n;0), to thetwo-gluon impat fator D S;(2;0) in the same way as forfermions.Additional diagrams like S5-S9 for the two-pointfuntion in �gure 5 also appear with three or more glu-ons in the t-hannel, see �gure 8. But these diagramsare suppressed for the same reasons as in the ase oftwo t-hannel gluons. Every ontration of the gluonpolarization tensor,g�� = 2s (p�Bq�A + q�Ap�B) + g��? ; (3.27)with the polarization vetor of the R-urrent provides one power of s less than in theleading diagrams. Therefore at high energies only diagrams with gluons oupled diretlyto the salar lines ontribute to the salar impat fator.
Figure 8: Two of the additional diagrams in the salar aseFurthermore, diagrams as the one shown in �gure 9 do not ontribute to the disonti-nuity that we are onsidering. Beause of the suppression of the additional diagrams also

Figure 9: A further salar diagramin the salar part all impat fators D S;(n;0) with arbitrarily many gluons an be expressedin terms of the two-gluon impat fator D S;(2;0). The redution mehanism is similar to theone with fermion loops. The key mehanism for fermions has been explained for examplein [9℄, here we will now onsider it for salars.A salar-gluon vertex, �gure 10, ontrated with the leading longitudinal part of thegluon polarization tensor (3.27), 2p�Bq�A=s, is proportional to s�, where again we make useof a Sudakov deomposition l = �qA + �pB + lt (as in (2.5)) of the loop momentum of thesalar loop. Let us now onsider two adjaent gluons out of the n gluons whih ouple to{ 17 {



the salar loop. Every salar-gluon vertex is ontrated with the longitudinal momentumpB from the polarization tensor of the t-hannel gluon. Furthermore, the salar propagatoris on-shell, thus resulting in a delta funtion. Then we obtain
l1 − k1 − k2l1

k1 k2

' �s(l � k1 + l � k1 � k2)�pB 2�Æ((l � k1)2) : (3.28)Making use of the Sudakov deomposition we �nd� s Æ �(� � �k1)� (l� k1)2=s�� � l1 l1 − k1 − k2

k2k1

(3.29)whih is the same as the one-gluon-salar vertex, but with the transverse momentum givenby the sum of the momenta of both t-hannel gluons. This means that we observe reggeiza-tion of the gluons in the salar part of the impat fator as well.The salar diagrams ontributing to the impat fator ome l1 − k1l1

k1Figure 10: Salar-gluonvertex
in pairs exatly as the fermioni ones. The two diagrams in eahpair have the same momentum struture but the olor traeours in reversed order. The relative sign between these twodiagrams is again (�1)n where n is the number of gluons.Altogether, the deomposition of the salar impat fatorsD S;(n;0) into a sum of D S;(2;0) works in the same way as forfermions. The results areD a1a2a3S;(3;0) (k1;k2;k3) = 12gfa1a2a3 [D S;(2;0)(12; 3) � D S;(2;0)(13; 2) + D S;(2;0)(1; 23)℄(3.30)andD a1a2a3a4S;(4;0) (k1;k2;k3;k4)= � g2da1a2a3a4 [D S;(2;0)(123; 4) + D S;(2;0)(1; 234) � D S;(2;0)(14; 23)℄� g2da2a1a3a4 [D S;(2;0)(134; 2) + D S;(2;0)(124; 3) � D S;(2;0)(12; 34) � D S;(2;0)(13; 24)℄+ D a1a2a3a4S;(4;0) dir(1; 2; 3; 4) ; (3.31)with D a1a2a3a4S;(4;0) dir(1; 2; 3; 4) as in eq. (3.25) but with the index F replaed by S in all terms.The full impat fators D (3;0) and D (4;0) are then given by the sum of the fermioniand salar impat fators as in the two-gluon ase (3.12):D (3;0) = D F;(3;0) + D S;(3;0)D (4;0) = D F;(4;0) + D S;(4;0) : (3.32)This holds for arbitrary polarization of the R-urrents.The key result of the present setion is that we have been able to express the fermioniparts of the adjoint (N = 4) impat fators with up to four gluons attahed in terms of{ 18 {



the orresponding fundamental (QCD) impat fators and in terms of one new element,namely the additional piee D F;(4;0) dir. The parts that ould be related to the fundamentalimpat fators an also be expressed in terms of the adjoint two-gluon impat fator D F;(2;0)in exatly the same way as the fundamental impat fators ould be expressed in terms ofD(2;0). For the salar ontributions to the N = 4 impat fators, that is absent in QCD,we �nd an analogous situation. The n-gluon impat fators D S;(n;0) an be expressed interms of the two-gluon impat fator D S;(2;0) and in terms of a new element D S;(4;0) dir whihours for four gluons. The relations in the fermioni and in the salar setor are ompletelyanalogous so that they also hold for the full impat fators D (n;0). In setion 5 we will usethis observation to extrat the struture of the solutions to the integral equations in asimple way.It is interesting to note that the pattern of reggeization, found for D (2;0), D (3;0), andD (4;0), ontinues for more than 4 gluons. Similar to D (3;0) whih, via reggeization, an beexpressed in terms of a sum of D (2;0) impat fators, the �ve-gluon impat fator, D (5;0),an be expressed in terms of lower impat fators. In partiular, we �nd the new termD (5;0) dir whih an be expressed in terms of the analogous four-gluon piee, D (4;0) dir. Morepreisely, de�ning D (4;0) dir = D F;(4;0) dir + D S;(4;0) dir ; (3.33)we �nd thatD a1a2a3a4a5(5;0) dir (k1;k2;k3;k4;k5)= g2 hfa1a2 D a3a4a5(4;0)dir (12; 3; 4; 5) + fa1a3 D a2a4a5(4;0) dir(13; 2; 4; 5)+ fa1a4 D a2a3a5(4;0)dir (14; 2; 3; 5) + fa1a5 D a2a3a4(4;0) dir(15; 2; 3; 4)+ fa2a3 D a1a4a5(4;0) dir(1; 23; 4; 5) + fa2a4 D a1a3a5(4;0) dir(1; 24; 3; 5)+ fa2a5 D a1a3a4(4;0) dir(1; 25; 3; 4) + fa3a4 D a1a2a5(4;0) dir(1; 2; 34; 5)+ fa3a5 D a1a2a4(4;0) dir(1; 2; 35; 4) + fa4a5 D a1a2a3(4;0) dir(1; 2; 3; 45)i : (3.34)Further details of the alulation of the �ve- and six-gluon impat fators D (5;0) and D (6;0)are presented in the appendies B and C.3.3 Deoupling of the OdderonWe lose this setion with an observation that is not along the main line of our paperbut nevertheless interesting. A loser inspetion of the olor traes that appeared in theimpat fators onsidered above allows us to draw some onlusions onerning the ouplingof the Odderon3 to photon-like impat fators in theories where all partiles are the adjointrepresentation of SU(N).In order to obtain Odderon exhanges in the t-hannel we have to onsider impatfators that desribe the transition from a C-odd to a C-even state, for example from anR-urrent as onsidered above to a pseudosalar urrent. As explained in detail in [41℄3For a review on the Odderon, the C-odd partner of the Pomeron, we refer the reader to [42℄.{ 19 {



for the ase of Dira fermions, the fermioni loop in suh an impat fator with n gluonsattahed gives rise to the olor fatortr (T a1 : : : T an)� (�1)ntr (T an : : : T a1) : (3.35)In the Pomeron (C-even) hannel, on the other hand, the impat fator ontaining twovetor-like R-urrents leads totr (T a1 : : : T an) + (�1)ntr (T an : : : T a1) = 2tr (T a1 : : : T an) ; (3.36)as we have seen above.In QCD, where the orresponding generators are in the fundamental representation,the analog of the above ombination of traes (3.35) is in general non-zero. In partiular,the n t-gluons form in the Regge-limit a bound state for whih the EGLLA was formulatedin [41℄. However, if the generators in the trae (3.35) are in the adjoint representation, we�nd tr (T a1T a2 : : : T an) = (ifka1l)(ifla2m) : : : (ifzank)= (ifzank) : : : (ifla2m)(ifka1l)= (�1)n(ifkanz) : : : (ifma2l)(ifla1k)= (�1)ntr (T an : : : T a2T a1) ; (3.37)whih implies that the ombination (3.35) vanishes. As a onsequene, bound states like theOdderon with odd harge parity deouple from photon-like impat fators, if the partilesin the loop are in the adjoint representation. It should be possible to generalize thisargument to all possible impat fators in theories that ontain only partiles in the adjointrepresentation. Odderon ontributions an our in suh theories only via the splitting ofa Pomeron into two Odderons [9℄. Considerations involving the diret oupling of theOdderon to partiles in a sattering proess in N = 4 SYM, like for example [43℄, thereforerequire to add partiles in the fundamental representation at least as external soures.4. Integral equationsLet us now turn to the integral equations whih, in the leading logarithmi approximation,sum all graphs ontributing to the triple energy disontinuity of the six-point funtion. Aswe will see, the integral equations are formally the same in N = 4 SYM and in QCD.But the ouplings of the t-hannel gluons to the external partiles whih enter the integralequations as initial onditions di�er in the two theories, as we have disussed in the previoussetion. In order to make a lear distintion between the multi-gluon amplitudes in the twotheories we will follow the notation introdued for the impat fators, i. e. we will denoten-gluon amplitudes in QCD by normal letters, for example Dn, while those in N = 4 SYMwill be denoted by blakboard-style letters, for example D n.{ 20 {



4.1 Two gluons: BFKL equationIn the LLA the sattering amplitude is desribed by the well-known BFKL equation [1, 2℄whih resums all terms of the order (�s log s)m. For a review of the BFKL equation see forexample [44℄. It is onvenient to formulate the BFKL equation and the integral equationsto be disussed below in Mellin spae, that is one trades the squared energy s for theomplex angular momentum ! by performing a Sommerfeld-Watson transformation. (Inthe following we will suppress the impliit dependene of our n-gluon amplitudes on !in the notation.) We onsider the amplitude D 2(k1;k2) whih desribes the evolution oftwo reggeized gluons in the t-hannel, starting from an impat fator D (2;0)(k1;k2) whihouples the two gluons to the external urrents via a loop of fermions and salars in theadjoint representation. The elasti amplitude for R-urrent sattering is then obtainedfrom D 2 by folding it with another impat fator D (2;0) for the other inoming and outgoingR-urrent [34℄.In the LLA the energy dependene of the elasti sattering amplitude (from whih aorresponding total ross setion an be obtained via the optial theorem) is then enodedin the BFKL equation whih we an write for D 2 as ! � 2Xi=1 �(ki)! D a1a22 = D a1a2(2;0) +Kfbg!fag2!2 
 D b1b22 : (4.1)It desribes the prodution of two interating gluons in the t-hannel with transverse mo-menta k1 and k2. The supersripts of D 2 indiate the olor labels of the two gluons.Graphially, this equation an be illustrated as ! � 2Xi=1 �(ki)! D2 = D(2;0) + D2 : (4.2)The real orretions in the interation of the gluons are ontained in the kernelKfbg!fag2!2 (l1; l2;k1;k2) = g2fb1a1kfka2b2 �(k1 + k2)2 � l22k21(k2 � l2)2 � l21k22(k1 � l1)2 � ; (4.3)where g is the gauge oupling related to the strong oupling onstant by �s = g2=(4�).The virtual orretions are given by the gluon trajetory funtion�(k2) = �N2 g2 Z d2l(2�)3 k2l2(l� k)2 ; (4.4)from whih the atual gluon trajetory is obtained as �g(k2) = 1+�(k2). The onvolutionsymbol 
 in eq. (4.1) stands for a two-dimensional integration over the transverse loopmomentum d2l with the measure [(2�)3l21l22℄�1, and we have the ondition l1+l2 = k1+k2 =q with t = �q2. The inhomogeneous term D (2;0) in the BFKL equation (4.1) is the impatfator whih desribes the oupling of the two gluons to the sattering partiles, for examplethe oupling of two gluons to external R-urrents through a fermion and salar loop.{ 21 {



The sum of the real and virtual ontributions to the interation of the two gluons isusually alled the BFKL or Lipatov kernel. Transforming this kernel to transverse positionspae one �nds that it is invariant under M�obius transformations in that two-dimensionalspae [24℄. As a onsequene it is possible to �nd the eigenfuntions Eh of the kernel intransverse position spae and to lassify them aording to their onformal weight h. Thelowest eigenvalue, obtained for h = 1=2, gives rise to the leading behavior s�BFKL�1 of theross setion at high energies. It is determined by the interept of the BFKL Pomeron,�BFKL = 1 + (N�s=�)4 log 2.In the LLA the BFKL kernel onsists of diagrams that involve only gluons but noquarks. Only in the NLLA, that is if one inludes terms of the order �s(�s log s)n, quarkloops our in the QCD ase [45, 46℄. It is therefore lear that the BFKL kernel in the LLAis not a�eted if we onsider a gauge theory with adjoint instead of fundamental quarks.In the LLA it is only the impat fator D (2;0) whih di�ers from the one in QCD withfundamental quarks, as we have disussed in setion 3. For the NLL orretions to theBFKL equation in N = 4 SYM see [47, 48℄.4.2 More gluons: BKP equationsIn a straightforward generalization of the BFKL equation, referred to as the GLLA, oneonsiders exhanges of more gluons in the t-hannel, still keeping the number n of gluons�xed during the evolution. The orresponding n-gluon amplitudes are desribed by theBKP equations [4, 5℄ whih resum terms ontaining the maximally possible number oflogarithms for a given �xed n. These BKP states appear in several plaes (see furtherbelow), and we briey summarize their most important properties. In leading order, thisequation an be written ompletely in terms of the gluon trajetory funtion � and ofthe kernel K2!2 of (4.3) that ourred already in the BFKL equation. It is thereforeimmediately lear that, at the leading logarithmi level, also the BKP equation is identialin QCD with fundamental quarks and in N = 4 SYM.Let us onsider amplitudes B n desribing the prodution of n gluons in the t-hannel,similar to the BFKL amplitude D 2 above. The BKP equation for the amplitude B n inN = 4 SYM reads ! � nXi=1 �(ki)! B a1:::ann = B a1:::an(n;0) +XKfbg!fag2!2 
 B b1:::b4n ; (4.5)where now the amplitude arries n olor labels ai. Again the evolution starts with some ini-tial ondition, B (n;0), given by an impat fator or by a transition from another multigluonstate (see below). The sum extends over all pairwise interations of the n gluons. The ker-nel (4.3) has to be interpreted suh that only the two gluons partiipating in the respetiveinteration enter the kernel, while the other n�2 gluons do not hange their olor nor theirmomentum. We an illustrate the BKP equation graphially (for the example n = 4) as ! � 4Xi=1 �(ki)! B4 = B(4;0) +X B4 : (4.6)
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Here the BKP equation is written for amplitudes B n with multiple uts, that is one takesn�1 disontinuities orresponding to the energy variables de�ned from the four-momentumof the inoming photon and those of the �rst i gluons, si = (q +P1j=1 kj)2, with 1 � i �n � 1. As a onsequene of this the t-hannel gluons do not ross eah other and thes-hannel gluons exhanged between them via the kernels K2!2 are on-shell.In NLLA the BKP equation will be di�erent for QCD and N = 4 SYM. The fermioniontribution to the NLL terms an be obtained by replaing the gluon trajetory and thereal part K2!2 of the BFKL kernel by the orresponding next-to-leading QCD expressions,with the quarks taken in the representation under onsideration. However, in addition alsoa new kernel will appear, K3!3, whih has not been omputed yet.Let us reall here that in the large-N limit the Hamiltonian orresponding to the BKPequation is integrable [27℄. More preisely, it is equivalent to the XXX-Heisenberg model ofSL(2;C) spin zero [28, 29℄. At large N the leading terms in the BKP equation are those inwhih the integral kernel ats only on neighboring gluons i and i+1 with periodi boundaryonditions. The olor struture simpli�es suh that eah pair of neighboring gluons is ina olor otet state. For the six-point R-urrent orrelator, however, we will show that thelarge-N limit suppresses the BKP states. For the rest of the paper we will stay with �niteN, and only at the end we will onsider the large-N limit.4.3 Changing the number of gluons: oupled integral equationsIn order to ompute the sum of diagrams that ontribute to the six-point funtion (exam-ples have been given in �gure 2) we need to ouple amplitudes with 2, 3, and 4 gluons,D a1a2(2;0), D a1a2a3(3;0) , and D a1a2a3a4(4;0) . It is beyond the sope of the present paper to desribe infull detail how the relevant n-gluon amplitudes D n are obtained from multi-partile sat-tering amplitudes by applying suitable disontinuities similar to the ones mentioned in theprevious setion below eq. (4.6). A more detailed aount of this proedure has been givenin [8℄ for the example of the four-gluon amplitude D4.In the following we simply write down the integral equations for the n-gluon amplitudeswhih arise in the so-alled extended GLLA, or EGLLA. This approximation sheme anbe haraterized as resumming the maximally possible number of logarithms for a givennumber of t-hannel gluons n the prodution of whih is desribed by an amplitude D n,with number-hanging transitions being allowed. For the details of the EGLLA we referthe reader to [9, 49℄. Various aspets of the EGLLA have been studied in [50℄-[61℄.Let us now onsider the integral equations of the EGLLA for the amplitudes D n forN = 4 SYM and disuss the elements entering them in more detail. For up to n = 4 gluonsin the t-hannel these oupled integral equations read ! � 2Xi=1 �(ki)! D a1a22 = D a1a2(2;0) +Kfbg!fag2!2 
 D b1b22 (4.7) ! � 3Xi=1 �(ki)! D a1a2a33 = D a1a2a3(3;0) +Kfbg!fag2!3 
 D b1b22 +XKfbg!fag2!2 
 D b1b2b33 (4.8)
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 ! � 4Xi=1 �(ki)! D a1a2a3a44 = D a1a2a3a4(4;0) +Kfbg!fag2!4 
 D b1b22 +XKfbg!fag2!3 
 D b1b2b33+XKfbg!fag2!2 
 D b1b2b3b44 : (4.9)As in the ase of the BKP equations the kernels Kfbg!fag2!m have to be interpreted in suha way that only two gluons undergo an interation resulting in m gluons, while the othergluons of the amplitude to whih the kernel is applied keep their momentum and olor.It is straightforward to obtain the integral equations for the higher n-gluon amplitudesfollowing the above pattern. In appendix B we disuss the ase n = 5.The lowest order terms D (n;0) desribe the oupling of n gluons to the R-urrents, asdisussed in detail in setion 3 above. The trajetory funtion � is the one given in eq.(4.4), while we de�ne the transition kernel from 2 to m gluons that ours in the integralequations asKfbg!fag2!m (l1; l2;k1; : : : ;km)= gmfb1a1k1fk1a2k2 : : : fkm�1amb2 �(k1 + � � �+ km)2 � l22(k1 + � � � + km�1)2(km � l2)2� l21(k2 + � � �+ km)2(k1 � l1)2 + l21l22(k2 + � � �+ km�1)2(k1 � l1)2(km � l2)2 � ; (4.10)where the fklm are again the struture onstants of su(N). Note that for m = 2 thede�nition (4.10) redues4 to the kernel K2!2 of (4.3) whih ourred in the BFKL and inthe BKP equations. We stress that these kernels do not depend on the olor representationof the quarks, and are therefore exatly the same as in QCD with fundamental quarks.As in the BFKL equation, fermioni and salar ontributions enter the kernels only at thenext-to-leading level.As in the BFKL and BKP equations the onvolution symbol
 stands for an integrationover the loop momentum with the measure [(2�)3l21l22℄�1, and here we have the onditionthat l1 + l2 = k1 + � � � + km in (4.10). We write the kernel (4.10) diagrammatially as
l2, b2l1, b1

. . .

k1, a1 k
m

, a
m

: (4.11)
With the help of the diagrammati representation (4.11) of the kernels we an writethe hierarhy of oupled integral equations of the EGLLA in a more intuitive diagrammati4In this ase the last term in square brakets in eq. (4.10) is understood to vanish by de�nition.{ 24 {



form as ! � 2Xi=1 �(ki)! D2 = D(2;0) + D2 (4.12) ! � 3Xi=1 �(ki)! D3 = D(3;0) + D2 +X D3 (4.13) ! � 4Xi=1 �(ki)! D4 = D(4;0) + D2 +X D3+X D4 (4.14)The sums in the integral equations extend over all possible permutations of the gluon linesin the t-hannel under the ondition that these lines do not ross eah other. For a moredetailed desription of this point inluding expliit examples we refer the reader to [9℄. Notethat in eah diagram only two of the gluons enter the interation de�ned by the kernel.The momenta and olor labels of the other gluons are not a�eted by the kernel.The integral equations eqs. (4.7)-(4.9) form the basis of our analysis in the followingsetions. Our strategy will be to relate ertain parts of the amplitudes for the ase ofN = 4 SYM to the amplitudes of QCD with fundamental quarks, and to invoke knownresults of the QCD ase. The di�erene between the amplitudes for the two theories learlyoriginates from the di�erent impat fators.5. Solutions for D 3 and D 4In order to �nd solutions for the amplitudes D 3 and D 4 we will make use of the resultsobtained in setion 3 for the impat fators D (n;0). In the ase of two gluons, the amplitudeD 2 is given by the BFKL Pomeron Green's funtion, onvoluted with the two-gluon impatfator D (2;0). In partiular, for the fermioni part D F;2, that is the one with only a fermioniloop in the impat fator, we have the simple relationD F;2(k1;k2) = 2NRD2(k1;k2) : (5.1)whih is an immediate onsequene of the fat that the BFKL equation with a fundamentalimpat fator di�ers from eq. (4.1) only by a relative fator in the impat fator.Considering then the three-gluon amplitude D 3, we observe that the three-gluon impatfator D (3;0) is related to the two-gluon impat fator D (2;0) in exatly the same way asD(3;0) was related to D(2;0) in QCD with fundamental quarks, see eqs. (3.18) and (3.19).One an then easily verify that the solution to the integral equation (4.8) is given byD a1a2a33 (k1;k2;k3) = 12gfa1a2a3 [D 2(12; 3) � D 2(13; 2) + D 2(1; 23)℄ ; (5.2)
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in omplete analogy to the ase of QCD with fundamental quarks treated in [6, 8℄. (Through-out this setion we again make use of the notation (3.20).) We emphasize that this re-sult holds for the omplete amplitude with the impat fators ontaining now the sum offermioni and salar loops. Note that also in the full amplitude we observe reggeization.The amplitude D 3 is a superposition of two-gluon amplitudes D 2 in eah of whih one gluonis omposed of two gluons at the same position in transverse spae (or, equivalently, theamplitude depends only on the sum of their transverse momenta). In other words, suh apair of gluons at the same point in transverse spae ats like a single gluon, in this wayforming a so-alled reggeized gluon. One an atually show that a self-onsistent solutionis found only if all gluons exhanged in the t-hannel are reggeized. What we observein the amplitude D 3 is a perturbative expansion of the reggeized gluon in terms of more`elementary gluons' to the �rst non-trivial order, or in other words a higher (two-partile)Fok state of the reggeized gluon. For a more detailed disussion of reggeization in theEGLLA see [56℄.While in the three-gluon ase the full amplitude has the same olor struture anddependene on the gluon momenta as the impat fator (ompare eqs. (3.18) and (5.2))the struture beomes more interesting already when we onsider four gluons. We havefound in setion 3 that in N = 4 SYM the impat fator with four gluons D (4;0) onsistsof two parts exhibited in (3.24) and (3.31): one whih an be expressed in terms of theadjoint two-gluon impat fator D (2;0) in exatly the same way as the fundamental four-gluon impat fator D(4;0) was expressed in terms of D(2;0) (ompare eqs. (3.24) and (3.31)to (3.23)), and a new additional part D (4;0) dir, see eq. (3.33). Both parts have a fermioniontribution and a salar ontribution. The similarity of the �rst part to the ase of QCDwith fundamental quarks suggests to attak the integral equation (4.9) for D 4 in the sameway as was done in [6, 7, 8℄ for the ase of D4. We hene split D 4 into two partsD 4 = D R4 + ~D 4 ; (5.3)and make an ansatz for the so-alled reggeizing part D R4 . Similarly to the ase of threegluons above this ansatz is obtained from the �rst parts of the impat fators (3.24) and(3.31) by replaing the lowest order terms D (2;0) by full amplitudes D F;2 and D S;2 whilekeeping the olor and momentum struture. Adding the fermioni and salar ontributionswe have D Ra1a2a3a44 (k1;k2;k3;k4)= � g2da1a2a3a4 [D 2(123; 4) + D 2(1; 234) � D 2(14; 23)℄� g2da2a1a3a4 [D 2(134; 2) + D 2(124; 3) � D 2(12; 34) � D 2(13; 24)℄ : (5.4)We will disuss its reggeizing struture later, see the disussion of eq. (5.11) below. Insertingnow (5.3) with (5.4) in the integral equation (4.9) one an derive a new integral equationfor the remaining part ~D 4. The proedure for this is exatly the same as in the ase offundamental quarks (for a detailed desription we refer the reader to [9℄). This ompleteanalogy allows us to use the results of [6, 7, 8℄. We �nd that ~D 4 satis�es the integral{ 26 {



equation  ! � 4Xi=1 �(ki)! ~D a1a2a3a44 (k1;k2;k3;k4) = V a1a2a3a42!4 D 2 + D a1a2a3a4(4;0) dir+XKfbg!fag2!2 
 ~D b1b2b3b44 ; (5.5)where V2!4 is exatly the same two-to-four gluon transition vertex whih was derived in[8℄. V2!4 ats as an integral operator on the two-gluon amplitude D 2 and thus ouplesit to the four-gluon BKP state. The vertex an be written in terms of an infrared-�nitefuntion V asV a1a2a3a42!4 (fqjg;k1;k2;k3;k4) = Æa1a2Æa3a4V (fqjg;k1;k2;k3;k4)+ Æa1a3Æa2a4V (fqjg;k1;k3;k2;k4)+ Æa1a4Æa2a3V (fqjg;k1;k4;k2;k3) ; (5.6)where the qj are the transverse momenta of the two gluons in the amplitude D 2. Thevertex V2!4 is hene ompletely symmetri in the four outgoing gluons, that is under thesimultaneous exhange of their olor labels and momenta. An important property of thistransition vertex is that upon Fourier transformation to two-dimensional impat parameterspae it is invariant under onformal (M�obius) transformations in the transverse plane[25℄. Another important property of the two-to-four gluon vertex is that it vanishes if thetransverse momentum of any of the outgoing gluons vanishes. Further properties of V2!4have been found and disussed in [51, 54, 26, 57℄.Note that the new integral equation (5.5) for ~D 4 is a linear integral equation involvingonly the integral kernel PK2!2 of the four-gluon BKP equation, ompare eq. (4.5). Theterms involving K2!4 
 D 2 and K2!3 
 D 3 present in the original integral equation (4.9)have disappeared in favor of V2!4 
 D 2. The latter has now beome a ontribution to theinhomogeneous term in the linear equation for ~D 4. Sine the equation (5.5) is linear andits inhomogeneous term is a sum of two terms we an write its solution as a sum,~D 4 = D I4 + D 4 dir ; (5.7)with the two parts satisfying ! � 4Xi=1 �(ki)! D I a1a2a3a44 (k1;k2;k3;k4) = V a1a2a3a42!4 D 2+XKfbg!fag2!2 
D I b1b2b3b44 (5.8)and ! � 4Xi=1 �(ki)! D a1a2a3a44 dir (k1;k2;k3;k4) = D a1a2a3a4(4;0) dir +XKfbg!fag2!2 
 D b1b2b3b44 dir ; (5.9)respetively. In both equations the inhomogeneous terms are known so that the solutionan formally be obtained by iteration of the integral kernel PK2!2.{ 27 {



The amplitude D I4 in eq. (5.8) is well known from the four-gluon amplitude in QCDwith fundamental quarks. More preisely, there one an split the amplitude D4 aordingto D4 = DR4 +DI4, and DI4 satis�es the same equation (5.8) as D I4 here. The two amplitudesare in fat proportional to eah other, D I4 = 2NRDI4, and the relative fator originatesonly from the impat fator. As one an see from the iterative solution of eq. (5.8), D I4ontains a two-gluon state whih ouples to the impat fator and then at some pointundergoes a transition to a four-gluon state. The vertex V2!4 desribing this transition isloal in rapidity.The last part D 4 dir of the four-gluon amplitude D 4 is new in the supersymmetri theoryand originates from the fat that partiles inside the loop are in the adjoint representation.It has a simple struture as an be read o� from the integral equation (5.9): it onsistsof a four-gluon BKP state that is diretly oupled to the loop of adjoint fermions andsalars, and the oupling is just given by the additional term D (4;0) dir of eq. (3.25) and thesalar analog of that equation. For the ase of �ve t-hannel gluons, addressed in appendixB, it an be further shown, that the additional term that arises there due to the adjointrepresentation reggeizes in terms of D 4 dir, in the very same way as D 3 reggeizes in termsof D 2.In summary, we have deomposed the four-gluon amplitude D 4 into three parts,D 4 = D R4 + D I4 + D 4 dir ; (5.10)and have been able to derive their struture5. We an illustrate these three parts graphiallyin the following way:
D 4 =X D(2;0) + D(2;0)

V2→4

+ D(4;0) dir : (5.11)
The �rst term D R4 , whih we have not yet disussed in detail here, is again a reggeizing term,namely a superposition of two-gluon amplitudes D 2. The sum extends over all possible (thatis seven) partitions of the four gluons into two non-empty sets, see eq. (5.4). In eah ofthese terms several gluons are at the same point in transverse spae and form a reggeizedgluon that arries the sum of their transverse momenta. As in the ase of the three-gluonamplitude D 3 (5.2) we an interpret these omposite gluons as representing higher Fokstates of the reggeized gluon. An interesting aspet of reggeization is the olor struturethat is assoiated with this proess. Reall that in the three-gluon amplitude D 3 (5.2) thisombination of two gluons into a more omposite gluon always ame with a f -struture5In [36, 62℄ it has been found that for the large-N expansion of the six-point amplitude in topologiesof two-dimensional surfaes the above deomposition ours automatially, as a onsequene of di�erentlasses of olor strutures. { 28 {



onstant of the SU(N) gauge group. In the reggeizing part D R4 of the four-gluon amplitudewe see also other ontributions, namely a d-tensor of type (3.21) for the ombination ofthree gluons into one, and also d-type symmetri struture onstants and even Æ-tensors forthe ombination of two gluons into one. The latter are obtained from the deomposition(A.6) of the dabd-tensor given in appendix A. A more detailed disussion of these olortensors in the ontext of reggeization was given in [56℄.In the seond term in eq. (5.11), D I4, two gluons ouple to the impat fator, interataording to BFKL evolution, then undergo a transition to four gluons via the vertex V2!4,and �nally these four gluons interat pairwise aording to BKP evolution. In the thirdterm, D 4 dir, four gluons ouple diretly to the fermion and salar loop and then interatpairwise aording to BKP evolution, without a transition vertex in the evolution. Boththe �rst and seond term are present already in QCD with fundamental quarks. In N = 4SYM only their normalization is di�erent, being (2NR) times that of the orrespondingterms for QCD with fundamental quarks. The third term ours only in theories withadjoint partiles, here fermions and salars in N = 4 SYM.A ruial step towards a better understanding of the n-gluon amplitudes Dn in QCDwas the observation that they exhibit the struture of a �eld theory of gluon exhanges,and the same observation applies to our results for N = 4 SYM. There are n-gluon stateswith �xed numbers of reggeized gluons in the t-hannel, for example the two-gluon stateand the four-gluon state. In addition there are transition verties oupling those states toeah other, like for example the two-to-four gluon transition vertex V2!4. This struturehas been veri�ed in the expliit alulation of the amplitudes with up to six gluons [9℄. Inthe six-gluon ase a new transition vertex from two to six gluons ours whih ontains aPomeron-Odderon-Odderon oupling as well as a one-to-three Pomeron transition. In thePomeron hannel it turns out that only n-gluon states with even numbers n of gluons our.The amplitudes Dn with odd n reggeize and are hene superpositions of amplitudes withless and even numbers of gluons. (In the appendix we show that this pattern ontinues for5 gluons also in N = 4 SYM.)The amplitudes in the Pomeron hannel hene onsist of only very few elements, namelystates of even numbers of reggeized gluons and transition verties between them. All ofthese elements of the �eld theory of reggeized gluon exhanges possess two importantproperties: �rstly, they are ompletely symmetri in the exhange of any two gluons, andseondly, they vanish when any of the transverse gluon momenta is set to zero. Thisproperty holds for the two-to-four gluon vertex V2!4, as we have pointed out above, andit also holds for the two-to-six gluon transition vertex [9℄. The same holds also for then-gluon states, one they are oupled to an element that ful�lls these two onditions. It istherefore plausible to regard also the impat fator with two-gluons D(2;0) as a fundamentalelement of our �eld theory. As we have pointed out in setion 3 it in fat satis�es theseonditions. Moreover, all higher impat fators with fundamental quarks ould be expressedas superpositions of D(2;0), thus exhibiting reggeization, see again setion 3.Furthermore, and from a theoretial point of view most importantly, all elements ofthe �eld theory are onformally invariant, that is they are invariant under M�obius transfor-mations of the gluon oordinates in two-dimensional impat parameter spae. Hene the{ 29 {



omplete amplitudes exhibit the struture of an e�etive onformal �eld theory of reggeizedgluon exhanges at high energy.Let us now return to N = 4 SYM and let us reonsider our results in the light of theirinterpretation in the framework of suh an e�etive onformal �eld theory. The two- and thethree-gluon amplitudes behave as the orresponding amplitudes in QCD with fundamentalquarks and hene share their properties regarding the �eld theory struture. In partiularwe have found the absene of an atual three-gluon state in D 3 due to reggeization. The �rsttwo terms of the four-gluon amplitude D 4 in eq. (5.11) reprodue exatly the struture ofthe amplitude D4 in QCD with fundamental quarks, and hene have the same �eld theorystruture disussed above. The new term D 4 dir ontains again the four-gluon state in thet-hannel with properties that �t the �eld theory struture. But in addition it ontains as anew element the diret oupling D (4;0) dir of the four gluons to the impat fator onsistingof adjoint fermions and salars. Inspetion of its expliit struture quikly shows that it issymmetri under the exhange of any two gluons, and that it vanishes if one of the gluonmomenta vanishes, see eq. (3.26). Therefore the new ontribution to the four-gluon impatfator satis�es the expetations that we have for a new element of our �eld theory.6. The six-point amplitudeColleting the results of the previous setions, we now return to the six-point amplitudede�ned in setion 2. As we have explained before, the partial wave F (!1; !2; !; t1; t2; t) isobtained as a onvolution of the three amplitudes D 4(!), D 2(!1), and D 2(!2). In orderto formulate this onvolution orretly, we have to say a few words on the ounting ofdiagrams [8℄.Let us return, in �gure 2, to the branhing vertex. Moving from the top to the bottom,it is the last interation between the two subsystems (12) and (34). Below this vertex, thesystem of gluons has split into two non-interating two-gluon states. This 'last' vertexan be one of the 2 ! 2 interations inside the gluon pairs (23), (13), (24), or (14), butnot inside (12) or (34). Also, it ould be one of the four 2 ! 3 kernels or the 2 ! 4kernel. Apart from that, there exists also the possibility that the two BFKL Pomeronsouple diretly to the upper R-urrent impat fator whih then provides the branhingvertex. Comparing with the integral equation for D 4(!), eq. (4.9), we see that the diagramssummed by means of these equations inlude also, as the �nal interations, those inside(12) and (34). For the alulation of the partial wave F (!1; !2; !; t1; t2; t) we thereforehave to subtrat them. Following losely the treatment in [8℄, we obtain the partial waveas the onvolutionF (!1; !2; !; t1; t2; t) =4 D a1a22 (!1)
12 D a3a42 (!2)
34�D̂ a1a2a3a4(4;0) (!) +Kfbg!fag2!4 
 D b1b22 (!)+XKfbg!fag2!3 
 D b1b2b33 (!) +X0Kfbg!fag2!2 
 D b1b2b3b44 (!)� ;(6.1){ 30 {



where the prime on the sum over the 2 ! 2 transitions in the last line indiates that in-terations inside the gluon-pairs (12) and (34) are not inluded. D̂ a1a2a3a4(4;0) (!) is the Mellintransform of the unintegrated four-gluon impat fator. The latter appears if we do nothave s-hannel gluons. As long as we have one or more s-hannel gluons that ontribute tothe disontinuity in M2, in addition to the adjoint partile pair in the loop, the invariantmass of the two partiles in the loop is integrated over and the integration is inluded in thede�nition of the impat fator D (4;0) (see eq. (3.14)). Without suh s-hannel gluons themass of the adjoint partile pair oinides with the di�rative mass M that is a �xed exter-nal parameter. In this ase the oupling of the four t-hannel gluons to the quark and salarloop is given by an 'unintegrated' four-gluon impat fator Dunintegrated(4;0) (k1;k2;k3;k4;M2)whih arries an expliit M2-dependene. It an be written as a (unsubtrated) dispersionrelation inM2, and the disontinuity inM2 entering this dispersion relation follows from thetriple disontinuities disussed in this paper. For simpliity, we denote this disontinuitysimply by disM2Dunintegrated(4;0) (k1;k2;k3;k4;M2) = D̂(4;0)(k1;k2;k3;k4;M2). The Mellintransform in M2 of this unintegrated impat fator D̂(4;0)(k1;k2;k3;k4;!) whih entersthe partial wave (6.1) also follows from the M2-disontinuity, D̂(4;0)(k1;k2;k3;k4;M2).However, apart from these two peuliarities, the seond line of eq. (6.1) is nothing butthe r.h.s. of eq. (4.9), the integral equation for D 4. We therefore obtainF (!1; !2; !; t1; t2; t) = 4 D a1a22 (!1)
12 D a3a42 (!2) 
34 �D̂ a1a2a3a4(4;0) (!)+ ! �Xi �(ki)! D a1a2a3a44 (!)� D a1a2a3a4(4;0) � X(12);(34)Kfbg!fag2!2 
 D b1b2b3b44 (!)� :(6.2)Using for the last term of the seond line the integral equations for D 2(!1) and D 2(!2) we�nally �ndF (!1; !2; !; t1; t2; t) = 4 D a1a22 (!1)
12 D a3a42 (!2)
34�D̂ a1a2a3a4(4;0) (!) + (! � !1 � !2)D a1a2a3a44 (!)� ; (6.3)where we dropped terms that do not depend on !, !1 or !2 and whih give only a vanishingontribution to the six-point amplitude (2.6). Following now the deomposition (5.10) forD 4(!), the partial wave onsists of three piees:F = FR + F I + F dir : (6.4)Beginning with FR we haveFR(!1; !2; !; t1; t2; t)= 4 D a1a22 (!1)
12D a3a42 (!2)
34 �D̂ Ra1a2a3a4(4;0) (!) + (! � !1 � !2)D Ra1a2a3a44 (!)� :(6.5){ 31 {



It is possible to rewrite this in a more intuitive way. We introdue the 'disonneted' vertexfuntion V dis(l1; l2;k1;k2;k3;k4),V dis(l1; l2;k1;k2;k3;k4)= �g2l21l22hÆ(2)(l1 � k1 � k2 � k3) + Æ(2)(l1 � k1 � k2 � k4) + Æ(2)(l1 � k1 � k3 � k4)+ Æ(2)(l1 � k2 � k3 � k4)� Æ(2)(l1 � k1 � k2)� Æ(2)(l1 � k1 � k3)� Æ(2)(l1 � k1 � k4)i ; (6.6)and use for the olor fatorC = Æa1a2Æa3a4da1a2a3a4 = 12N (N2 � 1)2 ; (6.7)suh that we arrive atFR(!1; !2; !; t1; t2; t) = 4C D 2(!1)
12 D 2(!2)
34�D̂ Ra1a2a3a4(4;0) (!) + (! � !1 � !2)V dis 
 D 2(!)� (6.8)For F I we haveF I(!1; !2; !; t1; t2; t) = 4 D a1a22 (!1)
12 D a3a42 (!2)
34�V a1a2a3a42!4 D 2(!) +X0Kfbg!fag2!2 
 D I b1b2b3b44 (!)� ; (6.9)where the sum in the last term extends over the pairs (13), (14), (23), and (24) and wemade use of the integral equation for D I4(!) (see eq. (5.5)) and for D 2(!1) and D 2(!2). Ina similar way we obtain for F dirF dir(!1; !2; !; t1; t2; t) = 4 D a1a22 (!1)
12 D a3a42 (!2)
34�D̂ a1a2a3a4(4;0)dir (!) +X0Kfbg!fag2!2 
 D b1b2b3b44 dir (!)� : (6.10)The struture of the unintegrated four-gluon impat fator with fermions in the fundamen-tal representation of SU(N) in the loop, for the ase t = t1 = t2 = 0, has been given in[8℄. For our analysis we de�neD̂ a1a2a3a4(4;0) = D̂ Ra1a2a3a4(4;0) + D̂ a1a2a3a4(4;0)dir (6.11)with D̂ Ra1a2a3a4(4;0) = da1a2a3a4 �D̂ S;(4;0) + D̂ F;(4;0)� ; (6.12)and D̂ a1a2a3a4(4;0)dir = 12N (Æa1a2Æa3a4 + Æa1a3Æa2a4 + Æa1a4Æa2a3)�D̂ S;(4;0) + D̂ F;(4;0)� : (6.13)
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The results areD̂ hh0F;(4;0)(k;�k;k0;�k0;M2)= g4N2 M2(2�)3 Z 10 d� Z d2l�(�� 1)Æ(�(1 � �)M2 � l2)��(2�� 1)2�(h) �� l+ kD(l+ k) + l� kD(l� k) � 2 lD(l)��� l+ k0D(l+ k0) + l� k0D(l� k0) � 2 lD(l)� � �(h0)+ �(h0) �� l+ kD(l+ k) + l� kD(l� k) � 2 lD(l)�� l+ k0D(l+ k0) + l� k0D(l� k0) � 2 lD(l)� � �(h)� �(h) � �(h0)� l+ kD(l+ k) + l� kD(l� k) � 2 lD(l)� �� l+ k0D(l+ k0) + l� k0D(l� k0) � 2 lD(l)��(6.14)for transversely polarized R-urrents, andD̂ LLF;(4;0)(k;�k;k0;�k0;M2)=� 2g4NQ2 M2(2�)3 Z 10 d� Z d2l�3(�� 1)3Æ(�(1 � �)M2 � l2)�� 1D(l+ k) + 1D(l� k) � 2D(l)� � � 1D(l+ k0) + 1D(l� k0) � 2D(l)� (6.15)for longitudinally polarized R-urrents. The denominators in these expressions areD(k) = �(1� �)Q2 + k2 : (6.16)Similarly, the salar ontributions to the unintegrated four-gluon impat fator areD̂ hh0S;(4;0)(k;�k;k0;�k0;M2)= 2g4N M2(2�)3 Z 10 d� Z d2l�2(�� 1)2Æ(�(1 � �)M2 � l2)� �(h) � � l+ kD(l+ k) + l� kD(l� k) � 2 lD(l)�� l+ k0D(l+ k0) + l� k0D(l� k0) � 2 lD(l)� � �(h0)(6.17)andD̂ LLS;(4;0)(k;�k;k0;�k0;M2)= 2g4NQ2 M2(2�)3 Z 10 d� Z d2l (� � 1=2)2�2(�� 1)2Æ(�(1 � �)M2 � l2)�� 1D(l+ k) + 1D(l� k) � 2D(l)�� 1D(l+ k0) + 1D(l� k0) � 2D(l)� : (6.18)In the forward ase t = t1 = t2 = 0, D 2(!1) = D 2(k;�k; !1) = D 2(k2; !1) andD 2(!2) = D 2(k0;�k0; !2) = D 2(k02; !2), i. e. the omplete dependene on the azimuthal{ 33 {



angle of the momenta k and k0 is inside the unintegrated impat fators. After integrationover the angles of the momenta l, k, and k0, the sum of fermioni and salar ontributionssimpli�es. The results areD̂ hh0(4;0)(k2;k02;M2) ==Z d'k2� Z d'k02� hD̂ hh0F (4;0)(k;�k;k0;�k0;M2) + D̂ hh0S(4;0)(k;�k;k0;�k0;M2)i= g4N4 Æhh0 Z 10 d� Iv(k2; �;M2)Iv(k02; �;M2) (6.19)and D̂ LL(4;0)(k2;k02;M2) ==Z d'k2� Z d'k02� hD̂ LLF (4;0)(k;�k;k0;�k0;M2) + D̂ S(4;0)(k;�k;k0;�k0;M2)i= g4N4 Z 10 d��2(1� �)2Is(k2; �;M2)Is(k02; �;M2) : (6.20)Here we have de�nedll2 Iv(k2; �;M2) = Z 2�0 d'2� � l+ kD(l+ k) + l� kD(l� k) � 2 lD(l)�= ll2  Q2 �M2Q2 +M2 � k2 + �(1 � �)(Q2 �M2)p(k2 + �(1� �)(Q2 �M2))2 + 4�2(1� �)2M2Q2!(6.21)andIs(k2;�;M2) =pM2Q2 Z 2�0 d'k2� � 1D(l+ k) + 1D(l� k) � 2D(l)�= 2 pM2Q2p(k2 + �(1� �)(Q2 �M2))2 + 4�2(1� �)2M2Q2 � pM2Q2�(1 � �)(Q2 +M2)! ;(6.22)and 'k ('k0) denotes the angle of the vetor k (k0), while the Æ-funtion has been used toset l2 = �(1 � �)M2.We expet that the results found above will be useful for a detailed omparison withsimilar amplitudes alulated on the supergravity side of the AdS/CFT orrespondene[63℄.Let us �nally omment on the large-N limit. Beginning with the �rst term, FR, weobserve in eq. (6.5) that the olor fator C goes as N3 =2, see (6.7). It may also be usefulto note that, making use of the M�obius representation of the BFKL amplitude, in eq. (6.6)only the last two terms ontribute. In our result for F I , on the r.h.s. of eq. (6.9) the termswith the 2 ! 2 kernels are olor suppressed, and as a result the two BFKL amplitudesD 2(!1) and D 2(!2) are diretly attahed to the triple Pomeron vertex. Finally, for F dir in{ 34 {



eq. (6.10), again the terms with the 2 ! 2 kernels are olor suppressed, and the BFKLPomerons ouple diretly to the new piee in the impat fator, D (4;0) dir.Diagrammatially, the three piees FR, F I , and F dir are illustrated in �gure 11. Asa result of the large-N limit, the BKP four-gluon states whih had been present for �niteN have disappeared: in order to �nd suh states for large N it would be neessary to goto higher order R-urrent orrelators.

Figure 11: Large-N limit of the six-point funtionCompared to non-supersymmetri SU(N) gauge theories with fundamental quarks,the most striking di�erene is the presene of the last piee whih exists only in the su-persymmetri extension where all partiles are in the adjoint representation. The triplePomeron vertex, on the other hand, is the same in both ases. A detailed disussion ofthe topologial expansion of the triple Pomeron vertex in the amplitudes above and itslarge-N behavior has been given in [36, 62℄.7. Summary and outlookIn this paper we have studied, in the generalized leading logarithmi approximation, thehigh energy behavior of N = 4 SYM in the triple Regge limit. It is this kinemati regimewhih, in QCD, exhibits the M�obius invariant triple Pomeron vertex. As the main result,we have found that in N = 4 SYM, with the fermions and salars belonging to the adjointrepresentation of the gauge group SU(N), the four-gluon impat fator ontains a novelpiee whose existene an be traed bak to the adjoint representation of the fermions andsalars. It has no ounterpart in QCD where the quarks transform in the fundamentalrepresentation of the gauge group. In the six-point amplitude, this additional piee in theimpat fator generates a oupling of the four-gluon state to the external urrents whih isabsent in QCD. On the other hand, the triple Pomeron vertex in N = 4 SYM, in leadingorder, is the same as in the non-supersymmetri ase. This supports the fundamentalnature of this building blok of Reggeon �eld theory: beause of Regge fatorization it hasto be independent of the oupling to the external projetiles. In our ase, this ouplingis mediated by the impat fators in whih the di�erene between N = 4 SYM and non-supersymmetri QCD is manifest: the fat that in both ases the triple Pomeron vertex isthe same proves that fatorization is indeed satis�ed.{ 35 {



AknowledgementsWe are grateful to M. Salvadore, V. Shomerus, and G.P. Vaa for helpful disussions.J. B. thanks L. Ya�e for useful onversations. C. E. would like to thank G. Korhemskyand G. Moore for useful disussions. J. B. and C.E. thank the Galileo Galilei Institute forTheoretial Physis for the hospitality and the INFN for partial support during a stay inFirenze where part of this work was arried out. C. E. would like to thank the II. Institutf�ur Theoretishe Physik of the University of Hamburg for hospitality. M.H. would like tothank the Paul Sherrer Institut Villigen and the Instituto de F��sia Corpusular Valeniafor hospitality. The work of C.E. was supported by the Alliane Program of the HelmholtzAssoiation (HA216/EMMI). M.H. thanks the DFG Graduiertenkolleg `Zuk�unftige Ent-wiklungen in der Teilhenphysik' and DESY Hamburg for �nanial support.A. Color algebraIn the alulations in setion 3 and in appendix B we make use of the following SU(N)olor identities, flakfkbl = �N Æab ; (A.1)fkalflbmfmk = � N2 fab ; (A.2)fkalflbmfmnfndk = N dabd + 12(ÆabÆd + ÆaÆbd + ÆadÆb) ; (A.3)fkalflbmfmnfndofoek = N fabde+ 14(Æabfde + Æafbde + Æadfbe + Æaefbd+ fadeÆb + faeÆbd + fadÆbe + fabeÆd+ fabdÆe + fabÆde) ; (A.4)where the tensors dabd and fabde are de�ned in (3.21) and (B.1), respetively. The �rstthree identities are well-known while the last one has been derived in [9℄. That paperalso ontains a desription of a general and onvenient way to obtain suh identities usingbirdtrak notation.It is worth pointing out that the relevant olor tensors for the adjoint impat fatorsin the Pomeron hannel satisfytr (T a1 : : : T an) + (�1)ntr (T an : : : T a1) = 2 tr (T a1 : : : T an) : (A.5)We �nally note that the d-tensor of (3.21) an be deomposed aording todabd = 12N ÆabÆd + 14(dabkdkd � fabkfkd) : (A.6)B. The �ve-gluon amplitudeIn this appendix we would like to investigate the �ve-gluon amplitude in N = 4 SYM inthe EGLLA. The main fous of this paper has been the four-gluon amplitude relevant for{ 36 {



the six-point R-urrent orrelator. The onsiderations in the present and in the followingappendix C aim at a better understanding of the �eld theory struture of the amplitudesin the EGLLA. The main properties of that struture and its relation to reggeization havebeen desribed in setion 5 for the ase of the four-gluon amplitude. Here we want todisuss the �ve-gluon amplitude. We will show that, as a onsequene of reggeization, itan be written ompletely in terms of elements of the 2-dimensional e�etive �eld theorywhih have been found already in the four-gluon amplitude.Let us start with the �ve-gluon impat fator D (5;0). I onsists again of a fermioniand a salar ontribution. We follow the same steps as in setion 3. In the ase of �vegluons the olor tensors relevant for the impat fator in the fundamental representation(i. e. in QCD) are of the typefabde = 1i [tr (tatbttdte)� tr (tetdttbta)℄ : (B.1)For the ase of an impat fator onsisting of a loop made of partiles in the adjointrepresentation one obtains instead1i [tr (T aT bT T dT e)� tr (T eT dT T bT a)℄= 2Nfabde + 12(Æabfde + Æafbde + Æadfbe + Æaefbd + Æbfade + Æbdfae+ Æbefad + Ædfabe + Æefabd + Ædefab) ; (B.2)where we have used (A.4) and (A.5). Again, an additional olor tensor struture ourswhih was not present in the fundamental representation. For the fermioni ontributionD F;(5;0) to the impat fator this implies that we an deompose it into a part that is amultiple of the fundamental impat fator and an additional term asD a1a2a3a4a5F;(5;0) (k1;k2;k3;k4;k5)= 2NRDa1a2a3a4a5(5;0) (k1;k2;k3;k4;k5) + D a1a2a3a4a5F;(5;0) dir (k1;k2;k3;k4;k5) : (B.3)With the help of the expliit expression for D(5;0) found in [9℄,Da1a2a3a4a5(5;0) (k1;k2;k3;k4;k5) (B.4)= � g3ffa1a2a3a4a5 [D(2;0)(1234; 5) +D(2;0)(1; 2345) �D(2;0)(15; 234)℄+ fa2a1a3a4a5 [D(2;0)(1345; 2) �D(2;0)(12; 345) +D(2;0)(125; 34) �D(2;0)(134; 25)℄+ fa1a2a3a5a4 [D(2;0)(1235; 4) �D(2;0)(14; 235) +D(2;0)(145; 23) �D(2;0)(123; 45)℄+ fa1a2a4a5a3 [D(2;0)(1245; 3) �D(2;0)(13; 245) +D(2;0)(135; 24) �D(2;0)(124; 35)℄g ;we an thus writeD a1a2a3a4a5F;(5;0) (k1;k2;k3;k4;k5)= � g3ffa1a2a3a4a5 [D F;(2;0)(1234; 5) + D F (2;0)(1; 2345) � D F;(2;0)(15; 234)℄+ fa2a1a3a4a5 [D F;(2;0)(1345; 2) � D F;(2;0)(12; 345) + D F;(2;0)(125; 34) � D F;(2;0)(134; 25)℄+ fa1a2a3a5a4 [D F;(2;0)(1235; 4) � D F;(2;0)(14; 235) + D F;(2;0)(145; 23) � D F;(2;0)(123; 45)℄+ fa1a2a4a5a3 [D F;(2;0)(1245; 3) � D F;(2;0)(13; 245) + D F;(2;0)(135; 24) � D F;(2;0)(124; 35)℄g+ D a1a2a3a4a5F;(5;0) dir (k1;k2;k3;k4;k5) (B.5)
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The additional piee, D F;(5;0) dir, is obtained expliitly by replaing the di�erent tensors oftype fabde in eq. (B.4) by the additional olor tensors emerging in eq. (B.2). A lengthybut straightforward alulation shows that the result an also be expressed in terms of theadditional piee D (4;0) dir found previously in the four-gluon amplitude (see eq. (3.24)) asD a1a2a3a4a5F;(5;0) dir (k1;k2;k3;k4;k5)= g2 hfa1a2 D a3a4a5F;(4;0)dir(12; 3; 4; 5) + fa1a3 D a2a4a5F;(4;0) dir(13; 2; 4; 5)+ fa1a4 D a2a3a5F;(4;0)dir(14; 2; 3; 5) + fa1a5 D a2a3a4F;(4;0) dir(15; 2; 3; 4)+ fa2a3 D a1a4a5F;(4;0) dir(1; 23; 4; 5) + fa2a4 D a1a3a5F;(4;0) dir(1; 24; 3; 5)+ fa2a5 D a1a3a4F;(4;0) dir(1; 25; 3; 4) + fa3a4 D a1a2a5F;(4;0) dir(1; 2; 34; 5)+ fa3a5 D a1a2a4F;(4;0) dir(1; 2; 35; 4) + fa4a5 D a1a2a3F;(4;0) dir(1; 2; 3; 45)i : (B.6)It is straightforward to show that equations analogous to (B.5) and (B.6) are validalso for the salar ontribution D S;(5;0) to the impat fator, that is also the additionalpiee D S;(5;0) dir an be expressed in terms of the additional piee D S;(4;0) dir of the four-gluon amplitude. Consequently, we obtain relations for the full impat fator D (5;0) =D F;(5;0) + D S;(5;0) whih are ompletely analogous to (B.5) and (B.6). More preisely, eq.(B.5) and eq. (B.6) are valid after dropping the index F in all terms. The seond of theserelations has been given expliitly for the full impat fator in eq. (3.34).This representation shows that the additional piee D (5;0) dir again exhibits reggeization.In eah term in eq. (3.34) a pair of gluons in the olor otet representation ats as a singlegluon whih enters the amplitude D (4;0) dir. In a ertain sense this gluon an be regardedas a omposite objet of the two gluons merging into it. The full expression for D (5;0) dir isthen obtained by summing over all possible pairs of gluons. We reall that the amplitudeD (4;0) dir is fully symmetri in its momentum and olor arguments suh that it is not relevantat whih position the more omposite gluon formed from the pair is inserted in D (4;0) dir.We an now put the piture derived form the three- and four-gluon amplitudes to thetest by onsidering the integral equation for the �ve-gluon amplitude. Aording to theexpeted �eld theory struture we should �nd that the �ve-gluon amplitude D 5 reggeizes,that means it should be possible to express it ompletely in terms of elements that arealready present in the lower amplitudes. This should now in partiular inlude D (4;0) dirwhih we have identi�ed as a new element of our �eld theory. The evolution equation forD a1a2a3a4a55 reads ! � 5Xi=1 �(ki)! D a1a2a3a4a55 = D a1a2a3a4a5(5;0) +Kfbg!fag2!5 
 D b1b22+XKfbg!fag2!4 
 D b1b2b33 +XKfbg!fag2!3 
 D b1b2b3b44+XKfbg!fag2!2 
 D b1b2b3b4b55 ; (B.7)
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whih an be graphially illustrated as ! � 5Xi=1 �(ki)! D5 = D(5;0) + D2 +X D3+X D4 +X D5 : (B.8)In view of the results found for the amplitudes with up to four gluons, and sine the adjointimpat fator with �ve gluons (B.3) onsists of a multiple of the fundamental impat fatorand a new (additional) piee, it is natural to deompose the full amplitude D 5 aordingto D 5 = D R5 + D I5 + D 5 dir ; (B.9)where the �rst two parts are multiples of the orresponding amplitudes DR5 and DI5 knownfrom QCD with fundamental quarks. There, these two parts exhaust the full amplitude,whereas here we will have an additional part D 5 dir. Aording to this piture we �nd, usingthe results of [9℄,D Ra1a2a3a4a55 (k1;k2;k3;k4;k5) = (B.10)= � g3ffa1a2a3a4a5 [D 2(1234; 5) + D 2(1; 2345) � D 2(15; 234)℄+ fa2a1a3a4a5 [D 2(1345; 2) � D 2(12; 345) + D 2(125; 34) � D 2(134; 25)℄+ fa1a2a3a5a4 [D 2(1235; 4) � D 2(14; 235) + D 2(145; 23) � D 2(123; 45)℄+ fa1a2a4a5a3 [D 2(1245; 3) � D 2(13; 245) + D 2(135; 24) � D 2(124; 35)℄gand D I a1a2a3a4a55 (k1;k2;k3;k4;k5)= g2 nfa1a2D I a3a4a54 (12; 3; 4; 5) + fa1a3D I a2a4a54 (13; 2; 4; 5)+ fa1a4D I a2a3a54 (14; 2; 3; 5) + fa1a5D I a2a3a44 (15; 2; 3; 4)+ fa2a3D I a1a4a54 (1; 23; 4; 5) + fa2a4D I a1a3a54 (1; 24; 3; 5)+ fa2a5D I a1a3a44 (1; 25; 3; 4) + fa3a4D I a1a2a54 (1; 2; 34; 5)+ fa3a5D I a1a2a44 (1; 2; 35; 4) + fa4a5D I a1a2a34 (1; 2; 3; 45)o : (B.11)We have diretly written these two parts in terms of the adjoint amplitudes D 2. For thefermioni part we have in partiular D RF;5 = 2NRDR5 and D IF;5 = 2NRDI5 . Inserting theneq. (B.9) into the integral equation (B.7) and invoking the integral equation for D5 treatedin [9℄ we obtain a new integral equation for the additional part D 5 dir, ! � 5Xi=1 �(ki)! D a1a2a3a4a55 dir = D a1a2a3a4a5(5;0) dir +XKfbg!fag2!3 
 D b1b2b3b44 dir+XKfbg!fag2!2 
 D b1b2b3b4b55 dir : (B.12)
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We reall that the inhomogeneous term D (5;0) dir reggeizes and is a superposition of ampli-tudes D (4;0) dir of the form (3.34). Therefore the struture of this equation oinides withthat of the integral equations for D 3 and DI5. It an be solved employing a known identityinvolving the integral kernels K2!2 and K2!3. In terms of the diagrams of (4.11) thisidentity an be written as+ + = 2g + ++ + + + ; (B.13)where the una�eted gluons are not drawn. The verties in whih two lines merge intoone, drawn here with a small full dot, indiate that the two lower gluons merge into theupper one with a olor fator fab and in suh a way that their transverse momenta areadded. The arrows on the top of the diagrams indiate that the identity holds for gluonsin amplitudes that are symmetri under the exhange of this pair of gluons (or symmetriunder the exhange of any pair of gluons). This is the ase for the amplitude D 4 dir as wehave disussed above. For a more detailed desription of the appliation of the identity(B.13) to ompletely analogous situations we refer the reader to [9℄ or [41℄. In this way one�nds the solution of eq. (B.12) to have the formD a1a2a3a4a55 dir (k1;k2;k3;k4;k5)= g2 �fa1a2D a3a4a54 dir (12; 3; 4; 5) + fa1a3D a2a4a54 dir (13; 2; 4; 5)+ fa1a4D a2a3a54 dir (14; 2; 3; 5) + fa1a5D a2a3a44 dir (15; 2; 3; 4)+ fa2a3D a1a4a54 dir (1; 23; 4; 5) + fa2a4D a1a3a54 dir (1; 24; 3; 5)+ fa2a5D a1a3a44 dir (1; 25; 3; 4) + fa3a4D a1a2a54 dir (1; 2; 34; 5)+ fa3a5D a1a2a44 dir (1; 2; 35; 4) + fa4a5D a1a2a34 dir (1; 2; 3; 45)	 : (B.14)One immediately reognizes that this amplitudes again exhibits reggeization. It is a su-perposition of the four-gluon amplitudes D 4 dir, and in eah term of the superposition twogluons in a olor otet ombine to form a more omposite reggeized gluon that enters theamplitude D 4 dir. The sum over all possible pairs of this kind gives the additional part ofthe full �ve-gluon amplitude D 5. One an easily hek from eq. (B.14) that this expressionsatis�es the Ward-type identities of [56℄, and hene all parts of the amplitude D 5 sharethat property.In summary, we have solved the integral equation (B.7) for the �ve-gluon amplitudeD 5 and have expressed the solution in terms of the lower amplitudes D 2, D I4 and D 4 dir.{ 40 {



Diagrammatially, the solution has the form
D 5 =X D(2;0) +X D(2;0)

V2→4

+X D(4;0) dir : (B.15)
The �rst two terms are multiples of the amplitudes known from the ase of QCD withfundamental quarks. The last terms is an additional term that exhibits exatly the fea-tures expeted from the piture of the e�etive �eld theory struture disussed above,in partiular it reggeizes exatly as expeted and ful�lls the Ward-type identities of [56℄.Hene we �nd that the �ve-gluon amplitude preisely meets our expetations based on thatunderlying piture.C. Some remarks on the six-gluon amplitudeIn this appendix we want to onsider some aspets of the six-gluon amplitude D 6 in theEGLLA for N = SYM. Our motivation is that it would obviously be interesting to seewhether and how the �eld theory struture found above in the amplitudes D n forn � 5ontinues in the amplitudes with more than �ve gluons. Already in QCD with fundamentalquarks the six-gluon amplitude involves some additional ompliation, see the disussion in[9℄. A full analysis of the six-gluon is beyond the sope of the present paper and is left forfuture work. It might be partiularly interesting to �nd out whether another new elementof the e�etive �eld theory emerges that would ouple six gluons diretly to the adjointquark loop { in analogy to the element D (4;0) add with four gluons found above. Fromthe results obtained here the piture emerges that in general (that is for arbitrary n) theamplitudes D n always ontain a multiple of the amplitudes Dn with fundamental quarksplus additional new terms. Those latter ontain on the one hand terms originating fromthe salar ontribution to the impat fator, and their struture onerning reggeization isvery similar to that observed in the terms oming from the fermioni impat fator. Onthe other hand, there are new terms, for example the one oupling four gluons diretly tothe impat fator.Although we do not make an attempt here to solve the whole six-gluon amplitude wean rather easily make an interesting observation onerning D 6 whih in fat on�rmsthat expetation. Namely, one �nds that similarly to the ase of the lower amplitudes theterms known from the orresponding amplitude D6 of QCD with fundamental fermions arereprodued (again up to a normalization fator) together with their salar ounterparts,and additional terms are generated. In partiular, the same transition from two to sixgluons via the vertex V2!6 omputed in [9℄ (ontaining both a oupling of a Pomeron totwo Odderons and a transition from one to three Pomerons) ours again in the amplitudeD 6. { 41 {



The diagrams with six gluons oupling to the fermion or salar loop give rise to a olortensor of the typetr (T aT bT T dT eT f ) + tr (T fT eT dT T bT a) = 2 tr (T aT bT T dT eT f )= � 2fkalflbmfmnfndofoepfpfk (C.1)instead of the tensor dabdef = tr (tatbttdtetf ) + tr (tf tetdttbta) (C.2)obtained for quarks in the fundamental representation. We an therefore obtain the adjointfermion impat fator D F;(6;0) from the known expression for the fundamental impat fatorD(6;0) (see [9℄), by replaing the olor tensors of type (C.2) in this expression by theorresponding olor tensors of type (C.1), besides deorating it with the usual fator Raounting for the di�erent numbers of fermioni degrees of freedom running around theloop. But now one has [9℄fkalflbmfmnfndofoepfpfk = �Ndabdef� 12(Æabddef + Æadbdef + Æaddbef + Æaedbdf+ Æafdbde + dadefÆb + daefÆbd + dadf Æbe+ dadeÆbf + dabefÆd + dabdf Æe + dabdeÆf+ dabf Æde + dabeÆdf + dabdÆef )+ 18[(dabddef + fabfdef ) + (dabddef + fabdfef)+ (dabeddf + fabefdf ) + (dabfdde + fabffde)+ (daddbef + fadfbef ) + (daedbdf + faefbdf )+ (dafdbde + faffbde) + (dadedbf + fadefbf )+ (dadfdbe + fadffbe) + (daefdbd + faeffbd)℄ (C.3)= �Ndabdef +�abdef ; (C.4)where the last equation de�nes the tensor �abdef . Therefore inserting the olor tensors oftype (C.1) one naturally obtains two ontributions to the fermion impat fator D F;(6;0),D a1a2a3a4a5a6F;(6;0) (k1;k2;k3;k4;k5;k6) = 2NRDa1a2a3a4a5a6(6;0) (k1;k2;k3;k4;k5;k6)+ D a1a2a3a4a5a6(6;0) dir (k1;k2;k3;k4;k5;k6) (C.5)
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where Da1a2a3a4a5a6(6;0) (k1;k2;k3;k4;k5;k6) == g4fda1a2a3a4a5a6 [D(2;0)(12345; 6) +D(2;0)(1; 23456) �D(2;0)(16; 2345)℄+ da2a1a3a4a5a6 [D(2;0)(13456; 2) �D(2;0)(1345; 26) +D(2;0)(126; 345)�D(2;0)(12; 3456)℄+ da1a2a3a4a6a5 [D(2;0)(12346; 5) �D(2;0)(1234; 56) +D(2;0)(156; 234)�D(2;0)(15; 2346)℄+ da2a1a3a4a6a5 [�D(2;0)(1256; 34) �D(2;0)(1346; 25) +D(2;0)(125; 346)+D(2;0)(134; 256)℄+ da3a1a2a4a5a6 [D(2;0)(12456; 3) �D(2;0)(1245; 36) +D(2;0)(136; 245)�D(2;0)(13; 2456)℄+ da1a2a3a5a6a4 [D(2;0)(12356; 4) �D(2;0)(1235; 46) +D(2;0)(146; 235)�D(2;0)(14; 2356)℄+ da2a1a3a5a6a4 [�D(2;0)(1246; 35) �D(2;0)(1356; 24) +D(2;0)(124; 356)+D(2;0)(135; 246)℄+ da1a2a3a6a5a4 [�D(2;0)(1236; 45) �D(2;0)(1456; 23) +D(2;0)(123; 456)+D(2;0)(145; 236)℄g (C.6)Consequently, the �rst term on the r.h.s. of eq. (C.5) an again be expressed as a sum oftwo-gluon impat fators D F;(2;0) = 2NRD(2;0). A similar expression an be obtained forthe salar impat fator D S;(6;0).The �rst ontribution in eq. (C.5), arising from the �rst term in the deomposition eq.(C.4) of the adjoint olor tensors, is just a multiple of the known six-gluon impat fatorin the fundamental representation. The seond ontribution arises from the �-tensors in(C.4) (as de�ned in (C.3) when inserting (C.1) for the d-tensors in (C.6)). It would bestraightforward to write out the new additional term expliitly. As we have pointed outbefore it would be interesting to study in detail its relation to the new element D F;(4;0) dirfound there. This, however, is beyond the sope of the present paper. Here we restritourselves to the important �nding that also the adjoint impat fator with six gluons issimilar to those with four and �ve gluons: it reprodues as one of its ontributions a multipleof the fundamental impat fator and in addition ontains a new part that ours only ifthe fermions are taken in the adjoint representation. A similar additional ontribution isobtained from the adjoint salars in the impat fator.Inserting this result for D F;(6;0) dir (and the analogous salar part) in the integral equa-tion for the full amplitude D 6 we easily reognize that also the full amplitude onsists oftwo parts, one of whih is a multiple of the full six-gluon amplitude D6 with fundamentalquarks (together with its salar ounterpart) and hene inherits the onformal �eld theorystruture found in that amplitude. In partiular, this part ontains exatly the same tran-sition vertex from two to six gluons found in [9℄. The struture of the other part remainsto be investigated. { 43 {
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