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Abstract

We study proton decay in a six-dimensional orbifold GUT model with gauge
group SO(10) × U(1)A. Magnetic U(1)A flux in the compact dimensions deter-
mines the multiplicity of quark-lepton generations, and it also breaks supersym-
metry by giving universal GUT scale masses to scalar quarks and leptons. The
model can successfully account for quark and lepton masses and mixings. Our
analysis of proton decay leads to the conclusion that the proton lifetime must
be close to the current experimental lower bound. Moreover, we find that the
branching ratios for the decay channels p → e+π0 and p → µ+π0 are of similar
size, in fact the latter one can even be dominant. This is due to flavour non-
diagonal couplings of heavy vector bosons together with large off-diagonal Higgs
couplings, which appears to be a generic feature of flux compactifications.
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1 Introduction

Proton decay is a striking prediction of Grand Unified Theories (GUTs) which pre-
dict interactions violating baryon number (B) and lepton number (L) [1, 2]. In non-
supersymmetric theories proton decay is caused by the exchange of heavy vector bosons,
leading toB+L violating dimension-six operators with dominant decay mode p→ e+π0.
In supersymmetric theories the exchange of colour-triplet scalars can lead to dangerous
B+L violating dimension-five operators [3, 4] and p→ ν̄K+ as dominant decay mode.
Consistency with the observed proton lifetime then requires that the colour-triplet part-
ners of Higgs bosons are very heavy [5]. It is remarkable that these dangerous operators
are generically absent in higher-dimensional orbifold GUTs [6–8] where, on the other
hand, dimension-six operators can be enhanced by Kaluza-Klein towers of heavy vector
bosons.

The discovery of proton decay would not only strongly support the idea of grand
unification, the measurement of the proton lifetime and its branching ratios would also
provide valuable information on the mass scale of unification and on the flavour struc-
ture of the theory. Moreover, the pattern of proton decays would help to distinguish
between the different GUT groups, including the Pati-Salam group [1], Georgi-Glashow
SU(5) [2], SO(10) [9, 10] or flipped SU(5) [11, 12].

Proton decay has already been studied for a large variety of GUT models (for reviews
see, for example, [13–16]). Here we are particularly interested in predictions for proton
decay in orbifold GUT models. During the past years a number of analyses have been
carried out for five-dimensional (5D) models (see, for example, [6–8,17–21]) and also for
six-dimensional (6D) models [22–24]. Recently, a new class of magnetized 6D orbifold
GUT models with broken supersymmetry has been studied [25]. The magnetic flux
in the extra dimensions plays a twofold role, it generates the multiplicity of quark-
lepton generations and it also breaks supersymmetry [26] around the GUT scale. The
effective low-energy theory contains two Higgs doublets and possibly light higgsinos,
whereas scalar quarks and leptons have GUT scale masses. The theory can account
for quark and lepton masses and mixings [27, 28], and it can be consistently matched
to a supersymmetric theory at the compactification scale, which approximately equals
the GUT scale [29–31]. Light higgsinos can be made consistent with constraints from
direct detection by mixing with an additional singlet [32].

In this paper we study proton decay in magnetized orbifold GUTs. The decay rate
crucially depends on the compactification scale Mc which is constrained by the require-
ment of gauge coupling unification at some cutoff-scale Λ of the higher-dimensional
theory [33]. Since the full ultraviolet completion of the 4D effective theory is not
known, the compactification scale can only be estimated. This is in contrast to 4D
GUTs where the masses of heavy vector bosons can be precisely computed for theo-
ries in which the Standard Model gauge couplings unify. In a detailed analysis of 5D
orbifold GUTs the authors find an uncertainty of about two orders of magnitude for
Mc [21]. Recently, a comparison of 4D GUTs and 5D orbifold GUTs has been given
in [34].

It is well known that branching ratios in proton decay strongly depend on the
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flavour structure of the theory. We find comparable branching ratios for p→ e+π0 and
p→ µ+π0. As we shall see, this is partly due to non-diagonal coupling of heavy vector
bosons to flavour eigenstates, which is caused by non-trivial overlap integrals of fermion
and vector boson mode functions. A large branching ratio to µ+π0, due to large mixing
among charged leptons, has previously been discussed in the context of a flipped SU(5)
model [35]. It is intriguing, that the Super-Kamiokande collaboration has observed two
candidates for p → µ+π0 which, however, are consistent with the expected number of
background events [36].

The paper is organized as follows. In Section 2 we briefly recall the main features
of our model and we discuss the constraints on the compactification scale based on
gauge coupling unification. Section 3 deals with the various contributions to proton
decay and determines lifetime and branching ratios into different final states. Our
conclusions are given in Section 4. In Appendix A the relevant overlap integrals of
mode functions are given, and Appendix B contains the unitary matrices that connect
weak and mass eigenstates for two fits of the model parameters to quark and lepton
masses and mixings.

2 GUT model and gauge coupling unification

The considered 6D GUT model has been described in detail in [25, 27, 28]. The bulk
gauge group is SO(10)×U(1)A. The 6D theory is compactified on the orbifold T 2/Z2,
and the GUT gauge group is broken to the Standard Model gauge group by two Wilson-
lines (see Fig. 1). At the fixed point ζI the bulk SO(10) symmetry is left unbroken
whereas at the fixed points ζPS, ζGG and ζfl it is broken to three different subgroups,
respectively [37,38],

GPS = SU(4)× SU(2)L × SU(2)R

⊃ SU(3)× U(1)B−L × SU(2)L × U(1)R , (1)

GGG = SU(5)× U(1)X

⊃ SU(3)× SU(2)L × U(1)Y × U(1)X , (2)

Gfl = SU(5)′ × U(1)X′

⊃ SU(3)× SU(2)L × U(1)Z × U(1)X′ . (3)

Clearly, the Standard Model gauge group with an additional U(1) factor can be obtained
as intersection of the subgroups at two different fixed points.

The relations between the generators of the different U(1) factors are easily obtained
by considering the decomposition of the SO(10) 16-plet, in standard notation 16 ⊃
dc, l, q, uc, ec, nc, at the different fixed points. At ζGG, with U(1)Y × U(1)X , one has
16 ⊃ 5∗3 + 10−1 + 1−5, with 5∗3 ⊃ (3∗, 1)1/3,3 + (1, 2)−1/2,3 ∼ dc + l, 10−1 ⊃ (3, 2)1/6,−1 +
(3∗, 1)−2/3,−1 + (1, 1)1,−1 ∼ q + uc + ec and 1−5 = (1, 1)0,−5 ∼ nc. Correspondingly, at
ζPS, with U(1)B−L × U(1)R, the decomposition reads 16 ⊃ (4, 2, 1) + (4∗, 1, 2), with
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ζI ζPS

ζflζGG

Figure 1: Orbifold T 2/Z2 with two Wilson lines and the fixed points ζI, ζPS, ζGG, and ζfl.

(4∗, 1, 2) ⊃ (3∗, 1)−1/3,1/2 + (3∗, 1)−1/3,−1/2 + (1, 1)1,1/2 + (1, 1)1,−1/2 ∼ dc + uc + ec + nc.
Comparison with the decomposition at ζGG yields the relations

B − L =
4

5
Y − 1

5
X , I3R =

3

5
Y +

1

10
X . (4)

At ζfl, with U(1)Z×U(1)X′ , the decomposition is the same as at ζGG, with Z and X ′ tak-
ing the role of Y and X, respectively. Flipped SU(5) is obtained from Georgi-Glashow
SU(5) by exchanging dc and uc, and nc and ec. This implies 16 ⊃ 5∗

′
3 +10′−1 +1′−5, with

5∗
′

3 ⊃ (3∗, 1)1/3,3 + (1, 2)−1/2,3 ∼ uc + l, 10−1 ⊃ (3, 2)1/6,−1 + (3∗, 1)−2/3,−1 + (1, 1)1,−1 ∼
q + dc + nc and 1−5 = (1, 1)0,−5 ∼ ec. From comparison with the decomposition at ζGG

one obtains

Z = −1

5
(Y +X) , X ′ = −24

5
Y +

1

5
X . (5)

The 6D theory has six 16-plets two of which, ψ and χ, contain the three quark-
lepton generations as zero-modes. In addition, they yield as split multiplets a fourth
set of quark and lepton SU(2)L singlets, uc, dc, nc, ec. Two 16-plets, ψc and χc, contain
the charge-conjugate singlets u, d, n, e. Each of them decouples via a GUT scale mass
term one linear combination of the four sets of uc, dc, nc and ec, respectively. The three
orthogonal linear combinations remain in the low-energy spectrum. Furthermore, there
are two 16-plets, Ψ and Ψc, yielding singlets for spontaneous B−L breaking, and eight
10-plets required by 6D anomaly cancellation, which contain two Higgs doublets, Hu

and Hd, and further vector-like split multiplets that acquire GUT scale masses. The
vector-like split multiplets are crucial to obtain realistic mass matrices for the light
quarks and leptons, as discussed in [27, 28]. However, they have no effect on proton
decay amplitudes and we can therefore ignore them in the following. The 16-plets
ψ and χ have nonvanishing U(1)A charge which determines the multiplicity of their
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zero-modes in the magnetic flux background. Explicitly, the mode expansions read

ψ =
∑
i′=1,2

[
qi′ψ

(i′)
−+ + li′ψ

(i′)
−− + (dci′ + nci′)ψ

(i′)
+−

]
+

∑
α′=1,2,3

(ucα′ + ecα′)ψ
(α′)
++ ,

χ = q3χ
(1)
−− + l3χ

(1)
−+ + (uc4 + ec4)χ

(1)
+− +

∑
i′=1,2

(dci′+2 + nci′+2)χ
(i′)
++ ,

ψc = u+ e , χc = d+ n , Ψ = Dc +N c , Ψc = D +N .

(6)

Since the GUT group SO(10) is broken by two Wilson-lines, the spectrum of fermion
zero-modes is determined by the choice of two parities, for instance at the Pati-Salam
(PS) fixed point and the Georgie-Glashow (GG) fixed point. Since the parities are
associated with matrices that do not commute with SO(10), the parities of the different
Standard Model fields contained in the 16-plets are in general different. The choice
in [28] leads to the decompositions given in Eqs. (6). The subscripts of the 4D fields,
i′ and α′, label the degeneracy of the corresponding zero-modes. In addition to quarks
and leptons the low-energy theory contains two light Higgs doublets, and possibly a
light SU(2)L doublet pair of higgsinos.

The proton lifetime crucially depends on the compactification scale Mc, which is
related to the scale of unification in higher-dimensional GUTs. In orbifold GUTs,
where the GUT symmetry is broken at orbifold fixed points, gauge couplings unify only
approximately at the compactification scale, and corrections due to massive vector-like
split multiplets, brane kinetic terms and the field content of the higher-dimensional
theory have to be taken into account to achieve unification of couplings at some cut-
off-scale Λ > Mc. In the following we study the consistency between proton decay and
constraints from gauge coupling unification.

2.1 Brane kinetic terms

The 4D gauge couplings receive contributions from the 6D bulk gauge coupling and
from brane kinetic terms,

1

g2
i (Mc)

=
V2

g2
6D(Mc)

+
∑

p=I,PS,GG,fl

1

g2
i (Mc)

∣∣∣
p
. (7)

Here V2 is the volume of the orbifold, and the brane kinetic terms take the form

LGK
4D = −1

4

∑
p

F̂ 2|p ≡ −
1

4

∑
p,i

Gp
iF

2
p,i , (8)
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where Gp
i are constants and F 2

p,i = F a
µνF

aµν |p,i is a field strength squared for a factor
of the unbroken gauge group at fixed point p. For our SO(10) model one has

F 2|I = GI F 2
45 , (9)

F 2|PS = GPS
1 F 2

(15,1,1) +GPS
2 F 2

(1,3,1) +GPS
3 F 2

(1,1,3) , (10)

F 2|q = Gq
1 F

2
(24,0) +Gq

2 F
2
(1,0) , (11)

with q = GG, fl. At each fixed point the unbroken gauge group contains two U(1)
factors: U(1)Y × U(1)X at ζI and ζGG, U(1)Z × U(1)X′ at ζfl, and U(1)B−L × U(1)R at
ζPS. Using Eqs. (4) and (5), the U(1) gauge kinetic terms for B−L, I3R, Z and X ′ can
be expressed in terms of kinetic terms for U(1)Y and U(1)X . In this way one obtains for
the gauge kinetic terms of the unbroken 4D gauge group SU(3)×SU(2)×U(1)Y×U(1)X :

−4LGK
4D ⊃

(
Ĝ+GPS

1 +GGG
1 +Gfl

1

)
F 2

(8,1,0,0) +
(
Ĝ+GPS

2 +GGG
1 +Gfl

1

)
F 2

(1,3,0,0)

+

(
3

5
Ĝ+

6

25
GPS

1 +
9

25
GPS

3 +
3

5
GGG

1 +
3

125
Gfl

1 +
72

125
Gfl

2

)
F 2
Y

+

(
1

40
Ĝ+

3

200
GPS

1 +
1

100
GPS

3 +
1

40
GGG

2 +
3

125
Gfl

1 +
1

1000
Gfl

2

)
F 2
X , (12)

with Ĝ = V2/g
2
6D+GI. It is convenient to normalize the SM and U(1)X gauge couplings

to the colour SU(3) coupling, which yields

−4LGK
4D ⊃ GF 2

(8,1,0,0) +
(
G+ ∆PS

2

)
F 2

(1,3,0,0) +

(
G+

3

5
∆PS

1 +
24

25
∆fl

)
3

5
F 2
Y

+

(
G+

2

5
∆PS

1 + ∆GG +
1

25
∆fl

)
1

40
F 2
X , (13)

where

G = Ĝ+GPS
1 +GGG

1 +Gfl
1, ∆PS

2 = GPS
2 −GPS

1 ,

∆PS
1 = GPS

3 −GPS
1 , ∆fl = Gfl

2 −Gfl
1, ∆GG = GGG

2 −GGG
1 .

(14)

At the compactification scale, one then obtains the following relations between the SM
gauge couplings:

1

α2

− 1

α3

= 4π∆PS
2 ≡ δ23 ,

1

α1

− 1

α2

= 4π

(
3

5
∆PS

1 +
24

25
∆fl −∆PS

2

)
≡ δ12 ,

(15)
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where α1 = 5
3
αY . We do not discuss gauge coupling unification for U(1)X since we

assume that this U(1) symmetry is spontaneously broken close to the compactification
scale.

2.2 The scale of compactification

The conditions for gauge coupling unification given in Eqs. (15) need to be satisfied at
the compactification scale Mc. Since the two terms δ23 and δ12 are linear combinations
of five independent brane kinetic terms it is certainly possible to satisfy these equations.
However, it is not clear whether this can be achieved with reasonable values for the
brane kinetic terms. Here we neglect further heavy threshold corrections and higher-
order running effects.

Let us first determine the phenomenologically required size of the correction terms
δ23 and δ12 in the two cases of a pure two-Higgs-doublet model (THDM) (case A) and
a THDM with higgsinos of mass 1 TeV (case B). The three running couplings of the
Standard Model gauge group and the parameters δ23 and δ12 are shown for the two
cases in Fig. 2 and Fig. 3, respectively, where we have used one-loop renormalization
group equations. With light higgsinos (Fig. 3), one obtains a rather accurate gauge
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Figure 2: Left panel: Running of α−1
i with respect to renormalization scale Q for case A. Right panel:

The values of δ23 and δ12 required by the conditions given in Eq. (15). The gray region is excluded by the
current lower bound on the proton lifetime.

coupling unification without correction terms at Q ∼ 1014 GeV. As a consequence, the
difference |δ23− δ12| is smaller in case B than in case A. In the right panel of Fig. 2 and
Fig. 3 the gray region (Mc < 1015 GeV) is excluded by the current lower bound on the
proton lifetime (see Section 3).

In higher-dimensional theories gauge couplings receive power-law quantum correc-
tions for scales above the compactification scale, Λ > Mc. In six dimensions one has at
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Figure 3: Same as in Fig. 2, but for the case B.

one-loop order [33],

δ

(
1

g2
i (Λ)

)
= − bπ

16π2

(
Λ

Mc

)2

, (16)

where b is the one-loop coefficient of the β-function. For the gauge group SO(10)
with N = 2 supersymmetry, eight 10-plets and six 16-plets, which corresponds to the
model in [28], one obtains1 b = 12. Due to the large number of bulk matter fields one
reaches the strong coupling regime, 1/g2

i ≈ 0, already close to the compactification
scale, at Λ/Mc ' 3.7. Assuming now gauge coupling unification at strong coupling at
a cutoff Λ > Mc [40], one can estimate the size of brane kinetic terms due to quantum
corrections,

Gp
i =

bp,i
8π2

ln

(
Λ

Mc

)
. (17)

Here bp,i is the one-loop β-function of a 4D coupling at fixed point ζp, which describes
the logarithmic running due to bulk zero-modes with nonvanishing wave function at p.
This logarithmic contribution is relevant for the ‘differential running’, i.e., the difference
between contributions to different brane kinetic terms [8,41]. In general, contributions
of higher Kaluza-Klein (KK) modes can also lead to power corrections in the differential
running. However, in the considered model, such terms do not appear [38].

At the fixed point ζPS, with unbroken subgroup SU(4)×SU(2)L×SU(2)R, the bulk
fields yield the following chiral superfields with positive parity [28]: ψ, χ,Ψ : (4∗, 1, 2);
ψc, χc,Ψc : (4, 1, 2); H1, H2 : (1, 2, 2); H3, . . . H8 : (6, 1, 1), and the N = 1 vector
multiplets contained in 45 : (15, 1, 1) + (1, 3, 1) + (1, 1, 3). The three brane kinetic

1Here we have used b = − 11
3 CA + 2

3TRnf + 1
2TRns, where nf and ns are the number of Weyl

fermions and complex scalars, respectively. Choosing T10 = 1
2 , one has CA = 4 and T16 = 1 for the

gauge group SO(10) [39].
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terms are given by

GPS
1 =

b4

8π2
ln

(
Λ

Mc

)
, GPS

2 =
b2L

8π2
ln

(
Λ

Mc

)
, GPS

3 =
b2R

8π2
ln

(
Λ

Mc

)
. (18)

Inserting the indices for the above representations [39] into the expression for the one-
loop β-function, one finds b4 = 0, b2L = −4 and b2R = 8.

Analogously, at the fixed point ζfl, with unbroken subgroup SU(5)′ × U(1)′, the
chiral superfields with positive parity are [28]: ψ : 5

′∗
3 + 1′−5; χ,Ψ : 10′−1; ψc : 5′−3, 1

′
5;

χc,Ψc : 10∗1; H1 . . . H8 : 4 × 5
′∗
−2, 4 × 5′2. For the N = 1 vector multiplet one has

45 : 24′0, 1
′
0. The two brane kinetic terms read

Gfl
1 =

b5′

8π2
ln

(
Λ

Mc

)
, Gfl

2 =
b1′

8π2
ln

(
Λ

Mc

)
. (19)

Inserting the indices of the SU(5)′ representations [39] into the one-loop β-function,
one obtains b5′ = −4 and b1′ = 17/8.

Eqs. (18) and (19), together with Eqs. (15) and Λ/Mc ' 3.7, yield the result

δ23 = −0.8 , δ12 = 3.1 . (20)

Inspection of Fig. 2 and Fig. 3 shows that this result is incompatible with the values
of δ23 and δ12 required by gauge coupling unification. Hence, given just the bulk field
content of the considered model, unification of gauge couplings cannot be achieved at
strong coupling. However, the differential running beyond the compactification scale is
strongly model dependent. Adding further heavy vector-like pairs of bulk fields and/or
N = 1 split multiplets at the branes does not change the low-energy phenomenology,
but it significantly modifies the values of δ23 and δ12. Indeed, orbifold compactifications
of the heterotic string generically yield as many N = 1 split multiplets on the branes
as bulk fields. Adding on the PS brane N4 pairs of (4, 2, 1), (4∗, 2, 1), N̄4 pairs of
(4, 1, 2), (4∗, 1, 2), N6 copies of (6, 1, 1) and N2 copies of (1, 2, 2), and on the flipped
brane N5′ pairs of 5′2, 5

′∗
−2, N5′,1′ pairs of 5

′∗
3 , 1

′
−5, 5

′
−3, 1

′
5, and N10′ pairs of 10′−1, 10

′∗
1 ,

one obtains

δ23 =
1

2π

(
−4 + 2N4 − 2N̄4 −N6 +N2

)
ln

(
Λ

Mc

)
,

δ12 =
1

2π

(
44

5
− 2

5

(
2N4 − 2N̄4 −N6 +N2

)
+

3

25
(49− 23N10′ − 6N5′ −N5′,1′)

)
ln

(
Λ

Mc

)
.

(21)

As an example, the choice N4 = N2 = 4, N̄4 = N5′ = N5′,1′ = 3, N6 = 1, N10′ = 12,

9



with Λ/Mc ' 3.7, yields δ23 = 0.2, δ12 = −5.3, in agreement with gauge coupling
unification for case A, the THDM without light higgsinos. One can also find examples
that give gauge coupling unification in case B. However, we do not want to emphasize
this possibility since the considered model is incomplete in any case. For the bulk
field content of our model the irreducible SO(10) 6D anomalies are satisfied. But
one also has to satisfy irreducible and reducible gravitational and U(1)A anomalies
as well as fixed point anomalies [42, 43], which requires further bulk and brane fields.
Hence, in the considered model, we cannot compute the compactification scale, we can
only demonstrate that phenomenologically acceptable extensions of the model can be
consistent with gauge coupling unification and proton decay.

The required brane kinetic terms are rather large, corresponding to corrections of
α−1
i up to 10%. Because of the large number of bulk and brane fields the perturbative

treatment of the model breaks down close to the compactification scale Mc ' 2 ×
1015 GeV. We conclude that starting from the considered model, the compactification
scale cannot be consistently increased much by adding further vector-like fields. Hence,
our model is only consistent for a proton lifetime close to the current lower bound.

3 Proton decay

For the considered 6D SO(10) model proton decay rates can be evaluated in the stan-
dard manner. The model determines the currents that couple to vector bosons carrying
B−L charge. Knowing the zero-mode wave functions of quarks and leptons, their cou-
plings to the various vector boson KK-modes can be computed. Integrating out the
vector boson KK-modes provides the dimension-six operators whose matrix elements
determine the proton decay rates. As we shall see, a special feature of our model is the
flavour structure of these operators, which leads to unexpected branching fractions.

3.1 Effective operators and decay widths

The interaction Lagrangian of the 16-plets with SO(10) gauge fields is given by

LI =

∫
d4θ

(
ψ e2g6DV ψ + ψc e−2g6DV ψc + χ e2g6DV χ+ χc e−2g6DV χc

)
, (22)

where V is a vector field in the adjoint representation of SO(10). The decomposition of
the 45-plet with respect to SU(3)C×SU(2)L×U(1)Y×U(1)X is listed in Table 1. Proton
decay is induced by the exchange of the gauge bosons X ∼ (3, 2,−5

6
), Y ∼ (3, 2, 1

6
) and

Z ∼ (3, 1,−2
3
), which carry nonzero B − L charge. The terms in Eq. (22), involving
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SU(5)× U(1)X SU(3)C × SU(2)L × U(1)Y × U(1)X U(1)B−L

(24, 0) (8, 1, 0, 0) 0

(3, 2,−5
6
, 0) + (3, 2, 5

6
, 0) ∓2

3

(1, 3, 0, 0) 0

(1, 1, 0, 0) 0

(10, 4) + (10,−4) (3, 2, 1
6
, 4) + (3, 2,−1

6
,−4) ∓2

3

(3, 1,−2
3
, 4) + (3, 1, 2

3
,−4) ∓4

3

(1, 1, 1, 4) + (1, 1,−1,−4) 0

(1, 0) (1, 1, 0, 0) 0

Table 1: The decomposition of 45-plet of SO(10).

these gauge bosons and massless fermions, are described by the 4D effective Lagrangian

L4D = −ig4D√
2

∑
m,n≥0

[
X

(2m,2n+1)

aµ X µ
a (m,n) + Y

(2m+1,2n+1)

aµ Yµa (m,n)

+ Z
(2m+1,2n)

aµ Zµa (m,n)
]

+ h.c. , (23)

where g4D = g6D/
√
V2 is the 4D gauge coupling. The three currents relevant for proton

decay are given by

X µ
a (m,n) =

∑
αi

[
I

(1)
iα (m,n) εabc qbi γ

µ uccα + I
(1)∗
iα (m,n) ecα γ

µ qai

−I(2)
iα (m,n) dcaα γ

µ li
]
, (24)

Yµa (m,n) =
∑
α,i

[
I

(3)
iα (m,n) εabc qbi γ

µ dccα + I
(3)∗
iα (m,n)ncα γ

µ qai

−I(4)
iα (m,n)ucaα γ

µ li
]
, (25)

Zµa (m,n) =
∑
α,β

[
I

(5)
αβ (m,n) ecα γ

µ dcaβ + I
(5)∗
αβ (m,n)ncβ γ

µ ucaα
]

−
∑
i,j

I
(6)
ij (m,n) qai γ

µ lj . (26)

Here a, b, c = 1, 2, 3 are color indices, i, j = 1, 2, 3 and α, β = 1, ..., 4 are flavour indices.
m,n = 0, 1, 2, ... label the KK-modes of the X-, Y - and Z-bosons. The dimensionless
coefficients I(r)(m,n) (r = 1, ..., 6) arise from overlaps between the profiles of KK-modes
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of gauge bosons and zero-modes of fermions. Their explicit expressions are given in
Appendix A.

We observe that the currents coupled to the KK-modes of the X-, Y - and Z-bosons
do not conserve flavour, i.e., one has I

(r)
iα (m,n) 6= 0 for i 6= α in Eqs. (24), (25) and

(26). This is in contrast to 4D GUTs where the couplings to X, Y and Z are flavour
diagonal [13, 14]. The origin of this effect can be attributed to the fact that the three
flavours of the SM quarks and leptons arise from the zero-modes of two bulk 16-plets
in our model. As we will show at the end of this section, this flavour non-diagonal
current, together with flavour non-diagonal mass matrices, gives rise to a proton decay
pattern which is qualitatively different from that predicted in the 4D GUT models.

After integrating out the KK tower of X-, Y - and Z-bosons, one obtains from
Eq. (23) the following effective operators for the proton decay:

−Leff
4D =

g2
4D

2

∑
α,β

∑
i,j

εabc
[
C

(1)
iαjβ u

c
cβγ

µqbj ecαγµqai − C(2)
iαjβ u

c
cβγ

µqbj dcaαγµli

+ C
(3)
iαjβ d

c
cβγ

µqbj ncαγµqai − C(4)
iαjβ d

c
cβγ

µqbj ucaαγµli
]

+ h.c. , (27)

with the coefficients

C
(1)
iαjβ =

∑
m,n

1

M2
X(m,n)

I
(1)∗
jβ (m,n) I

(1)∗
iα (m,n) ,

C
(2)
iαjβ =

∑
m,n

1

M2
X(m,n)

I
(1)∗
jβ (m,n) I

(2)
iα (m,n) ,

C
(3)
iαjβ =

∑
m,n

1

M2
Y (m,n)

I
(3)∗
jβ (m,n) I

(3)∗
iα (m,n) ,

C
(4)
iαjβ =

∑
m,n

1

M2
Y (m,n)

I
(3)∗
jβ (m,n) I

(4)
iα (m,n) ,

(28)

where the vector boson masses are given by2

M2
X(m,n) = 4π2

(
(2m)2

R2
1

+
(2n+ 1)2

R2
2

)
,

M2
Y (m,n) = 4π2

(
(2m+ 1)2

R2
1

+
(2n+ 1)2

R2
2

)
.

(29)

The Z-bosons by themselves do not lead to dimension-six operators that induce proton
decay. Their contribution only arises after electroweak symmetry breaking through
their mixing with some Y -bosons. We do not include these contributions in the list

2Note that our convention for R1, R2 differs by a factor 2π from the convention in [22].

12



of operators given in Eq. (27). Moreover, the third term in Eq. (27) is irrelevant
for proton decay as it involves heavy singlet neutrinos. Using Fierz reordering, the
remaining terms can be rewritten as

Leff
4D = g2

4D

∑
α,β

∑
i,j

[
C

(11)
iαjβ εabc e

c
αucaβubjdci

+ C
(24)
iαjβ εabc d

c
aαucbβ (dcjνi − ucjei)

]
+ h.c. ,

(30)

with

C
(11)
iαjβ = C

(1)
iαjβ + C

(1)
jαiβ ,

C
(24)
iαjβ = C

(2)
iαjβ − C

(4)
iβjα .

(31)

The operators in the physical basis are obtained using the unitary transformations
between weak (f) and mass (f ′) eigenstates,

f = Uf f
′ , (32)

where f = u, d, e, ν, uc, dc, ec. In the present framework, the unitary matrices Uuc , Udc
and Uec are of dimension 4× 4, while Uu, Ud, Ue and Uν are 3× 3 matrices. Changing
from weak to mass eigenstates, Eq. (30) becomes

Leff
4D = g2

4D

∑
γ,δ

∑
l,k

[
d

(1)
lγkδ εabc e

c′
γu

c′
aδu
′
bkd
′
cl

+ d
(2)
lγkδ εabc d

c
′
aγu

c′
bδu
′
cke
′
l + d

(3)
lγkδ εabc d

c
′
aγu

c′
bδd
′
ckν
′
l

]
+ h.c. ,

(33)

where

d
(1)
lγkδ =

∑
α,β

∑
i,j

C
(11)
iαjβ (U∗ec)αγ (U∗uc)βδ (Uu)jk (Ud)il ,

d
(2)
lγkδ = −

∑
α,β

∑
ij

C
(24)
iαjβ (U∗dc)αγ (U∗uc)βδ (Uu)jk (Ue)il ,

d
(3)
lγkδ =

∑
α,β

∑
ij

C
(24)
iαjβ (U∗dc)αγ (U∗uc)βδ (Ud)jk (Uν)il .

(34)

Note that the matrix Uν drops out in proton decay branching fractions since we sum
over neutrino flavours in the final state.

The partial widths of the various proton decay channels can be evaluated based
on Eq. (33). All operators conserve B − L, and therefore the proton decays into an
anti-lepton and a meson. The relevant hadronic matrix elements between proton and
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meson states is obtained using chiral perturbation theory [44,45]. The resulting partial
decay widths read [46]:

Γ[p→ e+
i π

0] =
(m2

p −m2
π0)2

32 πm3
pf

2
π

α2A2g4
4D

(
1 +D + F√

2

)2(∣∣∣d(1)
1i11

∣∣∣2 +
∣∣∣d(2)
i111

∣∣∣2) ,
Γ[p→ νπ+] =

(m2
p −m2

π±)2

32 πm3
pf

2
π

α2A2g4
4D (1 +D + F )2

3∑
i=1

∣∣∣d(3)
i111

∣∣∣2 ,
Γ[p→ e+

i K
0] =

(m2
p −m2

K0)2

32 πm3
pf

2
π

α2A2g4
4D

(
1 + (D − F )

mp

mB

)2(∣∣∣d(1)
2i11

∣∣∣2 +
∣∣∣d(2)
i211

∣∣∣2) ,
Γ[p→ νK+] =

(m2
p −m2

K±)2

32πm3
pf

2
π

α2A2g4
4D

3∑
i=1

∣∣∣∣2D3 mp

mB

d
(3)
i211 +

(
1 +

D + 3F

3

mp

mB

)
d

(3)
i121

∣∣∣∣2 ,
Γ[p→ e+

i η] =
(m2

p −m2
η)

2

32 πm3
pf

2
π

α2A2g4
4D

(
1 +D − 3F√

6

)2(∣∣∣d(1)
1i11

∣∣∣2 +
∣∣∣d(2)
i111

∣∣∣2) . (35)

Here e+
i = (e+, µ+), mh (h = p, π0, π±, K0, K±, η) denotes the mass of hadron h, fπ

is the pion decay constant and mB is the average baryon mass. The factors α, D and
F are parameters of the chiral Lagrangian while A incorporates renormalization group
running effects of the hadronic matrix elements.

3.2 Numerical results

We now evaluate the partial proton decay widths for the two fits of the flavour spec-
trum performed in [28]. In the first one (Fit I), the Yukawa couplings and brane mass
parameters of the model were determined by fitting fermion masses and mixing param-
eters using the χ2 minimization method. We obtained a very good fit with a minimum
χ2 = 0.5; in this case, leptogenesis led to a baryon asymmetry two orders of mag-
nitude below the observed value. We then performed another fit (Fit II) where the
observed baryon asymmetry was used as a constraint, for which we obtained a mini-
mum χ2 = 0.95. For both fits, we give the various unitary matrices Uf that connect
weak and mass eigenstates in Appendix B.

The effective couplings Ci in Eq. (28) involve summations over the KK-modes of
gauge bosons. We notice that the value of some of the Ci’s decrease slightly when
contributions from higher KK-modes are taken into account because of destructive
interference between different amplitudes. We also find that the values of these coef-
ficients converge rapidly, and only the contributions from the first few KK-modes are
relevant. We consider the first five modes, corresponding to m,n = 0, 1, ..., 4, for the
evaluation of the partial widths.

We use the parameters α = 0.01 GeV3, D = 0.8 and F = 0.46 for the chiral
Lagrangian parameters [46]. The parameter A can be written as A = ASDALD, where
ALD takes into account the renormalization effects from MZ to the proton mass scale

14



while ASD includes the short distance running effects from MGUT to MZ . For our
calculation, we use ALD = 1.43 and ASD = 2.26 [47]. The values of hadron masses
are taken from the PDG [16]. We use mB = 1.15 GeV as average baryon mass, the
pion decay constant fπ = 130 MeV, and we take g4D = 0.57. The compactification
scale is identified with the mass of the lightest KK-mode of the X-, Y -bosons, which
corresponds to R1 = R2 = 2πM−1

c .
The proton lifetime in a particular channel, p→ l̄ +X, is defined as

τ/BR[p→ l̄ +X] = 1/Γ[p→ l̄ +X] , (36)

where τ = 1/Γtotal, and the branching ratio is BR[p → l̄ + X] = Γ[p → l̄ + X]/Γtotal.
The current limits on the proton lifetime are at 90% confidence level [36],

τ/BR[p→ e+π0] > 1.6× 1034 yrs, τ/BR[p→ µ+π0] > 7.7× 1033 yrs . (37)

With the aforementioned values of the various parameters, we obtain for Fit I,

τ/BR[p→ e+π0] = 1.6× 1034 yrs×
(

Mc

2.2× 1015 GeV

)4

,

τ/BR[p→ µ+π0] = 4.7× 1034 yrs×
(

Mc

2.2× 1015 GeV

)4

, (38)

and for Fit II,

τ/BR[p→ e+π0] = 1.6× 1034 yrs×
(

Mc

2.0× 1015 GeV

)4

,

τ/BR[p→ µ+π0] = 7.7× 1033 yrs×
(

Mc

2.0× 1015 GeV

)4

, (39)

In case of the latter, the channel p → µ+π0 provides an equally strong constraint as
the positron channel. These numbers have to be compared with τ/BR[p → e+π0] ∼
2 × 1035 yrs, the experimental reach of Hyper-Kamiokande [48], and with τ/BR[p →
e+π0] ∼ few × 1034 yrs, the experimental reach of DUNE [49].

The various branching fractions obtained for Fit I and Fit II are displayed in Table
2. A noteworthy feature of these results is that the branching ratios of proton decay
into the channels involving e+ or µ+ are of the similar magnitude. The origin of this in
the present model can be understood in the following way. First, as already mentioned
earlier, the massless modes of quark and lepton generations have flavour non-diagonal
overlaps with the KK-modes of heavy vector bosons. In particular, the flavours arising
from the zero-modes of ψ have comparable diagonal and non-diagonal couplings with
the X- and Y -bosons. For example, zero-mode overlap integrals I

(1)
iα (0, 0) (I

(2)
iα (0, 0)) of
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Branching ratio [%] Fit I Fit II
BR[p→ e+π0] 46 23
BR[p→ µ+π0] 17 51
BR[p→ ν̄π+] 5 3
BR[p→ e+K0] 17 15
BR[p→ µ+K0] 12 6
BR[p→ ν̄K+] 1 1
BR[p→ e+η] < 1 < 1
BR[p→ µ+η] < 1 < 1

Table 2: Proton decay branching fractions for two different fits to the flavour spectrum.

fermion zero-modes and vector bosons with m = n = 0, that cause proton decay into a
charged lepton with flavour α (i) and a quark with flavour i (α), are given by

(
I

(1)
iα (0, 0)

)
=

 −0.12 −0.07 −1.0 0
0.12 1.0 0.07 0

0 0 0 0.45

 ,

(
I

(2)
iα (0, 0)

)
=

 −0.28 −0.04(1 + i) 0 0
0.1(1− i) 1.0 0 0

0 0 0.51 −0.51

 , (40)

These overlap integrals are properties of the wave functions of fermions and gauge
bosons, which are unambiguously determined in the considered model and which do
not depend on the Yukawa structure, i.e., on the particular fit of the flavour structure.

Second, as shown in Appendix B, some of the unitary matrices introduce large
flavour mixings. In particular, the matrices Uuc , Udc and Uec give rise to a strong
mixing between the first and second generation of uc, dc and ec, respectively, both in
Fit I and in Fit II. This feature depends on the Yukawa structure of the theory and
hence the precise results are fit dependent. In the present framework, the non-diagonal
gauge boson couplings as well as the flavour structure of the mass matrices give rise to
an enhanced branching fraction BR[p → µ+π0], comparable to the branching fraction
BR[p→ e+π0]. This prediction is different from typical predictions made in the context
of 4D GUTs, and it also distinguishes the 6D SO(10) model with magnetic flux from
the SO(10) model without magnetic flux [22].

4 Summary and conclusions

In flux compactifications the quark-lepton generations are zero-modes with character-
istic wave functions in the compact space. In the considered orbifold GUT model the
Yukawa matrices are determined by the values of these wave functions at the orbifold
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fixed points, together with complex couplings of bulk fields at the fixed points which
are generation independent. At each fixed point this leads to rank-one Yukawa matrices
with O(1) entries. In addition there are large mass mixing terms with charge-conjugate
split multiplets. The resulting up-quark, down-quark, charged lepton and Dirac neu-
trino mass matrices have large off-diagonal entries, and the same is true for the unitary
matrices which diagonalize them. For two fits of the flavour spectrum, these matrices
are given in Appendix B. A small mismatch of these matrices for up-quarks and down-
quarks leads to small off-diagonal terms in the CKM matrix, whereas large off-diagonal
terms appear in the PMNS matrix due to the seesaw mechanism.

As a consequence, the unitary matrices that connect weak and mass eigenstates
lead to large flavour non-diagonal couplings of vector bosons with non-zero B − L
charge, whose exchange induces proton decay. This effect is enhanced by non-diagonal
couplings of these heavy vector bosons to flavour eigenstates, which result from overlap
integrals of vector boson and fermion mode functions. This is in contrast to 4D GUT
models and other orbifold GUT models without flux, where the couplings of heavy
vector bosons to flavour eigenstates are diagonal.

In the considered 6D SO(10) orbifold GUT model gauge coupling unification can
not be achieved at some cut-off scale beyond the compactification scale. Hence, the
compactification scale cannot be computed. Gauge coupling unification requires the
addition of further vector-like bulk and/or brane fields which would not affect the
low-energy phenomenology. Due to the large number of vector-like fields the theory
becomes strongly interacting already close to the compactification scale. It appears
that matching the non-supersymmetric Standard Model to a higher-dimensional su-
persymmetric theory requires a compactification scale that is barely consistent with
current constraints from proton decay. An unexpected prediction of our model is the
similar size of the branching ratios p→ e+π0 and p→ µ+π0 , where the latter one can
even be dominant. This appears to be a generic feature of flux compactifications of
higher-dimensional GUT models.
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A Definition of overlap integrals

The dimensionless overlap integrals introduced in Section 3 are given as

I
(1)
i′α′(m,n) =

√
V2

∫
d2y ψ

(i′)∗
−+ (y)ψ

(α′)
++ (y) f

(m,n)
X (y) ,

I
(1)
34 (m,n) =

√
V2

∫
d2y χ

(1)∗
−− (y)χ

(1)
+−(y) f

(m,n)
X (y) ,

I
(1)
i′4 (m,n) = I

(1)
3α′(m,n) = 0 .

(41)

I
(2)
i′j′(m,n) =

√
V2

∫
d2y ψ

(j′)∗
+− (y)ψ

(i′)
−−(y) f

(m,n)
X (y) ,

I
(2)
3(j′+2)(m,n) =

√
V2

∫
d2y χ

(j′)∗
++ (y)χ

(1)
−+(y) f

(m,n)
X (y) ,

I
(2)
i′(j′+2)(m,n) = I

(2)
3j′ (m,n) = 0 .

(42)

I
(3)
i′j′(m,n) =

√
V2

∫
d2y ψ

(i′)∗
−+ (y)ψ

(j′)
+−(y) f

(m,n)
Y (y) ,

I
(3)
3(j′+2)(m,n) =

√
V2

∫
d2y χ

(1)∗
−− (y)χ

(j′)
++(y) f

(m,n)
Y (y) ,

I
(3)
i′(j′+2)(m,n) = I

(3)
3,j′(m,n) = 0 .

(43)

I
(4)
i′α′(m,n) =

√
V2

∫
d2y ψ

(α′)∗
++ (y)ψ

(i′)
−−(y) f

(m,n)
Y (y) ,

I
(4)
34 (m,n) =

√
V2

∫
d2y χ

(1)∗
+− (y)χ

(1)
−+(y) f

(m,n)
Y (y) ,

I
(4)
i′4 (m,n) = I

(4)
3α′(m,n) = 0 .

(44)

I
(5)
α′i′(m,n) =

√
V2

∫
d2y ψ

(α′)∗
++ (y)ψ

(i′)
+−(y) f

(m,n)
Z (y) ,

I
(5)
4(j′+2)(m,n) =

√
V2

∫
d2y χ

(1)∗
+− (y)χ

(j′)
++(y) f

(m,n)
Z (y) ,

I
(5)
4j′ (m,n) = I

(5)
44 (m,n) = 0 .

(45)
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I
(6)
i′j′(m,n) =

√
V2

∫
d2y ψ

(i′)∗
−+ (y)ψ

(j′)
−−(y) f

(m,n)
Z (y) ,

I
(6)
33 (m,n) =

√
V2

∫
d2y χ

(1)∗
−− (y)χ

(1)
−+(y) f

(m,n)
Z (y) ,

I
(6)
i′3 (m,n) = I

(6)
3j′ (m,n) = 0 .

(46)

Here i′, j′ = 1, 2 and α′ = 1, 2, 3 are the flavour indices introduced in the decomposition
of the 16-plets in Section 2. The integration domain is given by y1 ∈ [0, R1/2] and
y2 ∈ [0, R2]. The volume of the orbifold is V2 = R1R2/2.

The mode functions of the gauge bosons are obtained from [22]. They read:

f
(m,n)
X (y) =

√
2

V2

cos

[
2π

(
2m

y1

R1

+ (2n+ 1)
y2

R2

)]
,

f
(m,n)
Y (y) =

√
2

V2

cos

[
2π

(
(2m+ 1)

y1

R1

+ (2n+ 1)
y2

R2

)]
,

f
(m,n)
Z (y) =

√
2

V2

cos

[
2π

(
(2m+ 1)

y1

R1

+ 2n
y2

R2

)]
.

(47)

The wavefunction profiles of quarks and leptons are obtained from the expression [27,28]

ϕ(j)
ηPS,ηGG

(y1, y2;N) = N exp

(
2πiNτ

y2
2

R2
2

) ∑
n∈Z

cos

[
2π

(
−2nN + j +

kPS

2

)(
y1

R1

+ τ
y2

R2

)]

× exp

(
2πiτN

(
n− j

2N

)2

− iπ
(
n− j

2N

)
(kPSτ − kGG)

)
(48)

where ηPS = eiπkPS , ηGG = eiπkGG and kPS, kGG = 0, 1. Here j = 0, ..., N for kPS =
kGG = 0 and j = 0, ..., N − 1 otherwise. We identify

ψ(2)
ηPS,ηGG

(y1, y2) = ϕ(0)
ηPS,ηGG

(y1, y2; 2),

ψ(1)
ηPS,ηGG

(y1, y2) = ϕ(1)
ηPS,ηGG

(y1, y2; 2),

ψ
(3)
++(y1, y2) = ϕ

(2)
++(y1, y2; 2),

χ(1)
ηPS,ηGG

(y1, y2) = ϕ(0)
ηPS,ηGG

(y1, y2; 1),

χ
(2)
++(y1, y2) = ϕ

(1)
++(y1, y2; 1). (49)
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B Extraction of unitary matrices

The 3 × 3 matrices Uf for f = u, d, e, ν are obtained following the same procedure as
in Appendix A of [28]. For f = uc, dc, ec the corresponding 4× 4 unitary matrices are
obtained in the following way. Starting from the expressions for Mf given in Eq. (A2)
in [28], we obtain

Hc
f ≡M †

fMf = Hc
f4 +Hc

f3 , (50)

where

(
Hc
f4

)
αβ

= µf∗α µ
f
β(

Hc
f3

)
αβ

= v2
f

(
Y †f Yf

)
αβ
. (51)

We determine 4× 4 unitary matrices V f
4 such that

V f†
4 Hc

f4V
f

4 = Diag.
(
0, 0, 0, µ̃2

f

)
≡ Df

4 , (52)

where µ̃2
f =

∑
α |µα|2. We then obtain

H̃c
f = V f†

4 Hc
fV

f
4 = Df

4 + V f†
4 Hc

f3V
f

4 , (53)

and integrate out the heavy state to obtain an effective 3 × 3 matrix for the light
fermions, whose elements are

(
H̃c

3f

)
ij

=
(
H̃c
f

)
ij
− 1

µ̃2
f

(
H̃c
f

)
i4

(
H̃c
f

)
j4
. (54)

The matrix H̃c
3f is then diagonalized using a 3 × 3 unitary matrix V f

3 such that

V f†
3 H̃c

3fV
f

3 = Df
3 . Finally, the 4× 4 unitary matrix

Uf = V f
4

(
V f

3 0
0 1

)
(55)

is constructed, which relates the weak eigenstates (f) with mass eigenstates (f ′) such
that f = Uff

′, for f = uc, dc, ec.
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Following the above procedure, the unitary matrices obtained from Fit-I read

Uu =


−0.9748 + 0.0693i −0.2117 + 0.0008i −0.0105

0.2114 − 0.015i −0.9761 + 0.0035i −0.0486 + 0.0002i

0 −0.0497 0.9988

 ,

Ud =


−0.1438− 0.9543i −0.1447 + 0.2179i −0.0156 + 0.0003i

−0.1905 + 0.1788i −0.9611 + 0.013i −0.0887 + 0.0047i

−0.0198 −0.088 0.9959

 ,

Ue =


−0.0792− 0.1946i −0.7026 + 0.6796i −0.0097− 0.0152i

−0.9734 + 0.0162i −0.0817− 0.1944i −0.0886 + 0.0008i

−0.0904 −0.0036 0.9959

 ,

Uuc =


0.1981 + 0.6784i −0.4109 + 0.5744i −0.0248 + 0.0347i 0

−0.1395− 0.4804i −0.2907 + 0.4053i −0.0184 + 0.0245i −0.7071

0.1395 + 0.4804i 0.2909 − 0.4053i 0.0167 − 0.0245i −0.7071

0.0001 −0.0603 0.9982 −0.0012

 ,

Udc =


−0.949− 0.1635i 0.2576 − 0.0511i 0.0061 + 0.0604i 0

−0.0776 + 0.0864i −0.2752 + 0.3064i −0.443 + 0.4931i 0. + 0.6144i

0.0604 − 0.0672i 0.2143 − 0.2386i 0.3449 − 0.384i 0. + 0.789i

−0.1725 + 0.1458i −0.2797 + 0.7617i 0.204 − 0.4989i 0

 ,

Uec =


0.7074 0.7053 −0.0473 0

−0.4998 0.4988 −0.0373 −0.7071

0.4998 −0.4989 0.0355 −0.7071

−0.003 0.0698 0.9976 −0.0012

 . (56)
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Correspondingly, the unitary matrices obtained from the Fit II are given by

Uu =


−0.5613− 0.8003i −0.0123 + 0.2106i 0.0001 − 0.0018i

0.1219 + 0.1722i −0.0527 + 0.976i 0.0004 − 0.0082i

0 0.0084 1.

 ,

Ud =


−0.0205− 0.9329i −0.3053− 0.1897i −0.0116 + 0.0013i

0.2196 + 0.2847i −0.9294 + 0.0744i −0.0379 + 0.0002i

0.0092 −0.0385 0.9992

 ,

Ue =


0.1388 + 0.1353i −0.0003− 0.0314i −0.6933 + 0.6933i

0.9743 + 0.0005i −0.1128 + 0.0044i 0. − 0.195i

0.1149 0.9931 0.0225

 ,

Uuc =


0.504 + 0.4965i −0.4195− 0.1861i 0.4911 + 0.2182i 0

−0.3553− 0.3509i −0.8338− 0.1323i −0.1115 + 0.1543i 0.0417

0.3563 + 0.3509i −0.2391 + 0.1323i −0.8061− 0.1543i 0.0417

0 0.0448 0.0383 0.9983

 ,

Udc =


−0.4785− 0.848i 0.1196 + 0.1932i −0.0183 + 0.0012i 0

0.0059 + 0.0097i 0.0296 + 0.0343i −0.0553− 0.0653i 0. + 0.9952i

−0.0604− 0.0995i −0.3021− 0.3501i 0.5647 + 0.6665i 0. + 0.0975i

0.1957 0.8558 0.4788 0

 ,

Uec =


0.6851 −0.4879 0.5409 0

−0.5398 −0.8377 −0.072 0.0417

0.4892 −0.2412 −0.8371 0.0417

0.0021 0.045 0.0379 0.9983

 . (57)
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