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AbstratTUnfold is a tool for orreting migration and bakground e�ets in high energy physis formulti-dimensional distributions. It is based on a least square �t with Tikhonov regularisation andan optional area onstraint. For determining the strength of the regularisation parameter, the L-urve method and sans of global orrelation oeÆients are implemented. The algorithm supportsbakground subtration and the propagation of statistial and systemati unertainties, in partiularthose originating from limited knowledge of the response matrix. The program is interfaed to theROOT analysis framework.
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1 IntrodutionIn high energy physis, experiments are usually performed as ounting experiments, where events aregrouped into ertain regions of phase-spae, also alled bins. However, the kinemati properties of eahevent, suh as four-momenta of partiles and derived quantities, are measured only at �nite preision dueto inevitable detetor e�ets. As a onsequene, events may be found in the wrong bin. Furthermorethere is the presene of bakground, suh that only a fration of the events observed in a given binoriginates from the reation one is interested in.In most ases, algorithms suh as GEANT [1℄ are used to simulate migrations imposed by detetore�ets, whereas underlying physis proesses are simulated using event generators suh as PYTHIA [2℄.After traking the generated events through the detetor simulation one is able to onfront the physisproess modelled by the event generator with the bakground-subtrated data.However, often one is interested to report results suh as di�erential ross setions, independent ofthe detetor simulation. In that ase, the observed event ounts have to be orreted for detetor e�ets.The problem may be written as ~yi = mXj=1Aij ~xj ; 1 � i � n (1)where the m bins ~xj represent the true distribution, Aij is a matrix of probabilities desribing themigrations from bin j to any of the n bins on detetor level and ~yi is the average expeted event ount atdetetor level. It is important to note here that the observed event ounts yi may be di�erent from theaverage ~yi due to statistial utuations. A shemati view is given in �gure 1. The situations beomes
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gFigure 1: shemati view of migration e�ets and statistial utuationssomewhat more ompliated if there is bakground. In that ase the ~yi reeive an additional ontributionfrom bakground, ~yi = mXj=1Aij ~xj + bi; 1 � i � n (2)where bi is the bakground showing up in bin i. Both the bakground and the matrix of probabilitiesoften su�er from systemati unertainties whih have to be onsidered in addition to the statistialunertainties.One may be tempted to replae ~yi ! yi and ~xj ! xj in equations 1 or 2 and then solve for xj , simplyby inverting the matrix of probabilities. However, it turns out that the statistial utuations of the yiare ampli�ed when alulating the xj this way. Suh utuations are often damped by imposing ertainsmoothness onditions on the xj . This proedure is termed \regularisation".The TUnfold algorithm [3℄, desribed in this paper and interfaed to the ROOT analysis pakage [5℄,implements a proedure to estimate the ~xj using a least square method with Tikhonov regularisation[4℄ and an optional area onstraint. In order to obtain best results from the least square minimisation,the number of degrees of freedom, n � m, has to be larger than zero. It means that the data yi have1



to be measured in �ner bins than are extrated by the unfolding proedure. This ondition n � m is inontrast to some other ommonly used unfolding methods, where often the restrition n = m is imposed[6, 7℄. Examples of unfolding algorithms whih do not have the restrition n = m are [8, 9℄.No attempt is made here to give a omplete overview of the ommonly used unfolding algorithms. TheTUnfold algorithm [3℄ presented here ompares best to algorithms based on matrix inversion or singularvalue deomposition, like [6, 10℄. Alternative approahes are often based on iterative methods or on theuse of Bayes' theorem, for example [7, 8, 9℄. Many reviews on the topi an be found in literature, onlytwo examples are given here [11, 12℄.2 The TUnfold algorithm2.1 De�nitionsThe TUnfold algorithm gives an estimator of a set of truth parameters, using a single measurement ofa set of observables. The observables are desribed by a vetor1 of random variables, y. The randomvariables y are taken to have a multivariant Gaussian distribution with mean ~y = A~x, where ~x is a vetororresponding to the set of of truth parameters and A is a matrix. The ovariane matrix of y is Vyy.The algorithm only works if the dimension of ~x is less or equal to the dimension of ~y. Furthermore, Vyyhas to have full rank and the rows of A shall be linear independent. The algorithm returns an estimatorx of the truth parameters ~x, given an observation y. The estimator x, when onsidered as a randomvariable, has a ovariane matrix whih is also alulated. It is labelled Vxx.2.2 AlgorithmThe unfolding algorithm, as implemented in TUnfold, determines the stationary point of the \Lagrangian"L(x; �) =L1 + L2 + L3 where (3)L1 =(y �Ax)TVyy�1(y �Ax); (4)L2 =�2(x� fbx0)T(LTL)(x� fbx0); (5)L3 =�(Y � eTx) and (6)Y =Xi yi; (7)ej =Xi Aij ; (8)The term L1 is what one expets from a least square minimisation. The vetor y has n rows. Theovariane matrix Vyy of y is diagonal in many ases, suh that the diagonals hold the squares of theunertainties. TUnfold also supports the use of non-diagonal Vyy. The vetor x orresponds to theunfolding result and has m rows. The elements Aij of A desribe for eah row j of x the probabilities tomigrate to bin i of y. The matrix A often is determined using Monte Carlo simulations.The term L2 desribes the regularisation, whih damps utuations in x. Suh utuations originatefrom the statistial utuations of y, whih are ampli�ed when determining the stationary point ofequation 3. The parameter �2 gives the strength of the regularisation. It is onsidered as a onstant1Throughout this paper, matries (M) and vetors (v) are printed in bold. Matries or vetors without indies, writtennext to eah other, are multiplied. Where needed, brakets with indies are used to refer to spei� elements. The notationMT indiates that a matrix is transposed, its rows and olumns are swapped. The inverse of M is written as M�1. Avetor is treated as a matrix with only one olumn, suh that a transposed vetor has only one row. The dot produt oftwo vetors v1 and v2 thus is equivalent to the matrix multipliation v1Tv2. Other examples are (Ax)i =Pj Aijxj and(AT)ij = Aji. 2



while determining the stationary point of L. The matrix L has n olumns and nR rows, orresponding tonR regularisation onditions. The bias vetor fbx0 is omposed of a normalisation fator fb and a vetorx0. In the simplest ase, one has fb = 0, nR = n and L is the unity matrix. In that ase, L2 simpli�esto �2jjxjj2, e�etively suppressing large deviations of x from zero. If fb = 1, deviations of x from x0 aresuppressed. Choies of the matrix L di�erent from the unity matrix are disussed in setion 7.The term L3 is an optional area onstraint. There is a Lagrangian parameter �. The sum over allobservations is given by Y , equation 7. The eÆieny vetor e has m rows and is alulated from A asindiated in equation 8. If the area onstraint is used, the normalisation of the result x, orreted forthe eÆienies e, is thus enfored to math the total event ount Y . This proedure is applied in orderto limit possible biases on the normalisation whih are present if the data y follow Poisson's statistiswhereas the least square ansatz is stritly valid only for normal distributed measurements. The problemis disussed in more detail in literature, for example in [13℄.The minimum or stationary point of L(x; �) is determined by setting the �rst derivatives to zero. Inthe ase without area onstraint, � is set to zero and only the derivatives of L1 +L2 with respet to theomponents of x are set to zero. When inluding the area onstraint, the equations are solved for x and� together. The partial derivatives of L(x; �) are�L(x; �)�xj =� 2�ATVyy�1(y �Ax)�j + 2�2 �(LTL)(x� fbx0)�j � �ej ; (9)�L(x; �)�� =Y � eTx: (10)(11)The stationary point x of L is found asx =(xj�=0 without area onstraintxj�=0 + �2Ee with area onstraint where (12)xj�=0 =E hATVyy�1y + �2(LTL)fbx0i ; (13)E =�ATVyy�1A+ �2(LTL)��1 and (14)�2 =Y � eTxj�=0eTEe : (15)In order to alulate the ovariane matrix of x, given the ovariane matrix of y, the orrespondingpartial derivatives are alulated(Dxy)ki := �xk�yi =(Bki without area onstraintBki + (Ee)k 1�(BTe)ieTEe with area onstraint where (16)B =EATVyy�1: (17)The ovariane matrix of the result x, originating from Vyy is thus given byVxx = DxyVyy(Dxy)T: (18)3 Normalisation of the matrix of migrationsIn most ases, A is determined from Monte Carlo simulations. Within TUnfold, it is foreseen to initialisethe unfolding from a matrixM of event ounts, determined in a Monte Carlo event simulation, where Mhas n+1 rows and m olumns, one row more than A. The extra row is used to ount those events whihare generated in a partiular bin j but are not found in any of the reonstruted bins. For the purposeof this paper, the extra row of M is denoted with index i = 0, whereas all other matries and vetors3



have indies starting from 1. In other words, the matrix elements Mij ount the Monte Carlo eventsgenerated in bin j of x and reonstruted in bin i > 0 of y, whereas the matrix elements M0j ount theMonte Carlo events generated in bin j and not reonstruted in any of the bins of y. For the unfoldingalgorithm, A and x0 are initialised from M as followsAij =Mijsj ; where i > 0 and (19)sj = nXi=0Mij ; (20)(x0)j =sj : (21)4 Choie of the regularisation strengthWhen unfolding, the strength of the regularisation, �2, is an unknown parameter. If �2 is too small, theunfolding result often has large utuations and orrespondingly large negative orrelations of adjaentbins. If �2 is too large, the result is biased towards fbx0. Several methods to hoose the strength of theregularisation are disussed in literature, for example eigenvalue analyses [14℄, minimisation of orrelationoeÆients [15℄, and the L-urve method [16℄. At present, in TUnfold a simple version of the L-urvemethod is implemented to determine �2 as well as methods to minimise global orrelation oeÆients.4.1 L-urve sanThe idea of the L-urve method is to look at the graph of two variables Lurvex and Lurvey and loate thepoint where the urvature is maximal. These variables are de�ned asLurvex = logL1 and (22)Lurvey = log L2�2 ; (23)suh that Lx tests the agreement of x with the data and Ly tests the agreement of x with the regularisationondition. Note that Lurvey does not have an expliit dependene on �2. For �2 ! 0 the value of Lurvexis minimal and Lurvey is maximal, beause L2 ! 0 and x orresponds to the stationary point of L1+L3.As �2 gets large, Lurvex inreases whereas Lurvey is getting small, beause the Lagrangian is dominatedby L2. It is observed that the parametri plot of Lurvey against Lurvex often shows a kink (is L-shaped).The kink loation is hosen to determine �2.In TUnfold, the L-urve algorithm is implemented as follows: the unfolding is repeated for a numberof points in t = log � , thus sanning the L-urve. The urvature C of the L-urve is determined asC = d2Lurvey dLurvex � d2Lurvex dLurvey�(dLurvex )2 + (dLurvey )2� 32 : (24)The �rst and seond derivatives of Lurvex (Lurvey ) with respet to t, dLurvex (dLurvey ) and d2Lurvex(d2Lurvey ), respetively, are approximated using ubi spline parametrisations of the san results. Themaximum of C is �nally determined with the help of a ubi spline parametrisation of C(t).4.2 Minimising global orrelation oeÆientsA method of minimising global orrelation oeÆients is also implemented. Given the ovariane matrixVxx the global orrelation oeÆient of a omponent i of x is de�ned as�i =s1� 1(Vxx�1)ii(Vxx)ii : (25)Two sorts of orrelation oeÆients sans have been implemented:4



1. minimising the average orrelation: the regularisation strength �2 is hosen suh that the averageglobal orrelationPi �i=n is minimised, where n is the dimension of x.2. minimising the maximum orrelation: the regularisation strength �2 is hosen suh that the maxi-mum orrelation maxi(�i) is minimised.Furthermore, it is possible to hoose the ovarianes1. The ovariane matrix Vxx may or may not inlude systemati unertainties.2. There is the option to partition the ovariane matrix suh that only parts of the matrix are usedfor the alulation of global orrelation oeÆients.3. It is possible to merge bins or groups of bins prior to alulating the �i.When partitioning the ovariane matrix, the orresponding unused rows and olumns of Vxx are removedprior to inverting the matrix and alulating the global orrelation oeÆients. When merging bins ofgroups of bins, the orresponding rows or olumns of the matrix are added up.The san is implemented suh that the unfolding is repeated for a number of points in t = log � . Foreah point the hosen orrelation type (maximum or average) is alulated. The minimum is determinedusing a ubi spline interpolation.5 Bakground subtrationOften there is bakground present in the measured data y. It is worth to mention that the bakgroundhas to inlude all types of events whih are possibly reonstruted in one of the bins of y but do notoriginate from any of the bins of x. In partiular, part of the signal proess may be generated outsidethe phase-spae overed by x and thus has to be ounted as bakground. Sometimes it is possible todetermine bakground soures from the data as a part of the unfolding proess, for example using adisriminator [17℄. In order to ahieve that, bakground normalisation fators are inluded as extra binsof the vetor x, orresponding to extra olumns of the matries A, M. The bakground normalisation isthen determined in the unfolding proess.On the other hand, it is often useful to simply subtrat the bakground prior to unfolding. WithinTUnfold, the following method of bakground subtration is implementedy =y0 � f bb; (26)(Vyy)ij =(V0yy)ij + Æij(f b(Æb)i)2 + (Æf b)2bibj : (27)Here, the omponents of y0 are the data prior to bakground subtration, with ovariane matrix V0yy.The bakground has a normalisation fator f b with unertainty Æf b. The bakground shape is desribedby a vetor b and the unertainties on the omponents of b are given by the vetor Æb. Finally, Æij is theKroneker symbol.The ovariane matrix Vyy reeives ontributions from the ovariane matrix of y0 as well as from theunertainties on the bakground shape, the latter ontributing only to the diagonal elements. In additionthere are ontributions to the ovariane matrix from the bakground normalisation unertainty. Beausethe bakground normalisation is orrelated for all analysis bins, it also ontributes to the o�-diagonalelements of the matrix.In TUnfold, the bakground subtration is generalised suh that multiple bakground soures may besubtrated. The ontribution of individual soures of unertainty to the result's ovariane matrix maybe studied after unfolding. 5



6 Systemati unertainties on the matrix of migrationsThe matrix of migrations,A, usually reeives unertainties from various soures. First, there are statistialunertainties, originating from ounting the Monte Carlo events in the matrix M. Seond, there maybe systemati unertainties, in many ases desribed by a variation M ! M + ÆM, orresponding to avariation of experimental onditions.The statistial unertainties are bin-to-bin independent unertainties �Mij on M. They are propa-gated through the unfolding formalism and result in a ontribution VM;statxx to the ovariane matrix ofx. Details are given in the appendix.A systemati variation ÆM is propagated to the result vetor in the form of a vetor of systemati shifts,Æx. The orresponding ovariane matrix ontribution is given by VÆMxx = Æx(Æx)T. The alulation ofÆx is desribed in the appendix. TUnfold supports multiple soures of systemati variation.7 Choie of regularisation onditionsWithin TUnfold, the matrix of regularisation onditions L an be hosen with some exibility. Threebasi types of regularisation are supported:1. rows of L where only one element is non-zero, orresponding to a regularisation of the amplitudeor size of x,2. rows of L where two elements are non-zero, orresponding to a regularisation of the �rst derivativeof x,3. rows of L where three elements are non-zero, orresponding to a regularisation of the seond deriva-tive (urvature) of x.The �rst derivatives are approximated by di�erenes of event ounts in adjaent bins, xi+1�xi. Similarly,the seond derivatives are approximated by (xi+1 � xi)� (xi � xi�1).When initialising TUnfold, it is possible to hoose one of the three basi types of regularisation. Thistype of regularisation is then applied to all bins of x.1. if TUnfold is initialised to regularise on the size, L is initialised to the unity matrix.2. if TUnfold is initialised to regularise on the �rst derivatives, L has n � 1 rows and the non-zeroelements are: Li;i = �1 and Li;i+1 = 1.3. if TUnfold is initialised to regularise on the seond derivatives, L has n� 2 rows and the non-zeroelements are: Li;i = 1, Li;i+1 = �2, Li;i+2 = 1.On the other hand, it is also possible to hoose neither of the basi types and to set up details of theregularisation for spei� bins or groups of bins instead.
6



7.1 Regularisation of multi-dimensional distributionsIn many ases, x is not simply a one-dimensional distribution. Instead, the bins of x may originate fromseveral distributions, for example if there are bins ontrolling the bakground normalisation in additionto the signal bins. Furthermore, the signal bins may originate from a multi-dimensional distribution. Forexample, the signal may have 4� 3 bins in two variables PT and �. The vetor x then has 12 bins, wherethe �rst 4 bins orrespond to the 4 PT bins of the �rst � bin, et. Suh a struture is not problematiwhen regularising on the size, but are has to be taken when regularising on the �rst or seond derivatives.Within TUnfold there is support to initialise one-, two- or three-dimensional regularisation patterns.For example, when regularising the two-dimensional pattern of 4�3 bins from the (PT ; �) example aboveon the seond derivative, L is set up as follows:
L =

0BBBBBBBBBBBBBB�
1 �2 1 0 0 0 0 0 0 0 0 00 1 �2 1 0 0 0 0 0 0 0 00 0 0 0 1 �2 1 0 0 0 0 00 0 0 0 0 1 �2 1 0 0 0 00 0 0 0 0 0 0 0 1 �2 1 00 0 0 0 0 0 0 0 0 1 �2 11 0 0 0 �2 0 0 0 1 0 0 00 1 0 0 0 �2 0 0 0 1 0 00 0 1 0 0 0 �2 0 0 0 1 00 0 0 1 0 0 0 �2 0 0 0 1

1CCCCCCCCCCCCCCA (28)
Here, rows 1-2 orrespond to the regularisation of the seond derivatives on PT for the �rst � bin.Similarly, rows 3-4 and 5-6 at on PT for the seond and third � bin, respetively. Finally, rows 7-10orrespond to the seond derivatives in � for the four PT bins.7.2 Regularisation on the density, multi-dimensional distributionsThe regularisation shemes disussed so far do not take into aount the e�ets of non-uniform bin widths.Another ompliation arises in ases where multidimensional distributions of signal and bakgrounds haveto be mapped to the one-dimensional vetors x, y and to the matrix M. The latest version of TUnfold[3℄ addresses these issues. Multidimensional distributions are mapped on one axis of the vetors x andy. The regularisation onditions may be re�ned suh that the e�ets of non-uniform bin widths [19℄ aretaken into aount.7.2.1 DensitiesDuring the unfolding, the bins of x orrespond to event ounts. However, often is desirable to regularisenot on the even ount but on the density. The density is alulated by dividing the number of events ina given bin by the width of the bin. For alulating the regularisation onditions, the number of eventsx is transformed to a density x̂, xj ! x̂j = xj � fuserjQd wdj : (29)The number of events xj is divided by the multi-dimensional bin widthQdwdj , where wdj is the bin widthof bin j in the dimension d, as spei�ed by the underlying multidimensional distribution. In addition,there is an arbitrary user funtion fuserj , whih may be used to ompensate known kinemati fators2. InTUnfold, the transformation to the density is implemented by modifying the elements of the matrix L,Lrj ! Lrj � fuserjQd wdj ; (30)where the index r is used to enumerate the nR regularisation onditions.2An example is the use of the \redued ross setion" rather than the ordinary ross setion for inlusive deep-inelastisattering [18℄. The ordinary ross setion hanges by several orders of magnitude as a funtion of kinemati variablesand hene is diÆult to regularise. In ontrast, the redued ross setion does not vary a lot, and thus is more natural toregularise on. 7



7.2.2 DerivativesIn the ase where the regularisation is made on the derivatives, the bin width may also be inluded inthe approximate alulation of the derivatives. The alulation of �rst derivatives is modi�ed suh that(xj2 � xj1 )! �dÆdj2j1 (xj2 � xj1); (31)where j2 and j1 are the indies of adjaent bins of a multi-dimensional distribution and d is the dimensionof the distribution for whih the derivative is alulated. The distane between the two bin entres is Ædj2j1and �d is a normalisation onstant spei� to the dimension d. In TUnfold, the normalisation onstantby default is hosen to be the average bin width in dimension d. The �d are relevant if derivativesare onsidered for multi-dimensional distributions, where often the derivatives along one dimension aredi�erent in magnitude from derivatives along another dimension. For example, in the variable PT thetypial bin width may be 10 [GeV℄, where as in � the typial bin width may be 0:5. In this ase, thederivatives in PT typially are a fator of 20 smaller than those in �, unless the normalisation �d ishosen appropriately.In analogy to the ase of �rst derivatives, the alulation of seond derivatives may be modi�ed totake into aount bin widths using the transformation(xj3 � xj2)� (xj2 � xj1 )! (�d)2Ædj2j1 + Ædj3j2  xj3 � xj2Ædj3j2 � xj2 � xj1Ædj2j1 ! ; (32)where j1, j2 and j3 are indies orresponding to a triplet of adjaent bins of a multidimensional dis-tribution. The distane of bin entres and normalisation fators are de�ned similar to the ase of �rstderivatives.In TUnfold, the alulation of �rst or seond derivatives inluding bin widths is implemented byadding the appropriate modi�ations to the matrix L. It is possible to use the modi�ed alulation ofderivatives together with the density alulation explained in setion 7.2.1.7.2.3 Example of a more ompliated regularisation shemeConsider the use of 4 � 3 bins in (PT ; �), where the bins borders in Pt are [5; 7; 10; 15; 25℄ and the binborders in � are [�2;�0:5; 0:5; 2℄. The dimension d = 1 orresponds to PT and d = 2 orresponds to �.In the example, the bin widths along pT are [2; 3; 5; 10℄ and those along � are [1:5; 1; 1:5℄. The �rst fouromponents of the vetor x hold the four bins in PT of the �rst � bin, et. The bin widths are thus givenby w1;1 = w1;5 = w1;9 = 2w1;2 = w1;6 = w1;10 = 3w1;3 = w1;7 = w1;11 = 5w1;4 = w1;8 = w1;12 = 10 and w2;1 = w2;2 = w2;3 = w2;4 = 1:5w2;5 = w2;6 = w2;7 = w2;8 = 1w2;9 = w2;10 = w2;11 = w2;12 = 1:5 (33)and average bin sizes are �1 = 5 and �2 = 1:33. The distanes of the bin entres are [2:5; 4; 7:5℄ alongPt and [1:25; 1:25℄ along �, respetively, soÆ12;1 = Æ16;5 = Æ110;9 = 2:5Æ13;2 = Æ17;6 = Æ111;10 = 4Æ14;3 = Æ18;7 = Æ112;11 = 7:5 and Æ25;1 = Æ16;2 = Æ27;3 = Æ28;4 = 1:25Æ29;5 = Æ110;6 = Æ211;7 = Æ212;8 = 1:25 : (34)The resulting matrix L for the ase of urvature regularisation on the density, inluding bin width
8



e�ets, then looks like
L =

0BBBBBBBBBBBBBB�
0:51 �0:56 0:13 0 0 0 0 0 0 0 0 00 0:12 �0:11 0:02 0 0 0 0 0 0 0 00 0 0 0 0:77 �0:83 0:19 0 0 0 0 00 0 0 0 0 0:18 �0:17 0:03 0 0 0 00 0 0 0 0 0 0 0 0:51 �0:56 0:13 00 0 0 0 0 0 0 0 0 0:12 �0:11 0:020:19 0 0 0 �0:57 0 0 0 0:19 0 0 00 0:13 0 0 0 �0:38 0 0 0 0:13 0 00 0 0:08 0 0 0 �0:22 0 0 0 0:08 00 0 0 0:04 0 0 0 �0:11 0 0 0 0:04

1CCCCCCCCCCCCCCA ; (35)
where the numbers have been rounded to two digits.8 Struture of the TUnfold software pakageTUnfold is implemented in the programming language C++ and is interfaed to the ROOT analysisframework. The pakage is organised in four lassesTUnfold implements the basi unfolding algorithm and L-urve san.TUnfoldSys inherits from the TUnfold lass and adds funtionality to perform bakground subtrationand propagation of systemati unertainties.TUnfoldDensity inherits from the TUnfoldSys lass. It adds a method to perform sans of global or-relations. More important, it provides support for multidimensional binning shemes, implementedwith the help of the lass TUnfoldBinning.TUnfoldBinning is a lass to set up binning shemes. The binning shemes are organised in tree-like strutures. The nodes of the tree orrespond to distint hannels. Eah hannel may hold amultidimensional distribution in some variables. An example of a binning sheme for the vetor xwith signal and bakground bins is shown in �gure 2.
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types of sanning methods are implemented: the L urve method and a exible minimisation proedure oforrelation oeÆients. The pakage o�ers the possibility to set up non-trivial regularisation shemes forunfolding multi-dimensional distribution. Standard methods to subtrat bakground and to propagatesystemati unertainties are also implemented.A Partial derivatives used for the propagation of unertaintiesThe partial derivatives of Aij with respet to Mkj are�Aij�Mkj = Æik �Aijsj : (36)The partial derivatives of x with respet to the matrix elements Aij are given by�xk�Aij =Ckjzi � (Dxy)kixj where (37)Ckj =(Ekj without area onstraintEkj � (Ee)j(Ee)keTEe with area onstraint and (38)zi =(�Vyy�1(y �Ax)�i without area onstraint�Vyy�1(y �Ax)�i + �2 with area onstraint. (39)In order to derive this result, the partial derivatives of E with respet to the elements of the inverse E�1are expressed by the elements of E, �Eij�(E�1)kl = �EikElj : (40)The partial derivative of x with respet to the regularisation parameter �2 is�xk�(�2) = 8<:�E(LTL)(fbx0 � x)�k without area onstraint�E(LTL)(fbx0 � x)�k � eTE(LTL)(fbx0�x)eTEe (Ee)k with area onstraint. (41)B Propagation of systemati unertaintiesCorrelated systemati shifts are propagated in the form of systemati shifts of the result. Given a shiftÆM to the matrixM, one �nds the orresponding shift ÆA of A using equation 19. The resulting shift onx is then given by Æx =Xi;j �x�Aij (ÆA)ij = C(ÆA)Tz �Dxy(ÆA)x; (42)Statistial unertainties �Mij of the elements of M may also be relevant. The alulation ould bedone by repeated appliation of equations 36 and 42 for eah independent soure of unertainty �Mij .However, the required omputing osts are large. In TUnfold, the omputation is fatorised suh thatthe omputing ost is O(n3)(VM;statxx )ij =Xk FikFjkpk +Xk CikCjkXl Qlkz2l +Xk Dxyik Dxyjk Xl Qklx2l� (FGT +GFT)ij � (DxyHT +H(Dxy)T)ij where (43)
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Qij =��Mijsj �2 and pj = nXi=0 Qij ; (44)Fij =Xk �xi�AkjAkj = Cij(ATz)j � (DxyA)ijxj ; (45)Gij =Xk �xi�AkjQkj = Cij(QTz)j � (DxyQ)ijxj ; (46)Hij =zjXk CikxkQjk: (47)Referenes[1℄ R. Brun et al., CERN-DD/EE-84-1 (1987).[2℄ T. Sjostrand, P. Eden, C. Friberg, L. Lonnblad, G. Miu, S. Mrenna and E. Norr bin, \High-energyphysis event generation with PYTHIA 6.1," Comput. Phys. Commun. 135, 238 (2001)[hep-ph/0010017℄.[3℄ S. Shmitt, TUnfold version 17.0, http://www.desy.de/~sshmitt/tunfold.html.[4℄ A. N. Tikhonov, Soviet Math. Dokl. 4 (1963), 1035.[5℄ R. Brun and F. Rademakers, Nul. Instrum. Meth. A 389 (1997) 81.[6℄ A. Hoker and V. Kartvelishvili, Nul. Instrum. Meth. A 372 (1996) 469 [hep-ph/9509307℄.[7℄ G. D'Agostini, Nul. Instrum. Meth. A 362, 487 (1995).[8℄ G. D'Agostini, arXiv:1010.0632.[9℄ G. Choudalakis, arXiv:1201.4612 [physis.data-an℄.[10℄ V. Blobel, arXiv:hep-ex/0208022.[11℄ V. B. Anykeev, A. A. Spiridonov and V. P. Zhigunov, Nul. Instrum. Meth. A 303 (1991) 350.[12℄ V. Blobel, proeedings of the PHYSTAT 2011 workshop, Eds. H. B. Prosper, L.Lynons, Geneva(2011) 240.[13℄ Glen Cowan, statistial data analysis, Oxford University Press (1998), ISBN 0198501560[14℄ V. Blobel, Unfolding methods in high energy physis experiments, in Proeedings of the 1984.CERN Shool of Computing, CERN 85-09 (1985).[15℄ V. Blobel, \Data unfolding", talk given at the Terasale statistis Shool, Hamburg (2010)http://www.desy.de/~blobel/.[16℄ P. C. Hansen, The L-urve and Its Use in the Numerial Treatment of Inverse Problems,Computational Inverse Problems in Eletroardiology, ed. P. Johnston (2000).[17℄ F. D. Aaron et al. [H1 Collaboration℄, Eur. Phys. J. C 66 (2010) 17 [arXiv:0910.5631℄.[18℄ C. Adlo� et al. [H1 Collaboration℄, Eur. Phys. J. C 13 (2000) 609 [hep-ex/9908059℄.[19℄ Amnon Harel, private ommuniation (Marh 2011).
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