
*∣
20
5.
62
0∣
*

Revised Version  DESY 12-129
ar

X
iv

:1
20

5.
62

01
v4

  [
ph

ys
ic

s.
da

ta
-a

n]
  1

5 
N

ov
 2

01
2

DESY 12-129 ISSN 0418-9833September 2012
TUnfold, an algorithm for 
orre
ting migration e�e
ts in highenergy physi
s

Stefan S
hmitt, DESY, Notkestra�e 85, 22607 Hamburgemail: ss
hmitt�mail.desy.de
Abstra
tTUnfold is a tool for 
orre
ting migration and ba
kground e�e
ts in high energy physi
s formulti-dimensional distributions. It is based on a least square �t with Tikhonov regularisation andan optional area 
onstraint. For determining the strength of the regularisation parameter, the L-
urve method and s
ans of global 
orrelation 
oeÆ
ients are implemented. The algorithm supportsba
kground subtra
tion and the propagation of statisti
al and systemati
 un
ertainties, in parti
ularthose originating from limited knowledge of the response matrix. The program is interfa
ed to theROOT analysis framework.
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1 Introdu
tionIn high energy physi
s, experiments are usually performed as 
ounting experiments, where events aregrouped into 
ertain regions of phase-spa
e, also 
alled bins. However, the kinemati
 properties of ea
hevent, su
h as four-momenta of parti
les and derived quantities, are measured only at �nite pre
ision dueto inevitable dete
tor e�e
ts. As a 
onsequen
e, events may be found in the wrong bin. Furthermorethere is the presen
e of ba
kground, su
h that only a fra
tion of the events observed in a given binoriginates from the rea
tion one is interested in.In most 
ases, algorithms su
h as GEANT [1℄ are used to simulate migrations imposed by dete
tore�e
ts, whereas underlying physi
s pro
esses are simulated using event generators su
h as PYTHIA [2℄.After tra
king the generated events through the dete
tor simulation one is able to 
onfront the physi
spro
ess modelled by the event generator with the ba
kground-subtra
ted data.However, often one is interested to report results su
h as di�erential 
ross se
tions, independent ofthe dete
tor simulation. In that 
ase, the observed event 
ounts have to be 
orre
ted for dete
tor e�e
ts.The problem may be written as ~yi = mXj=1Aij ~xj ; 1 � i � n (1)where the m bins ~xj represent the true distribution, Aij is a matrix of probabilities des
ribing themigrations from bin j to any of the n bins on dete
tor level and ~yi is the average expe
ted event 
ount atdete
tor level. It is important to note here that the observed event 
ounts yi may be di�erent from theaverage ~yi due to statisti
al 
u
tuations. A s
hemati
 view is given in �gure 1. The situations be
omes
y
y

x

~

A

statistical fluctuations

detector resolution

u
n

fo
ld

in
gFigure 1: s
hemati
 view of migration e�e
ts and statisti
al 
u
tuationssomewhat more 
ompli
ated if there is ba
kground. In that 
ase the ~yi re
eive an additional 
ontributionfrom ba
kground, ~yi = mXj=1Aij ~xj + bi; 1 � i � n (2)where bi is the ba
kground showing up in bin i. Both the ba
kground and the matrix of probabilitiesoften su�er from systemati
 un
ertainties whi
h have to be 
onsidered in addition to the statisti
alun
ertainties.One may be tempted to repla
e ~yi ! yi and ~xj ! xj in equations 1 or 2 and then solve for xj , simplyby inverting the matrix of probabilities. However, it turns out that the statisti
al 
u
tuations of the yiare ampli�ed when 
al
ulating the xj this way. Su
h 
u
tuations are often damped by imposing 
ertainsmoothness 
onditions on the xj . This pro
edure is termed \regularisation".The TUnfold algorithm [3℄, des
ribed in this paper and interfa
ed to the ROOT analysis pa
kage [5℄,implements a pro
edure to estimate the ~xj using a least square method with Tikhonov regularisation[4℄ and an optional area 
onstraint. In order to obtain best results from the least square minimisation,the number of degrees of freedom, n � m, has to be larger than zero. It means that the data yi have1



to be measured in �ner bins than are extra
ted by the unfolding pro
edure. This 
ondition n � m is in
ontrast to some other 
ommonly used unfolding methods, where often the restri
tion n = m is imposed[6, 7℄. Examples of unfolding algorithms whi
h do not have the restri
tion n = m are [8, 9℄.No attempt is made here to give a 
omplete overview of the 
ommonly used unfolding algorithms. TheTUnfold algorithm [3℄ presented here 
ompares best to algorithms based on matrix inversion or singularvalue de
omposition, like [6, 10℄. Alternative approa
hes are often based on iterative methods or on theuse of Bayes' theorem, for example [7, 8, 9℄. Many reviews on the topi
 
an be found in literature, onlytwo examples are given here [11, 12℄.2 The TUnfold algorithm2.1 De�nitionsThe TUnfold algorithm gives an estimator of a set of truth parameters, using a single measurement ofa set of observables. The observables are des
ribed by a ve
tor1 of random variables, y. The randomvariables y are taken to have a multivariant Gaussian distribution with mean ~y = A~x, where ~x is a ve
tor
orresponding to the set of of truth parameters and A is a matrix. The 
ovarian
e matrix of y is Vyy.The algorithm only works if the dimension of ~x is less or equal to the dimension of ~y. Furthermore, Vyyhas to have full rank and the rows of A shall be linear independent. The algorithm returns an estimatorx of the truth parameters ~x, given an observation y. The estimator x, when 
onsidered as a randomvariable, has a 
ovarian
e matrix whi
h is also 
al
ulated. It is labelled Vxx.2.2 AlgorithmThe unfolding algorithm, as implemented in TUnfold, determines the stationary point of the \Lagrangian"L(x; �) =L1 + L2 + L3 where (3)L1 =(y �Ax)TVyy�1(y �Ax); (4)L2 =�2(x� fbx0)T(LTL)(x� fbx0); (5)L3 =�(Y � eTx) and (6)Y =Xi yi; (7)ej =Xi Aij ; (8)The term L1 is what one expe
ts from a least square minimisation. The ve
tor y has n rows. The
ovarian
e matrix Vyy of y is diagonal in many 
ases, su
h that the diagonals hold the squares of theun
ertainties. TUnfold also supports the use of non-diagonal Vyy. The ve
tor x 
orresponds to theunfolding result and has m rows. The elements Aij of A des
ribe for ea
h row j of x the probabilities tomigrate to bin i of y. The matrix A often is determined using Monte Carlo simulations.The term L2 des
ribes the regularisation, whi
h damps 
u
tuations in x. Su
h 
u
tuations originatefrom the statisti
al 
u
tuations of y, whi
h are ampli�ed when determining the stationary point ofequation 3. The parameter �2 gives the strength of the regularisation. It is 
onsidered as a 
onstant1Throughout this paper, matri
es (M) and ve
tors (v) are printed in bold. Matri
es or ve
tors without indi
es, writtennext to ea
h other, are multiplied. Where needed, bra
kets with indi
es are used to refer to spe
i�
 elements. The notationMT indi
ates that a matrix is transposed, its rows and 
olumns are swapped. The inverse of M is written as M�1. Ave
tor is treated as a matrix with only one 
olumn, su
h that a transposed ve
tor has only one row. The dot produ
t oftwo ve
tors v1 and v2 thus is equivalent to the matrix multipli
ation v1Tv2. Other examples are (Ax)i =Pj Aijxj and(AT)ij = Aji. 2



while determining the stationary point of L. The matrix L has n 
olumns and nR rows, 
orresponding tonR regularisation 
onditions. The bias ve
tor fbx0 is 
omposed of a normalisation fa
tor fb and a ve
torx0. In the simplest 
ase, one has fb = 0, nR = n and L is the unity matrix. In that 
ase, L2 simpli�esto �2jjxjj2, e�e
tively suppressing large deviations of x from zero. If fb = 1, deviations of x from x0 aresuppressed. Choi
es of the matrix L di�erent from the unity matrix are dis
ussed in se
tion 7.The term L3 is an optional area 
onstraint. There is a Lagrangian parameter �. The sum over allobservations is given by Y , equation 7. The eÆ
ien
y ve
tor e has m rows and is 
al
ulated from A asindi
ated in equation 8. If the area 
onstraint is used, the normalisation of the result x, 
orre
ted forthe eÆ
ien
ies e, is thus enfor
ed to mat
h the total event 
ount Y . This pro
edure is applied in orderto limit possible biases on the normalisation whi
h are present if the data y follow Poisson's statisti
swhereas the least square ansatz is stri
tly valid only for normal distributed measurements. The problemis dis
ussed in more detail in literature, for example in [13℄.The minimum or stationary point of L(x; �) is determined by setting the �rst derivatives to zero. Inthe 
ase without area 
onstraint, � is set to zero and only the derivatives of L1 +L2 with respe
t to the
omponents of x are set to zero. When in
luding the area 
onstraint, the equations are solved for x and� together. The partial derivatives of L(x; �) are�L(x; �)�xj =� 2�ATVyy�1(y �Ax)�j + 2�2 �(LTL)(x� fbx0)�j � �ej ; (9)�L(x; �)�� =Y � eTx: (10)(11)The stationary point x of L is found asx =(xj�=0 without area 
onstraintxj�=0 + �2Ee with area 
onstraint where (12)xj�=0 =E hATVyy�1y + �2(LTL)fbx0i ; (13)E =�ATVyy�1A+ �2(LTL)��1 and (14)�2 =Y � eTxj�=0eTEe : (15)In order to 
al
ulate the 
ovarian
e matrix of x, given the 
ovarian
e matrix of y, the 
orrespondingpartial derivatives are 
al
ulated(Dxy)ki := �xk�yi =(Bki without area 
onstraintBki + (Ee)k 1�(BTe)ieTEe with area 
onstraint where (16)B =EATVyy�1: (17)The 
ovarian
e matrix of the result x, originating from Vyy is thus given byVxx = DxyVyy(Dxy)T: (18)3 Normalisation of the matrix of migrationsIn most 
ases, A is determined from Monte Carlo simulations. Within TUnfold, it is foreseen to initialisethe unfolding from a matrixM of event 
ounts, determined in a Monte Carlo event simulation, where Mhas n+1 rows and m 
olumns, one row more than A. The extra row is used to 
ount those events whi
hare generated in a parti
ular bin j but are not found in any of the re
onstru
ted bins. For the purposeof this paper, the extra row of M is denoted with index i = 0, whereas all other matri
es and ve
tors3



have indi
es starting from 1. In other words, the matrix elements Mij 
ount the Monte Carlo eventsgenerated in bin j of x and re
onstru
ted in bin i > 0 of y, whereas the matrix elements M0j 
ount theMonte Carlo events generated in bin j and not re
onstru
ted in any of the bins of y. For the unfoldingalgorithm, A and x0 are initialised from M as followsAij =Mijsj ; where i > 0 and (19)sj = nXi=0Mij ; (20)(x0)j =sj : (21)4 Choi
e of the regularisation strengthWhen unfolding, the strength of the regularisation, �2, is an unknown parameter. If �2 is too small, theunfolding result often has large 
u
tuations and 
orrespondingly large negative 
orrelations of adja
entbins. If �2 is too large, the result is biased towards fbx0. Several methods to 
hoose the strength of theregularisation are dis
ussed in literature, for example eigenvalue analyses [14℄, minimisation of 
orrelation
oeÆ
ients [15℄, and the L-
urve method [16℄. At present, in TUnfold a simple version of the L-
urvemethod is implemented to determine �2 as well as methods to minimise global 
orrelation 
oeÆ
ients.4.1 L-
urve s
anThe idea of the L-
urve method is to look at the graph of two variables L
urvex and L
urvey and lo
ate thepoint where the 
urvature is maximal. These variables are de�ned asL
urvex = logL1 and (22)L
urvey = log L2�2 ; (23)su
h that Lx tests the agreement of x with the data and Ly tests the agreement of x with the regularisation
ondition. Note that L
urvey does not have an expli
it dependen
e on �2. For �2 ! 0 the value of L
urvexis minimal and L
urvey is maximal, be
ause L2 ! 0 and x 
orresponds to the stationary point of L1+L3.As �2 gets large, L
urvex in
reases whereas L
urvey is getting small, be
ause the Lagrangian is dominatedby L2. It is observed that the parametri
 plot of L
urvey against L
urvex often shows a kink (is L-shaped).The kink lo
ation is 
hosen to determine �2.In TUnfold, the L-
urve algorithm is implemented as follows: the unfolding is repeated for a numberof points in t = log � , thus s
anning the L-
urve. The 
urvature C of the L-
urve is determined asC = d2L
urvey dL
urvex � d2L
urvex dL
urvey�(dL
urvex )2 + (dL
urvey )2� 32 : (24)The �rst and se
ond derivatives of L
urvex (L
urvey ) with respe
t to t, dL
urvex (dL
urvey ) and d2L
urvex(d2L
urvey ), respe
tively, are approximated using 
ubi
 spline parametrisations of the s
an results. Themaximum of C is �nally determined with the help of a 
ubi
 spline parametrisation of C(t).4.2 Minimising global 
orrelation 
oeÆ
ientsA method of minimising global 
orrelation 
oeÆ
ients is also implemented. Given the 
ovarian
e matrixVxx the global 
orrelation 
oeÆ
ient of a 
omponent i of x is de�ned as�i =s1� 1(Vxx�1)ii(Vxx)ii : (25)Two sorts of 
orrelation 
oeÆ
ients s
ans have been implemented:4



1. minimising the average 
orrelation: the regularisation strength �2 is 
hosen su
h that the averageglobal 
orrelationPi �i=n is minimised, where n is the dimension of x.2. minimising the maximum 
orrelation: the regularisation strength �2 is 
hosen su
h that the maxi-mum 
orrelation maxi(�i) is minimised.Furthermore, it is possible to 
hoose the 
ovarian
es1. The 
ovarian
e matrix Vxx may or may not in
lude systemati
 un
ertainties.2. There is the option to partition the 
ovarian
e matrix su
h that only parts of the matrix are usedfor the 
al
ulation of global 
orrelation 
oeÆ
ients.3. It is possible to merge bins or groups of bins prior to 
al
ulating the �i.When partitioning the 
ovarian
e matrix, the 
orresponding unused rows and 
olumns of Vxx are removedprior to inverting the matrix and 
al
ulating the global 
orrelation 
oeÆ
ients. When merging bins ofgroups of bins, the 
orresponding rows or 
olumns of the matrix are added up.The s
an is implemented su
h that the unfolding is repeated for a number of points in t = log � . Forea
h point the 
hosen 
orrelation type (maximum or average) is 
al
ulated. The minimum is determinedusing a 
ubi
 spline interpolation.5 Ba
kground subtra
tionOften there is ba
kground present in the measured data y. It is worth to mention that the ba
kgroundhas to in
lude all types of events whi
h are possibly re
onstru
ted in one of the bins of y but do notoriginate from any of the bins of x. In parti
ular, part of the signal pro
ess may be generated outsidethe phase-spa
e 
overed by x and thus has to be 
ounted as ba
kground. Sometimes it is possible todetermine ba
kground sour
es from the data as a part of the unfolding pro
ess, for example using adis
riminator [17℄. In order to a
hieve that, ba
kground normalisation fa
tors are in
luded as extra binsof the ve
tor x, 
orresponding to extra 
olumns of the matri
es A, M. The ba
kground normalisation isthen determined in the unfolding pro
ess.On the other hand, it is often useful to simply subtra
t the ba
kground prior to unfolding. WithinTUnfold, the following method of ba
kground subtra
tion is implementedy =y0 � f bb; (26)(Vyy)ij =(V0yy)ij + Æij(f b(Æb)i)2 + (Æf b)2bibj : (27)Here, the 
omponents of y0 are the data prior to ba
kground subtra
tion, with 
ovarian
e matrix V0yy.The ba
kground has a normalisation fa
tor f b with un
ertainty Æf b. The ba
kground shape is des
ribedby a ve
tor b and the un
ertainties on the 
omponents of b are given by the ve
tor Æb. Finally, Æij is theKrone
ker symbol.The 
ovarian
e matrix Vyy re
eives 
ontributions from the 
ovarian
e matrix of y0 as well as from theun
ertainties on the ba
kground shape, the latter 
ontributing only to the diagonal elements. In additionthere are 
ontributions to the 
ovarian
e matrix from the ba
kground normalisation un
ertainty. Be
ausethe ba
kground normalisation is 
orrelated for all analysis bins, it also 
ontributes to the o�-diagonalelements of the matrix.In TUnfold, the ba
kground subtra
tion is generalised su
h that multiple ba
kground sour
es may besubtra
ted. The 
ontribution of individual sour
es of un
ertainty to the result's 
ovarian
e matrix maybe studied after unfolding. 5



6 Systemati
 un
ertainties on the matrix of migrationsThe matrix of migrations,A, usually re
eives un
ertainties from various sour
es. First, there are statisti
alun
ertainties, originating from 
ounting the Monte Carlo events in the matrix M. Se
ond, there maybe systemati
 un
ertainties, in many 
ases des
ribed by a variation M ! M + ÆM, 
orresponding to avariation of experimental 
onditions.The statisti
al un
ertainties are bin-to-bin independent un
ertainties �Mij on M. They are propa-gated through the unfolding formalism and result in a 
ontribution VM;statxx to the 
ovarian
e matrix ofx. Details are given in the appendix.A systemati
 variation ÆM is propagated to the result ve
tor in the form of a ve
tor of systemati
 shifts,Æx. The 
orresponding 
ovarian
e matrix 
ontribution is given by VÆMxx = Æx(Æx)T. The 
al
ulation ofÆx is des
ribed in the appendix. TUnfold supports multiple sour
es of systemati
 variation.7 Choi
e of regularisation 
onditionsWithin TUnfold, the matrix of regularisation 
onditions L 
an be 
hosen with some 
exibility. Threebasi
 types of regularisation are supported:1. rows of L where only one element is non-zero, 
orresponding to a regularisation of the amplitudeor size of x,2. rows of L where two elements are non-zero, 
orresponding to a regularisation of the �rst derivativeof x,3. rows of L where three elements are non-zero, 
orresponding to a regularisation of the se
ond deriva-tive (
urvature) of x.The �rst derivatives are approximated by di�eren
es of event 
ounts in adja
ent bins, xi+1�xi. Similarly,the se
ond derivatives are approximated by (xi+1 � xi)� (xi � xi�1).When initialising TUnfold, it is possible to 
hoose one of the three basi
 types of regularisation. Thistype of regularisation is then applied to all bins of x.1. if TUnfold is initialised to regularise on the size, L is initialised to the unity matrix.2. if TUnfold is initialised to regularise on the �rst derivatives, L has n � 1 rows and the non-zeroelements are: Li;i = �1 and Li;i+1 = 1.3. if TUnfold is initialised to regularise on the se
ond derivatives, L has n� 2 rows and the non-zeroelements are: Li;i = 1, Li;i+1 = �2, Li;i+2 = 1.On the other hand, it is also possible to 
hoose neither of the basi
 types and to set up details of theregularisation for spe
i�
 bins or groups of bins instead.
6



7.1 Regularisation of multi-dimensional distributionsIn many 
ases, x is not simply a one-dimensional distribution. Instead, the bins of x may originate fromseveral distributions, for example if there are bins 
ontrolling the ba
kground normalisation in additionto the signal bins. Furthermore, the signal bins may originate from a multi-dimensional distribution. Forexample, the signal may have 4� 3 bins in two variables PT and �. The ve
tor x then has 12 bins, wherethe �rst 4 bins 
orrespond to the 4 PT bins of the �rst � bin, et
. Su
h a stru
ture is not problemati
when regularising on the size, but 
are has to be taken when regularising on the �rst or se
ond derivatives.Within TUnfold there is support to initialise one-, two- or three-dimensional regularisation patterns.For example, when regularising the two-dimensional pattern of 4�3 bins from the (PT ; �) example aboveon the se
ond derivative, L is set up as follows:
L =

0BBBBBBBBBBBBBB�
1 �2 1 0 0 0 0 0 0 0 0 00 1 �2 1 0 0 0 0 0 0 0 00 0 0 0 1 �2 1 0 0 0 0 00 0 0 0 0 1 �2 1 0 0 0 00 0 0 0 0 0 0 0 1 �2 1 00 0 0 0 0 0 0 0 0 1 �2 11 0 0 0 �2 0 0 0 1 0 0 00 1 0 0 0 �2 0 0 0 1 0 00 0 1 0 0 0 �2 0 0 0 1 00 0 0 1 0 0 0 �2 0 0 0 1

1CCCCCCCCCCCCCCA (28)
Here, rows 1-2 
orrespond to the regularisation of the se
ond derivatives on PT for the �rst � bin.Similarly, rows 3-4 and 5-6 a
t on PT for the se
ond and third � bin, respe
tively. Finally, rows 7-10
orrespond to the se
ond derivatives in � for the four PT bins.7.2 Regularisation on the density, multi-dimensional distributionsThe regularisation s
hemes dis
ussed so far do not take into a

ount the e�e
ts of non-uniform bin widths.Another 
ompli
ation arises in 
ases where multidimensional distributions of signal and ba
kgrounds haveto be mapped to the one-dimensional ve
tors x, y and to the matrix M. The latest version of TUnfold[3℄ addresses these issues. Multidimensional distributions are mapped on one axis of the ve
tors x andy. The regularisation 
onditions may be re�ned su
h that the e�e
ts of non-uniform bin widths [19℄ aretaken into a

ount.7.2.1 DensitiesDuring the unfolding, the bins of x 
orrespond to event 
ounts. However, often is desirable to regularisenot on the even 
ount but on the density. The density is 
al
ulated by dividing the number of events ina given bin by the width of the bin. For 
al
ulating the regularisation 
onditions, the number of eventsx is transformed to a density x̂, xj ! x̂j = xj � fuserjQd wdj : (29)The number of events xj is divided by the multi-dimensional bin widthQdwdj , where wdj is the bin widthof bin j in the dimension d, as spe
i�ed by the underlying multidimensional distribution. In addition,there is an arbitrary user fun
tion fuserj , whi
h may be used to 
ompensate known kinemati
 fa
tors2. InTUnfold, the transformation to the density is implemented by modifying the elements of the matrix L,Lrj ! Lrj � fuserjQd wdj ; (30)where the index r is used to enumerate the nR regularisation 
onditions.2An example is the use of the \redu
ed 
ross se
tion" rather than the ordinary 
ross se
tion for in
lusive deep-inelasti
s
attering [18℄. The ordinary 
ross se
tion 
hanges by several orders of magnitude as a fun
tion of kinemati
 variablesand hen
e is diÆ
ult to regularise. In 
ontrast, the redu
ed 
ross se
tion does not vary a lot, and thus is more natural toregularise on. 7



7.2.2 DerivativesIn the 
ase where the regularisation is made on the derivatives, the bin width may also be in
luded inthe approximate 
al
ulation of the derivatives. The 
al
ulation of �rst derivatives is modi�ed su
h that(xj2 � xj1 )! �dÆdj2j1 (xj2 � xj1); (31)where j2 and j1 are the indi
es of adja
ent bins of a multi-dimensional distribution and d is the dimensionof the distribution for whi
h the derivative is 
al
ulated. The distan
e between the two bin 
entres is Ædj2j1and �d is a normalisation 
onstant spe
i�
 to the dimension d. In TUnfold, the normalisation 
onstantby default is 
hosen to be the average bin width in dimension d. The �d are relevant if derivativesare 
onsidered for multi-dimensional distributions, where often the derivatives along one dimension aredi�erent in magnitude from derivatives along another dimension. For example, in the variable PT thetypi
al bin width may be 10 [GeV℄, where as in � the typi
al bin width may be 0:5. In this 
ase, thederivatives in PT typi
ally are a fa
tor of 20 smaller than those in �, unless the normalisation �d is
hosen appropriately.In analogy to the 
ase of �rst derivatives, the 
al
ulation of se
ond derivatives may be modi�ed totake into a

ount bin widths using the transformation(xj3 � xj2)� (xj2 � xj1 )! (�d)2Ædj2j1 + Ædj3j2  xj3 � xj2Ædj3j2 � xj2 � xj1Ædj2j1 ! ; (32)where j1, j2 and j3 are indi
es 
orresponding to a triplet of adja
ent bins of a multidimensional dis-tribution. The distan
e of bin 
entres and normalisation fa
tors are de�ned similar to the 
ase of �rstderivatives.In TUnfold, the 
al
ulation of �rst or se
ond derivatives in
luding bin widths is implemented byadding the appropriate modi�
ations to the matrix L. It is possible to use the modi�ed 
al
ulation ofderivatives together with the density 
al
ulation explained in se
tion 7.2.1.7.2.3 Example of a more 
ompli
ated regularisation s
hemeConsider the use of 4 � 3 bins in (PT ; �), where the bins borders in Pt are [5; 7; 10; 15; 25℄ and the binborders in � are [�2;�0:5; 0:5; 2℄. The dimension d = 1 
orresponds to PT and d = 2 
orresponds to �.In the example, the bin widths along pT are [2; 3; 5; 10℄ and those along � are [1:5; 1; 1:5℄. The �rst four
omponents of the ve
tor x hold the four bins in PT of the �rst � bin, et
. The bin widths are thus givenby w1;1 = w1;5 = w1;9 = 2w1;2 = w1;6 = w1;10 = 3w1;3 = w1;7 = w1;11 = 5w1;4 = w1;8 = w1;12 = 10 and w2;1 = w2;2 = w2;3 = w2;4 = 1:5w2;5 = w2;6 = w2;7 = w2;8 = 1w2;9 = w2;10 = w2;11 = w2;12 = 1:5 (33)and average bin sizes are �1 = 5 and �2 = 1:33. The distan
es of the bin 
entres are [2:5; 4; 7:5℄ alongPt and [1:25; 1:25℄ along �, respe
tively, soÆ12;1 = Æ16;5 = Æ110;9 = 2:5Æ13;2 = Æ17;6 = Æ111;10 = 4Æ14;3 = Æ18;7 = Æ112;11 = 7:5 and Æ25;1 = Æ16;2 = Æ27;3 = Æ28;4 = 1:25Æ29;5 = Æ110;6 = Æ211;7 = Æ212;8 = 1:25 : (34)The resulting matrix L for the 
ase of 
urvature regularisation on the density, in
luding bin width
8



e�e
ts, then looks like
L =

0BBBBBBBBBBBBBB�
0:51 �0:56 0:13 0 0 0 0 0 0 0 0 00 0:12 �0:11 0:02 0 0 0 0 0 0 0 00 0 0 0 0:77 �0:83 0:19 0 0 0 0 00 0 0 0 0 0:18 �0:17 0:03 0 0 0 00 0 0 0 0 0 0 0 0:51 �0:56 0:13 00 0 0 0 0 0 0 0 0 0:12 �0:11 0:020:19 0 0 0 �0:57 0 0 0 0:19 0 0 00 0:13 0 0 0 �0:38 0 0 0 0:13 0 00 0 0:08 0 0 0 �0:22 0 0 0 0:08 00 0 0 0:04 0 0 0 �0:11 0 0 0 0:04

1CCCCCCCCCCCCCCA ; (35)
where the numbers have been rounded to two digits.8 Stru
ture of the TUnfold software pa
kageTUnfold is implemented in the programming language C++ and is interfa
ed to the ROOT analysisframework. The pa
kage is organised in four 
lassesTUnfold implements the basi
 unfolding algorithm and L-
urve s
an.TUnfoldSys inherits from the TUnfold 
lass and adds fun
tionality to perform ba
kground subtra
tionand propagation of systemati
 un
ertainties.TUnfoldDensity inherits from the TUnfoldSys 
lass. It adds a method to perform s
ans of global 
or-relations. More important, it provides support for multidimensional binning s
hemes, implementedwith the help of the 
lass TUnfoldBinning.TUnfoldBinning is a 
lass to set up binning s
hemes. The binning s
hemes are organised in tree-like stru
tures. The nodes of the tree 
orrespond to distin
t 
hannels. Ea
h 
hannel may hold amultidimensional distribution in some variables. An example of a binning s
heme for the ve
tor xwith signal and ba
kground bins is shown in �gure 2.
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8 bgnd sourcesFigure 2: example binning s
heme with three nodes. The \generator" node is the root node. It hastwo 
hild nodes, \signal" and \ba
kground". The \signal" node has a two-dimensional binning in twovariables, pt and eta, whereas the ba
kground node has un
onne
ted bins 
orresponding to various ba
k-ground sour
es.9 SummaryThe mathemati
al foundations of the TUnfold software pa
kage have been presented. TUnfold 
an beused to 
orre
t measurements for migration e�e
ts using the well known mathemati
al te
hniques of least-square �tting and Tikhonov regularisation. For 
hoosing the strength of the regularisation parameter, two9



types of s
anning methods are implemented: the L 
urve method and a 
exible minimisation pro
edure of
orrelation 
oeÆ
ients. The pa
kage o�ers the possibility to set up non-trivial regularisation s
hemes forunfolding multi-dimensional distribution. Standard methods to subtra
t ba
kground and to propagatesystemati
 un
ertainties are also implemented.A Partial derivatives used for the propagation of un
ertaintiesThe partial derivatives of Aij with respe
t to Mkj are�Aij�Mkj = Æik �Aijsj : (36)The partial derivatives of x with respe
t to the matrix elements Aij are given by�xk�Aij =Ckjzi � (Dxy)kixj where (37)Ckj =(Ekj without area 
onstraintEkj � (Ee)j(Ee)keTEe with area 
onstraint and (38)zi =(�Vyy�1(y �Ax)�i without area 
onstraint�Vyy�1(y �Ax)�i + �2 with area 
onstraint. (39)In order to derive this result, the partial derivatives of E with respe
t to the elements of the inverse E�1are expressed by the elements of E, �Eij�(E�1)kl = �EikElj : (40)The partial derivative of x with respe
t to the regularisation parameter �2 is�xk�(�2) = 8<:�E(LTL)(fbx0 � x)�k without area 
onstraint�E(LTL)(fbx0 � x)�k � eTE(LTL)(fbx0�x)eTEe (Ee)k with area 
onstraint. (41)B Propagation of systemati
 un
ertaintiesCorrelated systemati
 shifts are propagated in the form of systemati
 shifts of the result. Given a shiftÆM to the matrixM, one �nds the 
orresponding shift ÆA of A using equation 19. The resulting shift onx is then given by Æx =Xi;j �x�Aij (ÆA)ij = C(ÆA)Tz �Dxy(ÆA)x; (42)Statisti
al un
ertainties �Mij of the elements of M may also be relevant. The 
al
ulation 
ould bedone by repeated appli
ation of equations 36 and 42 for ea
h independent sour
e of un
ertainty �Mij .However, the required 
omputing 
osts are large. In TUnfold, the 
omputation is fa
torised su
h thatthe 
omputing 
ost is O(n3)(VM;statxx )ij =Xk FikFjkpk +Xk CikCjkXl Qlkz2l +Xk Dxyik Dxyjk Xl Qklx2l� (FGT +GFT)ij � (DxyHT +H(Dxy)T)ij where (43)
10



Qij =��Mijsj �2 and pj = nXi=0 Qij ; (44)Fij =Xk �xi�AkjAkj = Cij(ATz)j � (DxyA)ijxj ; (45)Gij =Xk �xi�AkjQkj = Cij(QTz)j � (DxyQ)ijxj ; (46)Hij =zjXk CikxkQjk: (47)Referen
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