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1. Introdu
tionThe high energy limit of nonabelian gauge theories, in parti
ular of QCD, has been ex-tensively studied in a variety of perturbative and nonperturbative approa
hes. In thegroundbreaking work of [1, 2℄ the perturbative resummation of leading logarithms of the
enter-of-mass energy ps was performed. The resulting leading logarithmi
 approximation(LLA) is en
oded in the 
elebrated BFKL equation. It 
olle
ts all perturbative terms ofthe order (�s log s)m in whi
h the smallness of the strong 
oupling 
onstant �s is 
ompen-sated by large logarithms of the energy. For the s
attering amplitude of 2 ! 2 s
attering{ 1 {



pro
esses, this leading logarithmi
 approximation 
orresponds to resumming diagrams inwhi
h two intera
ting reggeized gluons are ex
hanged in the t-
hannel. This bound stateof two gluons, the Pomeron, 
an hen
e be represented diagrammati
ally by a gluon ladder.Based on Gribov's work on the Reggeon 
al
ulus [3℄ it was immediately 
lear that, on
esu
h moving Regge singularities exist, the high energy behavior of nonabelian gauge theo-ries 
an be formulated in terms of an e�e
tive 2+1 dimensional �eld theory, 
alled Reggeon�eld theory. It lives in the two transverse dimensions of the s
attering pro
ess, and rapidity
an be understood as a timelike parameter. Steps towards expli
itly formulating this e�e
-tive high energy des
ription in
lude the generalization of the BFKL approximation to theevolution of n-gluon states, known as the BKP equations [4, 5℄, and a further generalizationwhi
h en
ompasses number-
hanging pro
esses during the t-
hannel evolution. The latteris known as the (extended) generalized leading logarithmi
 approximation, (E)GLLA, andwill be des
ribed in some detail later in this paper. It has been used to derive a 2 ! 4gluon vertex that 
ontains the triple Pomeron vertex [6, 7, 8℄, as well as a higher order2 ! 6 gluon vertex fun
tion [9℄. A systemati
 approa
h of deriving, for nonabelian gaugetheories, the elements of Reggeon �eld theory, is the e�e
tive a
tion developed in [10, 11℄,see [12℄. Other approa
hes to the problem of understanding the high energy limit of QCDin
lude the Wilson line operator expansion [13℄-[16℄, the dipole pi
ture of high energy s
at-tering [17℄-[20℄, and the 
olor glass 
ondensate approa
h, see for example [21℄. In the limitN
 ! 1 the latter three approa
hes as well as the EGLLA all give rise to the same non-linear evolution equation, known as the BK equation [13, 22, 23℄. All approa
hes mentionedhere are of perturbative nature. A nonperturbative derivation of a Reggeon �eld theoryfrom QCD still appears prohibitively diÆ
ult.Among the most remarkable features of Reggeon �eld theory for QCD are the 
on-formal invarian
e in the two-dimensional transverse 
oordinate spa
e [24, 25, 26℄, and theintegrability in the large-N
 limit [27, 28, 29℄. Both properties, so far, have been estab-lished only for the leading order of the resummation in the LLA and (E)GLLA. A fullunderstanding of the fate of these symmetries in next-to-leading order is still missing.With the advent of the AdS/CFT 
orresponden
e, whi
h relates the maximally super-symmetri
 nonabelian gauge theory in four dimensions, that isN = 4 super Yang-Mills the-ory (SYM) with gauge group SU(N
), to type IIB superstring theory on a �ve-dimensionalAdS spa
e [30, 31, 32℄, the natural question appears whether Reggeon �eld theory has adual analog on the string (or supergravity) side. As a �rst step, one identi�es s
atteringamplitudes or 
orrelators whi
h are de�ned on both sides of the 
orresponden
e: in QCD,a 
lean environment for studying the dynami
s at high energies has been found in 
�
�s
attering, i. e. in the four-point 
orrelators of ele
tromagneti
 
urrents. In N = 4 SYM,it has been suggested [33℄ to 
onsider, as a substitute for the U(1) 
urrent of ele
tromag-netism, the R-
urrents whi
h result from the global SUR(4) R-symmetry. One is thus ledto investigate, in suitable high energy limits, 
orrelators of R-
urrents, both for N = 4SYM and for the dual string theory.On the gauge theory side, existing QCD 
al
ulations provide a natural starting pointfor a systemati
 investigation of this 
orresponden
e. It is, however, 
lear that 
ertaindi�eren
es exist between (non-supersymmetri
) QCD and N = 4 SYM, and one has to{ 2 {



study their 
onsequen
es. For the high energy behavior of 
urrent 
orrelators, it is theimpa
t fa
tors whi
h are sensitive to supersymmetry: in QCD, the fermions (quarks) belongto the fundamental representation of the gauge group, whereas in N = 4 SYM all parti
les(gluons, Weyl fermions and s
alars) are in the adjoint representation of the gauge group.On the other hand, sin
e in quantum �eld theory the high energy behavior is dominatedby the ex
hange of parti
les with the highest spin { that is the gluons in both theories {the leading logarithmi
 approximation in N = 4 SYM should be quite similar to QCD.As the very �rst step, the elasti
 s
attering of two R-
urrents in N = 4 SYM hasbeen studied in [34℄. Apart from the new impa
t fa
tors, it has been veri�ed that thehigh energy behavior is dominated by the familiar BFKL Pomeron. Turning to elements ofReggeon �eld theory beyond the BFKL two-gluon ladders, the e�e
t of supersymmetry isexpe
ted to be more severe. As a theoreti
al environment for extra
ting the triple Pomeronvertex 
al
ulations on the QCD side have made use of six-point fun
tions. This motivates,for the extension to N = 4 SYM, to investigate six-point 
orrelators of R-
urrents. Itis the purpose of the present paper to study the high energy behavior of su
h R-
urrent
orrelators in the extended generalized leading logarithmi
 approximation. As a resultwe will �nd that N = 4 SYM provides a new element in Reggeon �eld theory whi
h isnot present in non-supersymmetri
 QCD. On the other hand, the triple Pomeron vertexremains the same as in QCD. We emphasize that throughout this paper we keep N
 �nite,and we only brie
y 
omment on the large-N
 limit at the end.Parallel to this investigation of the gauge theory side, it is interesting to study theR-
urrent 
orrelators in the same kinemati
 limit also on the string side. Here, in thesimplest approximation, one 
onsiders the zero slope limit and arrives at Witten diagramswith graviton ex
hanges. For the elasti
 s
attering this has been done in [35℄, while for theproblem of the six-point fun
tion work along these lines is in progress.Our paper is organized as follows. In se
tion 2 we de�ne the triple-Regge limit ofsix-point 
orrelators, �rst for virtual photons in QCD, then for R-
urrents in N = 4 SYMtheory. In se
tion 3 we 
onsider the R-
urrent impa
t fa
tors, 
onsisting of the sum of aWeyl fermion loop and a s
alar loop in the adjoint representation with n gluons atta
hed.We derive the relation of these impa
t fa
tors to the 
orresponding impa
t fa
tors 
onsistingof quark loops in the fundamental representation, and present them expli
itly for up tofour gluons. We put spe
ial emphasis on the reggeization of the impa
t fa
tors. Furtherin that se
tion we point out that the Odderon de
ouples from impa
t fa
tors 
ontainingparti
les in the adjoint representation. In se
tion 4 we write down the integral equationswhi
h sum all diagrams 
ontributing to the (extended) generalized leading logarithmi
approximation. In se
tion 5 we study these integral equations, tra
ing in parti
ular the
onsequen
es of the new impa
t fa
tors obtained before. In se
tion 6 we �nally present ourresult for the six-point 
orrelator whi
h di�ers from the result in QCD. Se
tion 7 
ontainsour 
on
lusions and an outlook. Appendix A deals with some su(N
) 
olor identities. Intwo further appendi
es we 
onsider higher n-gluon amplitudes and their reggeization inN = 4 SYM: In appendix B we generalize our �ndings for the four-gluon amplitude to �vegluons. In appendix C, �nally, we make some steps towards a 
al
ulation of the six-gluonamplitude. These �rst steps already allow us to draw some 
on
lusions about the 2-to-6{ 3 {



gluon transition fun
tion in N = 4 SYM. Some results presented in this paper have beenpublished in a letter [36℄.2. Six-point 
orrelation fun
tions at high energiesIn this se
tion we de�ne the high energy limit of six-point fun
tions in N = 4 SYM. Asis well known, the high energy behavior of s
attering amplitudes in the Regge limit is de-termined by the ex
hange of parti
les with the highest spin whi
h, in the 
ase of N = 4SYM, are the gauge bosons with spin 1. Studies of the high energy behavior of Yang-Millstheories in the leading logarithmi
 approximation show that, apart from the impa
t fa
tors,the high energy behavior is entirely determined by the gauge bosons. This implies that, inthis approximation, in a supersymmetri
 extension of non-supersymmetri
 SU(N
) gaugetheory, e. g. in N = 4 SYM with the same gauge group, the di�eren
e between the super-symmetri
 and the non-supersymmetri
 theory resides in the impa
t fa
tors. Spe
i�
ally,in supersymmetri
 theories the fermion �elds are in the adjoint representation, and in ad-dition to the impa
t fa
tors 
onsisting of 
losed fermion loops we have also those 
omposedof s
alar parti
les. Apart from the impa
t fa
tors, the intera
tions of the ex
hanged gluonsare the same as in the non-supersymmetri
 
ase.2.1 Six-point amplitudes in QCDIn QCD, s
attering amplitudes with more than 4 external parti
les arise naturally in the
ontext of deep inelasti
 s
attering on a weakly bound nu
leus. A simple example is deepinelasti
 s
attering (DIS) on a nu
leus 
onsisting of two weakly bound nu
leons (that is adeuteron), see �gure 1. The total 
ross se
tion of this s
attering pro
ess is obtained from

Figure 1: S
attering of a virtual photon on a weakly bound nu
leusthe elasti
 s
attering amplitude, T
�(pn)!
�(pn), via the opti
al theorem,�tot
�(pn)!
�(pn) = 1S ImT
�(pn)!
�(pn) ; (2.1)where S = (q + p1 + p2)2 denotes the total energy of the s
attering pro
ess. In order toobtain an entirely perturbative environment, we 
an think of repla
ing the two nu
leons byvirtual photons. As a result, we are led to six-point 
orrelators of (o�-shell) ele
tromagneti
{ 4 {




urrents, T
�
�
�!
�
�
� , where the 
oupling between the external ele
tromagneti
 
urrentsand the ex
hanged gluons is mediated by three photon impa
t fa
tors.Let us start with the amplitude T
�(pn)!
�(pn). The kinemati
s is illustrated in �gure 1:the amplitude depends upon three energy variables, s1 = (q + p1)2, s2 = (q0 + p02)2, andM2 = (q + p1 � p01)2. In the high energy limit that we are interested in, s1 ' s2 ' sand all these variables are of the same order as S = (q + p1 + p2)2 ' 2s. All theseenergies are assumed to be mu
h larger than the momentum transfer variables t = (q�q0)2,t1 = (p1 � p01)2, and t2 = (p2 � p02)2 and the virtuality of the photon, Q2 = �q2,s1; s2 �M2 � Q2;�t1;�t2;�t : (2.2)We will distinguish between s1 and s2, but at the end we set s1 = s2 = s and t = 0.Throughout this paper we use Sudakov variables with the lightlike referen
e ve
tors qAand pB, su
h that s = 2qA � qB , S = 4qA � pB = 2s, q = qA � xpB with x = Q2=(2qA � pB)and xP = M2 +Q2 � t1s ' M2s � 1 : (2.3)Negle
ting the nu
leon masses we havep1 = p2 = pB ; p01 = pB(1� xP ) + p1? ; p02 = pB(1 + xP ) + p2? : (2.4)Internal momenta are then written aski = �iqA + �ipB + ki? (2.5)with k2i? = �k2i . The fa
t that the two nu
leons are in a weakly 
oupled bound state impliesthat we will allow the two nu
leons to have small losses of longitudinal and transversemomenta, i. e. we will integrate over xP and p1? = �p2? = k?. The integration over xP isequivalent to the integration over the mass squared M2, and the latter will be kept mu
hsmaller than s.A 
onvenient way of 
omputing the elasti
 s
attering amplitude T
�(pn)!
�(pn) in thehigh energy limit is to use dispersion relations and Regge theory, for a review of thesete
hniques see [37℄. For our 
ase1 the s
attering amplitude 
an be written in the formT3!3(s1; s2;M2; t1; t2; t)= Z dj1dj2dj(2�i)3 sj11 �(j1)s2j2�(j2)(M2)j�j1�j2�(j; j1; j2)F (j1; j2; j; t1; t2; t) (2.6)with the signature fa
tors �(j) = �� e�i�j+1sin�j , �(j; j1; j2) = �� e�i�(j�j1�j2)+1sin�(j�j1�j2) . Given therepresentation (2.6), there is an easy way of 
omputing this amplitude. Namely, we takethe triple dis
ontinuity in s1, s2, and M2,dis
s1 dis
s2 dis
M2T3!3 = �3 Z dj1dj2dj(2�i)3 sj11 s2j2(M2)j�j1�j2F (j1; j2; j; t1; t2; t) ; (2.7)1This representation holds for the s
attering of s
alar parti
les. Be
ause of heli
ity 
onservation (whi
his a 
onsequen
e of supersymmetry), this representation 
an also be used for our 
ase, where we 
onsiderthe s
attering of external ve
tor 
urrents. { 5 {



and see that the partial wave F (j1; j2; j; t1; t2; t) whi
h in our kinemati
 region is real-valued(i. e. has no internal phases) 
an be 
omputed from the triple Mellin transform of the (real-valued) triple energy dis
ontinuity. Using unitarity, this triple energy dis
ontinuity is easilyobtained from high energy produ
tion pro
esses.To obtain the 
ross se
tion (2.1) for deep inelasti
 s
attering on the deuteron from eq.(2.6) it is needed to take the imaginary part, i. e. the dis
ontinuity inM2, to set s1 = s2 = sand t = 0 (whi
h implies p1? = �p2? = k?), and to integrate over the phase spa
e of thetwo nu
leons, i. e. over xP =M2=s and k?,�tot
�(pn)!
�(pn)(s) = 12s Z 1x dxP Z d2k2(2�)3 dis
M2T3!3(s; s;M2 = xP s;�k2;�k2; 0)= 12 Z dj1dj2dj(2�i)3 sj�1�(j1)�(j2) 1j � j1 � j2 + 1 Z d2k2(2�)3 F (j1; j2; j;�k2;�k2; 0) ;(2.8)where due to the nu
leon form fa
tors the integration over k2 = �t1 = �t2 remainsrestri
ted to a small range.For the dis
ussion of this paper, however, we fo
us on the 
orrelator of six 
urrents,T3!3(s1; s2;M2; t1; t2; t), and the integrations over xP and k will not be 
onsidered. In thefollowing it will be 
onvenient to introdu
e instead of the angular momenta j, j1, j2 thevariables ! = j� 1, !1 = j1� 1, !2 = j2� 1, and we will write F (!1; !2; !; t1; t2; t) insteadof F (j1; j2; j; t1; t2; t).In order to form, in the leading logarithmi
 approximation, 
olor singlet t-
hannelstates whi
h 
ouple at the top to the virtual photon and at the bottom to two photons, oneis led to QCD diagrams with four t-
hannel gluons at the lower end and two, three, or fourgluons at the upper end. A few examples of su
h diagrams are shown in �gure 2. Wavyt-
hannel gluon lines stand for reggeized gluon propagators, and horizontal lines betweenthe t-
hannel gluons denote on-shell s-
hannel gluons (that is real gluon produ
tion in theintera
tion kernel). For the 
omputation of the triple energy dis
ontinuity we pro
eed inthe same way as for the LO BFKL ladders. We use multiparti
le amplitudes in the multi-Regge kinemati
s: T2!n and, more generally, Tn!m, where all in
oming and outgoingparti
les are separated by large rapidity gaps. These diagrams represent, for the six-pointamplitude in the triple Regge limit, the (generalized) leading logarithmi
 approximation:for ea
h gluon loop we have a logarithm of a large energy variable.As to the general stru
ture of the diagrams, at the lower end we start from 4 reggeizedgluons (two 
olor singlets) whi
h 
ouple to the two impa
t fa
tors at the bottom. Atthe upper end, given by the upper photon impa
t fa
tor, we end with a t-
hannel state
onsisting of two, three, or four gluons. We thus en
ounter t-
hannel states with 2, 3,or 4 gluons: their propagation is des
ribed by the BFKL equation for the 
ase of twogluons, and by the BKP equations in the 
ase of three and four gluons. When movingfrom the bottom to the top, the number of t-
hannel gluons never in
reases. Transitionsbetween the di�erent states are des
ribed by kernels K2!3 and K2!4 whi
h we des
ribe inse
tion 4.3 below. There are three di�erent t-
hannels (t, t1, t2), and ea
h of them has itsown angular momentum !, !1, !2, respe
tively. As seen from �gure 2, there is always a{ 6 {



Figure 2: A few 
ontributions to the triple energy dis
ontinuity in eq. (2.6)`lowest' intera
tion, whi
h we 
all `bran
hing vertex', below whi
h the diagrams split intothe t1 and t2 
hannels. It is therefore 
onvenient to split the diagrams of �gure 2 intothree pie
es: below the bran
hing vertex we have two dis
onne
ted BFKL Pomerons, D2,depending on !1 and !2, respe
tively. At and above the vertex we have an amplitude withfour gluons, D4, whi
h depends upon !: it satis�es an integral equation whi
h, for the
ase of QCD, has been dis
ussed in [8℄, and has been further studied in [9℄. One of themain results of that analysis is the appearan
e of the M�obius invariant 2! 4 gluon vertex.Together with the BFKL kernel it represents one of the fundamental building blo
ks ofQCD Reggeon �eld theory. The investigation of the analogous amplitude in N = 4 SYM,D 4(!), will be the main goal of the present paper. In parti
ular, we will study the in
uen
eof the supersymmetri
 parti
le 
ontent of the impa
t fa
tors on the solution of the integralequation for that amplitude.It is straightforward to generalize this dis
ussion of six-point amplitudes to eight-point,ten-point amplitudes et
. In the same way as the six-point amplitude leads to 4 gluonsin the t-
hannel, the eight-point amplitude 
ontains up to 6 gluons. As in the previous
ase, in QCD su
h amplitudes arise very naturally in the 
ontext of the s
attering of aphoton on nu
lei 
onsisting of three or more weakly bound nu
leons. From the theoreti
alpoint of view, these multiparti
le 
orrelators provide a natural environment for 
olor singletBKP states. When deriving and analyzing these higher order BKP states within QCD,new transition verti
es of reggeized gluons appear whi
h are elements of QCD Reggeon�eld theory. In this paper we restri
t ourselves to the six-point amplitude 
ontaining fourgluons. We will, however, present a few results also on the �ve- and six-gluon states.2.2 Six-point 
orrelators of R-
urrents in N = 4 SYMAfter this brief review of QCD 
al
ulations we now want to turn to analogous s
atteringamplitudes in N = 4 SYM. In terms of 
omponent �elds, this theory 
ontains the ve
tor�eld A�, 4 
hiral spinors �I , and 6 real s
alars XM . They all transform in the adjoint{ 7 {



representation of the gauge group SU(N
), and generi
ally we 
an write the �elds as � =�ab = �
(T 
)ab, with the generators of the adjoint representation, (T 
)ab = �ifab
. Thefab
 are the SU(N
) stru
ture 
onstants whi
h o

ur also in the algebra of the generators taof the fundamental representation, [ta; tb℄ = ifab
t
. Our 
onvention for the normalizationof the ta is su
h that tr (tatb) = Æab=2. For the generators in the adjoint representation wehave [T a; T b℄ = ifab
T 
 and tr (T aT b) = N
Æab.The Lagrangian of N = 4 SYM theory is [38℄L = tr�� 12F��F �� +D�XMD�XM + 2i�I��D���I� 2ig�I [�J ;XIJ ℄� 2ig��I [��J ;XIJ ℄ + 12g2[XM ;XN ℄[XM ;XN ℄� : (2.9)The XM and XIJ are related by the SU(4) �= SO(6) sigma symbols,XIJ = �12(�M )IJXM ; XIJ = 12(��1M )IJXM ; (2.10)with tr (�M��1N ) = 4ÆMN , whi
h implies that XMXM = XIJXIJ . Capital indi
es trans-form under the R-symmetry group SU(4). In parti
ular, A;B;C; ::: = 1; :::; 15 are indi
esof the adjoint representation, I; J;K; ::: = 1; :::; 4 transform under the fundamental, andM;N; ::: = 1; :::; 6 under the ve
tor representations of the R-symmetry. Small indi
esa; b; 
; ::: = 1; :::; N2
 �1 are adjoint representation indi
es for the gauge group SU(N
). The
ovariant derivative D� and the gauge �eld strength tensor F�� are de�ned in the usualway by (writing � generi
ally for any �eld in the theory)D�� = ���� ig[A�;�℄ ; (2.11)F�� = ��A� � ��A� � ig[A�; A� ℄ : (2.12)The theory enjoys a SUR(4) global symmetry, 
alled R-symmetry, whi
h transformsthe di�erent super
harges. Under these transformations, the �elds A�, �I , XM belongto the s
alar, fundamental, and ve
tor representation, respe
tively. More spe
i�
ally, theLagrangian (2.9) is invariant under the global R-symmetry transformationÆ�a�I = i�A�a�J (TA)JI ;Æ��a _�I = � i�A(TA)IJ ��a _�J ;ÆXaM = i�A(TA)MNXaN ; (2.13)where �A are small parameters, and TA are the SUR(4) generators in the appropriaterepresentation.2 The 
orresponding Noether 
urrent isJA�R = i �L�(���)�A� = tr �����TA��� iXTAD�X� ; (2.14)where �A� is obtained from (2.13) with the de�nition Æ� = i�A�A� for an in�nitesimalR-transformation.2In our notation the generators of SUR(4) are labeled by 
apital letters so that they are distinguishedfrom the generators of SU(N
) whi
h 
arry small letters.{ 8 {



In [33℄ it has been suggested that in N = 4 SYM this global 
urrent 
an be usedas a substitute for the ele
tromagneti
 U(1) 
urrent in QCD. To be more pre
ise, oneshould 
hoose an abelian subgroup of the global SUR(4), for example the one generated byT 3 = diag(12 ;�12 ; 0; 0). The simplest appli
ation of this pro
edure is the supersymmetri
analog of elasti
 
�
� s
attering: the elasti
 s
attering of two R-
urrents [34℄. In QCDthis pro
ess, when evaluated at energies mu
h larger than the photon virtualities, providesone of the 
leanest environments for studying the BFKL Pomeron. With the 
onje
turedAdS/CFT duality, the 
orrelator of four R-
urrents therefore o�ers the possibility to studythe dual of the BFKL Pomeron on the string theory side.As a next step along this line, one may address higher 
orrelators, e. g. the six-pointfun
tion for whi
h the QCD side has been dis
ussed above. Giving labels A, B1, B2 to thethree in
oming virtual photons (and analogous primed labels to the outgoing ones) in theamplitude T
�
�
�!
�
�
� , one is led to 
onsider an analogous pro
ess in N = 4 SYM byde�ning the momentum spa
e six-point fun
tion (see �gure 3)i(2�)4Æ(q + p1 + p2 � q0 � p01 � p02)T �A�B1�B2�A0�B01�B023!3= Yi=A;:::;B02 Z d4xi e�iq�xA�ip1�xB1�ip2�xB2+iq0�xA0+ip01�xB01+ip02�xB02hJA�AR (xA)JB1�B1R (xB1)JB2�B2R (xB2)JA0�A0R (xA0)JB01�B01R (xB01)JB02�B02R (xB02)i : (2.15)Following the dis
ussion of the previ-
p1 p′1 p2 p′2

q q′
t

t1 t2

s1 s2

M2

A A′

B1 B′

1 B2 B′

2Figure 3: The momentum spa
e six-point fun
-tion of 3! 3 R-
urrent s
attering.

ous subse
tion, we will be interested in the(generalized) leading logarithmi
 approxi-mation of the six-point fun
tion T3!3 in thetriple Regge limit, where we will make useof the analyti
 representation (2.6).The only pla
es where the supersym-metri
 
ontent of N = 4 SYM be
omesvisible in the above expression are the im-pa
t fa
tors. Compared to the QCD 
ase,there are two novel features:(i) the (Weyl)fermions are in the adjoint representation,(ii) in addition to the fermion loop, we havethe s
alars whi
h o

ur in the adjoint representation as well. In [34℄ these impa
t fa
torshave been 
al
ulated for the four-point fun
tion where two t-
hannel gluons are 
oupledto the external 
urrents. For the six-point fun
tion, new impa
t fa
tors with three or fourt-
hannel gluons appear as well. They have not been 
al
ulated yet, and their 
omputation
onstitutes one of the main goals of this paper.The stru
ture of these novel impa
t fa
tors has quite important 
onsequen
es. Inthe QCD analysis the integral equations whi
h formally sum all the Reggeon diagrams
an partially be solved and simpli�ed. The key ingredients to this are the reggeizationof the gluon and the validity of bootstrap equations. The latter ones strongly depend{ 9 {



upon the stru
ture of the impa
t fa
tors whi
h { in QCD with quarks in the fundamentalrepresentation { are simple (Dira
) fermion loops. In QCD it has been shown that all
ontributions with more than two t-
hannel gluons are absorbed into reggeizing pie
es,and, at the end, only two-gluon 
ontributions remain. This result is 
losely 
onne
ted withthe stru
ture of the 2! 4 gluon vertex. In the 
ase of N = 4 SYM the fermions are in theadjoint representation, and the impa
t fa
tors also 
ontain 
ontributions from the s
alars:the stru
ture of the impa
t fa
tors with three or more t-
hannel ve
tor parti
les is di�erent,and it is a priori not obvious how this a�e
ts the solution of the integral equations. Weshall investigate this issue in the present paper.3. Impa
t fa
tors3.1 Four-point fun
tions in N = 4 SYMIt will be useful to brie
y re
apitulate the two-gluon impa
t fa
tor whi
h was studied indetail in [34℄, some properties of this impa
t fa
tor were also dis
ussed in [39, 40℄. Itspre
ise de�nition is given byD a1a2;�A�A0(2;0) (k1;k2) = p�1B p�2Bs2 Z 10 d~s2� dis
~sA�A�A0 ;�1�2;a1a2RAg1!RA0g2 ��A�A(q)��A0�A0 (q0) : (3.1)Here A�A�A0 ;�1�2;a1a2RAg1!RA0g2 is the amplitude for s
attering of the R-
urrent A with Lorentz index�A and a gluon with momentum �k1, Lorentz index �1 and 
olor label a1 into the R-
urrent A0 with Lorentz index �A0 and a gluon with momentum k2, Lorentz index �2 and
olor label a2. ~s = (q � k1)2 ' q2 � k21 � s� is the total 
enter-of-mass energy squaredof the R-
urrent-gluon system. ���(k) are the polarization ve
tors of the R-
urrents withpolarizations � = L; h where L denotes longitudinal and h = 1; 2 transverse polarizations.We begin our dis
ussion with the fermioni
 part of the R-
urrent impa
t fa
tor whi
h
onsists of Weyl fermions in the adjoint representation of SU(N
). Compared to Dira
fermions in the fundamental representation (that is the usual QCD 
ase), we have to
onsider the following 
hanges. Instead of N
 fundamental quarks we now have N2
 � 1adjoint parti
les, i. e. the 
olor tra
e tr (tatb) = Æab=2 is repla
ed by tr (T aT b) = N
Æabwhere (T a)b
 = �ifab
 are the generators in the adjoint representation. Next, we have to
onsider the U(1) 
harges eF of the global SUR(4) symmetry of the Weyl fermions whi
hare the analogs of the ele
tri
 
harges eq in QCD. With our 
hoi
e of the U(1) subgroup,T 3 = diag(12 ;�12 ; 0; 0), we 
an take 
are of these 
harge fa
tors by multiplying the QCDamplitude by RF = P e2FP e2q = 12P e2q ; (3.2)sin
e here P e2F = tr 4(TATA) = 12 . Furthermore, we identify the left- and right-handed
omponents of a massless Dira
 fermion withWeyl fermions in the standard way, and we 
an
on
lude that the impa
t fa
tor with a massless Dira
 fermion is twi
e the 
orrespondingimpa
t fa
tor with a Weyl fermion. Compared to a Dira
 fermion in the fundamental{ 10 {



representation in QCD, we therefore have for the fermioni
 
ontribution in N = 4 SYMthe relative weight 2N
R with R = 12RF = 14P e2q : (3.3)The momentum stru
ture, in
luding the integration over the loop momentum, on the otherhand, remains the same in ea
h individual diagram and is not a�e
ted by the 
hange ofthe 
olor representation of the quarks. Finally, we have the s
alar 
ontribution for whi
hthere is no 
ounterpart in QCD.In the following we often 
ompare with the QCD 
ase, i. e. with the 
ase of Dira
fermions in the fundamental representation. In order to make a 
lear distin
tion betweenthe impa
t fa
tors (and, later on, also the gluon amplitudes) in the two theories we willdenote n-gluon impa
t fa
tors in QCD with fundamental quarks by normal letters, forexample D(n;0), while those in N = 4 SYM will be denoted by bla
kboard-style letters, forexample D (n;0).The full N = 4 SYM impa
t fa
tor D (2;0)(k1;k2) for the s
attering of two R-
urrentswith two ex
hanged gluons in the t-
hannel has been 
omputed in [34℄. The 
omputationof the fermioni
 part in
ludes the four diagrams shown in �gure 4. We 
onsider the dis
on-
F1 F2 F3 F4Figure 4: The fermion diagrams for the impa
t fa
tors.tinuity in s and therefore two propagators are set on-shell. Due to the 
ut only diagrams inwhi
h the gluon lines do not 
ross have to be in
luded. The external 
urrents are proje
tedonto di�erent polarizations, longitudinal or transverse. For simpli
ity we give the resultof the fermion impa
t fa
tor, the sum of the four diagrams in �gure 4, only for transversepolarization of the R-
urrents:D a1a2 ;hh0F;(2;0) (k1;k2) = Æa1a2 N
�s2 Z 10 d� Z d2l(2�)2� ��4�(1� �)�(h) ��N 1D1 � N 2D2 ��N 01D01 � N 02D02 � � �(h0)�+ �(h) � �(h0)��N 1D1 � N 2D2 ��N 01D01 � N 02D02 �� : (3.4)Here h and h0 denote the transverse polarizations (whi
h we will often suppress in thenotation of the amplitudes D n) and �(h) denotes the 
orresponding polarization ve
tor. aand a0 are the 
olor labels, and k1 and k2 with q = k1 + k2 are the transverse momentaof the gluons. The tra
e over the two generators of the SUR(4) group is in
luded in theimpa
t fa
tor. For fermions in the fundamental representation it istr 4(TATA) = 12 ; (3.5)

{ 11 {



as it appeared already in the relative fa
tor RF , see (3.2). The integrations whi
h areleft are over the transverse momentum l and the Sudakov 
omponent �, belonging to thelongitudinal momentum qA, see (2.5), of the fermion loop. The propagators and numeratorsare given by (i 2 f1; 2g) N 1 = lN 01 = l� (1� �)qN 2 = l� kN 02 = l� k+ �qDi =N 2i + �(1 � �)Q2AD0i =N 02i + �(1 � �)Q2A0 : (3.6)
Note that D F;(2;0)(k1;k2) is symmetri
 in its two momentum arguments and vanishes if oneof them vanishes (i 2 f1; 2g): D a1a2F;(2;0)(k1;k2)���ki=0 = 0 ; (3.7)whi
h is a 
onsequen
e of the gauge invarian
e of the impa
t fa
tor.The s
alar 
ontribution to the impa
t fa
tor in N = 4 SYM 
onsists of nine diagrams,shown in �gure 5, and all diagrams are ne
essary to satisfy the Ward identities at �niteenergies. But at high energies the diagrams S5-S9 are suppressed [34℄, and the leadingdiagrams for the s
alar impa
t fa
tor are S1-S4, whi
h are similar to the fermioni
 ones.The s
alar part of the impa
t fa
tor with transversely polarized R-
urrents is

S1 S2 S3 S4

S5 S6 S7 S8

S9Figure 5: The s
alar diagrams for the impa
t fa
tors.D a1a2;hh0S;(2;0) (k1;k2) = 2Æa1a2 N
�s Z 10 d� Z d2l(2�)2 �(1 � �)� �(h) � �N 1D1 � N2D2 ��N 01D01 � N 02D02 � � �(h0)� (3.8)
{ 12 {



with the propagators and numerators given in (3.6). The tra
e over the SUR(4) generatorsfor s
alars in the ve
tor representation, that is in
luded here, givestr 6(TATA) = 1 ; (3.9)di�erent from the fermioni
 
ase. Also the s
alar 
ontribution D S;(2;0)(k1;k2) to the impa
tfa
tor is symmetri
 in its two momentum arguments and vanishes if one of them vanishes(i 2 f1; 2g): D a1a2;hh0S;(2;0) (k1;k2)���ki=0 = 0 : (3.10)We obtain the full impa
t fa
tor in N = 4 SYM asD a1a2;hh0(2;0) � D a1a2;hh0F;(2;0) + D a1a2;hh0S;(2;0) ; (3.11)and obtain for the example of transversely polarized R-
urrentsD a1a2;hh0(2;0) = Æa1a2Æhh0N
�s2 Z 10 d� Z d2l(2�)2 �N 1D1 � N 2D2 � � �N 01D01 � N 02D02 � : (3.12)D (2;0) is symmetri
 in its two momentum arguments, and as a 
onsequen
e of (3.7) and(3.10) we have D a1a2;hh0(2;0) (k1;k2)���ki=0 = 0 : (3.13)It has been observed in [34℄ that due to supersymmetry the heli
ities of the s
atteringR-
urrents are 
onserved. In parti
ular, unlike the QCD 
ase, heli
ity 
onservation holdsfor the R-
urrent impa
t fa
tor also in the non-forward dire
tion t 6= 0. In the following wewill keep in our notation the di�erent polarizations �A and �A0 expli
it, while we keep inmind that the impa
t fa
tor is always proportional to Æ�A�A0 . This also justi�es a posteriorithe use of the analyti
 representation (2.6) for the analysis of the six point fun
tion (2.15).3.2 Six-point fun
tions in N = 4 SYMThe next step is to go to higher 
orrelation fun
tions, e. g. six-point fun
tions (2.15). Againfermions and s
alars 
ontribute to the impa
t fa
tor D (n;0). They generalize (3.1) to anarbitrary number of gluons and are de�ned asD a1a2:::an;�A�A0(n;0) (k1; : : : ;kn)= p�1B : : : p�nBsn Z 10 d~s12� : : : Z 10 d~sn�12� dis
~s1 : : : dis
~sn�1A�A�A0 ;�1:::�n;a1:::anRAg1!RA0g2:::gn ��A�A(q)��A0�A0 (q0) ;(3.14)with ~si = (q � Pij=1 kj)2, i = 1; : : : n � 1. One possible diagram with fermion loops
ontributing to the six-point fun
tion is depi
ted in �gure 6. The 
omplete impa
t fa
torsare again given by the sum over all possible ways in whi
h the gluons 
an 
ouple to thefermion and s
alar lines.In the following dis
ussion of amplitudes with more gluons the 
olor fa
tors will playa 
ru
ial role, in parti
ular when we explain how amplitudes with di�erent numbers of{ 13 {



Figure 6: A fermioni
 
ontribution to the six-point fun
tiongluons are related to ea
h other via reggeization. We will invoke known results from QCDin order to derive these relations for the 
ase of N = 4 SYM. When 
omparing the fermioni

ontributions we will always �nd the overall fa
tor R of (3.3) when 
omparing an N = 4SYM amplitude to its analog in QCD. The 
olor fa
tor, on the other hand, will have a ri
herstru
ture, su
h that the main stru
tural di�eren
e between the two theories originates fromthe 
olor representations of the parti
les. In the following we will therefore sometimes (inslight abuse of language) speak of the `adjoint' and `fundamental' representation when wea
tually refer to N = 4 SYM and QCD, respe
tively. In fa
t, the results obtained belowfor the fermions 
an be used for 
onsidering a theory like QCD with adjoint instead offundamental quarks by just dropping the fa
tor R wherever it o

urs.3.2.1 Fermioni
 impa
t fa
torFor the 
ase of fundamental quarks in QCD the impa
t fa
tors with up to six gluons havebeen given expli
itly in [8, 9℄. There it has been found that the impa
t fa
tors with ar-bitrarily many gluons 
an be related to the two-gluon impa
t fa
tor D(2;0). A detaileda

ount of how this reggeization of the impa
t fa
tors results from the 
orresponding dia-grams has been given in [41℄. Here we want to relate the Weyl fermion impa
t fa
tors inthe adjoint representation to those of the fundamental representation. In a

ordan
e withthe notation of the previous se
tion we assign 
olor labels ai and transverse momenta kito the gluons.To understand the main di�eren
e between QCD and N = 4 SYM we have to take a
loser look at the tra
es in 
olor spa
e. Inspe
tion of the possible diagrams 
ontributing tothe n-gluon impa
t fa
tor shows that these diagrams 
ome in pairs: for ea
h diagram thereis another diagram with the same momentum integration but with the generators o

urringin opposite order in the tra
e in 
olor spa
e. The relative sign between these two diagramsturns out to be positive for even numbers of gluons and negative for odd numbers of gluons.It further turns out that the full impa
t fa
tors 
an be written 
ompletely in terms of themomentum part of the two-gluon impa
t fa
tor, see [8, 9℄. (In that representation thediagrams with all gluons atta
hed to the same quark line o

ur several times with di�erent
olor fa
tors but 
an
el in the sum over two-gluon impa
t fa
tors su
h that the original twodiagrams of this type are 
orre
tly 
ounted.) It is straightforward to 
he
k, following forexample the derivation presented in [41℄, that this result holds also in the 
ase of adjoint{ 14 {



fermions.Let us �rst de�ne the momentum part of the two-gluon amplitude by separating itfrom the 
olor tensor, Da1a2(2;0)(k1;k2) = Æa1a2D(2;0)(k1;k2) ; (3.15)and analogously for D a1a2(2;0).For three gluons a pair of diagrams as des
ribed above 
omes with the di�eren
e oftwo tra
es over generators of the respe
tive representation. For the adjoint representationwe have for instan
e tr (T a1T a2T a3)� tr (T a3T a2T a1) = iN
fa1a2a3 ; (3.16)while in the fundamental representation (i. e. in QCD) we hadtr (ta1 ta2ta3)� tr (ta3 ta2ta1) = i2fa1a2a3 (3.17)instead, giving again rise to a relative fa
tor 2N
R in the N = 4 SYM 
ase as 
ompared tothe QCD 
ase. This applies to all pairs of diagrams. Invoking the known de
omposition ofthe fundamental impa
t fa
tor D(3;0) into a sum over D(2;0) [7, 8℄,Da1a2a3(3;0) (k1;k2;k3) = 12gfa1a2a3 [D(2;0)(12; 3) �D(2;0)(13; 2) +D(2;0)(1; 23)℄ ; (3.18)we �nd for the adjoint representation in N = 4 SYMD a1a2a3F;(3;0)(k1;k2;k3) = 2N
RDa1a2a3(3;0) (k1;k2;k3)= 12gfa1a2a3 [D F;(2;0)(12; 3) � D F;(2;0)(13; 2) + D F;(2;0)(1; 23)℄ : (3.19)Here we have made use of the shorthand notation for the momentum arguments of D (2;0)and D(2;0) originally introdu
ed in [9℄ in whi
h the momenta are repla
ed by their indi
es,and a string of indi
es stands for the sum of momenta, for exampleD(2;0)(12; 3) = D(2;0)(k1 + k2;k3) : (3.20)In the following this notation will also be used for other fun
tions. Note that we haveexpressed both three-gluon impa
t fa
tors here in terms of the momentum part of the two-gluon impa
t fa
tor whi
h does no longer 
ontain the 
olor fa
tor Æab. We observe that thethree-gluon impa
t fa
tor in the adjoint representation (3.19) di�ers from the one in thefundamental representation (3.18) only by a fa
tor 2N
R. As a 
onsequen
e the relationbetween the three-gluon impa
t fa
tor and the 
orresponding two-gluon impa
t fa
tor isthe same in both representations, 
ompare the se
ond line of (3.19) with (3.18). What weobserve here is the reggeization of the gluon in the impa
t fa
tor. In ea
h term in the sumin (3.19) or (3.18) two gluons 
ombine to a
t as a single gluon.For four gluons the situation be
omes more interesting. In the fundamental represen-tation, the 
olor stru
ture of a typi
al pair of diagrams with the same momentum stru
tureis given by the tensor dab
d = tr (tatbt
td) + tr (tdt
tbta) : (3.21){ 15 {



Taking the quarks to be in the adjoint representation gives us the same two tra
es withthe fundamental generators ta repla
ed by adjoint generators T a,tr (T aT bT 
T d) + tr (T dT 
T bT a) = 2N
dab
d + ÆabÆ
d + Æa
Æbd + ÆadÆb
 ; (3.22)where we have used (A.3) and (A.5) in order to express this sum of tra
es in terms of thetensor in (3.21) known from the fundamental representation. We noti
e that in the 
aseof four gluons we �nd a further part in addition to reprodu
ing 2N
 times the tensor fromthe fundamental representation. Using the known result for the four-gluon impa
t fa
torin the fundamental representation [8℄,Da1a2a3a4(4;0) (k1;k2;k3;k4) = � g2da1a2a3a4 [D(2;0)(123; 4) +D(2;0)(1; 234) �D(2;0)(14; 23)℄� g2da2a1a3a4 [D(2;0)(134; 2) +D(2;0)(124; 3) �D(2;0)(12; 34)�D(2;0)(13; 24)℄ ; (3.23)and (3.22) we hen
e arrive atD a1a2a3a4F;(4;0) (k1;k2;k3;k4)= 2N
RDa1a2a3a4(4;0) (k1;k2;k3;k4) + D a1a2a3a4F;(4;0) dir(k1;k2;k3;k4)= � g2da1a2a3a4 [D F;(2;0)(123; 4) + D F;(2;0)(1; 234) � D F;(2;0)(14; 23)℄� g2da2a1a3a4 [D F;(2;0)(134; 2) + D F;(2;0)(124; 3) � D F;(2;0)(12; 34) � D F;(2;0)(13; 24)℄+ D a1a2a3a4F;(4;0) dir(1; 2; 3; 4) : (3.24)Here the additional part D F;(4;0) dir originates from the additional delta tensors in (3.22):later on it will be shown that this pie
e { in 
ontrast to the other terms in eq. (3.24) { givesrise to a dire
t 
oupling of the four-gluon state in the t-
hannel to the external 
urrents.Expli
itly, it be
omesD a1a2a3a4F;(4;0) dir(k1;k2;k3;k4)=� g2 12N
 (Æa1a2Æa3a4 + Æa1a3Æa2a4 + Æa1a4Æa2a3)� �D F;(2;0)(123; 4) + D F;(2;0)(124; 3) + D F;(2;0)(134; 2) + D F;(2;0)(1; 234)�D F;(2;0)(12; 34) � D F;(2;0)(13; 24) � D F;(2;0)(14; 23)� : (3.25)The fa
tor (2N
)�1 appears be
ause we have expressed the r.h.s. in terms of D F;(2;0) insteadof D(2;0). Interestingly, due to the symmetry of D F;(2;0), this additional term is 
ompletelysymmetri
 in its 
olor and momentum arguments. We furthermore observe that due to(3.13) it vanishes if one of the gluon momenta vanishes, that is for all i we haveD a1a2a3a4F;(4;0) dir(k1;k2;k3;k4)���ki=0 = 0 : (3.26)We will dis
uss the physi
al interpretation of this additional pie
e in se
tion 5 below.3.2.2 S
alar impa
t fa
torIn N = 4 SYM s
alars provide a 
ontribution to the full impa
t fa
tor also for largernumbers of gluons. A s
alar 
ontribution to the six-point fun
tion is shown in �gure 7.
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In this se
tion we argue that it is possible to relate
Figure 7: A s
alar 
ontribution tothe six-point fun
tion

the s
alar impa
t fa
tors for n gluons, D S;(n;0), to thetwo-gluon impa
t fa
tor D S;(2;0) in the same way as forfermions.Additional diagrams like S5-S9 for the two-pointfun
tion in �gure 5 also appear with three or more glu-ons in the t-
hannel, see �gure 8. But these diagramsare suppressed for the same reasons as in the 
ase oftwo t-
hannel gluons. Every 
ontra
tion of the gluonpolarization tensor,g�� = 2s (p�Bq�A + q�Ap�B) + g��? ; (3.27)with the polarization ve
tor of the R-
urrent provides one power of s less than in theleading diagrams. Therefore at high energies only diagrams with gluons 
oupled dire
tlyto the s
alar lines 
ontribute to the s
alar impa
t fa
tor.
Figure 8: Two of the additional diagrams in the s
alar 
aseFurthermore, diagrams as the one shown in �gure 9 do not 
ontribute to the dis
onti-nuity that we are 
onsidering. Be
ause of the suppression of the additional diagrams also

Figure 9: A further s
alar diagramin the s
alar part all impa
t fa
tors D S;(n;0) with arbitrarily many gluons 
an be expressedin terms of the two-gluon impa
t fa
tor D S;(2;0). The redu
tion me
hanism is similar to theone with fermion loops. The key me
hanism for fermions has been explained for examplein [9℄, here we will now 
onsider it for s
alars.A s
alar-gluon vertex, �gure 10, 
ontra
ted with the leading longitudinal part of thegluon polarization tensor (3.27), 2p�Bq�A=s, is proportional to s�, where again we make useof a Sudakov de
omposition l = �qA + �pB + lt (as in (2.5)) of the loop momentum of thes
alar loop. Let us now 
onsider two adja
ent gluons out of the n gluons whi
h 
ouple to{ 17 {



the s
alar loop. Every s
alar-gluon vertex is 
ontra
ted with the longitudinal momentumpB from the polarization tensor of the t-
hannel gluon. Furthermore, the s
alar propagatoris on-shell, thus resulting in a delta fun
tion. Then we obtain
l1 − k1 − k2l1

k1 k2

' �s(l � k1 + l � k1 � k2)�pB 2�Æ((l � k1)2) : (3.28)Making use of the Sudakov de
omposition we �nd� s Æ �(� � �k1)� (l� k1)2=s�� � l1 l1 − k1 − k2

k2k1

(3.29)whi
h is the same as the one-gluon-s
alar vertex, but with the transverse momentum givenby the sum of the momenta of both t-
hannel gluons. This means that we observe reggeiza-tion of the gluons in the s
alar part of the impa
t fa
tor as well.The s
alar diagrams 
ontributing to the impa
t fa
tor 
ome l1 − k1l1

k1Figure 10: S
alar-gluonvertex
in pairs exa
tly as the fermioni
 ones. The two diagrams in ea
hpair have the same momentum stru
ture but the 
olor tra
eo

urs in reversed order. The relative sign between these twodiagrams is again (�1)n where n is the number of gluons.Altogether, the de
omposition of the s
alar impa
t fa
torsD S;(n;0) into a sum of D S;(2;0) works in the same way as forfermions. The results areD a1a2a3S;(3;0) (k1;k2;k3) = 12gfa1a2a3 [D S;(2;0)(12; 3) � D S;(2;0)(13; 2) + D S;(2;0)(1; 23)℄(3.30)andD a1a2a3a4S;(4;0) (k1;k2;k3;k4)= � g2da1a2a3a4 [D S;(2;0)(123; 4) + D S;(2;0)(1; 234) � D S;(2;0)(14; 23)℄� g2da2a1a3a4 [D S;(2;0)(134; 2) + D S;(2;0)(124; 3) � D S;(2;0)(12; 34) � D S;(2;0)(13; 24)℄+ D a1a2a3a4S;(4;0) dir(1; 2; 3; 4) ; (3.31)with D a1a2a3a4S;(4;0) dir(1; 2; 3; 4) as in eq. (3.25) but with the index F repla
ed by S in all terms.The full impa
t fa
tors D (3;0) and D (4;0) are then given by the sum of the fermioni
and s
alar impa
t fa
tors as in the two-gluon 
ase (3.12):D (3;0) = D F;(3;0) + D S;(3;0)D (4;0) = D F;(4;0) + D S;(4;0) : (3.32)This holds for arbitrary polarization of the R-
urrents.The key result of the present se
tion is that we have been able to express the fermioni
parts of the adjoint (N = 4) impa
t fa
tors with up to four gluons atta
hed in terms of{ 18 {



the 
orresponding fundamental (QCD) impa
t fa
tors and in terms of one new element,namely the additional pie
e D F;(4;0) dir. The parts that 
ould be related to the fundamentalimpa
t fa
tors 
an also be expressed in terms of the adjoint two-gluon impa
t fa
tor D F;(2;0)in exa
tly the same way as the fundamental impa
t fa
tors 
ould be expressed in terms ofD(2;0). For the s
alar 
ontributions to the N = 4 impa
t fa
tors, that is absent in QCD,we �nd an analogous situation. The n-gluon impa
t fa
tors D S;(n;0) 
an be expressed interms of the two-gluon impa
t fa
tor D S;(2;0) and in terms of a new element D S;(4;0) dir whi
ho

urs for four gluons. The relations in the fermioni
 and in the s
alar se
tor are 
ompletelyanalogous so that they also hold for the full impa
t fa
tors D (n;0). In se
tion 5 we will usethis observation to extra
t the stru
ture of the solutions to the integral equations in asimple way.It is interesting to note that the pattern of reggeization, found for D (2;0), D (3;0), andD (4;0), 
ontinues for more than 4 gluons. Similar to D (3;0) whi
h, via reggeization, 
an beexpressed in terms of a sum of D (2;0) impa
t fa
tors, the �ve-gluon impa
t fa
tor, D (5;0),
an be expressed in terms of lower impa
t fa
tors. In parti
ular, we �nd the new termD (5;0) dir whi
h 
an be expressed in terms of the analogous four-gluon pie
e, D (4;0) dir. Morepre
isely, de�ning D (4;0) dir = D F;(4;0) dir + D S;(4;0) dir ; (3.33)we �nd thatD a1a2a3a4a5(5;0) dir (k1;k2;k3;k4;k5)= g2 hfa1a2
 D 
a3a4a5(4;0)dir (12; 3; 4; 5) + fa1a3
 D 
a2a4a5(4;0) dir(13; 2; 4; 5)+ fa1a4
 D 
a2a3a5(4;0)dir (14; 2; 3; 5) + fa1a5
 D 
a2a3a4(4;0) dir(15; 2; 3; 4)+ fa2a3
 D a1
a4a5(4;0) dir(1; 23; 4; 5) + fa2a4
 D a1
a3a5(4;0) dir(1; 24; 3; 5)+ fa2a5
 D a1
a3a4(4;0) dir(1; 25; 3; 4) + fa3a4
 D a1a2
a5(4;0) dir(1; 2; 34; 5)+ fa3a5
 D a1a2
a4(4;0) dir(1; 2; 35; 4) + fa4a5
 D a1a2a3
(4;0) dir(1; 2; 3; 45)i : (3.34)Further details of the 
al
ulation of the �ve- and six-gluon impa
t fa
tors D (5;0) and D (6;0)are presented in the appendi
es B and C.3.3 De
oupling of the OdderonWe 
lose this se
tion with an observation that is not along the main line of our paperbut nevertheless interesting. A 
loser inspe
tion of the 
olor tra
es that appeared in theimpa
t fa
tors 
onsidered above allows us to draw some 
on
lusions 
on
erning the 
ouplingof the Odderon3 to photon-like impa
t fa
tors in theories where all parti
les are the adjointrepresentation of SU(N
).In order to obtain Odderon ex
hanges in the t-
hannel we have to 
onsider impa
tfa
tors that des
ribe the transition from a C-odd to a C-even state, for example from anR-
urrent as 
onsidered above to a pseudos
alar 
urrent. As explained in detail in [41℄3For a review on the Odderon, the C-odd partner of the Pomeron, we refer the reader to [42℄.{ 19 {



for the 
ase of Dira
 fermions, the fermioni
 loop in su
h an impa
t fa
tor with n gluonsatta
hed gives rise to the 
olor fa
tortr (T a1 : : : T an)� (�1)ntr (T an : : : T a1) : (3.35)In the Pomeron (C-even) 
hannel, on the other hand, the impa
t fa
tor 
ontaining twove
tor-like R-
urrents leads totr (T a1 : : : T an) + (�1)ntr (T an : : : T a1) = 2tr (T a1 : : : T an) ; (3.36)as we have seen above.In QCD, where the 
orresponding generators are in the fundamental representation,the analog of the above 
ombination of tra
es (3.35) is in general non-zero. In parti
ular,the n t-gluons form in the Regge-limit a bound state for whi
h the EGLLA was formulatedin [41℄. However, if the generators in the tra
e (3.35) are in the adjoint representation, we�nd tr (T a1T a2 : : : T an) = (ifka1l)(ifla2m) : : : (ifzank)= (ifzank) : : : (ifla2m)(ifka1l)= (�1)n(ifkanz) : : : (ifma2l)(ifla1k)= (�1)ntr (T an : : : T a2T a1) ; (3.37)whi
h implies that the 
ombination (3.35) vanishes. As a 
onsequen
e, bound states like theOdderon with odd 
harge parity de
ouple from photon-like impa
t fa
tors, if the parti
lesin the loop are in the adjoint representation. It should be possible to generalize thisargument to all possible impa
t fa
tors in theories that 
ontain only parti
les in the adjointrepresentation. Odderon 
ontributions 
an o

ur in su
h theories only via the splitting ofa Pomeron into two Odderons [9℄. Considerations involving the dire
t 
oupling of theOdderon to parti
les in a s
attering pro
ess in N = 4 SYM, like for example [43℄, thereforerequire to add parti
les in the fundamental representation at least as external sour
es.4. Integral equationsLet us now turn to the integral equations whi
h, in the leading logarithmi
 approximation,sum all graphs 
ontributing to the triple energy dis
ontinuity of the six-point fun
tion. Aswe will see, the integral equations are formally the same in N = 4 SYM and in QCD.But the 
ouplings of the t-
hannel gluons to the external parti
les whi
h enter the integralequations as initial 
onditions di�er in the two theories, as we have dis
ussed in the previousse
tion. In order to make a 
lear distin
tion between the multi-gluon amplitudes in the twotheories we will follow the notation introdu
ed for the impa
t fa
tors, i. e. we will denoten-gluon amplitudes in QCD by normal letters, for example Dn, while those in N = 4 SYMwill be denoted by bla
kboard-style letters, for example D n.{ 20 {



4.1 Two gluons: BFKL equationIn the LLA the s
attering amplitude is des
ribed by the well-known BFKL equation [1, 2℄whi
h resums all terms of the order (�s log s)m. For a review of the BFKL equation see forexample [44℄. It is 
onvenient to formulate the BFKL equation and the integral equationsto be dis
ussed below in Mellin spa
e, that is one trades the squared energy s for the
omplex angular momentum ! by performing a Sommerfeld-Watson transformation. (Inthe following we will suppress the impli
it dependen
e of our n-gluon amplitudes on !in the notation.) We 
onsider the amplitude D 2(k1;k2) whi
h des
ribes the evolution oftwo reggeized gluons in the t-
hannel, starting from an impa
t fa
tor D (2;0)(k1;k2) whi
h
ouples the two gluons to the external 
urrents via a loop of fermions and s
alars in theadjoint representation. The elasti
 amplitude for R-
urrent s
attering is then obtainedfrom D 2 by folding it with another impa
t fa
tor D (2;0) for the other in
oming and outgoingR-
urrent [34℄.In the LLA the energy dependen
e of the elasti
 s
attering amplitude (from whi
h a
orresponding total 
ross se
tion 
an be obtained via the opti
al theorem) is then en
odedin the BFKL equation whi
h we 
an write for D 2 as ! � 2Xi=1 �(ki)! D a1a22 = D a1a2(2;0) +Kfbg!fag2!2 
 D b1b22 : (4.1)It des
ribes the produ
tion of two intera
ting gluons in the t-
hannel with transverse mo-menta k1 and k2. The supers
ripts of D 2 indi
ate the 
olor labels of the two gluons.Graphi
ally, this equation 
an be illustrated as ! � 2Xi=1 �(ki)! D2 = D(2;0) + D2 : (4.2)The real 
orre
tions in the intera
tion of the gluons are 
ontained in the kernelKfbg!fag2!2 (l1; l2;k1;k2) = g2fb1a1kfka2b2 �(k1 + k2)2 � l22k21(k2 � l2)2 � l21k22(k1 � l1)2 � ; (4.3)where g is the gauge 
oupling related to the strong 
oupling 
onstant by �s = g2=(4�).The virtual 
orre
tions are given by the gluon traje
tory fun
tion�(k2) = �N
2 g2 Z d2l(2�)3 k2l2(l� k)2 ; (4.4)from whi
h the a
tual gluon traje
tory is obtained as �g(k2) = 1+�(k2). The 
onvolutionsymbol 
 in eq. (4.1) stands for a two-dimensional integration over the transverse loopmomentum d2l with the measure [(2�)3l21l22℄�1, and we have the 
ondition l1+l2 = k1+k2 =q with t = �q2. The inhomogeneous term D (2;0) in the BFKL equation (4.1) is the impa
tfa
tor whi
h des
ribes the 
oupling of the two gluons to the s
attering parti
les, for examplethe 
oupling of two gluons to external R-
urrents through a fermion and s
alar loop.{ 21 {



The sum of the real and virtual 
ontributions to the intera
tion of the two gluons isusually 
alled the BFKL or Lipatov kernel. Transforming this kernel to transverse positionspa
e one �nds that it is invariant under M�obius transformations in that two-dimensionalspa
e [24℄. As a 
onsequen
e it is possible to �nd the eigenfun
tions Eh of the kernel intransverse position spa
e and to 
lassify them a

ording to their 
onformal weight h. Thelowest eigenvalue, obtained for h = 1=2, gives rise to the leading behavior s�BFKL�1 of the
ross se
tion at high energies. It is determined by the inter
ept of the BFKL Pomeron,�BFKL = 1 + (N
�s=�)4 log 2.In the LLA the BFKL kernel 
onsists of diagrams that involve only gluons but noquarks. Only in the NLLA, that is if one in
ludes terms of the order �s(�s log s)n, quarkloops o

ur in the QCD 
ase [45, 46℄. It is therefore 
lear that the BFKL kernel in the LLAis not a�e
ted if we 
onsider a gauge theory with adjoint instead of fundamental quarks.In the LLA it is only the impa
t fa
tor D (2;0) whi
h di�ers from the one in QCD withfundamental quarks, as we have dis
ussed in se
tion 3. For the NLL 
orre
tions to theBFKL equation in N = 4 SYM see [47, 48℄.4.2 More gluons: BKP equationsIn a straightforward generalization of the BFKL equation, referred to as the GLLA, one
onsiders ex
hanges of more gluons in the t-
hannel, still keeping the number n of gluons�xed during the evolution. The 
orresponding n-gluon amplitudes are des
ribed by theBKP equations [4, 5℄ whi
h resum terms 
ontaining the maximally possible number oflogarithms for a given �xed n. These BKP states appear in several pla
es (see furtherbelow), and we brie
y summarize their most important properties. In leading order, thisequation 
an be written 
ompletely in terms of the gluon traje
tory fun
tion � and ofthe kernel K2!2 of (4.3) that o

urred already in the BFKL equation. It is thereforeimmediately 
lear that, at the leading logarithmi
 level, also the BKP equation is identi
alin QCD with fundamental quarks and in N = 4 SYM.Let us 
onsider amplitudes B n des
ribing the produ
tion of n gluons in the t-
hannel,similar to the BFKL amplitude D 2 above. The BKP equation for the amplitude B n inN = 4 SYM reads ! � nXi=1 �(ki)! B a1:::ann = B a1:::an(n;0) +XKfbg!fag2!2 
 B b1:::b4n ; (4.5)where now the amplitude 
arries n 
olor labels ai. Again the evolution starts with some ini-tial 
ondition, B (n;0), given by an impa
t fa
tor or by a transition from another multigluonstate (see below). The sum extends over all pairwise intera
tions of the n gluons. The ker-nel (4.3) has to be interpreted su
h that only the two gluons parti
ipating in the respe
tiveintera
tion enter the kernel, while the other n�2 gluons do not 
hange their 
olor nor theirmomentum. We 
an illustrate the BKP equation graphi
ally (for the example n = 4) as ! � 4Xi=1 �(ki)! B4 = B(4;0) +X B4 : (4.6)
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Here the BKP equation is written for amplitudes B n with multiple 
uts, that is one takesn�1 dis
ontinuities 
orresponding to the energy variables de�ned from the four-momentumof the in
oming photon and those of the �rst i gluons, si = (q +P1j=1 kj)2, with 1 � i �n � 1. As a 
onsequen
e of this the t-
hannel gluons do not 
ross ea
h other and thes-
hannel gluons ex
hanged between them via the kernels K2!2 are on-shell.In NLLA the BKP equation will be di�erent for QCD and N = 4 SYM. The fermioni

ontribution to the NLL terms 
an be obtained by repla
ing the gluon traje
tory and thereal part K2!2 of the BFKL kernel by the 
orresponding next-to-leading QCD expressions,with the quarks taken in the representation under 
onsideration. However, in addition alsoa new kernel will appear, K3!3, whi
h has not been 
omputed yet.Let us re
all here that in the large-N
 limit the Hamiltonian 
orresponding to the BKPequation is integrable [27℄. More pre
isely, it is equivalent to the XXX-Heisenberg model ofSL(2;C) spin zero [28, 29℄. At large N
 the leading terms in the BKP equation are those inwhi
h the integral kernel a
ts only on neighboring gluons i and i+1 with periodi
 boundary
onditions. The 
olor stru
ture simpli�es su
h that ea
h pair of neighboring gluons is ina 
olor o
tet state. For the six-point R-
urrent 
orrelator, however, we will show that thelarge-N
 limit suppresses the BKP states. For the rest of the paper we will stay with �niteN
, and only at the end we will 
onsider the large-N
 limit.4.3 Changing the number of gluons: 
oupled integral equationsIn order to 
ompute the sum of diagrams that 
ontribute to the six-point fun
tion (exam-ples have been given in �gure 2) we need to 
ouple amplitudes with 2, 3, and 4 gluons,D a1a2(2;0), D a1a2a3(3;0) , and D a1a2a3a4(4;0) . It is beyond the s
ope of the present paper to des
ribe infull detail how the relevant n-gluon amplitudes D n are obtained from multi-parti
le s
at-tering amplitudes by applying suitable dis
ontinuities similar to the ones mentioned in theprevious se
tion below eq. (4.6). A more detailed a

ount of this pro
edure has been givenin [8℄ for the example of the four-gluon amplitude D4.In the following we simply write down the integral equations for the n-gluon amplitudeswhi
h arise in the so-
alled extended GLLA, or EGLLA. This approximation s
heme 
anbe 
hara
terized as resumming the maximally possible number of logarithms for a givennumber of t-
hannel gluons n the produ
tion of whi
h is des
ribed by an amplitude D n,with number-
hanging transitions being allowed. For the details of the EGLLA we referthe reader to [9, 49℄. Various aspe
ts of the EGLLA have been studied in [50℄-[61℄.Let us now 
onsider the integral equations of the EGLLA for the amplitudes D n forN = 4 SYM and dis
uss the elements entering them in more detail. For up to n = 4 gluonsin the t-
hannel these 
oupled integral equations read ! � 2Xi=1 �(ki)! D a1a22 = D a1a2(2;0) +Kfbg!fag2!2 
 D b1b22 (4.7) ! � 3Xi=1 �(ki)! D a1a2a33 = D a1a2a3(3;0) +Kfbg!fag2!3 
 D b1b22 +XKfbg!fag2!2 
 D b1b2b33 (4.8)
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 ! � 4Xi=1 �(ki)! D a1a2a3a44 = D a1a2a3a4(4;0) +Kfbg!fag2!4 
 D b1b22 +XKfbg!fag2!3 
 D b1b2b33+XKfbg!fag2!2 
 D b1b2b3b44 : (4.9)As in the 
ase of the BKP equations the kernels Kfbg!fag2!m have to be interpreted in su
ha way that only two gluons undergo an intera
tion resulting in m gluons, while the othergluons of the amplitude to whi
h the kernel is applied keep their momentum and 
olor.It is straightforward to obtain the integral equations for the higher n-gluon amplitudesfollowing the above pattern. In appendix B we dis
uss the 
ase n = 5.The lowest order terms D (n;0) des
ribe the 
oupling of n gluons to the R-
urrents, asdis
ussed in detail in se
tion 3 above. The traje
tory fun
tion � is the one given in eq.(4.4), while we de�ne the transition kernel from 2 to m gluons that o

urs in the integralequations asKfbg!fag2!m (l1; l2;k1; : : : ;km)= gmfb1a1k1fk1a2k2 : : : fkm�1amb2 �(k1 + � � �+ km)2 � l22(k1 + � � � + km�1)2(km � l2)2� l21(k2 + � � �+ km)2(k1 � l1)2 + l21l22(k2 + � � �+ km�1)2(k1 � l1)2(km � l2)2 � ; (4.10)where the fklm are again the stru
ture 
onstants of su(N
). Note that for m = 2 thede�nition (4.10) redu
es4 to the kernel K2!2 of (4.3) whi
h o

urred in the BFKL and inthe BKP equations. We stress that these kernels do not depend on the 
olor representationof the quarks, and are therefore exa
tly the same as in QCD with fundamental quarks.As in the BFKL equation, fermioni
 and s
alar 
ontributions enter the kernels only at thenext-to-leading level.As in the BFKL and BKP equations the 
onvolution symbol
 stands for an integrationover the loop momentum with the measure [(2�)3l21l22℄�1, and here we have the 
onditionthat l1 + l2 = k1 + � � � + km in (4.10). We write the kernel (4.10) diagrammati
ally as
l2, b2l1, b1

. . .

k1, a1 k
m

, a
m

: (4.11)
With the help of the diagrammati
 representation (4.11) of the kernels we 
an writethe hierar
hy of 
oupled integral equations of the EGLLA in a more intuitive diagrammati
4In this 
ase the last term in square bra
kets in eq. (4.10) is understood to vanish by de�nition.{ 24 {



form as ! � 2Xi=1 �(ki)! D2 = D(2;0) + D2 (4.12) ! � 3Xi=1 �(ki)! D3 = D(3;0) + D2 +X D3 (4.13) ! � 4Xi=1 �(ki)! D4 = D(4;0) + D2 +X D3+X D4 (4.14)The sums in the integral equations extend over all possible permutations of the gluon linesin the t-
hannel under the 
ondition that these lines do not 
ross ea
h other. For a moredetailed des
ription of this point in
luding expli
it examples we refer the reader to [9℄. Notethat in ea
h diagram only two of the gluons enter the intera
tion de�ned by the kernel.The momenta and 
olor labels of the other gluons are not a�e
ted by the kernel.The integral equations eqs. (4.7)-(4.9) form the basis of our analysis in the followingse
tions. Our strategy will be to relate 
ertain parts of the amplitudes for the 
ase ofN = 4 SYM to the amplitudes of QCD with fundamental quarks, and to invoke knownresults of the QCD 
ase. The di�eren
e between the amplitudes for the two theories 
learlyoriginates from the di�erent impa
t fa
tors.5. Solutions for D 3 and D 4In order to �nd solutions for the amplitudes D 3 and D 4 we will make use of the resultsobtained in se
tion 3 for the impa
t fa
tors D (n;0). In the 
ase of two gluons, the amplitudeD 2 is given by the BFKL Pomeron Green's fun
tion, 
onvoluted with the two-gluon impa
tfa
tor D (2;0). In parti
ular, for the fermioni
 part D F;2, that is the one with only a fermioni
loop in the impa
t fa
tor, we have the simple relationD F;2(k1;k2) = 2N
RD2(k1;k2) : (5.1)whi
h is an immediate 
onsequen
e of the fa
t that the BFKL equation with a fundamentalimpa
t fa
tor di�ers from eq. (4.1) only by a relative fa
tor in the impa
t fa
tor.Considering then the three-gluon amplitude D 3, we observe that the three-gluon impa
tfa
tor D (3;0) is related to the two-gluon impa
t fa
tor D (2;0) in exa
tly the same way asD(3;0) was related to D(2;0) in QCD with fundamental quarks, see eqs. (3.18) and (3.19).One 
an then easily verify that the solution to the integral equation (4.8) is given byD a1a2a33 (k1;k2;k3) = 12gfa1a2a3 [D 2(12; 3) � D 2(13; 2) + D 2(1; 23)℄ ; (5.2)
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in 
omplete analogy to the 
ase of QCD with fundamental quarks treated in [6, 8℄. (Through-out this se
tion we again make use of the notation (3.20).) We emphasize that this re-sult holds for the 
omplete amplitude with the impa
t fa
tors 
ontaining now the sum offermioni
 and s
alar loops. Note that also in the full amplitude we observe reggeization.The amplitude D 3 is a superposition of two-gluon amplitudes D 2 in ea
h of whi
h one gluonis 
omposed of two gluons at the same position in transverse spa
e (or, equivalently, theamplitude depends only on the sum of their transverse momenta). In other words, su
h apair of gluons at the same point in transverse spa
e a
ts like a single gluon, in this wayforming a so-
alled reggeized gluon. One 
an a
tually show that a self-
onsistent solutionis found only if all gluons ex
hanged in the t-
hannel are reggeized. What we observein the amplitude D 3 is a perturbative expansion of the reggeized gluon in terms of more`elementary gluons' to the �rst non-trivial order, or in other words a higher (two-parti
le)Fo
k state of the reggeized gluon. For a more detailed dis
ussion of reggeization in theEGLLA see [56℄.While in the three-gluon 
ase the full amplitude has the same 
olor stru
ture anddependen
e on the gluon momenta as the impa
t fa
tor (
ompare eqs. (3.18) and (5.2))the stru
ture be
omes more interesting already when we 
onsider four gluons. We havefound in se
tion 3 that in N = 4 SYM the impa
t fa
tor with four gluons D (4;0) 
onsistsof two parts exhibited in (3.24) and (3.31): one whi
h 
an be expressed in terms of theadjoint two-gluon impa
t fa
tor D (2;0) in exa
tly the same way as the fundamental four-gluon impa
t fa
tor D(4;0) was expressed in terms of D(2;0) (
ompare eqs. (3.24) and (3.31)to (3.23)), and a new additional part D (4;0) dir, see eq. (3.33). Both parts have a fermioni

ontribution and a s
alar 
ontribution. The similarity of the �rst part to the 
ase of QCDwith fundamental quarks suggests to atta
k the integral equation (4.9) for D 4 in the sameway as was done in [6, 7, 8℄ for the 
ase of D4. We hen
e split D 4 into two partsD 4 = D R4 + ~D 4 ; (5.3)and make an ansatz for the so-
alled reggeizing part D R4 . Similarly to the 
ase of threegluons above this ansatz is obtained from the �rst parts of the impa
t fa
tors (3.24) and(3.31) by repla
ing the lowest order terms D (2;0) by full amplitudes D F;2 and D S;2 whilekeeping the 
olor and momentum stru
ture. Adding the fermioni
 and s
alar 
ontributionswe have D Ra1a2a3a44 (k1;k2;k3;k4)= � g2da1a2a3a4 [D 2(123; 4) + D 2(1; 234) � D 2(14; 23)℄� g2da2a1a3a4 [D 2(134; 2) + D 2(124; 3) � D 2(12; 34) � D 2(13; 24)℄ : (5.4)We will dis
uss its reggeizing stru
ture later, see the dis
ussion of eq. (5.11) below. Insertingnow (5.3) with (5.4) in the integral equation (4.9) one 
an derive a new integral equationfor the remaining part ~D 4. The pro
edure for this is exa
tly the same as in the 
ase offundamental quarks (for a detailed des
ription we refer the reader to [9℄). This 
ompleteanalogy allows us to use the results of [6, 7, 8℄. We �nd that ~D 4 satis�es the integral{ 26 {



equation  ! � 4Xi=1 �(ki)! ~D a1a2a3a44 (k1;k2;k3;k4) = V a1a2a3a42!4 D 2 + D a1a2a3a4(4;0) dir+XKfbg!fag2!2 
 ~D b1b2b3b44 ; (5.5)where V2!4 is exa
tly the same two-to-four gluon transition vertex whi
h was derived in[8℄. V2!4 a
ts as an integral operator on the two-gluon amplitude D 2 and thus 
ouplesit to the four-gluon BKP state. The vertex 
an be written in terms of an infrared-�nitefun
tion V asV a1a2a3a42!4 (fqjg;k1;k2;k3;k4) = Æa1a2Æa3a4V (fqjg;k1;k2;k3;k4)+ Æa1a3Æa2a4V (fqjg;k1;k3;k2;k4)+ Æa1a4Æa2a3V (fqjg;k1;k4;k2;k3) ; (5.6)where the qj are the transverse momenta of the two gluons in the amplitude D 2. Thevertex V2!4 is hen
e 
ompletely symmetri
 in the four outgoing gluons, that is under thesimultaneous ex
hange of their 
olor labels and momenta. An important property of thistransition vertex is that upon Fourier transformation to two-dimensional impa
t parameterspa
e it is invariant under 
onformal (M�obius) transformations in the transverse plane[25℄. Another important property of the two-to-four gluon vertex is that it vanishes if thetransverse momentum of any of the outgoing gluons vanishes. Further properties of V2!4have been found and dis
ussed in [51, 54, 26, 57℄.Note that the new integral equation (5.5) for ~D 4 is a linear integral equation involvingonly the integral kernel PK2!2 of the four-gluon BKP equation, 
ompare eq. (4.5). Theterms involving K2!4 
 D 2 and K2!3 
 D 3 present in the original integral equation (4.9)have disappeared in favor of V2!4 
 D 2. The latter has now be
ome a 
ontribution to theinhomogeneous term in the linear equation for ~D 4. Sin
e the equation (5.5) is linear andits inhomogeneous term is a sum of two terms we 
an write its solution as a sum,~D 4 = D I4 + D 4 dir ; (5.7)with the two parts satisfying ! � 4Xi=1 �(ki)! D I a1a2a3a44 (k1;k2;k3;k4) = V a1a2a3a42!4 D 2+XKfbg!fag2!2 
D I b1b2b3b44 (5.8)and ! � 4Xi=1 �(ki)! D a1a2a3a44 dir (k1;k2;k3;k4) = D a1a2a3a4(4;0) dir +XKfbg!fag2!2 
 D b1b2b3b44 dir ; (5.9)respe
tively. In both equations the inhomogeneous terms are known so that the solution
an formally be obtained by iteration of the integral kernel PK2!2.{ 27 {



The amplitude D I4 in eq. (5.8) is well known from the four-gluon amplitude in QCDwith fundamental quarks. More pre
isely, there one 
an split the amplitude D4 a

ordingto D4 = DR4 +DI4, and DI4 satis�es the same equation (5.8) as D I4 here. The two amplitudesare in fa
t proportional to ea
h other, D I4 = 2N
RDI4, and the relative fa
tor originatesonly from the impa
t fa
tor. As one 
an see from the iterative solution of eq. (5.8), D I4
ontains a two-gluon state whi
h 
ouples to the impa
t fa
tor and then at some pointundergoes a transition to a four-gluon state. The vertex V2!4 des
ribing this transition islo
al in rapidity.The last part D 4 dir of the four-gluon amplitude D 4 is new in the supersymmetri
 theoryand originates from the fa
t that parti
les inside the loop are in the adjoint representation.It has a simple stru
ture as 
an be read o� from the integral equation (5.9): it 
onsistsof a four-gluon BKP state that is dire
tly 
oupled to the loop of adjoint fermions ands
alars, and the 
oupling is just given by the additional term D (4;0) dir of eq. (3.25) and thes
alar analog of that equation. For the 
ase of �ve t-
hannel gluons, addressed in appendixB, it 
an be further shown, that the additional term that arises there due to the adjointrepresentation reggeizes in terms of D 4 dir, in the very same way as D 3 reggeizes in termsof D 2.In summary, we have de
omposed the four-gluon amplitude D 4 into three parts,D 4 = D R4 + D I4 + D 4 dir ; (5.10)and have been able to derive their stru
ture5. We 
an illustrate these three parts graphi
allyin the following way:
D 4 =X D(2;0) + D(2;0)

V2→4

+ D(4;0) dir : (5.11)
The �rst term D R4 , whi
h we have not yet dis
ussed in detail here, is again a reggeizing term,namely a superposition of two-gluon amplitudes D 2. The sum extends over all possible (thatis seven) partitions of the four gluons into two non-empty sets, see eq. (5.4). In ea
h ofthese terms several gluons are at the same point in transverse spa
e and form a reggeizedgluon that 
arries the sum of their transverse momenta. As in the 
ase of the three-gluonamplitude D 3 (5.2) we 
an interpret these 
omposite gluons as representing higher Fo
kstates of the reggeized gluon. An interesting aspe
t of reggeization is the 
olor stru
turethat is asso
iated with this pro
ess. Re
all that in the three-gluon amplitude D 3 (5.2) this
ombination of two gluons into a more 
omposite gluon always 
ame with a f -stru
ture5In [36, 62℄ it has been found that for the large-N
 expansion of the six-point amplitude in topologiesof two-dimensional surfa
es the above de
omposition o

urs automati
ally, as a 
onsequen
e of di�erent
lasses of 
olor stru
tures. { 28 {




onstant of the SU(N
) gauge group. In the reggeizing part D R4 of the four-gluon amplitudewe see also other 
ontributions, namely a d-tensor of type (3.21) for the 
ombination ofthree gluons into one, and also d-type symmetri
 stru
ture 
onstants and even Æ-tensors forthe 
ombination of two gluons into one. The latter are obtained from the de
omposition(A.6) of the dab
d-tensor given in appendix A. A more detailed dis
ussion of these 
olortensors in the 
ontext of reggeization was given in [56℄.In the se
ond term in eq. (5.11), D I4, two gluons 
ouple to the impa
t fa
tor, intera
ta

ording to BFKL evolution, then undergo a transition to four gluons via the vertex V2!4,and �nally these four gluons intera
t pairwise a

ording to BKP evolution. In the thirdterm, D 4 dir, four gluons 
ouple dire
tly to the fermion and s
alar loop and then intera
tpairwise a

ording to BKP evolution, without a transition vertex in the evolution. Boththe �rst and se
ond term are present already in QCD with fundamental quarks. In N = 4SYM only their normalization is di�erent, being (2N
R) times that of the 
orrespondingterms for QCD with fundamental quarks. The third term o

urs only in theories withadjoint parti
les, here fermions and s
alars in N = 4 SYM.A 
ru
ial step towards a better understanding of the n-gluon amplitudes Dn in QCDwas the observation that they exhibit the stru
ture of a �eld theory of gluon ex
hanges,and the same observation applies to our results for N = 4 SYM. There are n-gluon stateswith �xed numbers of reggeized gluons in the t-
hannel, for example the two-gluon stateand the four-gluon state. In addition there are transition verti
es 
oupling those states toea
h other, like for example the two-to-four gluon transition vertex V2!4. This stru
turehas been veri�ed in the expli
it 
al
ulation of the amplitudes with up to six gluons [9℄. Inthe six-gluon 
ase a new transition vertex from two to six gluons o

urs whi
h 
ontains aPomeron-Odderon-Odderon 
oupling as well as a one-to-three Pomeron transition. In thePomeron 
hannel it turns out that only n-gluon states with even numbers n of gluons o

ur.The amplitudes Dn with odd n reggeize and are hen
e superpositions of amplitudes withless and even numbers of gluons. (In the appendix we show that this pattern 
ontinues for5 gluons also in N = 4 SYM.)The amplitudes in the Pomeron 
hannel hen
e 
onsist of only very few elements, namelystates of even numbers of reggeized gluons and transition verti
es between them. All ofthese elements of the �eld theory of reggeized gluon ex
hanges possess two importantproperties: �rstly, they are 
ompletely symmetri
 in the ex
hange of any two gluons, andse
ondly, they vanish when any of the transverse gluon momenta is set to zero. Thisproperty holds for the two-to-four gluon vertex V2!4, as we have pointed out above, andit also holds for the two-to-six gluon transition vertex [9℄. The same holds also for then-gluon states, on
e they are 
oupled to an element that ful�lls these two 
onditions. It istherefore plausible to regard also the impa
t fa
tor with two-gluons D(2;0) as a fundamentalelement of our �eld theory. As we have pointed out in se
tion 3 it in fa
t satis�es these
onditions. Moreover, all higher impa
t fa
tors with fundamental quarks 
ould be expressedas superpositions of D(2;0), thus exhibiting reggeization, see again se
tion 3.Furthermore, and from a theoreti
al point of view most importantly, all elements ofthe �eld theory are 
onformally invariant, that is they are invariant under M�obius transfor-mations of the gluon 
oordinates in two-dimensional impa
t parameter spa
e. Hen
e the{ 29 {




omplete amplitudes exhibit the stru
ture of an e�e
tive 
onformal �eld theory of reggeizedgluon ex
hanges at high energy.Let us now return to N = 4 SYM and let us re
onsider our results in the light of theirinterpretation in the framework of su
h an e�e
tive 
onformal �eld theory. The two- and thethree-gluon amplitudes behave as the 
orresponding amplitudes in QCD with fundamentalquarks and hen
e share their properties regarding the �eld theory stru
ture. In parti
ularwe have found the absen
e of an a
tual three-gluon state in D 3 due to reggeization. The �rsttwo terms of the four-gluon amplitude D 4 in eq. (5.11) reprodu
e exa
tly the stru
ture ofthe amplitude D4 in QCD with fundamental quarks, and hen
e have the same �eld theorystru
ture dis
ussed above. The new term D 4 dir 
ontains again the four-gluon state in thet-
hannel with properties that �t the �eld theory stru
ture. But in addition it 
ontains as anew element the dire
t 
oupling D (4;0) dir of the four gluons to the impa
t fa
tor 
onsistingof adjoint fermions and s
alars. Inspe
tion of its expli
it stru
ture qui
kly shows that it issymmetri
 under the ex
hange of any two gluons, and that it vanishes if one of the gluonmomenta vanishes, see eq. (3.26). Therefore the new 
ontribution to the four-gluon impa
tfa
tor satis�es the expe
tations that we have for a new element of our �eld theory.6. The six-point amplitudeColle
ting the results of the previous se
tions, we now return to the six-point amplitudede�ned in se
tion 2. As we have explained before, the partial wave F (!1; !2; !; t1; t2; t) isobtained as a 
onvolution of the three amplitudes D 4(!), D 2(!1), and D 2(!2). In orderto formulate this 
onvolution 
orre
tly, we have to say a few words on the 
ounting ofdiagrams [8℄.Let us return, in �gure 2, to the bran
hing vertex. Moving from the top to the bottom,it is the last intera
tion between the two subsystems (12) and (34). Below this vertex, thesystem of gluons has split into two non-intera
ting two-gluon states. This 'last' vertex
an be one of the 2 ! 2 intera
tions inside the gluon pairs (23), (13), (24), or (14), butnot inside (12) or (34). Also, it 
ould be one of the four 2 ! 3 kernels or the 2 ! 4kernel. Apart from that, there exists also the possibility that the two BFKL Pomerons
ouple dire
tly to the upper R-
urrent impa
t fa
tor whi
h then provides the bran
hingvertex. Comparing with the integral equation for D 4(!), eq. (4.9), we see that the diagramssummed by means of these equations in
lude also, as the �nal intera
tions, those inside(12) and (34). For the 
al
ulation of the partial wave F (!1; !2; !; t1; t2; t) we thereforehave to subtra
t them. Following 
losely the treatment in [8℄, we obtain the partial waveas the 
onvolutionF (!1; !2; !; t1; t2; t) =4 D a1a22 (!1)
12 D a3a42 (!2)
34�D̂ a1a2a3a4(4;0) (!) +Kfbg!fag2!4 
 D b1b22 (!)+XKfbg!fag2!3 
 D b1b2b33 (!) +X0Kfbg!fag2!2 
 D b1b2b3b44 (!)� ;(6.1){ 30 {



where the prime on the sum over the 2 ! 2 transitions in the last line indi
ates that in-tera
tions inside the gluon-pairs (12) and (34) are not in
luded. D̂ a1a2a3a4(4;0) (!) is the Mellintransform of the unintegrated four-gluon impa
t fa
tor. The latter appears if we do nothave s-
hannel gluons. As long as we have one or more s-
hannel gluons that 
ontribute tothe dis
ontinuity in M2, in addition to the adjoint parti
le pair in the loop, the invariantmass of the two parti
les in the loop is integrated over and the integration is in
luded in thede�nition of the impa
t fa
tor D (4;0) (see eq. (3.14)). Without su
h s-
hannel gluons themass of the adjoint parti
le pair 
oin
ides with the di�ra
tive mass M that is a �xed exter-nal parameter. In this 
ase the 
oupling of the four t-
hannel gluons to the quark and s
alarloop is given by an 'unintegrated' four-gluon impa
t fa
tor Dunintegrated(4;0) (k1;k2;k3;k4;M2)whi
h 
arries an expli
it M2-dependen
e. It 
an be written as a (unsubtra
ted) dispersionrelation inM2, and the dis
ontinuity inM2 entering this dispersion relation follows from thetriple dis
ontinuities dis
ussed in this paper. For simpli
ity, we denote this dis
ontinuitysimply by dis
M2Dunintegrated(4;0) (k1;k2;k3;k4;M2) = D̂(4;0)(k1;k2;k3;k4;M2). The Mellintransform in M2 of this unintegrated impa
t fa
tor D̂(4;0)(k1;k2;k3;k4;!) whi
h entersthe partial wave (6.1) also follows from the M2-dis
ontinuity, D̂(4;0)(k1;k2;k3;k4;M2).However, apart from these two pe
uliarities, the se
ond line of eq. (6.1) is nothing butthe r.h.s. of eq. (4.9), the integral equation for D 4. We therefore obtainF (!1; !2; !; t1; t2; t) = 4 D a1a22 (!1)
12 D a3a42 (!2) 
34 �D̂ a1a2a3a4(4;0) (!)+ ! �Xi �(ki)! D a1a2a3a44 (!)� D a1a2a3a4(4;0) � X(12);(34)Kfbg!fag2!2 
 D b1b2b3b44 (!)� :(6.2)Using for the last term of the se
ond line the integral equations for D 2(!1) and D 2(!2) we�nally �ndF (!1; !2; !; t1; t2; t) = 4 D a1a22 (!1)
12 D a3a42 (!2)
34�D̂ a1a2a3a4(4;0) (!) + (! � !1 � !2)D a1a2a3a44 (!)� ; (6.3)where we dropped terms that do not depend on !, !1 or !2 and whi
h give only a vanishing
ontribution to the six-point amplitude (2.6). Following now the de
omposition (5.10) forD 4(!), the partial wave 
onsists of three pie
es:F = FR + F I + F dir : (6.4)Beginning with FR we haveFR(!1; !2; !; t1; t2; t)= 4 D a1a22 (!1)
12D a3a42 (!2)
34 �D̂ Ra1a2a3a4(4;0) (!) + (! � !1 � !2)D Ra1a2a3a44 (!)� :(6.5){ 31 {



It is possible to rewrite this in a more intuitive way. We introdu
e the 'dis
onne
ted' vertexfun
tion V dis
(l1; l2;k1;k2;k3;k4),V dis
(l1; l2;k1;k2;k3;k4)= �g2l21l22hÆ(2)(l1 � k1 � k2 � k3) + Æ(2)(l1 � k1 � k2 � k4) + Æ(2)(l1 � k1 � k3 � k4)+ Æ(2)(l1 � k2 � k3 � k4)� Æ(2)(l1 � k1 � k2)� Æ(2)(l1 � k1 � k3)� Æ(2)(l1 � k1 � k4)i ; (6.6)and use for the 
olor fa
torC = Æa1a2Æa3a4da1a2a3a4 = 12N
 (N2
 � 1)2 ; (6.7)su
h that we arrive atFR(!1; !2; !; t1; t2; t) = 4C D 2(!1)
12 D 2(!2)
34�D̂ Ra1a2a3a4(4;0) (!) + (! � !1 � !2)V dis
 
 D 2(!)� (6.8)For F I we haveF I(!1; !2; !; t1; t2; t) = 4 D a1a22 (!1)
12 D a3a42 (!2)
34�V a1a2a3a42!4 D 2(!) +X0Kfbg!fag2!2 
 D I b1b2b3b44 (!)� ; (6.9)where the sum in the last term extends over the pairs (13), (14), (23), and (24) and wemade use of the integral equation for D I4(!) (see eq. (5.5)) and for D 2(!1) and D 2(!2). Ina similar way we obtain for F dirF dir(!1; !2; !; t1; t2; t) = 4 D a1a22 (!1)
12 D a3a42 (!2)
34�D̂ a1a2a3a4(4;0)dir (!) +X0Kfbg!fag2!2 
 D b1b2b3b44 dir (!)� : (6.10)The stru
ture of the unintegrated four-gluon impa
t fa
tor with fermions in the fundamen-tal representation of SU(N
) in the loop, for the 
ase t = t1 = t2 = 0, has been given in[8℄. For our analysis we de�neD̂ a1a2a3a4(4;0) = D̂ Ra1a2a3a4(4;0) + D̂ a1a2a3a4(4;0)dir (6.11)with D̂ Ra1a2a3a4(4;0) = da1a2a3a4 �D̂ S;(4;0) + D̂ F;(4;0)� ; (6.12)and D̂ a1a2a3a4(4;0)dir = 12N
 (Æa1a2Æa3a4 + Æa1a3Æa2a4 + Æa1a4Æa2a3)�D̂ S;(4;0) + D̂ F;(4;0)� : (6.13)
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The results areD̂ hh0F;(4;0)(k;�k;k0;�k0;M2)= g4N
2 M2(2�)3 Z 10 d� Z d2l�(�� 1)Æ(�(1 � �)M2 � l2)��(2�� 1)2�(h) �� l+ kD(l+ k) + l� kD(l� k) � 2 lD(l)��� l+ k0D(l+ k0) + l� k0D(l� k0) � 2 lD(l)� � �(h0)+ �(h0) �� l+ kD(l+ k) + l� kD(l� k) � 2 lD(l)�� l+ k0D(l+ k0) + l� k0D(l� k0) � 2 lD(l)� � �(h)� �(h) � �(h0)� l+ kD(l+ k) + l� kD(l� k) � 2 lD(l)� �� l+ k0D(l+ k0) + l� k0D(l� k0) � 2 lD(l)��(6.14)for transversely polarized R-
urrents, andD̂ LLF;(4;0)(k;�k;k0;�k0;M2)=� 2g4N
Q2 M2(2�)3 Z 10 d� Z d2l�3(�� 1)3Æ(�(1 � �)M2 � l2)�� 1D(l+ k) + 1D(l� k) � 2D(l)� � � 1D(l+ k0) + 1D(l� k0) � 2D(l)� (6.15)for longitudinally polarized R-
urrents. The denominators in these expressions areD(k) = �(1� �)Q2 + k2 : (6.16)Similarly, the s
alar 
ontributions to the unintegrated four-gluon impa
t fa
tor areD̂ hh0S;(4;0)(k;�k;k0;�k0;M2)= 2g4N
 M2(2�)3 Z 10 d� Z d2l�2(�� 1)2Æ(�(1 � �)M2 � l2)� �(h) � � l+ kD(l+ k) + l� kD(l� k) � 2 lD(l)�� l+ k0D(l+ k0) + l� k0D(l� k0) � 2 lD(l)� � �(h0)(6.17)andD̂ LLS;(4;0)(k;�k;k0;�k0;M2)= 2g4N
Q2 M2(2�)3 Z 10 d� Z d2l (� � 1=2)2�2(�� 1)2Æ(�(1 � �)M2 � l2)�� 1D(l+ k) + 1D(l� k) � 2D(l)�� 1D(l+ k0) + 1D(l� k0) � 2D(l)� : (6.18)In the forward 
ase t = t1 = t2 = 0, D 2(!1) = D 2(k;�k; !1) = D 2(k2; !1) andD 2(!2) = D 2(k0;�k0; !2) = D 2(k02; !2), i. e. the 
omplete dependen
e on the azimuthal{ 33 {



angle of the momenta k and k0 is inside the unintegrated impa
t fa
tors. After integrationover the angles of the momenta l, k, and k0, the sum of fermioni
 and s
alar 
ontributionssimpli�es. The results areD̂ hh0(4;0)(k2;k02;M2) ==Z d'k2� Z d'k02� hD̂ hh0F (4;0)(k;�k;k0;�k0;M2) + D̂ hh0S(4;0)(k;�k;k0;�k0;M2)i= g4N
4 Æhh0 Z 10 d� Iv(k2; �;M2)Iv(k02; �;M2) (6.19)and D̂ LL(4;0)(k2;k02;M2) ==Z d'k2� Z d'k02� hD̂ LLF (4;0)(k;�k;k0;�k0;M2) + D̂ S(4;0)(k;�k;k0;�k0;M2)i= g4N
4 Z 10 d��2(1� �)2Is(k2; �;M2)Is(k02; �;M2) : (6.20)Here we have de�nedll2 Iv(k2; �;M2) = Z 2�0 d'2� � l+ kD(l+ k) + l� kD(l� k) � 2 lD(l)�= ll2  Q2 �M2Q2 +M2 � k2 + �(1 � �)(Q2 �M2)p(k2 + �(1� �)(Q2 �M2))2 + 4�2(1� �)2M2Q2!(6.21)andIs(k2;�;M2) =pM2Q2 Z 2�0 d'k2� � 1D(l+ k) + 1D(l� k) � 2D(l)�= 2 pM2Q2p(k2 + �(1� �)(Q2 �M2))2 + 4�2(1� �)2M2Q2 � pM2Q2�(1 � �)(Q2 +M2)! ;(6.22)and 'k ('k0) denotes the angle of the ve
tor k (k0), while the Æ-fun
tion has been used toset l2 = �(1 � �)M2.We expe
t that the results found above will be useful for a detailed 
omparison withsimilar amplitudes 
al
ulated on the supergravity side of the AdS/CFT 
orresponden
e[63℄.Let us �nally 
omment on the large-N
 limit. Beginning with the �rst term, FR, weobserve in eq. (6.5) that the 
olor fa
tor C goes as N3
 =2, see (6.7). It may also be usefulto note that, making use of the M�obius representation of the BFKL amplitude, in eq. (6.6)only the last two terms 
ontribute. In our result for F I , on the r.h.s. of eq. (6.9) the termswith the 2 ! 2 kernels are 
olor suppressed, and as a result the two BFKL amplitudesD 2(!1) and D 2(!2) are dire
tly atta
hed to the triple Pomeron vertex. Finally, for F dir in{ 34 {



eq. (6.10), again the terms with the 2 ! 2 kernels are 
olor suppressed, and the BFKLPomerons 
ouple dire
tly to the new pie
e in the impa
t fa
tor, D (4;0) dir.Diagrammati
ally, the three pie
es FR, F I , and F dir are illustrated in �gure 11. Asa result of the large-N
 limit, the BKP four-gluon states whi
h had been present for �niteN
 have disappeared: in order to �nd su
h states for large N
 it would be ne
essary to goto higher order R-
urrent 
orrelators.

Figure 11: Large-N
 limit of the six-point fun
tionCompared to non-supersymmetri
 SU(N
) gauge theories with fundamental quarks,the most striking di�eren
e is the presen
e of the last pie
e whi
h exists only in the su-persymmetri
 extension where all parti
les are in the adjoint representation. The triplePomeron vertex, on the other hand, is the same in both 
ases. A detailed dis
ussion ofthe topologi
al expansion of the triple Pomeron vertex in the amplitudes above and itslarge-N
 behavior has been given in [36, 62℄.7. Summary and outlookIn this paper we have studied, in the generalized leading logarithmi
 approximation, thehigh energy behavior of N = 4 SYM in the triple Regge limit. It is this kinemati
 regimewhi
h, in QCD, exhibits the M�obius invariant triple Pomeron vertex. As the main result,we have found that in N = 4 SYM, with the fermions and s
alars belonging to the adjointrepresentation of the gauge group SU(N
), the four-gluon impa
t fa
tor 
ontains a novelpie
e whose existen
e 
an be tra
ed ba
k to the adjoint representation of the fermions ands
alars. It has no 
ounterpart in QCD where the quarks transform in the fundamentalrepresentation of the gauge group. In the six-point amplitude, this additional pie
e in theimpa
t fa
tor generates a 
oupling of the four-gluon state to the external 
urrents whi
h isabsent in QCD. On the other hand, the triple Pomeron vertex in N = 4 SYM, in leadingorder, is the same as in the non-supersymmetri
 
ase. This supports the fundamentalnature of this building blo
k of Reggeon �eld theory: be
ause of Regge fa
torization it hasto be independent of the 
oupling to the external proje
tiles. In our 
ase, this 
ouplingis mediated by the impa
t fa
tors in whi
h the di�eren
e between N = 4 SYM and non-supersymmetri
 QCD is manifest: the fa
t that in both 
ases the triple Pomeron vertex isthe same proves that fa
torization is indeed satis�ed.{ 35 {
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ial support.A. Color algebraIn the 
al
ulations in se
tion 3 and in appendix B we make use of the following SU(N
)
olor identities, flakfkbl = �N
 Æab ; (A.1)fkalflbmfm
k = � N
2 fab
 ; (A.2)fkalflbmfm
nfndk = N
 dab
d + 12(ÆabÆ
d + Æa
Æbd + ÆadÆb
) ; (A.3)fkalflbmfm
nfndofoek = N
 fab
de+ 14(Æabf
de + Æa
fbde + Æadfb
e + Æaefb
d+ fadeÆb
 + fa
eÆbd + fa
dÆbe + fabeÆ
d+ fabdÆ
e + fab
Æde) ; (A.4)where the tensors dab
d and fab
de are de�ned in (3.21) and (B.1), respe
tively. The �rstthree identities are well-known while the last one has been derived in [9℄. That paperalso 
ontains a des
ription of a general and 
onvenient way to obtain su
h identities usingbirdtra
k notation.It is worth pointing out that the relevant 
olor tensors for the adjoint impa
t fa
torsin the Pomeron 
hannel satisfytr (T a1 : : : T an) + (�1)ntr (T an : : : T a1) = 2 tr (T a1 : : : T an) : (A.5)We �nally note that the d-tensor of (3.21) 
an be de
omposed a

ording todab
d = 12N
 ÆabÆ
d + 14(dabkdk
d � fabkfk
d) : (A.6)B. The �ve-gluon amplitudeIn this appendix we would like to investigate the �ve-gluon amplitude in N = 4 SYM inthe EGLLA. The main fo
us of this paper has been the four-gluon amplitude relevant for{ 36 {



the six-point R-
urrent 
orrelator. The 
onsiderations in the present and in the followingappendix C aim at a better understanding of the �eld theory stru
ture of the amplitudesin the EGLLA. The main properties of that stru
ture and its relation to reggeization havebeen des
ribed in se
tion 5 for the 
ase of the four-gluon amplitude. Here we want todis
uss the �ve-gluon amplitude. We will show that, as a 
onsequen
e of reggeization, it
an be written 
ompletely in terms of elements of the 2-dimensional e�e
tive �eld theorywhi
h have been found already in the four-gluon amplitude.Let us start with the �ve-gluon impa
t fa
tor D (5;0). I 
onsists again of a fermioni
and a s
alar 
ontribution. We follow the same steps as in se
tion 3. In the 
ase of �vegluons the 
olor tensors relevant for the impa
t fa
tor in the fundamental representation(i. e. in QCD) are of the typefab
de = 1i [tr (tatbt
tdte)� tr (tetdt
tbta)℄ : (B.1)For the 
ase of an impa
t fa
tor 
onsisting of a loop made of parti
les in the adjointrepresentation one obtains instead1i [tr (T aT bT 
T dT e)� tr (T eT dT 
T bT a)℄= 2N
fab
de + 12(Æabf
de + Æa
fbde + Æadfb
e + Æaefb
d + Æb
fade + Æbdfa
e+ Æbefa
d + Æ
dfabe + Æ
efabd + Ædefab
) ; (B.2)where we have used (A.4) and (A.5). Again, an additional 
olor tensor stru
ture o

urswhi
h was not present in the fundamental representation. For the fermioni
 
ontributionD F;(5;0) to the impa
t fa
tor this implies that we 
an de
ompose it into a part that is amultiple of the fundamental impa
t fa
tor and an additional term asD a1a2a3a4a5F;(5;0) (k1;k2;k3;k4;k5)= 2N
RDa1a2a3a4a5(5;0) (k1;k2;k3;k4;k5) + D a1a2a3a4a5F;(5;0) dir (k1;k2;k3;k4;k5) : (B.3)With the help of the expli
it expression for D(5;0) found in [9℄,Da1a2a3a4a5(5;0) (k1;k2;k3;k4;k5) (B.4)= � g3ffa1a2a3a4a5 [D(2;0)(1234; 5) +D(2;0)(1; 2345) �D(2;0)(15; 234)℄+ fa2a1a3a4a5 [D(2;0)(1345; 2) �D(2;0)(12; 345) +D(2;0)(125; 34) �D(2;0)(134; 25)℄+ fa1a2a3a5a4 [D(2;0)(1235; 4) �D(2;0)(14; 235) +D(2;0)(145; 23) �D(2;0)(123; 45)℄+ fa1a2a4a5a3 [D(2;0)(1245; 3) �D(2;0)(13; 245) +D(2;0)(135; 24) �D(2;0)(124; 35)℄g ;we 
an thus writeD a1a2a3a4a5F;(5;0) (k1;k2;k3;k4;k5)= � g3ffa1a2a3a4a5 [D F;(2;0)(1234; 5) + D F (2;0)(1; 2345) � D F;(2;0)(15; 234)℄+ fa2a1a3a4a5 [D F;(2;0)(1345; 2) � D F;(2;0)(12; 345) + D F;(2;0)(125; 34) � D F;(2;0)(134; 25)℄+ fa1a2a3a5a4 [D F;(2;0)(1235; 4) � D F;(2;0)(14; 235) + D F;(2;0)(145; 23) � D F;(2;0)(123; 45)℄+ fa1a2a4a5a3 [D F;(2;0)(1245; 3) � D F;(2;0)(13; 245) + D F;(2;0)(135; 24) � D F;(2;0)(124; 35)℄g+ D a1a2a3a4a5F;(5;0) dir (k1;k2;k3;k4;k5) (B.5)
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The additional pie
e, D F;(5;0) dir, is obtained expli
itly by repla
ing the di�erent tensors oftype fab
de in eq. (B.4) by the additional 
olor tensors emerging in eq. (B.2). A lengthybut straightforward 
al
ulation shows that the result 
an also be expressed in terms of theadditional pie
e D (4;0) dir found previously in the four-gluon amplitude (see eq. (3.24)) asD a1a2a3a4a5F;(5;0) dir (k1;k2;k3;k4;k5)= g2 hfa1a2
 D 
a3a4a5F;(4;0)dir(12; 3; 4; 5) + fa1a3
 D 
a2a4a5F;(4;0) dir(13; 2; 4; 5)+ fa1a4
 D 
a2a3a5F;(4;0)dir(14; 2; 3; 5) + fa1a5
 D 
a2a3a4F;(4;0) dir(15; 2; 3; 4)+ fa2a3
 D a1
a4a5F;(4;0) dir(1; 23; 4; 5) + fa2a4
 D a1
a3a5F;(4;0) dir(1; 24; 3; 5)+ fa2a5
 D a1
a3a4F;(4;0) dir(1; 25; 3; 4) + fa3a4
 D a1a2
a5F;(4;0) dir(1; 2; 34; 5)+ fa3a5
 D a1a2
a4F;(4;0) dir(1; 2; 35; 4) + fa4a5
 D a1a2a3
F;(4;0) dir(1; 2; 3; 45)i : (B.6)It is straightforward to show that equations analogous to (B.5) and (B.6) are validalso for the s
alar 
ontribution D S;(5;0) to the impa
t fa
tor, that is also the additionalpie
e D S;(5;0) dir 
an be expressed in terms of the additional pie
e D S;(4;0) dir of the four-gluon amplitude. Consequently, we obtain relations for the full impa
t fa
tor D (5;0) =D F;(5;0) + D S;(5;0) whi
h are 
ompletely analogous to (B.5) and (B.6). More pre
isely, eq.(B.5) and eq. (B.6) are valid after dropping the index F in all terms. The se
ond of theserelations has been given expli
itly for the full impa
t fa
tor in eq. (3.34).This representation shows that the additional pie
e D (5;0) dir again exhibits reggeization.In ea
h term in eq. (3.34) a pair of gluons in the 
olor o
tet representation a
ts as a singlegluon whi
h enters the amplitude D (4;0) dir. In a 
ertain sense this gluon 
an be regardedas a 
omposite obje
t of the two gluons merging into it. The full expression for D (5;0) dir isthen obtained by summing over all possible pairs of gluons. We re
all that the amplitudeD (4;0) dir is fully symmetri
 in its momentum and 
olor arguments su
h that it is not relevantat whi
h position the more 
omposite gluon formed from the pair is inserted in D (4;0) dir.We 
an now put the pi
ture derived form the three- and four-gluon amplitudes to thetest by 
onsidering the integral equation for the �ve-gluon amplitude. A

ording to theexpe
ted �eld theory stru
ture we should �nd that the �ve-gluon amplitude D 5 reggeizes,that means it should be possible to express it 
ompletely in terms of elements that arealready present in the lower amplitudes. This should now in parti
ular in
lude D (4;0) dirwhi
h we have identi�ed as a new element of our �eld theory. The evolution equation forD a1a2a3a4a55 reads ! � 5Xi=1 �(ki)! D a1a2a3a4a55 = D a1a2a3a4a5(5;0) +Kfbg!fag2!5 
 D b1b22+XKfbg!fag2!4 
 D b1b2b33 +XKfbg!fag2!3 
 D b1b2b3b44+XKfbg!fag2!2 
 D b1b2b3b4b55 ; (B.7)
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whi
h 
an be graphi
ally illustrated as ! � 5Xi=1 �(ki)! D5 = D(5;0) + D2 +X D3+X D4 +X D5 : (B.8)In view of the results found for the amplitudes with up to four gluons, and sin
e the adjointimpa
t fa
tor with �ve gluons (B.3) 
onsists of a multiple of the fundamental impa
t fa
torand a new (additional) pie
e, it is natural to de
ompose the full amplitude D 5 a

ordingto D 5 = D R5 + D I5 + D 5 dir ; (B.9)where the �rst two parts are multiples of the 
orresponding amplitudes DR5 and DI5 knownfrom QCD with fundamental quarks. There, these two parts exhaust the full amplitude,whereas here we will have an additional part D 5 dir. A

ording to this pi
ture we �nd, usingthe results of [9℄,D Ra1a2a3a4a55 (k1;k2;k3;k4;k5) = (B.10)= � g3ffa1a2a3a4a5 [D 2(1234; 5) + D 2(1; 2345) � D 2(15; 234)℄+ fa2a1a3a4a5 [D 2(1345; 2) � D 2(12; 345) + D 2(125; 34) � D 2(134; 25)℄+ fa1a2a3a5a4 [D 2(1235; 4) � D 2(14; 235) + D 2(145; 23) � D 2(123; 45)℄+ fa1a2a4a5a3 [D 2(1245; 3) � D 2(13; 245) + D 2(135; 24) � D 2(124; 35)℄gand D I a1a2a3a4a55 (k1;k2;k3;k4;k5)= g2 nfa1a2
D I 
a3a4a54 (12; 3; 4; 5) + fa1a3
D I 
a2a4a54 (13; 2; 4; 5)+ fa1a4
D I 
a2a3a54 (14; 2; 3; 5) + fa1a5
D I 
a2a3a44 (15; 2; 3; 4)+ fa2a3
D I a1
a4a54 (1; 23; 4; 5) + fa2a4
D I a1
a3a54 (1; 24; 3; 5)+ fa2a5
D I a1
a3a44 (1; 25; 3; 4) + fa3a4
D I a1a2
a54 (1; 2; 34; 5)+ fa3a5
D I a1a2
a44 (1; 2; 35; 4) + fa4a5
D I a1a2a3
4 (1; 2; 3; 45)o : (B.11)We have dire
tly written these two parts in terms of the adjoint amplitudes D 2. For thefermioni
 part we have in parti
ular D RF;5 = 2N
RDR5 and D IF;5 = 2N
RDI5 . Inserting theneq. (B.9) into the integral equation (B.7) and invoking the integral equation for D5 treatedin [9℄ we obtain a new integral equation for the additional part D 5 dir, ! � 5Xi=1 �(ki)! D a1a2a3a4a55 dir = D a1a2a3a4a5(5;0) dir +XKfbg!fag2!3 
 D b1b2b3b44 dir+XKfbg!fag2!2 
 D b1b2b3b4b55 dir : (B.12)
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We re
all that the inhomogeneous term D (5;0) dir reggeizes and is a superposition of ampli-tudes D (4;0) dir of the form (3.34). Therefore the stru
ture of this equation 
oin
ides withthat of the integral equations for D 3 and DI5. It 
an be solved employing a known identityinvolving the integral kernels K2!2 and K2!3. In terms of the diagrams of (4.11) thisidentity 
an be written as+ + = 2g + ++ + + + ; (B.13)where the una�e
ted gluons are not drawn. The verti
es in whi
h two lines merge intoone, drawn here with a small full dot, indi
ate that the two lower gluons merge into theupper one with a 
olor fa
tor fab
 and in su
h a way that their transverse momenta areadded. The arrows on the top of the diagrams indi
ate that the identity holds for gluonsin amplitudes that are symmetri
 under the ex
hange of this pair of gluons (or symmetri
under the ex
hange of any pair of gluons). This is the 
ase for the amplitude D 4 dir as wehave dis
ussed above. For a more detailed des
ription of the appli
ation of the identity(B.13) to 
ompletely analogous situations we refer the reader to [9℄ or [41℄. In this way one�nds the solution of eq. (B.12) to have the formD a1a2a3a4a55 dir (k1;k2;k3;k4;k5)= g2 �fa1a2
D 
a3a4a54 dir (12; 3; 4; 5) + fa1a3
D 
a2a4a54 dir (13; 2; 4; 5)+ fa1a4
D 
a2a3a54 dir (14; 2; 3; 5) + fa1a5
D 
a2a3a44 dir (15; 2; 3; 4)+ fa2a3
D a1
a4a54 dir (1; 23; 4; 5) + fa2a4
D a1
a3a54 dir (1; 24; 3; 5)+ fa2a5
D a1
a3a44 dir (1; 25; 3; 4) + fa3a4
D a1a2
a54 dir (1; 2; 34; 5)+ fa3a5
D a1a2
a44 dir (1; 2; 35; 4) + fa4a5
D a1a2a3
4 dir (1; 2; 3; 45)	 : (B.14)One immediately re
ognizes that this amplitudes again exhibits reggeization. It is a su-perposition of the four-gluon amplitudes D 4 dir, and in ea
h term of the superposition twogluons in a 
olor o
tet 
ombine to form a more 
omposite reggeized gluon that enters theamplitude D 4 dir. The sum over all possible pairs of this kind gives the additional part ofthe full �ve-gluon amplitude D 5. One 
an easily 
he
k from eq. (B.14) that this expressionsatis�es the Ward-type identities of [56℄, and hen
e all parts of the amplitude D 5 sharethat property.In summary, we have solved the integral equation (B.7) for the �ve-gluon amplitudeD 5 and have expressed the solution in terms of the lower amplitudes D 2, D I4 and D 4 dir.{ 40 {



Diagrammati
ally, the solution has the form
D 5 =X D(2;0) +X D(2;0)

V2→4

+X D(4;0) dir : (B.15)
The �rst two terms are multiples of the amplitudes known from the 
ase of QCD withfundamental quarks. The last terms is an additional term that exhibits exa
tly the fea-tures expe
ted from the pi
ture of the e�e
tive �eld theory stru
ture dis
ussed above,in parti
ular it reggeizes exa
tly as expe
ted and ful�lls the Ward-type identities of [56℄.Hen
e we �nd that the �ve-gluon amplitude pre
isely meets our expe
tations based on thatunderlying pi
ture.C. Some remarks on the six-gluon amplitudeIn this appendix we want to 
onsider some aspe
ts of the six-gluon amplitude D 6 in theEGLLA for N = SYM. Our motivation is that it would obviously be interesting to seewhether and how the �eld theory stru
ture found above in the amplitudes D n forn � 5
ontinues in the amplitudes with more than �ve gluons. Already in QCD with fundamentalquarks the six-gluon amplitude involves some additional 
ompli
ation, see the dis
ussion in[9℄. A full analysis of the six-gluon is beyond the s
ope of the present paper and is left forfuture work. It might be parti
ularly interesting to �nd out whether another new elementof the e�e
tive �eld theory emerges that would 
ouple six gluons dire
tly to the adjointquark loop { in analogy to the element D (4;0) add with four gluons found above. Fromthe results obtained here the pi
ture emerges that in general (that is for arbitrary n) theamplitudes D n always 
ontain a multiple of the amplitudes Dn with fundamental quarksplus additional new terms. Those latter 
ontain on the one hand terms originating fromthe s
alar 
ontribution to the impa
t fa
tor, and their stru
ture 
on
erning reggeization isvery similar to that observed in the terms 
oming from the fermioni
 impa
t fa
tor. Onthe other hand, there are new terms, for example the one 
oupling four gluons dire
tly tothe impa
t fa
tor.Although we do not make an attempt here to solve the whole six-gluon amplitude we
an rather easily make an interesting observation 
on
erning D 6 whi
h in fa
t 
on�rmsthat expe
tation. Namely, one �nds that similarly to the 
ase of the lower amplitudes theterms known from the 
orresponding amplitude D6 of QCD with fundamental fermions arereprodu
ed (again up to a normalization fa
tor) together with their s
alar 
ounterparts,and additional terms are generated. In parti
ular, the same transition from two to sixgluons via the vertex V2!6 
omputed in [9℄ (
ontaining both a 
oupling of a Pomeron totwo Odderons and a transition from one to three Pomerons) o

urs again in the amplitudeD 6. { 41 {



The diagrams with six gluons 
oupling to the fermion or s
alar loop give rise to a 
olortensor of the typetr (T aT bT 
T dT eT f ) + tr (T fT eT dT 
T bT a) = 2 tr (T aT bT 
T dT eT f )= � 2fkalflbmfm
nfndofoepfpfk (C.1)instead of the tensor dab
def = tr (tatbt
tdtetf ) + tr (tf tetdt
tbta) (C.2)obtained for quarks in the fundamental representation. We 
an therefore obtain the adjointfermion impa
t fa
tor D F;(6;0) from the known expression for the fundamental impa
t fa
torD(6;0) (see [9℄), by repla
ing the 
olor tensors of type (C.2) in this expression by the
orresponding 
olor tensors of type (C.1), besides de
orating it with the usual fa
tor Ra

ounting for the di�erent numbers of fermioni
 degrees of freedom running around theloop. But now one has [9℄fkalflbmfm
nfndofoepfpfk = �N
dab
def� 12(Æabd
def + Æa
dbdef + Æaddb
ef + Æaedb
df+ Æafdb
de + dadefÆb
 + da
efÆbd + da
df Æbe+ da
deÆbf + dabefÆ
d + dabdf Æ
e + dabdeÆ
f+ dab
f Æde + dab
eÆdf + dab
dÆef )+ 18[(dab
ddef + fab
fdef ) + (dabdd
ef + fabdf
ef)+ (dabed
df + fabef
df ) + (dabfd
de + fabff
de)+ (da
ddbef + fa
dfbef ) + (da
edbdf + fa
efbdf )+ (da
fdbde + fa
ffbde) + (dadedb
f + fadefb
f )+ (dadfdb
e + fadffb
e) + (daefdb
d + faeffb
d)℄ (C.3)= �N
dab
def +�ab
def ; (C.4)where the last equation de�nes the tensor �ab
def . Therefore inserting the 
olor tensors oftype (C.1) one naturally obtains two 
ontributions to the fermion impa
t fa
tor D F;(6;0),D a1a2a3a4a5a6F;(6;0) (k1;k2;k3;k4;k5;k6) = 2N
RDa1a2a3a4a5a6(6;0) (k1;k2;k3;k4;k5;k6)+ D a1a2a3a4a5a6(6;0) dir (k1;k2;k3;k4;k5;k6) (C.5)
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where Da1a2a3a4a5a6(6;0) (k1;k2;k3;k4;k5;k6) == g4fda1a2a3a4a5a6 [D(2;0)(12345; 6) +D(2;0)(1; 23456) �D(2;0)(16; 2345)℄+ da2a1a3a4a5a6 [D(2;0)(13456; 2) �D(2;0)(1345; 26) +D(2;0)(126; 345)�D(2;0)(12; 3456)℄+ da1a2a3a4a6a5 [D(2;0)(12346; 5) �D(2;0)(1234; 56) +D(2;0)(156; 234)�D(2;0)(15; 2346)℄+ da2a1a3a4a6a5 [�D(2;0)(1256; 34) �D(2;0)(1346; 25) +D(2;0)(125; 346)+D(2;0)(134; 256)℄+ da3a1a2a4a5a6 [D(2;0)(12456; 3) �D(2;0)(1245; 36) +D(2;0)(136; 245)�D(2;0)(13; 2456)℄+ da1a2a3a5a6a4 [D(2;0)(12356; 4) �D(2;0)(1235; 46) +D(2;0)(146; 235)�D(2;0)(14; 2356)℄+ da2a1a3a5a6a4 [�D(2;0)(1246; 35) �D(2;0)(1356; 24) +D(2;0)(124; 356)+D(2;0)(135; 246)℄+ da1a2a3a6a5a4 [�D(2;0)(1236; 45) �D(2;0)(1456; 23) +D(2;0)(123; 456)+D(2;0)(145; 236)℄g (C.6)Consequently, the �rst term on the r.h.s. of eq. (C.5) 
an again be expressed as a sum oftwo-gluon impa
t fa
tors D F;(2;0) = 2N
RD(2;0). A similar expression 
an be obtained forthe s
alar impa
t fa
tor D S;(6;0).The �rst 
ontribution in eq. (C.5), arising from the �rst term in the de
omposition eq.(C.4) of the adjoint 
olor tensors, is just a multiple of the known six-gluon impa
t fa
torin the fundamental representation. The se
ond 
ontribution arises from the �-tensors in(C.4) (as de�ned in (C.3) when inserting (C.1) for the d-tensors in (C.6)). It would bestraightforward to write out the new additional term expli
itly. As we have pointed outbefore it would be interesting to study in detail its relation to the new element D F;(4;0) dirfound there. This, however, is beyond the s
ope of the present paper. Here we restri
tourselves to the important �nding that also the adjoint impa
t fa
tor with six gluons issimilar to those with four and �ve gluons: it reprodu
es as one of its 
ontributions a multipleof the fundamental impa
t fa
tor and in addition 
ontains a new part that o

urs only ifthe fermions are taken in the adjoint representation. A similar additional 
ontribution isobtained from the adjoint s
alars in the impa
t fa
tor.Inserting this result for D F;(6;0) dir (and the analogous s
alar part) in the integral equa-tion for the full amplitude D 6 we easily re
ognize that also the full amplitude 
onsists oftwo parts, one of whi
h is a multiple of the full six-gluon amplitude D6 with fundamentalquarks (together with its s
alar 
ounterpart) and hen
e inherits the 
onformal �eld theorystru
ture found in that amplitude. In parti
ular, this part 
ontains exa
tly the same tran-sition vertex from two to six gluons found in [9℄. The stru
ture of the other part remainsto be investigated. { 43 {
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