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Abstract: We construct an explicit example of a de Sitter vacuum in type IIB string

theory that realizes the proposal of Kähler uplifting. As the large volume limit in this

method depends on the rank of the largest condensing gauge group we carry out a

scan of gauge group ranks over the Kreuzer-Skarke set of toric Calabi-Yau threefolds.

We find large numbers of models with the largest gauge group factor easily exceeding

a rank of one hundred. We construct a global model with Kähler uplifting on a two-

parameter model on CP4
11169, by an explicit analysis from both the type IIB and

F-theory point of view. The explicitness of the construction lies in the realization

of a D7 brane configuration, gauge flux and RR and NS flux choices, such that all

known consistency conditions are met and the geometric moduli are stabilized in a

metastable de Sitter vacuum with spontaneous GUT scale supersymmetry breaking

driven by an F-term of the Kähler moduli.
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1 Introduction & Motivation

String theory is a candidate for a fundamental theory of nature since it has the ca-

pacity to describe chiral matter fermions with non-Abelian gauge interactions within

a consistent theory of quantum gravity. However, at a more detailed level it turns

out to be difficult to clearly identify the Standard Model in an expanding universe

as one of the possible backgrounds. Part of the problem arises from the poor con-

ceptual understanding of string theory which still is largely based on perturbative

formulations. As a consequence there is an abundance of perturbatively consistent

backgrounds – each with a generically high-dimensional moduli space.

This moduli space is particularly apparent if one views the string backgrounds

geometrically, that is as compactifications of a ten-dimensional (10D) space-time on

some compact six-dimensional manifold. Imposing 4D N = 1 space-time super-

symmetry for phenomenological reasons singles out a specific class of six-manifold

which include Calabi-Yau (CY) manifolds. These manifolds have a large number of

non-trivial deformations (moduli) associated with their volume and shape. In a low

energy effective description the moduli correspond to 4D massless scalar fields which

are flat directions of the scalar potential. Their stabilization has been a long-standing

problem but in recent years significant progress has been made at least for certain

classes of compactifications.1

The mechanism relevant for this paper uses quantized vacuum expectation values

(VEVs) for p-form gauge field strengths of type IIB string theory [5, 6]. These fluxes

generate a scalar potential for a large fraction of the typically O(100) moduli and

potentially stabilizes them in a local minimum. The remaining moduli are then fixed

by a combination of non-perturbative effects (such as gaugino condensation of 4D

N = 1 gauge theories living on D-branes) [7], a combination of perturbative and non-

perturbative effects [8], or an interplay of perturbative effects and negative curvature

of the internal space alone [9–16].

The mechanism for moduli stabilization can simultaneously break supersymmetry

(SUSY) spontaneously by generating non-vanishing F - and/or D-terms [17, 18]. Al-

ternatively, SUSY breaking can be achieved by inserting an additional quasi-explicit

source, such as an anti-brane in a warped region [7]. The vacuum energy of such fully

stabilized compactifications with SUSY breaking can be both positive and negative,

leading to a description of de Sitter (dS) space as metastable vacua of compactified

string theory [7, 8, 17–26]. The number of these dS vacua is exponentially large due

to large number of topologically distinct fluxes necessary for moduli stabilization in

the first place. In type IIB string theory compactified on a warped 6D Calabi-Yau

1For recent reviews of flux compactifications and their associated uplifts to dS, and a much more

comprehensive bibliography, see e.g. [1–4].

– 2 –



manifold there are typically O(100) complex structure or shape moduli associated to

the three-dimensional topologically non-trivial subspaces (three-cycles) of the Calabi-

Yau. On each three-cycle a flux can be turned on and thus one has O(100) fluxes

to choose for stabilizing all the complex structure moduli. For, say, 10 available flux

quanta per three-cycle this yields O(10100) isolated potential dS vacua [27–29]. This

exponentially large number of dS vacua with a flat number density distribution of

the vacuum energy is often called the ‘landscape’ of string vacua. It is coupled to

the populating processes of Coleman-deLuccia tunneling and eternal inflation, which

together realize space-time regions filled with each dS vacuum infinitely often. As a

consequence Weinberg’s anthropic argument for the smallness of the present-day cos-

mological constant can be realized in string theory. Hence the landscape of dS vacua

gave string theory the ability to accommodate recent data from observational cos-

mology which demonstrated late-time accelerated expansion of our visible Universe,

consistent with an extremely small positive cosmological constant Λ ∼ 10−122M4
P.2

For the purpose of this work we will restrict ourselves to type IIB warped Calabi-

Yau orientifold compactifications with three-form flux which arise as a specific weak

coupling limit (Sen limit) of F-theory on elliptically fibered CY fourfolds [35, 36].

This will allow us to use the known techniques for constructing CYs, calculate their

topological data and derive the 4D effective theory. Supersymmetry breaking and

lifting the AdS vacuum to dS typically is the least reliable step. Therefore, our goal

is to construct explicit global models in the above type IIB context, which exhibit the

dynamics of Kähler uplifting.3 In such models the interplay of gaugino condensation

on D7-branes and the leading O(α′3)-correction of the Kähler potential fix the Kähler

moduli in a SUSY breaking minimum, after three-form flux has supersymmetrically

stabilized the complex structure moduli and the axio-dilaton. The vacuum energy of

this minimum can be dialed from AdS to dS by adjusting the fluxes appearing in the

superpotential. Both SUSY breaking and lifting to dS are driven by an F-term of the

Kähler moduli sector which is induced by the presence of the α′-correction [17, 24, 38].

The dS uplift is therefore spontaneous and arises from the geometric closed string

moduli. This is the motivation for trying to construct a fully explicit consistent

global model including a choice for the flux. Such a model yields an example for

a 4D dS space in string theory which is explicit within the limit of the currently

available knowledge.

In this work we discuss constructions of Kähler uplifted dS vacua on compact

2The flatness of the vacuum energy distribution on the landscape has recently been questioned

by studies using random matrix techniques in general [30–32], and a statistical analysis of combined

input parameter distributions in the context of Kähler uplifting [33, 34].
3In this work, we are not addressing the question of constructing a standard model like sector in

combination with moduli stabilization, as it has been recently achieved in [26, 37]. Here, we simply

want to avert these complicating features for the sake of moduli stabilization in a stable de Sitter

vacuum.
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Calabi-Yau manifolds. We perform this analysis both from perspective of F-theory

and its weak coupling limit of type IIB string theory compactified on warped Calabi-

Yau orientifolds. F-theory arises from the observation that the type IIB axio-dilaton

can vary over the compactification manifold B3. One then interprets the axio-dilaton

as the complex structure modulus of an elliptic curve fibered over the threefold B3,

realizing a complex four-dimensional manifold that takes the form of an elliptically

fibered Calabi-Yau fourfold in order to ensure N = 1 supersymmetry in the 4D

effective theory. The attraction of F-theory is due to the geometrization of the

complete non-perturbative super Yang-Mills (SYM) dynamics of stacks of 7-branes

wrapping four-cycles in type IIB in terms of resolvable ADE type singularities in the

fourfold. Of particular interest here are F-theory compactifications on elliptically

fibered fourfolds which admit a global weak coupling limit (Sen limit), where the axio-

dilaton goes to weak string coupling and becomes approximately constant everywhere

on the threefold base of the fibration. In this limit, the set of 7-branes located at the

locus where the fiber degenerates, can be described entirely in terms of perturbative

O7-planes and D7-branes.

The analysis in [24] looked at the effective dynamics of moduli stabilization via

Kähler uplifting. A class of possible examples consists of a Calabi-Yau threefold with

an expression for the volume V given by the sum of one large four-cycle modulus

and a collection of smaller so called blow-up four-cycle moduli. This resembles the

structure of a swiss cheese with its overall volume given mainly by just the size of the

enclosing cycle and many tiny holes (the blow-up four-cycles). We know in addition

that in Kähler uplifted dS vacua the volume V of the type IIB Calabi-Yau scales with

the rank N of the condensing gauge group as V ∝ N3/2. Moreover, the scale of Kähler

moduli stabilization and thus the resulting Kähler moduli masses are suppressed by

an additional O(1/V) compared to the scale of the flux-induced complex structure

moduli stabilization. These features lead us to search for condensing gauge groups

with a large rank which induce a large volume.

We will consider models which can be easily uplifted to F-theory compactified

on elliptically fibered CY fourfolds that are hypersurfaces in an ambient toric vari-

ety [39–41]. In addition, we insist on the existence of a smooth Sen limit, as we use

the leading α′ correction which is not understood in F-theory in general. The type

IIB Calabi-Yau threefold is then the double cover of the F-theory base manifold B3.

It is described by an equation such as ξ2 = h, where the orientifold involution is

realized by ξ 7→ −ξ. Here ξ denotes one of the holomorphic complex projective coor-

dinates of the ambient toric variety where the CY threefold lives, with the orientifold

plane sitting at ξ = 0. The data describing the D7-brane stacks and the orientifold

planes in F-theory via ADE singularities can be specified in terms of sections of

holomorphic line bundles and the corresponding homology classes of the associated

divisors. The D7-brane tadpole forces the D7-brane to wrap cycles whose homology
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classes (denoted by [D7]) sum up to [D7] = 8[O7] = 8[{ξ = 0}] in the type IIB CY

threefold. To obtain a large gauge group one generically has to wrap many branes

on certain divisors. This is only possible if the coefficients of the orientifold class

[O7] =
∑

i ci[Di] are large (here the Di denote a complete set of divisor four-cycles

which in turn form a base of the 2nd Dolbeault cohomology group H1,1). Increasing

the homology class [O7] introduces singularities in the base manifold which have to

be resolved. Moreover, the Calabi-Yau threefold hypersurface in the weak coupling

limit should be free of singularities as well, and therefore the orientifold planes should

not intersect each other. This in general turns out to be a severe constraint when

one tries to increase the class of the orientifold by choosing the weights defining the

toric variety appropriately.

Finally, we have to check that all used divisors are rigid such that gaugino con-

densation does contribute to the superpotential. In this context, the role of gauge

flux is crucial: On the one hand, a suitable choice can ‘rigidify’ a divisor by fixing

some of its deformation moduli [42, 43] (see [44–46] for discussions in the F-theory

context). On the other hand, switching on gauge flux can generate additional zero

modes in the form of chiral matter (especially at the intersection of branes) which

forbids the contribution of gaugino condensation in the superpotential. Moreover,

the presence of fluxes can be required by the necessity of canceling the Freed-Witten

anomaly [47, 48].

As mentioned before, the dynamics of Kähler uplifting was demonstrated so far

on ‘swiss cheese’ type Calabi-Yau threefolds. The cheese with its one big bounding

cycle and its many tiny holes implies a certain form of the volume. Let us assume

a CY with a set of divisor four-cycles Di whose (real) volumes we denote by Vi.
Then the volume of the a swiss cheese CY is defined by V ∼ V3/2

1 −
∑

i V
3/2
i or

as V ∼ (V1 +
∑

i Vi)3/2 −
∑

i V
3/2
i for an approximately swiss cheese CY. In this

situation one can manufacture a large overall volume by enforcing a large gauge

group rank on the corresponding divisor D1 which in turn leads to a large V1. A

potential complication may then arise as a high number of branes on D1 typically

enforces singularities on other divisors which might yield the overall volume small

even though V1 is large.

At the end, we combine the Kähler moduli stabilization with an explicit dilaton

and complex structure moduli stabilization via RR and NS fluxes. We discuss a

specific hypersurface in the weighted projective space CP4
11169 as a concrete example

where the whole program can be executed. In this case, discrete symmetries of the

complex structure moduli space and a specific choice of the three-form fluxes allow us

to fix all the complex structure explicitly along the lines of [49]. We check that this

choice of flux results in values for W0 which are such that the Kähler stabilization

leads to a metastable dS vacuum. Hence, our model constitutes an example for a dS
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space in string theory which is explicit within the limits of existing knowledge. The

only implicitness that remains is the unknown complex structure moduli dependence

of the 1-loop determinant prefactor of the non-perturbative effect. Recent work has

shown [24] that for large volume the mass scale of the Kähler moduli separates from

the scale of the axio-dilaton and the complex structure moduli by one inverse power

of the volume. This justifies replacing the complex structure moduli by their VEVs

inside the 1-loop determinants, and allows us to parametrize these prefactors as

effective constants. Moreover, we can clearly dial the VEVs of the complex structure

moduli by availing ourselves of the exponentially large flux discretuum, which easily

accounts for a potential mild tuning of the value of the 1-loop determinants.

This paper is organized as follows. In Section 2 we study the constraints for

having a gauge group with large rank by discussing Kreuzer-Skarke models [50] and

hypersurfaces in toric varieties. For the subclass of threefolds with an elliptic F-

theory lift (∼ 105 models) we scan and extract the distribution of the largest-rank

gauge group as a function of the number of Kähler moduli h1,1. Then we choose

to consider CP4
11169[18] as an explicit example and construct large-rank ADE gauge

groups on a choice of two divisors, and analyze the consistency constraints both in

the type IIB weak-coupling limit, and from the F-theory perspective in sections 3

and 4, respectively. Section 5 reviews the general results for supersymmetric flux

stabilization of the complex structure moduli and the axio-dilaton. In section 6

we study the scalar potential that stabilizes the Kähler moduli. We single out a

band in the gs - W0 plane where one finds de Sitter vacua. Here W0 denotes the

VEV of the superpotential which arises from supersymmetric flux stabilization of

the complex structure moduli. For the explicit model on CP4
11169[18], we show how

to fix explicitely all the complex structure moduli, thanks to a particular symmetry

of the moduli space and a special choice of three-form fluxes. Finally, we check that

this choice of flux results in values for W0 which are such that the Kähler stabilization

leads to a metastable dS vacuum. We conclude and discuss our results in section 7.

More details of the toric resolution of the Sp(k)-singularity can be found in the

appendices. We have kept the steps of our calculations rather explicit for future

reference but also since certain aspects of the arguments are often only implicit in

the existent literature.

2 Constraints on large gauge group rank in the landscape

In this section, we discuss generic constraints on obtaining large gauge group gaugino

condensation which is a crucial input for the method of Kähler uplifting. In the

context of non-compact Calabi-Yaus, it was already discussed in [51] that arbitrarily

high gauge group ranks are possible. As we will see, the situation in the compact

case is more restrictive. We will mostly discuss the perturbative type IIB picture
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and conclude with some remarks about non-perturbative F-theory models at the end

of this section.

Our laboratory will be the landscape of complex three-dimensional Calabi-Yau

manifolds that are hypersurfaces in toric varieties. These were classified in [50]

by constructing all 473,800,776 reflexive polyhedra that exist in four dimensions,

yielding 30,108 distinct Hodge numbers of the corresponding Calabi-Yau manifolds

X3. For simplicity we will study a subset of these, i.e. the set of 184,026 maximal

polytopes yielding 10,237 distinct Hodge numbers. These can be represented by a

weight system of positive integers n1, ..., n5. To each integer ni one can associate one

of the projective coordinates {u1, ..., u4, ξ} of a four-dimensional toric space:

u1 u2 u3 u4 ξ

n1 n2 n3 n4 n5

with 0 < n1 ≤ n2 ≤ n3 ≤ n4 ≤ n5 . (2.1)

The integers ni determine the scaling equivalence relation the coordinates satisfy:

(u1, ..., u4, ξ) ∼ (λn1u1, ..., λ
n4u4, λ

n5ξ) , with λ ∈ C∗ . (2.2)

The divisors Di : {ui = 0} and Dξ : {ξ = 0} are called toric divisors. A hypersurface

in such toric space is a Calabi-Yau (i.e. its first Chern class vanishes) if the degree

of the defining equation is equal to
∑5

i ni.

Eq. (2.2) defines the complex four-dimensional projective space CP4
n1n2n3n4n5

. Of-

ten it is useful to think about the weights as defining a gauged linear sigma model

(GLSM) [52]. If one of the weights ni is greater than one, the ambient space is not

smooth. This is the case for any toric Calabi-Yau that is not the quintic, which is

given by ni = 1,
∑5

i ni = 5. The corresponding singularities have to be resolved if

they intersect the Calabi-Yau hypersurface. The resolution process yields additional

weights, i.e. eq. (2.1) becomes a k × (k + 5) matrix, called the weight matrix, that

defines the resolved toric ambient space Xamb
4 . Generically, the greater the ni in

eq. (2.1), the more lines of weights have to be added to obtain a smooth Calabi-Yau.

Often there is more than one choice to resolve the singularities, corresponding to

different triangulations of the corresponding polytope. The number of lines of the

weight matrix k gives the dimension of H1,1(Xamb
4 ,Z). Since some divisors of Xamb

4

might either intersect X3 in two or more disconnected and independent divisors of

X3, or even not intersect X3 at all, dimH1,1(Xamb
4 ,Z) is not necessarily the same as

h1,1 = dim H1,1(X3,Z). However, increasing k will generically also increases h1,1.

To realize an N = 1 supersymmetric compactification of type IIB in four dimen-

sions and to consistently include D-branes and fluxes we introduce O7 orientifold

planes in the construction. For simplicity, we only consider orientifold projections

O = (−1)FΩpσ acting via the holomorphic involution

σ : ξ 7→ −ξ , (2.3)
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i.e. the sign of the coordinate with the highest weight is reversed. We demand

nξ ≡ n5 =
4∑
i=1

ni , (2.4)

such that the Calabi-Yau hypersurface equation symmetric under (2.3) is given by

ξ2 = P(2
∑4
i ni,... )

. (2.5)

The dots denote possible additional weights that have to be added to obtain a three-

fold free of singularities. Note that eq. (2.5) only holds if nξ =
∑
ni also for the

resolution weights which we assume is in many cases possible and which we have

verified in various examples.

Hence, all information of the Calabi-Yau threefold is stored in the weights n1, . . . , n4

and the chosen triangulation. Moreover, the resolution of the three dimensional man-

ifold CP3
n1n2n3n4

is the baseB3 of the elliptically fibered fourfold that realizes the uplift

of the type IIB model to F-theory. For this reason, models fulfilling eq. (2.4), are

named models of the ‘F-theory type’. These are 97,036 weight systems leading to

7,602 distinct pairs of Hodge numbers. The first Chern class of B3 defines a non-

trivial line bundle, the anti-canonical bundle K̄, with K̄ = c1(B3) (in this paper we

use the same symbol to denote the line bundle and its corresponding divisor class).

Due to eq. (2.4) the homology class of the O7-plane at ξ = 0 is given as [O7] = K̄.

2.1 D7-branes from the IIB perspective

Now, we discuss the inclusion of D7-branes from the IIB perspective. The presence

of the O7-plane induces a negative D7 charge of −8[O7]. This has to be compensated

by the positive charge of the D7-brane stacks [D7] ([D7] is the homology class of the

surface wrapped by the D7-brane configuration). In other words, since [O7] = K̄,

[D7] has to be given by the vanishing locus of a section of K̄8 to saturate the D7

tadpole. More specifically, it was found in [53] that for a single invariant D7-brane

saturating the D7 tadpole cancellation condition, its world volume is given by the

(non-generic) polynomial equation

η2 − ξ2χ = 0 , (2.6)

with η and χ sections of K̄4 and K̄6, respectively. (For practical purposes, η and

χ can be seen as polynomials in the complex coordinates ui of the resolved base

manifold B3.) This brane can be understood as the result of the recombination of

one standard D7-brane wrapping the surface η − ξψ = 0 with its orientifold image,

wrapping η+ξψ = 0. In fact, such a brane configuration is described by the vanishing

locus of the factorized polynomial (η − ξψ)(η + ξψ) = η2 − ξ2ψ2. By adding to this
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polynomial the term ξ2(ψ2−χ), i.e. by recombining the two factors, one obtains the

equation (2.6). The resulting recombined invariant D7-brane is called in literature

‘Whitney brane’, as it has the singular shape of the so called Whitney umbrella [53].

For non-generic forms of the polynomials η an χ, the Whitney brane can split

into different stacks. In particular a stack of 2Ni branes wrapping the invariant toric

divisor Di : {ui = 0} manifests itself via the factorization

η = uNii η̃ , χ = u2Ni
i χ̃ , (2.7)

such that eq. (2.6) becomes

u2Ni
i

(
η̃2 − ξ2χ̃

)
= 0 , (2.8)

where on the invariant divisor at ui = 0 there is an Sp(Ni) stack and η̃2 − ξ2χ̃

describes a Whitney brane of lower degree. Since the Whitney brane has always to

be described by a holomorphic equation, Ni cannot be made arbitrarily large.

For ui=1,...,4 we can be more specific. Eq. (2.8) becomes

u2Ni
i

(
η̃2

(4nξ−niNi,... ) − ξ
2χ̃(6nξ−2niNi,... )

)
= 0 , (2.9)

where the dots denote the degrees that are imposed via the weight system of the

resolved ambient space Xamb
4 . If the degree in the first scaling is the most restrictive

we obtain the strongest bound from the holomorphicity of χ̃, i.e.

Ni ≤ 3
nξ
ni
. (2.10)

Due to the ordering of the ni, eq. (2.1), we expect to be able to put the largest number

of branes on the divisor D1 and the constraining quantity is the largest integer Nlg

that is smaller than 3nξ/n1. Nlg will serve as our large gauge group indicator in the

following.

Before we proceed, let us make a few comments on the choice of the large gauge

group indicator that were in part already addressed in the introduction:

• For n1 = 1, the first column of the k × (k + 5) weight matrix describing the

resolved ambient space Xamb
4 is always given by (1, 0, . . . , 0)T and hence Nlg

is always the limiting quantity. However, for n1 > 1 the first column of the

weight matrix has to contain additional non-zero entries smaller than n1 to

resolve the singularities. The holomorphicity of the Whitney brane equation

in the corresponding degree could in principle be more restraining than Nlg.

Even if this would be the case we still expect Nlg to give a right estimate since

in the O(10) examples where we have computed the resolved weight matrix,

using PALP [54–56], it was always the most restrictive.
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• The type of gauge group enforced by the 2N1 branes depends on the geometry

of the O7-plane and the gauge flux. If the divisor is invariant under ξ 7→ −ξ
and transverse to the O7-plane, we have an Sp(N1) gauge group that can be

broken by gauge flux to SU(N1). The Coxeter numbers are N1 + 1 for Sp(N1)

and N1 for SU(N1). If the divisor lies on the orientifold plane the gauge group

is SO(2N1) with Coxeter number 2N1 − 2.

• To check if the brane-stack contributes to the superpotential in a suitable way

for the method of Kähler uplifting one has to fulfill additional constraints. First

of all, in order to have a pure SYM theory that undergoes gaugino condensation,

possible light matter fields must be forbidden. A sufficient condition is that

the wrapped divisor is rigid and that the brane intersections and world volume

should not produce additional chiral zero-modes. Note that with growing rank

of the weight matrix, D1 tends to be rigid since it typically cannot be deformed

into other toric divisors. Furthermore, the volume form of the threefold has to

be of the approximately swiss cheese type. Finally, the factorization in eq. (2.9)

should not force a further factorization of the remaining Whitney brane in toric

divisors which enter the volume form with a negative sign. In fact, since gaugino

condensation forces the volumes of these divisors to be large, this would make

the overall volume small. This does not necessarily have to be a problem since

in the approximately swiss cheese type the enforced brane stacks on other toric

divisors might also increase the overall volume.

We mention these points to make it clear that the indicator Nlg only serves as an

easily computable estimate for the largest gauge group rank one can obtain in a

threefold of the F-theory type. To see if one can stabilize the Kähler moduli in

a large volume, one has to check the additional constraints case by case. We will

do this in Section 3, constructing a consistent model of a Kähler uplifted de Sitter

vacuum.

2.2 D7-branes from the F-theory perspective

Let us now discuss the constraints on the large gauge group rank in the perturbative

limit of F-theory. This theory is physically equivalent to weakly coupled type IIB,

discussed in the previous section. However, the geometric F-theory picture provides

a different perspective and a cross check of our results.

Before we discuss the D7-brane setup in F-theory let us set the stage. To obtain

an N = 1 effective four dimensional effective theory starting from 12-dimensional

F-theory we have to compactify on an elliptically fibered Calabi-Yau fourfold. More

specifically, the fourfold can be described as a hypersurface in an ambient fivefold

which is a CP2
123 fibration over a three dimensional base B3, i.e. one introduces three
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additional complex coordinates coordinates and a scaling relation

(X, Y, Z) ∼ (λ2X,λ3Y, λZ) . (2.11)

As far as the scaling in the classes of the base is concerned Z scales as a section of the

canonical bundle K of B3, in order to ensure the Calabi-Yau condition of the fourfold.

The elliptically fibered Calabi-Yau fourfold can be defined by the Weierstrass model

Y 2 = X3 + f XZ4 + g Z6 , (2.12)

with f and g being sections of K̄4 and K̄6, respectively. However, for the purpose of

detecting singularities it is more convenient to bring (2.12) in the Tate form [57, 58]:

Y 2 + a1XY Z + a3Y Z
3 = X3 + a2X

2Z2 + a4XZ
4 + a6Z

6 , (2.13)

where the Tate polynomials ai are functions of the base coordinates ui such that

they are sections of K̄i. The Tate form (2.13) and the Weierstrass form (2.12) of the

defining equation can be related by completing the square and the cube and shifting

the X, Y coordinates.

In F-theory, D7-branes manifest themselves via singularities of the elliptic fibra-

tion. To engineer a singularity on a divisor Dj : {uj = 0} the Tate polynomials have

to factorize as

ai = uwij ai,wi , (2.14)

with positive integer numbers wi encoding which kind of singularity is realized. Since

ai,wi has to be holomorphic, wi cannot be made arbitrarily large. For a tabular

overview of the possible resolvable singularities that can arise in such a construction

see [59]. The singularities with Coxeter number larger than 30 are either of the Sp,

SU or SO type (see table 1).

a1 a2 a3 a4 a6 ∆

Sp(N) 0 0 N N 2N 2N

SU(2N) 0 1 N N 2N 2N

SU(2N + 1) 0 1 N N + 1 2N + 1 2N + 1

SO(4N + 1) 1 1 N N + 1 2N 2N + 3

SO(4N + 2) 1 1 N N + 1 2N + 1 2N + 3

SO(4N + 3) 1 1 N + 1 N + 1 2N + 1 2N + 4

SO(4N + 4) 1 1 N + 1 N + 1 2N + 1 2N + 4

Table 1. The exponent wi in (2.14) is given for all ai and ∆ and for different singularities.

The discriminant ∆ depends on the ai according to eq. (2.21).

We can again analyze the constraints on the maximal gauge group rank in more

detail. Since the anti-canonical class of the base B3 is given by K̄ =
∑4

i=1Di and
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nξ =
∑4

i=1 ni, eq. (2.14) can be written as

a(i nξ,... ) = uwij a(i nξ−winj ,... ) , (2.15)

where the dots once more denote scalings originating from the resolution of the sin-

gularities of the original weight system of the base. If one considers the singularities

listed in Table 1, the most severe constraints regarding holomorphicity of eq. (2.15)

come from a3 and a6. A sufficient condition for the ai to always be holomorphic at

least under the first scaling is

Nj ≡ w3 =
w6

2
≤ 3

nξ
nj
, (2.16)

which is exactly what we found in eq. (2.10) in the type IIB picture. Thus, also

from the F-theory perspective we arrive at the large gauge group indicator Nlg. The

caveats discussed in the comments following eq. (2.10) of course also have to be taken

into account in the F-theory picture.

So far our F-theory discussion has been for generic values of the string coupling.

However, we eventually want to obtain a stable de Sitter vacuum by using the leading

α′ correction to the Kähler potential [60] which is only known in perturbative type

IIB. As long as this correction remains unknown in non-perturbative F-theory, we

have to restrict our analysis to Sen’s weak coupling limit gs → 0 [36].

In the Tate form (2.13), the Sen limit [36] is imposed by the rescalings [59]

a3 7→ ε a3 , a4 7→ ε a4 , a6 7→ ε2 a6 . (2.17)

and ε→ 0. The string coupling is related to the parameter ε by

gs ∼ −
1

log |ε|
→ 0 as ε→ 0 . (2.18)

Completing the square and the cube in eq. (2.13) gives a relation between f , g in

the Weierstrass model and the Tate polynomials:

f = − 1

48
(h2 − 24εη) , g = − 1

864
(−h3 + 36εh η − 216ε2χ) , (2.19)

with

h = a2
1 + 4a2 , η = a1a3 + 2a4 , χ = a2

3 + 4a6 , (2.20)

where h, η and χ are sections of K̄2, K̄4 and K̄6 respectively. The discriminant locus

∆ = 0, where the elliptic fiber degenerates, gives the location of the D7/O7-planes.

The discriminant is given by

∆ =
1

16

(
ε2h2PD7 + 8ε3η3 + 27ε4χ2 − 9hε3ηχ

)
∼ 1

16
ε2 h2PD7 +O(ε3) . (2.21)
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where PD7 = −1
4
(η2 − hχ). We see that in the weak coupling limit ε→ 0, the locus

∆ = 0 splits into two components. Studying the monodromies of the elliptic fiber

around such components, one realizes that at h = 0 there is an O7-plane, while at

PD7 = 0 there is a D7-brane [36]. The type IIB Calabi-Yau hypersurface that is a

double cover of B3 is given by

X3 : 0 = ξ2 − h = ξ2 − (a2
1 + 4a2) . (2.22)

Using this equation, we see that the relation defining the D7-brane configuration in

the Calabi-Yau threefold is

PD7 = 0 , i.e. η2 − ξ2χ = 0 . (2.23)

As said above, a brane wrapping such a surface has the form of a Whitney umbrella

[53] and will be called a ‘Whitney brane’ in this paper.

Note that there is no restriction on f and g or the Tate polynomials ai respectively

in the Sen limit. Hence, a singular configuration over a divisor Dj enforced via

a factorization ai = uwij ai,wi remains intact in the weak coupling limit. This is

consistent with the fact that we found the same bound on the gauge group rank in

the IIB picture and in the general F-theory picture.

However, one has to make sure that a non-singular Sen limit exists. For exam-

ple, SU(N) singularities generically introduce conifold singularities in the type IIB

Calabi-Yau threefold (located on top of the O7-plane) [59]. In case of SU(N) singu-

larities, the set of F-theory bases that lead to a smooth type IIB Calabi-Yau threefold

is only a subset of the singular free bases whose elliptic fibrations generate F-theory

fourfolds [61]. Therefore, we expect the constraints on the gauge group rank to be

less strict in a generic F-theory compactification. In F-theory the constraints are

that the base is non-singular and that one is not forced to introduce fibre singulari-

ties that cannot be resolved according to the Kodaira or Tate classification. Hence,

it would be very interesting if one could derive the analogue of the perturbative α′

correction to the Kähler potential in general F-theory, making the construction of

truly non-perturbative de Sitter vacua accessible.

2.3 Maximal gauge group ranks

In this section, we give the results of our scan for the maximal gauge group indicator

Nlg in the 97,036 models of the F-theory type contained in the classification of [50].

We use PALP to calculate the Hodge numbers resulting in 7,602 distinct pairs of

Hodge numbers. We refer to this set of weight systems as the general set. We also

gather all weight systems that lead to the same pair of Hodge numbers and choose

as the representative the weight system with the smallest Nlg corresponding to the

most conservative estimate for the maximal gauge group. This set of weight systems
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Figure 1. The large gauge group indicator Nlg as a function of h1,1. The grey dots denote

the general set of models, while the blue dots denote the conservative set (for explanations

see text). The red dashed line denotes the critical gauge group rank for Kähler uplifting

N crit.
lg = 30.

is referred to as the conservative set. We restrict our attention to manifolds with

negative Euler number χ = 2(h1,1− h2,1), further reducing the set of weight systems

to 8,813 corresponding to 3,040 distinct pairs of (h1,1, h2,1). We do this since χ < 0

is a necessary condition to apply the method of Kähler uplifting.

Our results are summarized in Figure 1 and Table 2. The maximal Nlg we obtain

is 2,330 in the general set and 806 in the conservative set. The minimal Nlg is 12

in both sets corresponding to the base CP3
1111. The mean N̄lg we find is 204.5 in

the general set and 132.8 in the conservative set. Generically, the critical value for

Kähler uplifting to be in large volume regime (V & 100) is N crit.
lg = 30 . Since the

actual volume also depends on the intersection numbers and the stabilized volumes

of the divisors other than D1, N crit.
lg = 30 can only serve as an estimate for large

volume. The subset of weight systems with Nlg < N crit.
lg is 444 in the general set and

267 in the conservative set, corresponding to only 5% respectively 9% of the models

where the method of Kähler uplifting is not applicable.

Another important feature we notice is the dependence of Nlg on h1,1. We see

from figure 1 that Nlg tends to increase with h1,1. In other words, if one wants

to have very large gauge groups one has to buy this by a rather high number of
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Nlg 12-60 61-210 211-360 361-510 511-660 661-806 807-2330
∑

#gen. 1964 4101 1435 592 313 162 246 8813

#cons. 889 1590 409 115 30 7 0 3040

Table 2. The distribution of Nlg. The first line denotes the binning, while the second and

third line contain the number of models in the respective Nlg intervals for the general and

conservative set, respectively.

Kähler moduli which of course has the disadvantage of increasing the complexity of

the model, especially if it is not swiss cheese.4 The tendency of Nlg ∝ h1,1 can be

explained from the weight system: As nξ =
∑4

i ni becomes large, a large number

of lines has to be added to the weight matrix to make the threefold singularity free

which generically increases the number of Kähler moduli.

We conclude this section with the remark that the possibility to engineer large

enough gauge groups to obtain a large volume in the framework of Kähler uplifting

is a generic feature of the landscape region we have analyzed.

3 The type IIB perspective of CP4
11169[18]

In this section, we present an explicit example of a brane and gauge flux setup on a

threefold of the landscape region studied in section 2. To keep the analysis tractable

we study a threefold with small h1,1. Looking at figure 1, we see that there is a

model with h1,1 = 2 that has Nlg = 27, which is close to the critical value N crit.
lg = 30.

This is the Calabi-Yau threefold X3 that is a degree 18 hypersurface in CP4
11169 (it

is usually denoted as CP4
11169[18]). The corresponding weight system of the ambient

toric space after resolving the singularities is

Xamb
4 :

u1 u2 u3 u4 u5 ξ

1 1 1 6 0 9

0 0 0 1 1 2

. (3.1)

The two lines determine the two scaling equivalence relations that the coordinates

satisfy (see eq. (2.2)). The Stanley-Reisner (SR) ideal encodes which homogeneous

coordinates are not allowed to vanish simultaneously in the toric variety. For the

four dimensional ambient space eq. (3.1) it is given by

SRXamb
4

= {u1u2u3, u4u5ξ} . (3.2)

We will see in section 6 that on this manifold we can stabilize the two Kähler

moduli to values corresponding to a volume V ' 52. In constructing an explicit

4For an algorithm to check for the swiss cheese property of a threefold see [62].
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brane and gauge flux setup on X3 we address the following issues that are crucial in

constructing a global model [26, 37, 63–65]:

• The choice of the orientifold involution determines the class of the O7-plane.

D7-tadpole cancellation then implies [D7] = −8[O7], fixing the degrees of the

polynomial defining the D7-brane configuration. Requiring the presence of a

D7-brane stack on D1 with maximal gauge group rank Nlg might force the

defining polynomial to factorize further, leading the presence of another large

rank stack (section 3.2). Due to the swiss cheese structure of the volume form,

this might destroy the large volume approximation and one has to check that

this does not happens.

• To lift unwanted zero modes that might destroy gaugino condensation on some

D7-brane stacks, one needs to ‘rigidify’ the wrapped non-rigid toric divisors (in

the present case D1). To do this, the gauge flux has to be properly adjusted

(section 3.3).

• To avoid the introduction of additional zero modes, due to non-zero gauge

flux of the pull-back type (possibly forced by Freed-Witten anomaly cancella-

tion [47, 48]), one has to choose such a flux in a proper way (section 3.4).

• One has to saturate the D3-tadpole cancellation condition (section 3.5).

In this specific model, we do not have to worry about the D5-tadpole cancellation.

In fact, we will choose an orientifold involution with no odd (1, 1)-forms, i.e. h1,1
− =

0. Hence, the D5-charge induced by gauge fluxes on D7-branes is automatically

cancelled (there are no other source of D5-charge). In the present model, also K-

theoretic torsion charges are cancelled [66, 67]. 5

3.1 Geometric set-up and orientifold involution

Before we go through the points listed above one by one, let us mention some ge-

ometric properties of X3 that will be needed during the following analysis. The

Calabi-Yau is a hypersurface in the ambient space (3.1), defined by the equation

ξ2 = P18,4(ui) ≡ u5Q18,3 , (3.3)

where Q18,3 ≡ u3
5P18+u2

5u4P12+u5u
2
4P6+u3

4. The factorization of the polynomial P18,4

is enforced by its weights. The Hodge numbers of X3 are h1,1 = 2 and h2,1 = 272.

5According to the probe argument presented in [68], such charges are cancelled in a given set-up

if any probe invariant D7-brane with gauge group SU(2) has an even number of zero modes in the

fundamental representation. This is realized in our model, as we always have an even number of

D7-branes in the chosen stacks.
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The (holomorphic) orientifold involution is given by

ξ 7→ −ξ . (3.4)

This involution has h1,1
− = 0 and then the number of invariant Kähler moduli is

h1,1
+ = h1,1 = 2 (as one can find a two dimensional basis of H1,1 in which each divisor

is invariant under the orientifold involution). The orientifold plane is located at the

fixed point locus of the involution (3.4). In our case, the codimension three fixed

locus is empty and hence we do not have O3-planes. On the other hand we have

O7-planes on the codimension one fixed locus at ξ = 0. Looking at equation (3.3),

we see that this locus splits into two pieces. The corresponding four-cycles are given

by the following equations in the ambient fourfold

O7u5 : {ξ = 0 ∩ u5 = 0} , O7Q : {ξ = 0 ∩ Q18,3 = 0} . (3.5)

These hypersurfaces in X3 are not complete intersections of one equation with the

defining CY equation (3.3), but are four-cycles of the ambient fourfold that intersect

non-transversely the CY X3 and then are four-cycles also in X3. Using the SR-ideal,

one sees that these two four-cycles do not intersect each other on the Calabi-Yau

X3. One can show that the divisor O7u5 is a rigid divisor in the threefold X3. Its

homology class in the ambient space is Dξ ·D5 = [X3] · D5

2
. We see that the class of

this integral four-cycle in the threefold is Dfix
5 = D5

2
. So we can use it as an element

of an integral basis.

The threefold described so far is the double cover of the three dimensional base

manifold

B3 :

u1 u2 u3 u4 u5

1 1 1 6 0

0 0 0 1 1

. (3.6)

The toric divisors of B3, defined by the equations ui = 0 will be called D̂i, in

order to distinguish them from their double covers Di in X3 (given by the complete

intersection {ui = 0} ∩ {ξ2 − P18,4 = 0} in Xamb
4 ).

The first Chern class of the base B3 is c1(B3) = K̄ = 9[D̂1] + 2[D̂5] and its SR

ideal is given by

SRB3 = {u1u2u3, u4u5} . (3.7)

Eq. (3.7) can be used to derive triple intersections of the base divisors [69, 70]

D̂3
1 = 0 , D̂2

1D̂5 = 1 , D̂1D̂
2
5 = −6 , D̂3

5 = 36 , (3.8)

where we have chosen the Poincaré duals of D̂1 and D̂5 as a basis of H1,1(B3,Z). If

the divisors intersect away from the fixed point locus, the intersections in the double

cover threefold X3 are simply twice the intersections in the base. Before we have
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seen that their double covers D1, D5 do not form an integral basis of H1,1(X3,Z),

i.e. there are integral divisors of X3 that are rational combination of D1 and D5.

Instead, an integral basis is given by D1, D
fix
5 . Keeping in mind that X3 is a double

cover of B3, that D1, D5 are the double covers of D̂1, D̂5 and that Dfix
5 = 1

2
D5, we

can determine the intersection numbers on X3:

D3
1 = 0 , D2

1D
fix
5 = 1 , D1D

fix
5

2
= −3 , Dfix

5

3
= 9 . (3.9)

One can check these results by realizing that the threefold X3 can also be described

as a hypersurface in the toric ambient space

Xamb,123
4 :

u1 u2 u3 x y z

1 1 1 6 9 0

0 0 0 2 3 1

, (3.10)

with Stanley-Reisner (SR) ideal

SRXamb,123
4

= {u1u2u3, x y z} . (3.11)

We have used PALP to verify that the Calabi-Yau threefolds described by the re-

spective hypersurfaces in the ambient toric varieties (3.1) and (3.10) are equivalent.

At the level of their defining polytopes one sees this by finding that the normal

forms [71] of the two polytopes are identical.6

The defining equation of X3 as an hypersurface in Xamb123
4 is

y2 = x3 + f12(u1, u2, u3)x z4 + g16(u1, u2, u3)z6 . (3.12)

The orientifold involution ξ 7→ −ξ is mapped to y 7→ −y. The fixed locus in the

ambient space is given by two components, i.e. y = 0 and z = 0 (the last one can

be found once we apply the involution plus the second line equivalence relation in

(3.10)). These loci intersect transversely the Calabi-Yau X3 and the intersections are

connected. So we again find that the fixed point set inX3 is given by two disconnected

components. We can identify Dfix
5 = Dz and Dfix

Q = Dy. Furthermore, the divisors

Di=1,2,3 are identified with the corresponding ones in Xamb
4 (3.1). By using PALP,

and making the given identifications, we again obtain the triple intersections (3.9).

Moreover we obtain the second Chern class of the threefold:

c2(X) = 102D2
1 + 69D1D

fix
5 + 11Dfix

5

2
. (3.13)

Expanding the Kähler form of X3 as J = t1D1 + t5D
fix
5 , we find an approximately

swiss cheese volume of the threefold

V =
1

6

∫
X

J∧J∧J =
1

2

(
t21t5 − 3t1t

2
5 + 3t35

)
=

√
2

3

(
V1 +

1

3
V5

)3/2

−
√

2

9
V3/2

5 , (3.14)

6We thank A. P. Braun for discussion on this point.
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with Vi = ∂V/∂ti. The Kähler cone is given by

t1 − 3 t5 > 0 , t5 > 0 . (3.15)

Finally, we list the hodge numbers, arithmetic genus χ0 and Euler number χ of

divisors D1 and Dfix
5 in the threefold in Table 3. The results have been obtained by

means of PALP and cohomCalg [72, 73]. Dfix
5 is rigid and hence fulfills the sufficient

h0,0 h1,0 h2,0 h1,1 χ0 χ

D1 1 0 2 30 3 36

Dfix
5 1 0 0 1 1 3

Table 3. Hodge numbers, arithmetic genus χ0 and Euler number χ of D1 and D5.

condition to contribute to the gaugino condensation superpotential. D1 is not rigid,

but one can choose a proper gauge flux on the wrapped D7-branes, that fixes the

h2,0 deformations. We will perform this calculation in section 3.3.

3.2 D7-brane configuration

Now, we discuss the inclusion of D7-branes, following the general procedure discussed

in Section 2.1. To cancel the D7-charge of the O7-planes at ξ = 0, the equation

describing the D7-brane configuration is given by (see eq. (2.6))

η2
36,8 − ξ2χ54,12 = 0 , (3.16)

where the degrees of the η and χ polynomials are dictated by the degrees of ξ and

by the requirement that [D7] = −8[O7] = −8Dξ. To realize an Sp(N1) gauge group

on the invariant divisor D1 with N1 = Nlg = 27 one takes

η36,8 = u27
i η̃9,8 , χ54,12 = u54

i χ̃0,12 . (3.17)

Eq. (3.16) then becomes

u54
1

(
η̃2

9,8 − ξ2χ̃0,12

)
= 0 . (3.18)

Since χ̃0,12 = u12
5 , the Whitney brane splits into a brane and image brane due to the

factorization (η̃9,8 − ξu6
5)(η̃9,8 + ξu6

5). The Whitney brane can only carry a flux that

is ‘trivial’ on the Calabi-Yau threefold (i.e. its Poincaré dual non-trivial two-cycle

on the D7-brane world volume is homologically trivial on the Calabi-Yau threefold),

contrary to its split branes that in general carries a flux necessary for Freed-Witten

anomaly cancellation. However, a non-trivial flux would generate additional (chiral)

zero modes. We avoid them by choosing a degree of the Whitney brane polynomial,

such that it does not split into a brane and its image. Furthermore, for the calculation
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of D3 charge of the Whitney brane, see Section 3.5, we sacrifice two more gauge group

ranks on D1, realizing an Sp(24) gauge group:

u48
1

(
η̃2

12,8 − ξ2χ̃6,12

)
= 0 . (3.19)

We note that the polynomial η̃12,8 is forced to factorize as η̃12,8 = u8
5 η̃12 +u7

5u4 η̃6 +

u6
5u

2
4 = u6

5 η̃12,2, while the polynomial χ̃6,12 must have the form χ̃6,12 = u12
5 χ̃6 +

u11
5 u4χ̃0. In the following we will tune the parameter χ̃0 to zero. In this way the

D7-brane configuration is described by the equation

u48
1 u

12
5

(
η̃2

12,2 − ξ2 χ̃6,0

)
= 0 . (3.20)

Hence, we see that requiring the factorization of the D7-brane equation in order

to produce an Sp(24) stack enforces a further factorization, in this case of u5. Since

D5 = 2Dfix
5 lies on the O7-plane, this generates an SO(24) gauge group.7

The same conclusions on the factorization can be obtained using the description

of X3 as a hypersurface in Xamb,123
4 (3.10). Remember that in that description the

orientifold locus is given by Dy + Dz. To cancel the D7-tadpole, we need a D7-

brane configuration wrapping the divisor class 8(Dy + Dz) = 8(9D1 + 4Dz), i.e. it

is given by the equation P72,32 = 0. A polynomial with these degrees must factorize

as P72,32 = z8P72,24. Hence there are eight branes wrapping the orientifold-plane

divisor Dz (realizing a group SO(8) if one does not require further factorizations).

The D7-tadpole generated by the O7-plane wrapping Dy is cancelled by a Whitney

brane, defined by the equation η2
36,12 − y2χ54,18 = 0. As above, we require an Sp(24)

stack on u1 = 0: η36,12 = u24
1 η12,12 and χ54,18 = u48χ6,18. The polynomial η12,12 and

χ6,18 must factorize as η12,12 = z8η̂12,4 and χ6,18 = z16χ̂6,2 (as above, we will take

χ̂6,2 = z2χ̂6,0). We see that we have 16 more D7-branes that wrap the O7-plane

divisor Dz, realizing an SO(16 + 8) = SO(24) gauge group.

3.3 Rigidifying D1 by gauge flux

In this section we construct explicitly a gauge flux on the Sp(24) stack wrapping D1,

that fixes all the deformation moduli of these branes. The equation describing D1 is

u1 = 0, which can be deformed to u1 + ζ2u2 + ζ3u3 = 0. We see that we have two

deformation moduli, consistent with the fact that h2,0(D1) = 2. We need to lift such

zero modes in order to avoid destroying gaugino condensation on the D7-brane stack

wrapping D1.

7If we do not take χ0 = 0, one has a factorization as u48
1 u

12
5

(
η̃2

12,2 −Q18,3 χ̃6,1

)
= 0, where we

used χ̃6,12 = u12
5 χ̃6 + u11

5 u4 = u11
5 χ̃6,1 and ξ2 = u5Q18,3. From this we would conclude that there

is an SO(24) gauge group on Dfix
5 . However, as we will see in the F-theory language, the actual

gauge group is SO(23).

– 20 –



The rigidifying flux will be taken such that it is not a pull-back of a CY3 two-form.

In this way, it will not generate additional chiral matter and will not enter in the

D-term constraints. On the other hand, since h2,0(D1) 6= 0, this flux will constrain

the holomorphic embedding of the D-brane, by the F-term constraint F2,0 = 0. This

type of gauge flux was introduced first in [43] to fix the deformation moduli of a

non-rigid divisor wrapped by an E3-instanton. The use of such a flux to fix the

deformation moduli of D7-branes such that they can support gaugino condensation

was suggested in [26]. Here we make this flux explicit, proving that it indeed fixes

the unwanted deformations and computing its D3-tadpole contribution.

To construct the flux, we follow the procedure described in [43]: We have to

identify holomorphically embedded curves in the CY threefold that do not admit

holomorphic deformation. In fact, the condition F2,0 = 0 means that the Poincaré

dual two-cycle in D1 remains holomorphic when the divisor is deformed in the three-

fold. If we cannot deform the curves, then some of the deformation moduli of D1 are

fixed.

We will work in the case in which the threefold is described by a hypersurface in

the ambient space (3.10) with the defining equation (3.12). The rigid curves cannot

be described by the intersection of one equation with (3.12) and u1 = 0. In fact these

will be always holomorphic as we deform the D1 equation. To visualize these rigid

holomorphic curves in an algebraic way, we have to parametrize g16 appropriately,

i.e. g16 = ψ2
8 + u1τ15 where ψ8 and τ15 are polynomials of degree 8 and 15 in the ui

coordinates.8 In this way we can write the CY equation as

(y − ψ8)(y + ψ8) = x(x2 + f12 z
4) + u1τ15 z

6 . (3.21)

The rigid curve we are interested is the P1

C : y = ψ8 ∩ x = 0 ∩ u1 = 0 . (3.22)

Through exact sequences (following [74]), one shows that its normal bundle in the

threefold is O(−1) ⊕ O(−1) and then it has no holomorphic sections, proving that

this curve is rigid in the threefold.

Using the curve (3.22), we now construct the gauge flux:

FD1 = 1
2
D1 −B + C − s = C − s , (3.23)

where we will choose the B-field B such that B− 1
2
D1 = 0 to cancel the Freed-Witten

flux D1

2
. With abuse of notation, in eq. (3.23) we call C the two-form Poincaré dual

to the curve (3.22) in D1. s is the pull-back of a threefold two-form, i.e. its dual

8An analogous ansatz was done in [46] for an elliptically fibered Calabi-Yau fourfold, in order to

find rigid four-cycles inside the fourfold.
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cycle is the intersection of one equation Ps = 0 with (3.12) and u1 = 0. Deforming

the D1 equation, Ps = 0 is not modified. We will choose s such that the two-cycle

dual to this flux is trivial in the CY threefold. This corresponds to the flux being

orthogonal to the two-forms that are pulled back from the CY threefold. This is

required in order to prevent chiral matter generated by the flux. s is by construction

of type (1, 1). So the condition F2,0
D1

= 0 is equivalent to C2,0 = 0. Requiring that

C remains of type (1, 1) as D1 is deformed, is the same as requiring that the curve

(3.22) is contained in the deformed divisor u1 + ζ2u2 + ζ3u3 = 0. But we see that this

happens only if ζ2 = ζ3 = 0, i.e. the deformation moduli are fixed by this flux.

Let us determine the homology class of s in the CY.9 We want that [s] = [C]|CY ,

such that FD1 is trivial in the CY. The class of C in the ambient space is

[C] = Dy ·Dx ·D1 =
1

2
[CY ] ·Dx ·D1 = [CY ] · (3D1 +Dz) ·D1 . (3.24)

So [s] = [C]|CY = (3D1 +Dz) ·D1.

Now we compute the self-intersection F2
D1

, that enters into the D3-charge of the

flux

− 1

2

∫
D1

F2
D1

= −1

2

∫
D1

(C − s) · (C) = −1

2

∫
D1

(C2 − s2) , (3.25)

where we have used the fact that FD1 is orthogonal to every pulled back two-form

(and then also to s). The only difficult part to compute is C2. To do this we apply

the following relation:

C · C|D1 =

∫
C
C =

∫
C
c1(N |C⊂D1) , (3.26)

where we have used that the normal bundle of C in D1 is a line bundle whose first

Chern class is given by the class of the curve C in D1. The class c1(N |C⊂D1) can be

computed via the following exact sequence:

0→ N |C⊂D1 → N |C⊂Y4 → N |D1⊂Y4 → 0 . (3.27)

From this we get that c1(N |C⊂D1) = c1(N |C⊂Y4) − c1(N |D1⊂Y4). The classes on the

right hand side can be easily determined by the fact that the objects involved are

complete intersections in a toric space:

c1(N |C⊂D1) = c1(N |C⊂Y4)− c1(N |D1⊂Y4)

= (Dy +Dx +D1)− (2Dy +D1) = Dx −Dy (3.28)

= −3D1 −Dz .

9In the case we are considering, two cycles of the Calabi-Yau threefold are homologous if their

push-forward in the ambient fourfold are homologous.
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Then

C · C|D1 =

∫
C
c1(N |C⊂D1) =

∫
Y4

[C] · c1(N |C⊂D1) =

∫
Y4

Dy ·Dx ·D1 · (−3D1 −Dz)

=

∫
X3

1
2
(6D1 + 2Dz) ·D1 · (−3D1 −Dz) = −

∫
X3

D1 · (6D1 ·Dz +D2
z) = −3

(3.29)

(Using analogous techniques, one can also compute c1(C) and prove that C is indeed

a P1.)

More easily, we can compute∫
D1

s2 =

∫
X3

D1 · (3D1 +Dz)
2 = 3 . (3.30)

We are ready to compute the D3-charge induced by this flux:

− 1

2

∫
D1

F2
D1

= −1

2

∫
D1

(C2 − s2) = 3 . (3.31)

We will switch on this flux along all the 24 branes making up the Sp(24) stack,

and its image along the 24 image branes. It is easy to prove that, as expected,

F ′D1
≡ C ′ − s′ = −(C − s) = −FD1 , where C ′ is given by the equations in (3.22) with

the substitution ξ 7→ −ξ and the class of s′ is such that F ′D1
is trivial in the CY

X3. This (diagonal) flux breaks the Sp(24) gauge group to U(24) (the U(1) factor

remains massless, because of the triviality of the flux in X3).

In conclusion, the D3-charge of the gauge flux needed to rigidify all the D7-branes

in the Sp(24) stack is

Q
FD1
D3 = −24

2

∫
D1

F2
D1
− 24

2

∫
D1

F ′2D1
= −2× 24

2

∫
D1

F2
D1

= 144 . (3.32)

3.4 Avoiding D-terms and zero-modes from matter fields

In Section 3.2, we introduced D7-brane stacks on the divisors D1 and D5. If the

branes carry non-zero flux, we have to worry about possible charged matter fields

arising at the intersection of the two D7-brane stacks or from the D7-brane bulk

spectrum. These zero modes might force the contribution to the superpotential from

gaugino condensation to be zero. These problematic fluxes also generate Kähler

moduli dependent Fayet-Iliopoulos (FI) terms ξi [21, 75, 76]. This would introduce

a D-term potential for the Kähler moduli. However, the method of Kähler uplifting

which we use requires a pure F-term potential.

In the following, we show that additional zero-modes and D-terms can be avoided

for an appropriate choice of gauge flux F on the branes wrapping the divisors D1
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and Dfix
5 . The gauge flux F combines with the pull-back of the bulk B-field on the

wrapped four-cycle to give the gauge invariant field strength

F = F −B . (3.33)

The number of additional zero modes and the Kähler moduli dependent Fayet-

Iliopoulos terms appearing in D-terms are given by integrals of the form∫
Di

FDi ∧D =

∫
X3

D ∧Di ∧ FDi , (3.34)

where D is an arbitrary divisor in the threefold X3. If it is possible to choose the

fluxes FD1 and FDfix
5

such that eq. (3.34) vanishes for i = 1, 5 these fluxes do not

have any problematic consequences. In particular, an integral such as (3.34) vanishes

if the flux FDi is orthogonal to the two-forms of Di that are pull-backed from the

Calabi-Yau threefold X3.

When turning on gauge flux one has to make sure that the Freed-Witten anomaly [47,

48] is canceled, i.e. the gauge flux on a brane wrapping divisor D has to satisfy

F +
c1(D)

2
∈ H2(X3,Z) . (3.35)

If the divisor D is non-spin, its first Chern class c1(D) is odd and F cannot be set

to zero. On the other hand, the expression appearing in the physical quantities is

the gauge invariant flux eq. (3.33). By choosing the B-field appropriately, one can

make this invariant flux equal to zero. For a set of D7-brane stacks wrapping non-

intersecting divisors, the global B-field can be chosen such that the pull-back on all

such divisors make F = 0 for all the stacks. However, for intersecting stacks this is

not possible in general. We now prove that our case is not generic in this respect:

We can choose the B-field such that both FD1 = 0 and FDfix
5

= 0.

The cancellation of the Freed-Witten anomaly is always satisfied if the flux that

is switched on is given by

F = f1D1 + f5D
fix
5 +

D

2
with f1, f5 ∈ Z , (3.36)

where we have used that D1 and Dfix
5 form a basis of H2(X3,Z) and that c1(D) =

−D in a Calabi-Yau threefold. We will only turn on diagonal fluxes on the stacks

wrapping D1 and Dfix
5 , i.e. the flux on each brane of a stack is the same (and the

opposite on all the image branes). If we took non-diagonal fluxes into account this

should be reflected by an additional index, for example Fα where α enumerates the

branes.

As mentioned above we can use the B-field to fix one of the gauge fluxes FD1 or

FDfix
5

to zero. In particular the Freed-Witten gauge flux, i.e. Di
2

, cannot be cancelled
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by an integral shift and then a half-integrally quantized B-field is needed. We choose

B = D1

2
(up to an integral two-form), so that choosing FD1 = D1

2
(up to the same

integral two-form) one trivially realizes FD1 = 0. The chosen B-field leads the gauge

invariant flux on Dfix
5 to be FDfix

5
= FDfix

5
− D1

2
. We will now show that FDfix

5
can be

tuned such that the vanishing of eq. (3.34) can also be accomplished for Di = Dfix
5 .

In particular, we will show that the pull-back of
Dfix

5

2
− D1

2
on D5 is zero.10 Let us see

this in detail. After the given choice of the B-field, the gauge-invariant field strengths

are given as

FD1 = 0 ,

FDfix
5

=

(
a− 1

2

)
D1 +

(
b+

1

2

)
Dfix

5 with a, b ∈ Z .
(3.37)

Now it is easy to see that for the choice of fluxes

a = 2 + 3b ⇒ FDfix
5

=
1

2
(1 + 2b)(3D1 +Dfix

5 ) , (3.38)

the pull-back of FDfix
5

on Dfix
5 becomes trivial since∫

X3

Dfix
5 ∧ FDfix

5
∧D ∝

∫
X3

Dfix
5 ∧ (3D1 +Dfix

5 ) ∧D = 0 , (3.39)

for an arbitrary divisor D = k1D1 + k5D
fix
5 ∈ H2(X3,Z). In the last equality in

eq. (3.39) we have used the triple intersections of X3, eq. (3.9). Hence, we have

shown that additional zero-modes as well as D-terms can be avoided by tuning the

gauge flux on the brane stack on D5.

3.5 D3 tadpole cancellation condition

The D3 tadpole has to cancel for consistency. The compactification ingredients that

induce a D3 charge are the (fluxed) D7-branes, the O7-planes, the D3-branes, the

O3-planes and the RR and NS field strengths F3 and H3. The RR and NS fluxes

and the D3-branes have a positive contribution:

QF3,H3

D3 =
1

2

∫
X3

F3 ∧H3 , QD3(ND3 ×D3) = ND3 . (3.40)

In our case we do not have O3-planes, while we have O7-planes. Each O7-plane

contributes negatively by

QO7
D3 = −χ(O7)

6
. (3.41)

10 In principle, one could also try to choose the B-field such that FDfix
5

= 0 (i.e. B =
Dfix

5

2 ),

instead of FD1 = 0. The problem with this choice is that the pull-back of D1

2 −
Dfix

5

2 on D1 is not

zero.
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In our construction we have two O7-planes (see eq. (3.5)), whose D3-charge sum up

to

QO7s
D3 = Q

O7u5
D3 +Q

O7Q
D3 = −χ(O7u5)

6
− χ(O7Q)

6
= −1

6
(3 + 549) = −92 , (3.42)

where we used χ(O7u5) = 3 and χ(O7Q) = 549.

A stack of Ni D7-branes and their Ni images wrapping a divisor Di contributes

to the total D3 charge positively via the gauge flux and negatively via a geometric

contribution:

QD7
D3(Di) = 2Ni

(
−1

2

∫
Di

FDi ∧ FDi −
χ(Di)

24

)
, (3.43)

where the overall factor two comes from sum over the stack and its image stack

which have the same D3 charge. For the brane-stacks on D1 and Dfix
5 described in

Section 3.2, we obtain the following D3 tadpole:

Qstacks
D3 =− 2N1

2

∫
D1

(C − s)2 − 2N1
χ(D1)

24
− 2N5

χ(Dfix
5 )

24
= 144− 3− 72 = 69 ,

(3.44)

where we have used N1 = 24, N5 = 12, eq. (3.32) for the D3-charge of FD1 and the

results of Table 3.

The Whitney brane, defined by the equation η2 − ξ2χ = 0, has a singular world

volume. Thus we have to compute its contribution to the D3-tadpole indirectly.

We use the fact that the Whitney brane wrapping a divisor class DW = 2DP can

be seen as the recombination of a brane wrapping the invariant divisor DP with

the image brane wrapping the same divisor class DP . On this brane the flux is

FDP = 1
2
DP − S − B, while on the image brane, it is given by −FDP . Here B is

the B-field and S an arbitrary integral class. After recombination only a flux that is

trivial along the CY survives (see [53, 65]). In the recombination process, the RR-

charges do not change. Hence, we can compute the D3-charge in the more tractable

brane/image-brane situation, as done in [37, 65]:

QW
D3 = −

∫
DP

F2
DP
− χ(DP )

12
. (3.45)

In order for the Whitney brane to be holomorphic (supersymmetric), DP must be

such that DP − [O7] > 0 (i.e. it can be described by the vanishing of a holomorphic

equation). The choice of S in not completely arbitrary. It must satisfy the following

constraints, in order for the Whitney brane to be stable against splitting:

[O7]

2
≤ S +B ≤ DP −

[O7]

2
. (3.46)
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We will compute the charge using the description of X3 as a hypersurface in the

ambient space Xamb,123
4 (3.10). The equation of the Whitney brane, after factorizing

the Sp(24) and the SO(24) stacks is given by η̂2
12,4 − ξ2χ̂6,2. In our example the

B-field is fixed by the vanishing of FD1 to be B = D1

2
. The class of the Whitney

brane is DW = 2DP = 2(12D1 + 4Dz), while [O7] = Dy = 9D1 + 3Dz. If we take

S = f1D1 + fzDz (f1, fz ∈ Z), the constraints (3.46) translate to 4 ≤ f1 ≤ 7 and
3
2
≤ fz ≤ 5

2
, i.e. f1 = 4, 5, 6, 7 and fz = 2.

Let us compute the Whitney brane D3-charge. The Euler number of DP is

χ(DP ) =

∫
X3

D3
P +DP · c2(X3) = 984 , (3.47)

while ∫
DP

F2
DP

=

∫
X3

DP (
DP

2
− D1

2
− (f1D1 + fzDz))

2 = −(2f1 − 11)2 . (3.48)

Inserting these expressions in (3.45) and using the possible values for f1, we obtain

two possible results for the charge of the Whitney brane, i.e. QW
D3 = −81 and QW

D3 =

−73.

Taking into account the contribution from the O7-planes and the D7-brane stacks,

eq. (3.42) and (3.44), and the negative contribution from the Whitney brane, we

obtain the following total D3-brane charge from our brane configuration:

Qtot
D3 = QO7s

D3 +Qstacks
D3 +QW

D3 =

{
−104 for QW

D3 = −81

−96 for QW
D3 = −73 .

(3.49)

At this point, we have a fully consistent picture of the D brane and gauge flux

setup in our threefold X3 that ensures that gaugino condensation from the divisors

D1 and Dz contributes to the superpotential of the four dimensional N = 1 effective

supergravity. In particular, we have overcome the issues discussed in Section 2.

Before we discuss moduli stabilization in a de Sitter vacuum in Section 6, let us have

a look at the brane and flux configuration from the F-theory point of view in the

following Section 4.

4 The F-theory perspective of CP4
11169[18]

In this section, we revisit some results of the previous section by using the F-theory

language. We first discuss the D7-brane configuration in F-theory, according to

Table 1. We consider the Calabi-Yau fourfold that is an elliptic fibration over the

base manifold B3 defined in eq. (3.6). We find that enforcing an Sp(24) singularity

– 27 –



on the divisor D̂1 of B3 forces us to impose an SO(24) singularity on D̂5. This agrees

with the type IIB perspective discussed in Section 3.2.

Let us see this in detail. The Tate polynomials are sections of K̄i which we denote

as ai = A9i,2i. By realizing an Sp(24) gauge group on D1 we need the following

factorization of the Tate polynomials:

a1 = A9,2 = u5A9,1 ,

a2 = A18,4 = u5A18,3 ,

a3 = u24
1 A3,6 = u24

1 u
6
5A3,0 ,

a4 = u24
1 A12,8 = u24

1 u
6
5A12,2 ,

a6 = u48
1 A6,12 = u48

1 u
11
5 (u4A0,0 + u5A6,0) ,

(4.1)

where on the RHS of (4.1) we made the u5 factorization explicit. Comparing with

Table 1, we see that the ai in eq. (4.1) are compatible both with an SO(4 ·5+3 = 23)

and an SO(4 ·5+4 = 24) singularity on D̂5. For generic polynomials Ap,q, the first is

realized. The SO(24) is present when the polynomial A18,3X
2 + A12,2X + (u4A0,0 +

u5A6,0) factorizes modulo u5 (i.e. modulo a polynomial that is divided by u5). This

happens if A0,0 = 0, that is the choice we have done in the perturbative type IIB

limit in Section 3.2 (χ = 4a6 + a2
3).

Now we consider the fourfold where the Sp(24) singularity is resolved along the

lines described in Appendix B.1. The resolution introduces a set of new divisors, the

exceptional divisors E2i−1 (i = 1, ..., N), that are P1 fibrations over the surface in

the base B3 where the fiber degenerates. From the F-theory point of view, the gaug-

ino condensation contribution to the superpotential is generated by M5-instantons

wrapping the exceptional divisors that resolve the corresponding singularity [77]. In

the presence of fluxes, the necessary condition for an M5-instanton wrapping a di-

visor D to contribute to the superpotential is that χ0(D) ≥ 1, which is the known

modification of the condition χ0(D) = 1 without fluxes [69, 78].

In Appendix B.1, we derive the following formula for the arithmetic genus of the

exceptional divisors

χ0(E2i−1) =
1

6

∫
B3

D̂ ∧
[
c2(B3) + K̄ ∧ K̄ + 2D̂ ∧ D̂

]
= χ0(D); i = 1, .., N − 1 ,

χ0(E2N−1) =
1

12

∫
B3

D̂ ∧
[
c2(B3) + (K̄ − D̂) ∧ (K̄ − 2D̂)

]
= χ0(D̂) ,

(4.2)

where D̂ is the divisor {pD̂ = 0} on the base manifold B3 where the singularity sits

and D is its double cover in X3.
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In our example we imposed an Sp(N1 = 24) singularity on the divisor D̂1. Insert-

ing

K̄ = 9D̂1 + 2D̂5 , c2(B3) = 21D̂2
1 + 12D̂1D̂5 + D̂2

5 , (4.3)

and the base intersections eq. (3.8) into eq.s (4.2) we find

χ0(E2i−1) = 3 for i = 1, . . . , N1 − 1 and χ0(E2N1−1) = 1 . (4.4)

We see that all of them satisfy the necessary condition for an M5-instanton to con-

tribute to the superpotential in the presence of fluxes. This agrees with what we

found in type IIB language, where we have seen that this actually happens, i.e.

switching on a proper gauge flux fixes the deformation on the wrapped divisor, lead-

ing to the possibility of having gaugino condensation.

Let us summarize the F-theory analysis. The D-brane configuration is equivalent

to what we find in Section 3.2 in the IIB picture. Furthermore, we calculated the

arithmetic genus of the exceptional divisors that correspond to the resolution of the

Sp(N) singularity for a general base manifold. For our example, the results show

that one has to switch on gauge flux so that the divisor can carry a non-vanishing

contribution from gaugino condensation to the superpotential. The corresponding

type IIB analysis was done in Section 3.3.

5 Moduli stabilization in the large volume limit

Let us define the four dimensional effective theory. In the absence of D-terms the

scalar potential is completely determined by the Kähler potential K and the super-

potential W via

V = eK
(
Kαβ̄DαWDβW − 3|W |2

)
, (5.1)

where DαW = Wα +KαW , with subscripts α, β denoting the derivative w.r.t. com-

plex scalar moduli fields φα. These are the Kähler moduli Ti, i = 1, . . . , h1,1, the

dilaton S and the complex structure moduli Ua, a = 1, . . . , h2,1.

The Kähler potential is a real function of these moduli [79]:

K = −2 log

(
V(Ti, T̄i) +

1

2
ξ̂(S, S̄)

)
− log(S + S̄)− log

(
−i
∫

Ω̄(Ūa) ∧ Ω(Ua)

)
,

(5.2)

where V denotes the volume and Ω the holomorphic three-form of the threefold while

the dilaton dependent α′ correction is given as

ξ̂(S, S̄) = − ζ(3)χ

4
√

2 (2π)3
(S + S̄)3/2 , (5.3)

with χ being the Euler number of the threefold and ζ(3) ' 1.202.
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The holomorphic superpotential

W = W0(S, Ua) +
∑
i

Ai(S, Ua) e
−aiTi , (5.4)

is the sum of a tree-level and a non-perturbative contribution. In the model we

consider, the non-perturbative exponential term arises from gaugino condensation

in pure non-Abelian 4D N = 1 super-Yang-Mills theories on stacks of D7-branes

wrapping appropriate four-cycle divisors of the Calabi-Yau threefold. Here Ai(S, Ua)

denotes the one-loop determinant, and ai = 2π/Ni where Ni is the Coxeter number

of the corresponding gauge group singularity in F-theory. The perturbative term

consists of the flux induced Gukov-Vafa-Witten superpotential [51]

W0(S, Ua) =
1

2π

∫
(F3 − SH3) ∧ Ω(Ua) , (5.5)

with S = s + i σ, s = 1/gs and F3 and H3 the RR and NS three-form field strength

respectively.

As discussed in much recent work (see [6] for the original seminal result, and [1–3]

for recent review), turning on primitive imaginary self-dual (ISD) three-form fluxes

generically leads to a supersymmetric stabilization of all complex structure moduli

and the axio-dilaton at an isolated supersymmetric extremum in moduli space. The

flux induced superpotential is independent of the Kähler moduli, which implies

Ki̄DiW0DjW0 = 3|W0|2 , (5.6)

and thus a no-scale scalar potential for the complex structure moduli and the axio-

dilaton

Vflux = eK
(
KSS̄ |DSW0|2 +Kab̄DaW0DbW0

)
. (5.7)

This potential is positive semi-definite. Hence, every flux-induced isolated su-

persymmetric extremum for the axio-dilaton and the complex structure moduli has

a positive-definite mass matrix, and is a true local minimum. For W = W0 the

Kähler moduli are flat directions. Volume moduli stabilization may now proceed

by several methods. KKLT generates SUSY AdS minima for the volumes from non-

perturbative effects balancing off a small W0. On the other hand, in LVS an interplay

between non-perturbative and perturbative effects generates non-SUSY AdS vacua

at exponentially large volumes, or AdS/dS vacua at largish volumes in the Kähler

uplifting scenario studied here. All these stabilization methods necessarily proceed

via breaking the no-scale structure. The question of full stability of a given scenario

or concrete model rests then on the effect of the no-scale breaking contributions

from volume stabilization to the mass matrix of the complex structure moduli and

the axio-dilaton. One can show for both the LVS and the Kähler uplifting scenario,
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that all no-scale breaking terms are suppressed by an extra inverse power 1/V of

the volume compared to the flux-induced piece above [8, 24]. As the flux-induced

piece is positive semi-definite and O(1/V2), any negative term must come from no-

scale breaking contributions which are O(1/V3). Hence, any small shift of S or one

of the Ua will see a positive O(1/V2) increase in the scalar potential overwhelming

any possible decreasing O(1/V3) contribution from Kähler moduli stabilization. The

only condition for this automatic separation of scales to work is stabilization of the

over-all volume at largish values in the first place.

Thus, any choice of flux producing an isolated SUSY extremum DSW = DUaW =

0 will be a minimum of the full potential once the LVS or Kähler uplifting generate

a local minimum for the Kähler moduli at large volumes. Thus there is no need for

a detailed model-by-model calculation of flux-induced mass matrix for the complex

structure moduli and the axio-dilaton (a task practically unfeasible for typical values

h2,1 = O(100)).

6 A fully stabilized de Sitter vacuum of CP4
11169[18]

In this section, we show that all geometric moduli of CP4
11169[18] can be stabilized in

a metastable de Sitter vacuum. The stabilization of the two Kähler moduli via the

interplay of non-perturbative effects in the superpotential and α′ corrections in the

Kähler potential will be discussed in section 6.1. The analysis will single out values

for the flux superpotential W0, the string coupling gs and the one-loop determinant

of gaugino-condensation A which have to be realized to construct a de Sitter vacuum.

We will demonstrate in section 6.2 that the values of these parameters can be provided

by explicitly solving a two dimensional subspace of the complex structure moduli

space of X3, hence providing an explicit construction of a de Sitter vacuum.

6.1 Kähler uplifted de Sitter vacua

Realizing the brane and gauge flux setup discussed in sections 3 and 4 there are two

Kähler moduli T1 = τ1 + iζ1 and T2 = τ2 + iζ2 whose real components correspond to

the volumes of the divisors D1 and D5, i.e. τ1 ≡ V1 and τ2 ≡ V5. The volume form of

the three-fold eq. (3.14) leaves us with the following Kähler potential for the Kähler

moduli:

K = −2 log

[
1√
12

(
(T1 + T̄1) +

1

3
(T2 + T̄2)

)3/2

− 1

18
(T2 + T̄2)3/2 +

1

2
ξ̂(S, S̄)

]
,

(6.1)

where ξ̂(S, S̄) is given in eq. (5.3) with χ = 2(2− 272) = −540.
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The superpotential arising from gaugino condensation of a SU(24) and SO(24)

pure Super Yang Mills (SYM) on the D7-brane stacks wrapping D1 and D5 is given

as

W = W0 + A1 e
− 2π

24
T1 + A2 e

− 2π
22
T2 , (6.2)

i.e. a1 = 2π/24 and a2 = 2π/22. We know that the one-loop determinants of the two

gaugino condensates are non-zero since D5 is rigid and D1 has been ‘rigidified’ by

flux.11 However, it is not know how to calculate the dependence of A1 and A2 on the

complex structure moduli and the axio-dilaton. After stabilizing these moduli, A1

and A2 (as well as W0) are flux-dependent parameters and can be treated as constant

in the Kähler moduli stabilization process. In general, they will be of the same order

as the VEVs of the complex structure moduli. Since there is a large number of flux

parameters due to h2,1 = 272, it seems a reasonable assumption that one should be

able to use the freedom in this sector to mildly tune A1 and A2 to a value desired

for the stabilization of the Kähler moduli. Nevertheless, the unknown dependence of

the one-loop determinants on the complex structure moduli remains the only point

that cannot be addressed explicitly in our construction of a de Sitter vacuum.

The scalar potential of the moduli T1, T2 is

V = eK

(
KTiT̄j

[
WTiWTj + (WTi ·WKTj + c.c)

]
+ 3ξ̂

ξ̂2 + 7ξ̂V̂ + V̂2

(V̂ − ξ̂)(ξ̂ + 2V̂)2
|W |2

)
.

(6.3)

Considering the dilaton S and the complex structure moduli Ua to be fixed by fluxes,

which will be done explicitly in section 6.2, eq. (6.3) is a function V = V (T1, T2) with

parameters W0, S, A1 and A2. A de Sitter vacuum will only be obtained for certain

values of these four parameters. In the following we consider the axio-dilaton to have

a real VEV s = Re(S), i.e. the axionic component is stabilized at zero VEV.

In [24] a sufficient condition on the compactification parameters was found which

ensures that a de Sitter vacuum can be constructed via the method of Kähler uplift-

ing. The condition applies when the manifold is of the swiss-cheese type. For a one

parameter model this condition reads

3.65 .
−27W0ξ̂a

3/2

64
√

2γA
. 3.89 , (6.4)

where γ is related to the self-intersection number of the wrapped four cycle. For our

brane setup on CP4
11169[18] the volume form is only approximately of the swiss-cheese

type so that the analytic results of [24] cannot be applied directly. Nevertheless, we

11The ‘rigidifying’ flux on D1 induces a correction to the gauge kinetic function of the form

T1 → T1− 1
2gs

∫
D1
FD1
∧FD1

which is non-zero since
∫
D1
FD1
∧FD1

= −6, see eq. (3.31). This can

be absorbed in the one-loop determinant A(S,Ua) since the correction does not depend on the Ti.

We thank Gary Shiu for bringing this to our attention.
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Figure 2. The points represent W0, S pairs that allow a stable de Sitter solution of the

potential given in eq. (6.3) for A1 = A2 = 1. The curve represents a fit W0 = C1s
−C2 , with

C1 = 70.2 and C2 = 2.35. Note that there is a small deviation from the one modulus case

where C2 = 1.5.

can study the scalar potential given in eq. (6.3) numerically, searching for stable de

Sitter minima for fixed numerical values of W0, S, A1 and A2.

We find that there is indeed a subspace in this parameter space where the two

Kähler moduli are stabilized in a stable de Sitter vacuum. For instance, keeping A1

and A2 constant we find that there is a curve in W0 − S space that allows stable de

Sitter vacua, see Figure 2. Actually, it is a band rather than a curve, the lower bound

of the band corresponding to Minkowski vacua and the upper bound corresponding

to the minimum becoming an inflection point. For a single Kähler modulus this

corresponds to the upper and lower bound in eq. (6.4), respectively. Since the width

of the band is rather small and we are interested in vacua with a small cosmological

constant, we choose to display the lower bound in Figure 2.

In the remainder of this section, let us study explicitly the following point in

parameter space that realizes a de Sitter vacuum:

W0 = 0.812 , s = 6.99 , A1 = 1.11 , A2 = 1.00 . (6.5)

The choice of numerical values in eq. (6.5) is due to the solutions we find in the

complex structure sector, see Section 6.2. W0 and s originate from this sector and

A1 and A2 have to be chosen appropriately, invoking the constraint that generically

they are of the same order as the VEVs of the complex structure moduli, in this case

O(1) as we will see in section 6.2.

We can justify both treating the instanton prefactors Ai as effective constants,

and mildly tuning them. Recent work has shown [24] that for large volume the

mass scale of the Kähler moduli separates from the scale of the axio-dilaton and the

complex structure moduli by one inverse power of the volume. This justifies replacing

the complex structure moduli by their VEVs inside the 1-loop determinants, and
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〈T1〉 〈T2〉 〈V〉 m2
τ1

m2
τ2

m2
ζ1

m2
ζ2

m2
3/2

10.76 12.15 51.97 5.24 · 10−9 4.55 · 10−8 1.13 · 10−7 6.40 · 10−8 4.08 · 10−7

Table 4. VEVs and masses of the Kähler moduli. m2
3/2 = eK |W |2 denotes the gravitino

mass. For the calculation of the masses the prefactor 〈eKc.s.〉 ' 0.03 from the complex

structure moduli stabilization, see following section 6.2, has been taken into account. All

masses are given in units of the Planck mass while volumes are given in units of α′.

allows us to parametrize these prefactors as effective constants. Moreover, we can

clearly dial the VEVs of the complex structure moduli by availing ourselves of the

exponentially large flux discretuum, which easily accounts for a potential mild tuning

of the value of the 1-loop determinants.

The phenomenology of the model (6.5) is summarized in Table 4 and Figure 3. In

particular, we note that the overall volume and the volume of the divisors D1 and

D5 are stabilized at O(10 − 100). The not too large overall volume emerges from

the fact that we have only realized an N1 = 24 gauge group on D1 which is actually

lower than the critical gauge group rank ∼ 30, as was discussed in section 2. Note

that we were forced to choose the rank smaller than the maximal rank Nlg = 27 in

order to consistently incorporate the subtleties in the D7-brane configuration and

construct a fully consistent model, see Section 3. Since models with a larger number

of Kähler moduli allow in principle larger maximal gauge group rank, one may also

realize larger overall volumes in these more complicated cases.

The Kähler moduli are stabilized inside the Kähler cone which corresponds to

t1 > 3 t5. Inverting the relation between the ti and the Vi, eq. (3.14), we find

t1 = 9.43 and t5 = 1.50 such that the Kähler cone condition is fulfilled.

6.2 Complex structure moduli

In this section, we study the complex structure moduli space of X3. In the end, we

will present explicit RR and NS flux choices that stabilize the dilaton and complex

structure moduli supersymmetrically such that W0 and s take the values in eq. (6.5).

Note that switching on RR and NS flux will not introduce Freed-Witten anoma-

lies [48] since the four-cycles D1 and Dfix
5 wrapped by D7-branes have no three-cycles

(as h1,0(D1) = h1,0(Dfix
5 ) = 0, see table 3). Hence, any three-form of the threefold

X3 is pulled back to zero on the D7-branes, making the Freed-Witten constraint

H3|D7 = 0 automatically satisfied.12 Since it was shown in the previous section that

the parameters (6.5) lead to a stable de Sitter vacuum in the Kähler moduli sec-

12Unfortunately we are not able to check the Freed-Witten anomaly cancellation due to H3 for

the Whitney brane. In fact, due to its singular world volume, the solution of this problem for a

generic Whitney brane is so far unknown.
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Figure 3. The scalar potential V (T1, T2) is a function of four real scalar fields. We show

V (T1, T2) as a single valued function with the other three fields evaluated at the minimum.

tor, CP4
11169[18] will provide us with an explicit example of such a vacuum with all

geometric moduli stabilized.

As was discussed in [70, 80, 81], the 272 dimensional complex structure moduli

space of CP4
11169[18] is symmetric under a Γ = Z6 × Z18 action. Under Γ, only two

complex structure moduli are left invariant. As was noted in [70] it is sufficient to

turn on fluxes only along the six Γ-invariant three-cycles to achieve DiW = 0 for all

272 complex structure moduli, and then to find a minimum of the positive definite

tree-level no-scale scalar potential V =
∑

i |DiW |2. This is due to the fact that, for

this invariant flux, the symmetry Γ is realized at the level of the four-dimensional

effective action. Note that the restriction to flux on the Γ invariant cycles is purely

for simplicity, as the analysis of the complete 272 dimensional complex structure

moduli space is practically not doable.

Once the symmetric fluxes are switched on, the Kähler potential and superpoten-

tial are

K = − log
(
−iΠ† · Σ · Π

)
− log

(
S + S̄

)
, (6.6)

W0 = 2π(f − S h) · Π , (6.7)

where ΠI is the vector of periods of the Calabi-Yau threefold holomorphic three-form
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Ω3 on a symplectic basis of three-cycles, Σ is the canonical symplectic matrix and

f = (f1, . . . , f6, 0, ..., 0) and h = (h1, . . . , h6, 0, ..., 0) are the integer valued RR and

NS flux quantum numbers (we have set to zero all the components along the b3 − 6

non-invariant three-cycles.

Let us explain why this flux vector generically provides a stable minimum of all

272 complex structure moduli [49, 70]. We first consider DŨi
W0 = 0, where Ũi for

i = 3, . . . , 272 denote the non-trivially transforming moduli under Γ = Z6×Z18. The

period vector is, at leading order, a polynomial function of the Ũi. Furthermore, Π

cannot contain linear powers of the Ũi, since these would not be invariant under Γ

and the period vector has to respect the symmetry of the complex structure moduli

space. This information is sufficient to show

W0,Ũi
= KŨi

= 0 at Ũi = 0 for i = 3, . . . , 272 , (6.8)

since W0,Ũi
is a polynomial function which is at least linear in the Ũi, see eq. (6.7)

and KŨi
is a rational function which is at least linear in the numerator in the Ũi, see

eq. (6.6). Hence, DŨi
W0 = W0,Ũi

+ KŨi
W0 = 0 at Ũi = 0 for i = 3, . . . , 272. This

reduces the full set of conditions DiW = 0 ∀i to the three equations

DφW |Ũi=0 = 0 for φ = S, U1, U2 , (6.9)

where U1 and U2 are the two invariant complex structure moduli. This is equivalent

to set Ũi = 0 from the beginning and study the stabilization problem for the reduced

case with two complex structure moduli, as we do in the following.

In [81], the prepotential G for the two complex structure moduli U1 ≡ ν1 + i u1 =

ω1/ω0 and U2 ≡ ν2 + i u2 = ω2/ω0 was derived via mirror symmetry in the large

complex structure limit to be

G(ω0, ω1, ω2) = ξω2
0 +

17ω0ω1

4
+

3ω0ω2

2
+

9ω2
1

4
+

3ω1ω2

2
−9ω3

1 + 9ω2
1ω2 + 3ω1ω

2
2

6ω0

, (6.10)

with ξ = ζ(3)χ
2(2π i)3 ' −1.30843 i determined by the Euler number χ of the Calabi-Yau.

Eq. (6.10) receives instanton corrections which are given as

Ginst.(q1, q2) =
1

(2π i)3

(
540q1 +

1215q2
1

2
+ 560q3

1 + 3q2 − 1080q1q2 + 143370q2
1q2

−45q2
2

2
+ 2700q1q

2
2 +

244q3
2

9
+ . . .

)
, (6.11)

with qi = exp (2π i ωi) and we have set ω0 = 1. The dots in eq. (6.11) denote higher

powers in the qi which are suppressed in the large complex structure limit ωi � 1.
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For a symplectic basis of three-cycles, the period vector is given by

Π =(∂ω0G, ∂ω1G, ∂ω2G, ω0, ω1, ω2)

=(2ξ +
17U1

4
+

3U3
1

2
+

3U2

2
+

3

2
U2

1U2 +
1

2
U1U

2
2 , (6.12)

17

4
+

9U1

2
− 9U2

1

2
+

3U2

2
− 3U1U2 −

U2
2

2
,
3

2
+

3U1

2
− 3U2

1

2
− U1U2, 1, U1, U2) .

Finally, the D3-charge induced by the RR and NS fluxes is given by

Qf,h
D3 =

1

2
h · Σ · f = 66 . (6.13)

Our goal is to find flux quanta f and h that stabilize S, U1 and U2 supersymmet-

rically, i.e. DφW0 = 0 for φ = S, U1, U2, with 〈W0〉 and 〈S〉 suitable to perform the

Kähler moduli stabilization in a de Sitter vacuum.

To find stationary points we apply the strategy suggested in [70]:13

• Neglecting instanton corrections to the prepotential and approximating |ξ| '
1.30843 . . . by an approximate rational value, for instance |ξ| = 13/10 we solve

the system of equations

0 = (W0, DSW0, DU1W0, DU2W0)(no inst.) , (6.14)

for the flux quanta f and h setting the VEVs S, U1 and U2 to fixed rational

values. Furthermore, we require f and h to fulfill the tadpole constraint found

in eq. (3.49), Qf,h
D3 ≤ 104 or Qf,h

D3 ≤ 96. This amounts to solving a linear

equation of the form A · (f, h) = 0 with A ∈ Q8×12 for f and h, respecting the

tadpole constraint.

• The flux solution for f and h is inserted into

0 = (DSW0, DU1W0, DU2W0)(inst.) , (6.15)

where this time the instanton corrections to the prepotential eq. (6.11) are

taken into account in calculating DiW0 and the constant ξ is set to its exact

value. This generates shifts in the VEVs of S, U1 and U2 from their original

rational values. Also the superpotential W0 may be shifted from its zero value,

eq. (6.15) to a non-vanishing value. If the resulting values for S and W0 are

suitable for the Kähler moduli stabilization, we have constructed a de Sitter

vacuum.

13A detailed analysis of the flux solution space will be presented in [82]. Among others, one

can use a recently developed method, called numerical polynomial homotopy continuation method,

which can find all the stationary points of a given potential having polynomial-like nonlinearity [83].
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Let us present the solution that provides the parameters of our example given in

eq. (6.5). The flux vector

(f ;h) = (−16, 0, 0, 0,−4,−2; 0, 0, 2,−8,−3, 0) , (6.16)

induces a D3 charge Qf,h
D3 = 66. Since this does not saturate the negative contribution

to the total D3 tadpole, one has to switch on additional trivial gauge flux on the

brane stacks or introduce a number of D3-branes to obtain an overall vanishing D3

charge.

The VEVs of the moduli and superpotential are

〈S〉 = 6.99 , 〈U1〉 = 1.01 , 〈U2〉 = 0.967 , 〈|W0|〉 = 0.812 . (6.17)

A posteriori, we see that the chosen values for A1 and A2 in eq. (6.5) are indeed

of the same order as the VEVs of the complex structure moduli. Furthermore, the

assumption of working in the large complex structure limit is valid since the VEVs

of U1 and U2 fulfill the condition that the instanton corrections are small, U2 � 1/6

and U1 > 1 [70]. Finally, we calculate the masses of the complex structure and

dilaton moduli to 0th order from the tree level potential V = eKKab̄DaW0DbW0 for

a, b = U1, U2, S in table 5. A posteriori, we verify that there is indeed a separation

m2
u1

m2
u2

m2
s m2

ν1
m2
ν2

m2
σ

0.24 1.8 · 10−4 5.6 · 10−6 0.24 1.8 · 10−4 5.7 · 10−6

Table 5. Masses of the real complex structure moduli u1, u2 the dilaton s and their

corresponding axion fields ν1, ν2 and σ. For the calculation of the masses the prefactor

〈eKKähler〉 ' 3.7 · 10−4 from the Kähler moduli stabilization, see table 4, has been taken

into account.

of scales, i.e. the complex structure moduli and the dilaton are stabilized at a mass

scale roughly two orders of magnitude higher than the Kähler moduli.

To conclude this section, we have explicitly constructed a de Sitter vacuum with

all geometric moduli stabilized on X3. The stabilization of the two Kähler moduli,

the dilaton and two complex structure moduli has been carried out explicitly while

the remaining 270 complex structure moduli are stabilized according to general ar-

guments.

7 Conclusions

We discussed the construction of explicit global models in a type IIB context, which

exhibit the dynamics of Kähler uplifting. In this mechanism the interplay of gaugino

condensation on 7-branes and the leadingO(α′3)-correction fixes the Kähler moduli in
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a SUSY breaking minimum, after three-form flux has supersymmetrically stabilized

the complex structure moduli and the axio-dilaton. The vacuum energy of this

minimum can be dialed from AdS to dS by adjusting the flux-induced Gukov-Vafa-

Witten superpotential using the flux discretuum. Both SUSY breaking and lifting

to dS are driven by an F-term of the Kähler moduli sector arising from the presence

of the α′-correction of the Kähler potential. Thus the dS uplift is realized entirely by

the geometric closed string moduli. This was the motivation for trying to construct

a fully explicit consistent global model including explicit flux choice and complex

structure moduli stabilization.

In Kähler uplifted dS vacua the CY volume scales as V ∝ N3/2 with N the rank

of the condensing gauge group living on the 7-brane stack wrapping the large four-

cycle. Moreover, the scale of Kähler moduli stabilization and the resulting Kähler

moduli masses are suppressed by an additional O(1/V) compared to the scale of

flux-induced complex structure moduli stabilization. Hence, we searched for a large

gauge group rank to obtain a large volume.

We considered models which can be easily uplifted to F-theory compactifications

on elliptically fibered CY fourfolds (embedded in toric spaces). We focused on models

that possess Sen’s weak coupling limit since we use the leading α′ correction which

is not understood for generic points in the F-theory moduli space. Such models have

the characteristic feature that the orientifold plane has to be in a homology class of

high degree in order to obtain a singularity of large rank N .

We checked the consistency conditions to have a globally defined construction, e.g.

that the toric base of the elliptically fibered fourfold should be free of singularities of

any kind as well as the Calabi-Yau threefold hypersurface in the weak coupling limit.

We found that in general this turns out to be a severe constraint when one tries to

increase the class of the orientifold by choosing appropriately the weights defining

the toric variety.

We then made sure that the volume was of swiss cheese type V ∼ V3/2
1 − V3/2

i ,

or at least approximately swiss cheese, e.g V ∼ (V1 + Vi)3/2 − V3/2
i . Then one can

manufacture a large overall volume by making V1 large by enforcing a large gauge

group rank on the corresponding divisor D1. We ensure that other large rank stacks

wrapping some divisors Di 6=1 (possibly enforced by imposing large rank on D1) did

not destroy the large volume approximation.

Finally, we checked that the number of the neutral and charged zero modes could

be put to zero, such that the gaugino condensation contribution to the superpoten-

tial is non-zero. To do this, the gauge flux on the brane stack has to be chosen

appropriately: On the one hand it must be non-zero to ‘rigidify’ the wrapped divisor

(if this is not rigid). On the other hand, it should be possible to tune the flux such

that it does not generate additional zero modes in the form of chiral matter, charged
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under the condensing gauge group.

We studied constraints on large gauge group rank by discussing Kreuzer-Skarke

models and hypersurfaces in toric varieties. For the subclass of threefolds with an

elliptic F-theory lift (∼ 105 models) we extracted the distribution of the largest-rank

gauge group as a function of the number of Kähler moduli h1,1.

Choosing CP4
11169[18], which has h1,1 = 2 and h2,1 = 272, as our explicit exam-

ple we constructed large-rank singularities on a choice of two divisors, and analyzed

the consistency constraints both in the type IIB Sen limit, and from the F-theory

perspective. The emerging situation for CP4
11169[18] looks summarily as follows: We

construct an Sp(24) singularity on the ‘large’ divisor D1, which is rigidified by gauge

flux, breaking Sp(24) to SU(24). The presence of the Sp(24) stack forces an SO(24)

singularity on the second divisor D5, which already is rigid. The gauge flux can

be tuned such that no further zero-modes are generated. In F-theory, the gaug-

ino condensation superpotential is related to the superpotential generated by the

M5-instantons wrapping the exceptional divisors Ei in the resolved fourfold. In the

considered case, we found that the exceptional divisors resolving the Sp(24) singu-

larity satisfy χ0(Ei) ≥ 1, that is the necessary condition in the presence of fluxes

such that the wrapped M5-instantons contribute to the superpotential.

From the general results for supersymmetric flux stabilization we know, that at

the no-scale level the resulting scalar potential is positive semi-definite, which yields

full stability of the complex structure sector and the dilaton once fluxes fix them at an

isolated supersymmetric point. As Kähler moduli stabilization via Kähler uplifting

proceeds by breaking the no-scale structure at sub-leading order in the volume (like

LVS), the stability of the flux-stabilized complex structure sector extends to the full

model. We then analyzed the scalar potential that stabilizes the Kähler moduli. This

singled out a band in gs - W0 plane where one finds de Sitter vacua. Here W0 denotes

the VEV of the Gukov-Vafa-Witten superpotential arising from supersymmetric flux

stabilization of the complex structure moduli. The overall volume of the Calabi-Yau

threefold was determined by the data of the construction to be V ∼ 52.

The complex structure moduli space of CP4
11169[18] possesses a high-order discrete

symmetry Γ. We only considered three-form fluxes that respect this symmetry. As a

consequence, all the h2,1 − 2 non-invariant complex structure moduli are stabilized.

The prepotential of the remaining two complex structure moduli is known via mirror

symmetry, and this enables us to stabilize all h2,1 moduli explicitly. It is this fact

that in the end allowed us to construct a completely stabilized de Sitter vacuum.

Finally, we gave an explicit flux choice which stabilizes the axio-dilaton and the

two Γ-invariant complex structure moduli at the right VEVs and value for W0 for

the Kähler stabilization of the explicit construction to proceed into a metastable dS

vacuum. In summary, we gave a construction of an example for dS space in string
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theory which we believe to be explicit and complete within the limits of existing

knowledge.
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A Models from two line weight systems

In this appendix we want to discuss the constraints on building large gauge groups in

Calabi-Yau threefolds that are complete intersections of hypersurfaces in a projective

ambient space that is characterized by a weight system of two lines. This restriction is

for simplicity. In all the approaches discussed below we find that going to arbitrarily

high gauge groups would correspond to introducing singularities in the threefold of

different kinds. In this sense, this appendix is meant as a summary of what can

go wrong when one tries to build large gauge groups in a singularity free compact

Calabi-Yau.

A.1 One Hypersurface Calabi-Yaus

In this section we will analyze the threefold that is the hypersurface

ξ2 − P2n+6,4 = 0 , (A.1)

in the ambient space

Xamb
4 :

u1 u2 u3 u4 u5 ξ

1 1 1 n 0 n+ 3

0 0 0 1 1 2

. (A.2)

Notice that in the case n > 6 a u2
5 term factors out from the polynomial P2n+6,4 due

to the imposed scalings. The case n = 6, that was studied in detail in section 3, has

the largest n where the enforced factorization of P2n+6,4 is only linear in u5. In the
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linear case, the O7 plane splits into two planes that for n = 6 are not intersecting.

When n > 6 the picture is more complicated as there are intersecting O7 planes,

which produce orbifold singularities on the Calabi-Yau threefold.

Notice that the constraint on n is less restrictive if one gives up the weak coupling

limit and goes to a strongly coupled F-theory compactification. For example, when

n = 18 the following factorization on u5 in enforced on the Tate polynomials ai:

a1 = u1
5A21,1 ,

a2 = u2
5A42,2 ,

a3 = u3
5A63,3 ,

a4 = u4
5A84,4 ,

a6 = u5
5A126,7 ,

(A.3)

which corresponds to an E8 singularity as one can look up in [58]. For n > 18 there is

a factorization a6 = um5 A18+6n,12−m with m ≥ 6. This singularity cannot be resolved

according to the Tate procedure and hence n = 18 is the maximum value we can

obtain in a strongly coupled F-theory setting. See also [69] for a discussion of this

limit on n derived in the Weierstrass parametrization of the fourfold.

Finally, note that the class of the orientifold is [O7] = 21[D1]+2[D5] in the n = 18

case while it is [O7] = 9[D1] + 2[D5] in the weakly coupled n = 6 case. Hence, in

principle one could construct a much larger gauge group on D1 if one gives up the

weak coupling limit. If the leading α′-correction of the Kähler potential were known

in the strong coupling regime one could use this to construct Kähler uplifted de Sitter

vacua where the large volume regime is more easily achieved.

A.2 Complete Intersections

One can also study complete intersections in higher dimensional toric varieties. For

instance, take a threefold that is defined by two equations in a five dimensional

ambient toric variety. This corresponds to a base which is a hypersurface in a

four-dimensional ambient toric variety [40]. In the remainder of this section, we

demonstrate in an example that if one wants to have a non-singular base of the

corresponding F-theory uplift and an approximately swiss-cheese intersection form,

this constraints how large the coefficients in K̄ and hence in [O7] can become. Also

in other examples that we considered, trying to enlarge K̄ at some point introduces

singularities in the base or the double cover Calabi-Yau threefold.

As a working example, take the base manifold Bnl that can be described as a
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hypersurface Pm,2(ui) = 0 with positive integer m in the projective space

Bamb
nl :

u1 u2 u3 u4 u5 u6

1 1 1 n l 0

0 0 0 1 1 1

. (A.4)

The ambient four complex dimensional toric variety eq. (A.4) can be interpreted as a

CP2 fibration over a CP2 with integer twists n and l which we choose to be positive.

Note that the degrees of P have been chosen such that the anti-canonical bundle of

Bnl is K̄ = (3 + n + l −m)[D1] + [D6]. In the previous section, the factorization of

u2
5 for n > 6 in the ξ2 − P2n+6,4 = 0 equation in eq. (A.1) was due to the relation

K̄ ∼ 2[D5]. We want to avoid this bound on n here by making K̄ ∼ [D6].

Factoring out those coordinates that are sections of the bundle L2 defined by the

second line in eq. (A.4), the hypersurface equation is given as

Pm,2(ui) = u2
6Pm + u6u5Pm−l + u2

5Pm−2l + u6u4Pm−n + u5u4Pm−l−n + u2
4Pm−2n ,

(A.5)

where the Pi are sections only in the bundle L1 corresponding to the first line of

eq. (A.4). To avoid factorization of eq. (A.5) in u6 and hence a singularity in the

base, we have to impose

2l ≤ m. (A.6)

Note that the roles of n and l can be exchanged since they just correspond to a

redefinition of the coordinates u4 and u5. If we wanted l to obtain large values

compared to m and n we should impose 2n ≤ m. K̄ obtains a large scaling in L1

as long as n or l are allowed to be large. In the following, we denote divisors in the

ambient space corresponding to ui = 0 by D̃i while we symbolize the pullback on the

base manifold by Di.

Singularities of the ambient space

The fan of the toric variety Bamb
nl can be generated by the lattice vectors

v1 =


−n
−l
−1

−1

 , v2 =


0

0

1

0

 , v3 =


0

0

0

1

 , v4 =


1

0

0

0

 , v5 =


0

1

0

0

 , v6 =


−1

−1

0

0

 .

(A.7)

Bamb
nl is non-singular if all cones of the fan that generates the toric variety are gener-

ated by a subset of a lattice basis of the (in this case) four dimensional lattice. This

is the case if all combinations spanZ{vi, vj, vk, vl} for i, j, k, l ∈ {1, .., 6} that are part
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of the toric variety form a basis of the lattice space. For the fan spanned by the vi’s

of eq. (A.7) the combinations that do not span the lattice are

{v1, v2, v3, v4} , {v1, v2, v3, v4} , {v1, v2, v3, v4} ,
{v1, v4, v5, v6} , {v2, v4, v5, v6} , {v3, v4, v5, v6} .

(A.8)

We will show in the next paragraph that D̃1D̃2D̃3 and D̃4D̃5D̃6 are part of the

Stanley-Reisner ideal and hence the cones corresponding to eq. (A.8) do not belong

to the toric variety which is thus free of singularities.

Intersections in the ambient space

We will now derive the quadruple intersections in the ambient space by analyzing

the system of equations defined by the GLSM [52] of eq. (A.4)

|x1|2 + |x2|2 + |x3|2 + n|x4|2 + l|x5|2 + |x6|2 = ξ1 > 0 ,

|x4|2 + |x5|2 + |x6|2 = ξ2 > 0 .
(A.9)

A GLSM is a description of a toric variety where the D-flatness conditions of eq. (A.9)

can be thought of as gauge fixing the absolute values of the rescalings in a complex

projective space, while the U(1) symmetry associated to the phase of the rescalings

remains to be divided out. We immediately see from eq. (A.9) that D̃4D̃5D̃6 = 0.

Consider now the intersections

D̃1D̃2D̃3D̃4 : |x5|2 =
ξ1

l
, |x6|2 =

1

l
(lξ2 − ξ1) ,

D̃1D̃2D̃3D̃5 : |x4|2 =
ξ1

n
, |x6|2 =

1

n
(nξ2 − ξ1) ,

D̃1D̃2D̃3D̃6 : |x4|2 =
1

l − n
(lξ2 − ξ1) , |x6|2 =

1

l − n
(ξ1 − nξ2) .

(A.10)

Independently of n and l these intersections vanish if

ξ1 > nξ2 and ξ1 > lξ2 . (A.11)

In this case, D̃1D̃2D̃3 and D̃4D̃5D̃6 are elements of the Stanley Reisner ideal and

hence the ambient space is singularity free. That the inequalities eq. (A.11) are

indeed fullfilled will be shown in the next section.

To calculate all quadruple intersections it is sufficient to calculate the intersections

for a basis of divisors, we pick D̃1 and D̃6. All other intersections can be calculated

using the equivalences

D̃1 = D̃2 = D̃3 , D̃4 = nD̃1 + D̃6 , D̃5 = lD̃1 + D̃6 . (A.12)

Under the assumption eq. (A.11) we can show D̃2
1D̃5D̃6 = 1. Successive use of the

relations eq. (A.12) gives us the quadruple intersections

D̃2
1D̃

2
6 = 1 , D̃1D̃

3
6 = −n− l , D̃3

6 = n2 + l(n+ l) . (A.13)
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Mori- and Kähler cone of the ambient space

The Mori cone, i.e. the set of two-cycles that generate the full set of all two-cycle

classes with holomorphic representatives, is spanned by C1 = D̃1D̃
2
6 and C2 = D̃2

1D̃6.

The weight matrix

D̃i · Ca =

(
1 1 1 −l −n −n− l
0 0 0 1 1 1

)
, (A.14)

can be obtained from the original GLSM description eq. (A.4) by adding the second

line of eq. (A.4) multiplied by −n − l to the first line. This corresponds to the

transformation of the Fayet-Iliopoulos terms of the GLSM according to

(ξ1, ξ2)→ (ξ′1, ξ
′
2) = (ξ1 − (n+ l)ξ2, ξ2) . (A.15)

For a basis of divisors Ki that is dual to the Ca, i.e. KiCa = δia the Kähler form can

be parametrized as J = ξ′iKi. In this case, K1 = D̃1 and K2 = (n+ l)D̃1 + D̃6. The

Kähler cone, i.e. the space of all two forms with∫
Ci

J > 0 , (A.16)

for all Ci in the Mori cone, is then simply given by

ξ′1 > 0, ξ′2 > 0 ⇔ ξ1 − (n+ l)ξ2 > 0, ξ2 > 0 . (A.17)

The inequalities in eq. (A.17) a posteriori justify the quadruple intersections calcu-

lated in eq. (A.11).

Intersections in the base and volume form

The intersections of the base divisors Di are calculated from those in the ambient

space via

κijk =

∫
Bnl

DiDjDk =

∫
Bamb
nl

(mD̃1 + 2D̃6)D̃iD̃jD̃k . (A.18)

Using eq. (A.13) we thus find

D3
1 = 0 ,

D2
1D6 = 2 ,

D1D
2
6 = m− 2(l + n) ,

D3
6 = −m(l + n) + 2(n2 + l(l + n)) .

(A.19)

For the purpose of moduli stabilization the volume of the Calabi-Yau14

V = 2VBnl =
1

3

∫
Bnl

J3 =
1

3

∫
Bnl

(ξ1D1 + ξ2D6)3 , (A.20)

14Note that the relation between the volume of the base and the volume of the Calabi-Yau could

be more complicated as it was for instance the case for the threefold X3 that we considered in

section 3.
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should be ’approximately swiss cheese’, i.e. of the form

V ∼ (aVD1 + bVD6)3/2 − cV 3/2
D6

with a, c > 0 . (A.21)

As was discussed in [84], this can only be arranged if the two dimensional matrix

Aij = κijka
k for i, j, k = 1, 2 , (A.22)

with triple intersections κijk and ak ∈ Z defining the divisor a1D1 + a2D6 can be

brought into a special form: There is exactly one non-vanishing eigenvalue while

the eigenvector corresponding to the vanishing eigenvalue is (0, 1). From the matrix

entries

A11 = 2a2 ,

A12 = A21 = 2a1 + a2(m+ 2(−l − n)) ,

A22 = a1(m+ 2(−l − n)) + a2

(
m(−l − n) + 2

(
n2 + l(l + n)

))
,

(A.23)

we see that these conditions can only be met if

m = 2l, a1 = n a2 or m = 2n, a1 = l a2 . (A.24)

Since we are interested in large n having already imposed 2l ≤ m in eq. (A.6) we

stick to the first option in eq. (A.24) and furthermore choose a2 = 1. Now the volume

can be shown to be given by

V =
2

3n

[
(nVD1 + VD6)3/2 − V 3/2

D6

]
. (A.25)

The anti-canonical bundle of Bnl becomes

K̄ = (3 + n− l)[D1] + [D6] . (A.26)

Now going back to eq. (A.5) we see that the only way we can get a larger class than

3[D1] in K̄ is by demanding u2
4Pm−2n = u2

4P2(l−n) = 0. This would however leave

us with a singular base since along the curve {u5 = u6 = 0}, which is not in the

SR-ideal, we would have Pm,2 = dPm,2 = 0. Hence, we find the constraint n− l ≤ 0

and we did not succeed in constructing a large class of [D1] in K̄, as one can see from

eq. (A.26).

B The Sp(N) resolved fourfold

B.1 Geometry of the Sp(N) resolved fourfold

In this section, following the procedure used in [85, 86], we resolve the Sp(N) singu-

larity on a divisor D̂ for a general base. D̂ is defined by an equation pD̂ = 0, where

pD̂ is a polynomial of the base coordinates with proper degrees.15

15We will make no attempts to resolve the SO(N) singularity (for a discussion of an SO(10)

resolution, see [87].) From the point of view of gaugino condensation in our example the resolution
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The elliptic fibration becoming singular can be visualized by a pinching of the

fibered torus, i.e. one of the torus cycles shrinks to zero size. The singularity is

resolved via a series of blow-ups, where the blow-ups are such that they reproduce

on the fiber the Dynkin diagram of the gauge group singularity that was originally

imposed on the fiber. More precisely, the pullback to the base of the double inter-

sections of the blown-up divisors build the Cartan matrix entries of the gauge group.

For instance, the resolution of an Sp(1) singularity is visualized in Figure 4.

Figure 4. Visualization of a blown up Sp(1) singularity.

These blown-up divisors can also be formalized by means of toric geometry [85, 86].

To resolve an Sp(N) singularity, N new coordinates v2i−1, i = 1, .., N , are introduced

with projective scaling relations

Xamb
6 :

σ X Y Z v1 v3 · · · v2N−3 v2N−1

0 2 3 1 0 0 · · · 0 0

1 1 1 0 −1 0 · · · 0 0

1 2 2 0 0 −1 · · · 0 0
...

...
...

...
...

...
. . .

...
...

1 N − 1 N − 1 0 0 0 · · · −1 0

1 N N 0 0 0 · · · 0 −1

. (B.1)

The resolved fourfold is embedded into the ambient sixfold Xamb
6 (B.1) by the two

equations:

Y res :


Y
(
Y + a1XZ + a3,NΠN

i=0v
N−i
2i−1Z

3
)

= X3ΠN
i=0v

i
2i−1 + a2X

2Z2 + a4,NΠN
i=0v

N−i
2i−1XZ

4 + a6,2N

(
ΠN
i=0v

N−i
2i−1

)2
Z6 ,

pD̂ = ΠN
i=0v2i−1 .

(B.2)

where we have defined v−1 ≡ σ.

The vanishing of the new coordinates defines the exceptional divisors E2i−1 :

{v2i−1 = 0} and E−1 ≡ [σ]. As far as divisor classes are concerned there are the

is not necessary since we know that Dfix
5 is rigid in the type IIB Calabi-Yau threefold, Table 3.

Resolving the SO(N) singularity would be necessary if we wanted to calculate the D3 tadpole from

the F-theory perspective, as we would require the Euler number of the completely resolved fourfold.
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following equivalences:

[σ] = D̂−
N∑
i=1

E2i−1 , [X] = 2([Z]+K̄)−
N∑
i=1

i E2i−1 , [Y ] = 3([Z]+K̄)−
N∑
i=1

i E2i−1 .

(B.3)

where [X], [Y ], [Z] are the homology classes of the divisors {X = 0}, {Y = 0}, {Z =

0}. With abuse of notation we call D̂ both the four-cycle {pD̂ = 0} on the base and

its uplift to the Calabi-Yau fourfold, i.e. a six-cycle that is an elliptic fibration over

the locus {pD̂ = 0} on the base.

B.2 Intersections of exceptional divisors from the Stanley-Reisner ideal

The Stanley-Reisner (SR) ideal of the fourfold with a resolved Sp(N) singularity is

SRSp(N) = {XY Z, v2i−1Z|i=1,..,N , v2i−1X|i=0,..,N−1, v2i−1v2j−1 |i,j=0,..,N ; j−i>1} . (B.4)

This follows from the SR ideal of the ambient sixfold given in [86], restricted to the

fourfold. One can directly deduce eq. (B.4) from the fact that the SR ideal is the

union of all sets

ZI = {(z1, .., zn)|zj = 0∀j ∈ I} (B.5)

for which there is no cone, such that all the one-cones ρj associated to the homo-

geneous coordinate zj with j ∈ I lie in one cone. Let us consider the case of Sp(2)

from where it is straightforward to deduce eq. (B.4). The SR ideal reads

SRSp(2) = {XY Z, v1Z, v3Z, σX, v1X, σv3} . (B.6)

This can be obtained via the following polytope construction: From the scaling

relations eq. (B.1) one can make a canonical choice of one-cones ρi [88, 89] for the

coordinate set {X, Y, Z, v2i−1 |i=0,..,N}:

x =

−1

0

0

 , y =

 0

−1

0

 , z =

 2

3

0

 , v2i−1 =

 2− i
3− i
v

 , (B.7)

for i = 0, .., N .

Mapping 0 → 0 and v → 1 we can draw a three dimensional projection of the

fan which we show in Figure 5 for the case of Sp(2). Using the definition of the SR

ideal one can read of its elements. For a more detailed explanation see the caption

of Figure 5.

We now want to calculate the double intersections of the exceptional divisors

E2i−1E2j−1 from the SR ideal (B.4) using in principal the same strategy as was

presented in [61] to obtain the double intersections of the exceptional divisors for the
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x

y

z

Σv1v3

x

y

z

Σv1v3

x

y

z

Σv1v3

Figure 5. 3D projection of the fan of the Sp(2) resolution manifold for the subset of

coordinates {X,Y, Z, σ, v1, v3}. The top layer of grey lattice points corresponds to the

projection v → 1 while the bottom layer to 0→ 0. The blue point indicates the origin. In

the first plot from the LHS, we see the cone spanned by {x, y, v3} is such that the one-cones

x, y and z can never lie in one cone and hence XY Z is an element of the SR ideal. In

the second plot, we see that the cone spanned by {x, z, σ} is such that z, v1 and z, v3

respectively can never lie in one cone. In the third plot we see that the cone spanned by

{x, z, v3} forces Xσ and Xv1 to lie in the SR ideal. σv3 is an element of the SR ideal

because v1 lies on a line that connects them and hence they can never lie in one cone.

These are all possible elements of the SR ideal, notice that for example y and v1 lie in one

cone: {y, v1, v3}.

SU(N)-resolution manifold for N = 2, .., 5. In the Sp(N) case we consider here this

analysis is more straightforward than in the SU(N) case and can actually be used

to obtain the intersections for an arbitrary Sp(N) resolution manifold. This, in turn

will be used to derive in the next section a formula for the arithmetic genus for the

Sp(N) resolution manifold with arbitrary N .

The most general form of the double intersections is

E2i−1E2j−1 = Cij D̂([Z] + K̄) + dmE2m−1D̂ + kmE2m−1K̄ , (B.8)

where D̂ is the base divisor {pD̂ = 0} where the Sp(N) singularity is located. The

Cij have to be the entries of the Cartan matrix of Sp(N) times two, since Sp(N)

is not simply-laced. The coefficients dm and km can be extracted from the SR ideal

and the relations (B.3). For example [σ][X] = 0 implies:(
D̂ −

N∑
k=1

E2k−1

)(
2([Z] + K̄)−

N∑
i=1

i E2i−1

)
= 0 . (B.9)

In general, we have to solve 2N − 1 linear equations

E2i−1[X] = 0 for i = 0, .., N − 1 ,

[σ]E2i−1 = 0 for i = 2, .., N .
(B.10)
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for 2N − 1 non-zero intersections E2
2i−1 |i=1,..,N , E2i−1E2i+1 |i=1,..,N−1. These equations

read

N−1∑
j=2

j E2j−1(E2j−3 + E2j−1 + E2j+1) +NE2N−1(E2N−3 + E2N−1)

+ E1(E1 + E3) = −2D̂([Z] + K̄) + D̂
N−1∑
j=2

j E2j−1 + 2K̄
N−1∑
j=2

E2j−1 ,

E1(E1 + 2E3) = 2E1K̄ ,

E2i−1 [(i− 1)E2i−3 + iE2i−1 + (i+ 1)E2i+1] = 2E2i−1K̄; i = 2, .., N − 1 ,

E2i−1

[
D̂ − E2i−3 − E2i−1 − E2i+1

]
= 0; i = 2, .., N − 1 ,

E2N−1

[
D̂ − E2N−3 − E2N−1

]
= 0 .

(B.11)

It can be shown by mathematical induction ∀N that these linear equations are

solved by the following non-zero double intersections:

E2i−1E2i+1 =2D̂([Z] + K̄)− 2K̄
N∑

k=i+1

E2k−1 − D̂
i∑

k=1

k E2k−1; i = 1, .., N − 1 ,

E2
2i−1 =− 4D̂([Z] + K̄) + K̄

(
4

N∑
k=i+1

E2k−1 + 2E2i−1

)

+ D̂

(
2

i−1∑
k=i+1

k E2k−1 + (i+ 1)E2i−1

)
; i = 1, .., N − 1 ,

E2
2N−1 =− 2D̂([Z] + K̄) + 2K̄E2N−1 + D̂

(
N−1∑
k=1

k E2k−1 + E2N−1

)
.

(B.12)

B.3 Arithmetic genus of divisors

The arithmetic genus χ0 of a divisor D in a fourfold Xres
4 is given by

χ0(D) =
1

24

∫
D

c1(D)c2(D)

=
1

24

∫
Xres

4

(−D2)
(
c2(Xres

4 ) +D2
)
.

(B.13)
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To calculate the second Chern class c2(Xres
4 ) over a base B3 with toric divisors D̂i

note that the total Chern class is given by

c(Xres
4 ) = cfib.

∏
D̂i 6=D̂

(1 + D̂i)(1 + [σ])(1 + E1)..(1 + E2N−1)

= cfib.

∏
D̂i 6=D̂

(1 + D̂i)(1 +
N∑
j=0

E2i−1 +
N∑

0≤k<l

E2k−1E2l−1)

= cfib. (1 + K̄ + c2(B) + D̂

N∑
j=1

E2i−1 −
N∑

1≤k<l

E2k−1E2l−1 + ..) ,

(B.14)

where the dots denote terms that are at least triple intersections and

cfib. =
(1 + [X])(1 + [Y ])(1 + [Z])

1 + 2[Y ]
. (B.15)

Using the relations (B.3) and the intersection formula eq. (B.12) it is then straight-

forward to show

c(Xres
4 ) = 1 + c2(B) + 12K̄[Z] + 11K̄2 − 7K̄

N∑
i=1

i E2i−1 + D̂
N∑
i=1

i2E2i−1 + .. , (B.16)

where the dots denote the third and higher Chern classes. The arithmetic genus of

various divisors can then be calculated from the definition eq. (B.13) using again the

intersection formula eq. (B.12) and E2i−1[Z] = 0|i=1,..,N . We list the arithmetic genus

of the divisors that are of interest for us:

χ0(E2i−1) =
1

6

∫
B3

D̂
[
c2(B) + K̄2 + 2D̂2

]
, i = 1, .., N − 1 ,

χ0(E2N−1) =
1

12

∫
B3

D̂
[
c2(B) + K̄2 − 3K̄D̂ + 2D̂2

]
.

(B.17)

One can check that

χ0(E2N−1) = χ0(D̂) and χ0(E2i−1) = χ0(D) , i = 1, ..., N − 1 , (B.18)

where D̂ is the divisor {pD̂ = 0} on the base manifold B3 and D is its double cover

in X3. The relations (B.18) can be expected, by considering that the exceptional

divisors E2i−1 are P1 fibrations over a divisor on the base manifold.16

16In particular, the elliptic fiber splits on top of {pD̂ = 0} into a collection of P1s whose mutual

intersection is encoded into the Dynkin diagram of the corresponding ADE-singularity. When the

singularity is ‘non-split’, i.e. some of the P1s are interchanged by a monodromy when going around

the base divisor, then the gauge group is not of A-D-E type. The monodromies are reflected by

symmetries of the ADE Dynkin diagram, leading to the diagram of the B-C Lie groups. This is
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C Geometry of the SU(N) resolved fourfold

In section B.1, we discussed the features of establishing and resolving an Sp(N)

singularity. As it is known from the type IIB picture an Sp(N) gauge group is

broken to an SU(N) × U(1) gauge group by switching on a suitable gauge flux on

the brane stack. So we could also directly impose an SU(N) singularity in the F-

theory picture even though there is an important difference to the breaking by flux

that becomes apparent in the weak coupling limit.

Comparing the SU(2N) and Sp(N) Tate factorization in Table 1 there is an

additional factorization of a2 which has a drastic consequence in the Sen limit. The

Calabi-Yau hypersurface equation (2.22) enforces a conifold singularity:

0 = ξ2 − (a2
1 + wi a2,1) ≡ x1x2 − x3x4 . (C.1)

where on the RHS of eq. (C.1) we have used one of the standard parametrizations

of the conifold [90], i.e. x1 = ξ − a1, x2 = ξ + a1, x3 = wi and x4 = a2,1. Notice that

this does not happen in the Sp(N) case since a2
1 +a2 = 0 cannot be brought into the

form that parametrizes a conifold. Note that the appearance of this singularity does

not depend on the gauge group rank, as it appears for all SU(2N). Since it is not

known how to resolve this conifold singularity there is no smooth transition between

the general F-theory picture and the perturbative type IIB picture [59, 61, 86]. In

particular, we do not know if we can use the leading α′ correction to the Kähler

potential of [60] which was derived in the smooth perturbative IIB picture.

The conifold sits at the point

ξ = a1 = wi = a2,1 = 0 . (C.2)

We can check if this intersections exists in our example of an elliptically fibered

fourfold over B3 with an SU(N) gauge group enforced over D̂1∫
B

[
9D̂1 + 2D̂5

]
∧ D̂1 ∧

[
18D̂1 + 4D̂5 − D̂1

]
= 22 . (C.3)

Hence, for our example we cannot avoid the conifold singularities.

the case of the Sp(N) groups: For example, the Dynkin diagram of Sp(3) is given by mirroring

the Dynkin diagram of SU(6) as shown in Figure 6 in Appendix C. Translated to the fourfold, this

means that the P1 associated with the dashed node is trivial under the monodromies corresponding

to the mirroring. The corresponding fourfold exceptional divisor E2N−1 is a P1 fibration over D̂.

On the other hand the other exceptional divisors E2i−1 (i = 1, ..., N − 1) are fibrations over D̂ of

two P1s, exchanged under the monodromy, once one goes around D̂. These cycles can also be seen

as a P1 fibration over the double cover D of D̂. Using the fact that the arithmetic genus of a P1

fibration over a manifold M is the same as the arithmetic genus of M , one can derive the relations

(B.18).
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Ignoring the problematics of the Sen limit of SU(N) gauge groups for the moment,

we have attempted to calculate the arithmetic genus of the exceptional divisors in

the resolved fourfold of an SU(N) singularity imposed on a divisor D̂. The blow-

up procedure to obtain the resolved fourfold which is nicely discussed in [61] for

SU(2), SU(3), . . . , SU(5) is more complicated than in the Sp(N) case due to the

following features:

• The scaling relations of the blown-up P1s labeled by exceptional divisors ei are

e.g. for SU(4) given by

e0 X Y Z e1 e2 e3

0 2 3 1 0 0 0

1 1 1 0 −1 0 0

1 1 2 0 0 0 −1

1 2 2 0 0 −1 0

. (C.4)

There is a ‘non-linear’ scaling in X and Y , i.e. the weights of X and Y of a line

of weights are not proportional to the weights of the previous line which was

the case in the Sp(N) case eq. (B.1). As a consequence the Stanley Reisner

ideal is not as easily derived as eq. (B.4).

• The order in which the ei’s are introduced does not always reproduce the Car-

tan matrix of SU(N) in the double intersections of these exceptional divisors.

This makes some relabeling inevitable which is reflected in the SU(4) exam-

ple eq. (C.4) by the e1, e2, e3 columns not containing a diagonal matrix with

entries −1.

However, the resolved fourfold including the double intersections of the ei were de-

rived in [61] up to SU(5). We use the results of [61] to calculate the arithmetic genus

of the exceptional divisors and find

χ0(ei) =
1

12

∫
B

D̂ ∧
[
c2(B) + (K̄ − D̂) ∧ (K̄ − 2D̂)

]
∀i < N ≤ 5 . (C.5)

This result is the same as the Sp(N) case only for the last introduced exceptional

divisor E2N−1, see eq. (B.17) while the divisors E2i−1 for i < N obeyed a different

formula. This is plausible as can be seen from the Dynkin diagrams of Sp(N) and

SU(2N), see Figure 6.

Using eq. (C.5) for our base B and D̂ = D̂1 we see that all exceptional divisors

have χ0 = 1 and hence could carry a non-perturbative superpotential from gaugino

condensation. Even though we can only prove this for SU(N) with N ≤ 5 we suspect

that this result will hold for arbitrary SU(N) since the double intersections of the

exceptional divisors are governed by the Cartan matrix which implies in particular
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Figure 6. Dynkin diagrams for SU(6) (left) and Sp(3) (right). The Sp diagram can be

obtained from the SU diagram by mirroring the SU diagram with respect to the dashed

line. Only the blob which lies on the dashed line is invariant under this procedure.

that there is only an intersection of ei with the direct neighbors ei−1, ei and ei+1.

Hence, going to larger gauge group the arithmetic genus of say e1 should not be

affected by the newly added divisors eN , eN−1, . . .
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