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Abstract

We propose a use of the self-seeding scheme with single crystal monochroma-
tor to produce high power, fully-coherent pulses for applications at a dedicated
bio-imaging beamline at the European X-ray FEL in the photon energy range be-
tween 3.5 keV and 5 keV. We exploit the C(111) Bragg reflection (π-polarization)
in diamond crystals with a thickness of 0.1 mm, and we show that, by tapering
the 40 cells of the SASE3 type undulator the FEL power can reach up to 2 TW in
the entire photon energy range. The present design assumes the use of a nominal
electron bunch with charge 0.1 nC at nominal electron beam energy 17.5 GeV. The
main application of the scheme proposed in this work is for single shot imaging of
individual protein molecules.

1 Introduction

Despite the unprecedented increase in peak power of X-ray pulses from
SASE X-ray FELs, some applications including imaging of complex molecules
like proteins and other biologically interesting structures may still require
higher photon flux (see, among others, [1]-[3]). The most promising way to
extract more FEL power than that at saturation is by tapering the magnetic
field of the undulator [4]-[7]. Also, a significant increase in power is achiev-
able by starting the FEL process from monochromatic seed rather than from
noise [8]-[10]. Self-seeding is a promising approach to significantly narrow
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the SASE bandwidth and to produce nearly transform-limited pulses [11]-
[17]. The combination of self-seeding and tapering techniques would allow
to meet the desired TW-scale output power for bio-imaging applications
[18]-[22].

We recently proposed a study for a possible dedicated bio-imaging beamline
at the European XFEL [23]. In that concept we suggested that the use of a
single crystal self-seeding scheme would allow to deliver nearly transform-
limited TW-scale X-ray pulses in the photon energy range between 8 keV
and 13 keV. However, potential users of such a bio-imaging beamline mainly
wish to investigate their samples in the energy range between 3 keV and
5 keV, where the diffraction signal is stronger. Finding a solution suitable
for this spectral range is major challenge for self-seeding designers. In fact,
due to high absorption, both single crystal monochromators and grating
monochromators have a low throughput in the energy range between 3 keV
and 5 keV. In [23] we proposed a method to get around this obstacle, which is
based in essence on a fresh bunch technique [24] and exploits a conservative
design of a self-seeding setup based on grating monochromator [25, 26] in
the photon energy range between 0.3 keV and 1.7 keV.

In this work we propose an alternative possibility to provide bio-imaging
capabilities in the photon energy range between 3 keV and 5 keV, based on an
extension of the original design of the self-seeding scheme with single crystal
monochromator down to 3 keV. We still suggest to use a diamond crystal
with thickness 0.1 mm. However, we consider a symmetric C(111) Bragg
reflection (π-polarization). This reflection will allow to cover the photon
energy range from 3.5 keV to 5 keV. We demonstrate that the previously
mentioned drawback of a low throughput can be overcome by enabling a
cascade self-seeding scheme [27].

In its simplest configuration, a self-seeded XFEL consists of an input un-
dulator and an output undulator separated by a single crystal monochro-
mator. At photon energies below 5 keV absorption in crystals is very high
and the simplest configuration, based on two undulators, is not optimal.
A possible extension is to use a setup with three or more undulators sep-
arated by monochromators. Each cascade consists of an undulator acting
as an amplifier, and of a single crystal monochromator. The amplification-
monochromatization cascade scheme is distinguished, in performance, by
a high signal-to-noise ratio and by small electron beam perturbations at the
entrance of the output undulator. In this paper we study such scheme,
which consists of two parts: first, a a succession of two amplification-
monochromatization cascades and, second, an output undulator in which
the monochromatic seed is amplified up to 2 TW power.
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Fig. 1. Schematic of a two-cascade self-seeding scheme with single crystal
monochromators. This scheme holds a great promise as a source of X-ray radi-
ation in the 3.5 keV - 5 keV photon energy range for applications such as single
biomolecule imaging.
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Fig. 2. Absolute value and phase of the transmission function pertaining the C(111)
forward diffraction of a 100 µm-thick diamond crystal (π-polarization).

2 Principle of cascade self-seeding technique based on the use of single
crystal monochromators

The self-seeding technique considered in this work is based on the substitu-
tion of a single undulator module with a weak chicane and a single crystal.
Two cascades can be arranged sequentially as shown in Fig. 1.

The first undulator in Fig. 1 operates in the linear high-gain regime start-
ing from the shot-noise in the electron beam. After the first undulator, the
output SASE radiation passes through the monochromator, which reduces
the bandwidth to the desired value. According to the wake monochromator
principle, the SASE pulse coming from the first undulator impinges on a
crystal set for Bragg diffraction.
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First cascade crystal monochromator

Input spectrum Output spectrum 

Fig. 3. Effect of the filtering process provided by the first diamond crystal on the
incident spectrum of the radiation.
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Fig. 4. Temporal shape of the seed signal from the first self-seeding setup. The black
arrow indicates the seeding region used in this article.

The single crystal in Bragg geometry actually operates as a bandstop filter for
the transmitted X-ray SASE radiation pulse. The filter transmission function
in modulus and phase is shown in Fig. 2, where the central bandwidth can
be tuned by properly tilting the crystal. In Fig. 3 we show the effect of the
filtering through the crystal on the incident spectrum of the radiation. When
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Fig. 5. Power before the first (left) and the second (right) monochromator.

Second cascade crystal monochromator

Input spectrum Output spectrum 

Fig. 6. Effect of the filtering process provided by the second diamond crystal on the
incident spectrum of the radiation.

the incident angle and the spectral contents of the incoming beam satisfy
the Bragg diffraction condition, the temporal waveform of the transmitted
radiation pulse shows a long monochromatic wake, whose particular shape
is linked to the shape of the filter in the frequency domain. The overall
duration of this wake is inversely proportional to the bandwidth of the
absorption line in the transmittance spectrum, while the particular shape
of the wake, which in our case exhibits several oscillations on a shorter
temporal scale, is due to the particular characteristics of the filter in the
frequency domain. These characteristics are calculated in the frequency
domain with the help of the dynamical theory of X-ray diffraction. In other
words, all the physics involved can be limited to the frequency domain.
After this task is accomplished, the particular shape of the wake can be
simply interpreted as a consequence of a Fourier transform. It should be
noted that, for the energy range under examination, between 3 keV and 5
keV, it is useful to consider the π-polarization of the C(111) reflection from a
0.1 mm-thick diamond crystal. The advantage of using the π-polarization is
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Fig. 7. Temporal shape of the seed signal from the second self-seeding setup. The
black arrow indicates the seeding region used in this article.
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Fig. 8. (Left) The seeded FEL signal in the time domain after the tapered output
undulator. (Right) Energy of the seeded FEL pulse as a function of the distance
inside the output undulator.

due to the fact that the bandwidth of the reflectance is a few times narrower
than for the σ-polarization in the entire energy range. As a result, the profile
of the transmitted intensity in the time-domain appears more suitable for
the temporal windowing operation, especially if one is interested in nearly
Fourier-limited pulses.

While the radiation is sent through the crystal, the electron beam passes
through a magnetic chicane, which accomplishes three tasks by itself: it
creates an offset for the crystal installation, it removes the electron micro-
bunching produced in the first undulator, and it acts as a delay line for the
implementation of the temporal windowing. In other words, the magnetic
chicane shifts the electron bunch on top of the monochromatic wake created
by the bandstop filter thus selecting a part of the wake. This operation
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amounts to a temporal windowing process. By this, the electron bunch is
seeded with a radiation pulse characterized by a bandwidth much narrower
than the natural FEL bandwidth. The temporal shape of the seed signal is
shown in the left plot of Fig. 4, while the seeded FEL signal before the second
self-seeding setup is shown in the right plot of the same figure.

For the hard X-ray wavelength range, a small dispersive strength R56 in the
order of ten microns is sufficient to remove the micro bunching in the elec-
tron bunch. It is important to realize that the uncorrelated energy spread
induced by quantum diffusion during the passage through the undulator is
more than sufficient to wash-out the microbunching. In our case of interest,
the energy spread induced by quantum diffusion always exceeds 1 MeV 2 .
It should be remarked that this effect is of fundamental nature, and that the
energy-spread so produced follows a Gaussian distribution. Based on this
fact, the energy and density modulations will be damped following an ex-
ponential factor given by exp[− < (δγ)2 > R2

56/(2γ
2o2)], where < (δγ)2 > /γ2

is the variance of the relative energy spread, R56 is the dispersion strength
of the chicane, and o is the reduced wavelength. Considering a wavelength
λ = 0.35 nm, an electron energy of 17.5 GeV, an R56 ∼ 30 µm and, conserva-
tively, an energy spread induced by quantum diffusion of 1 MeV, we obtain
an enormously small exponential damping factor.

As a result of this discussion, the choice of the strength of the magnetic
chicane only depends on the delay that we want to introduce between
electron bunch and radiation. In our case, this amounts to 17 µm for the
short pulse mode of operation. Such dispersion strength is small enough
to be generated by a short 5 m-long chicane to be installed in place of a
single undulator module. Such chicane is, however, strong enough to create
a sufficiently large transverse offset of a few millimeters for installing the
crystal.

The main problem in having crystal monochromators working between 3
keV and 5 keV is related with the low throughput due to absorption. In
fact, about 88% of the radiation out of the reflection range is absorbed,
resulting in low seeding power. The seed power level can be increased, to
some extent, by making the first part of the undulator longer. This increases
the signal-to-noise ratio. However, successful operation of the self-seeded
XFEL requires operation of the first part of the undulator in the deep linear
regime, and not in saturation. In fact, the amplification process in the FEL
leads to an energy modulation in the electron beam. After the electron beam
passes through the magnetic chicane, such energy modulation transforms

2 In this article we discuss about SASE3 type undulators placed behind SASE1,
which induces a relatively high energy spread in electron bunch due to quantum
diffusion, definitely exceeding 1 MeV at the nominal energy of 17.5 GeV.
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into additional energy spread.

The use of a second monochromator cascade enhances the signal-to-noise
ratio without spoiling the electron beam quality. This enhancement is the
consequence of the fact that the radiation pulse impinging on the second
crystal is nearly Fourier-limited, meaning that there is an improvement
of the bandwidth ratio of the signals before the first cascade (SASE) and
the second cascade (seeded). This fact can be easily seen by comparing the
spectral widths in Fig. 3 and Fig. 6, resulting in an increase of about a factor 5.
Note that the power level before the first and the second cascade are roughly
the same, and amount to about 1 GW, Fig. 5. Therefore, the improvement of
the bandwidth ratio directly translates into an in improvement of the seed
power (compare Fig. 4 and Fig. 7) of the same amount. The power level in
Fig. 5 is much smaller than the power at saturation, which reaches about
100 GW, so that the electron beam is not significantly perturbed.

This fact is confirmed by simulations. In fact, the seed signal is finally am-
plified through the output undulator, which is tapered in order to optimize
the exchange between electron energy and radiation (see the next section for
details). The FEL signal from the entire setup is shown in the left plot of Fig.
8, which also includes a plot of the energy in the FEL pulse as a function of
the distance inside the output undulator. As one can see, for this particular
run one reaches about 2 TW output power.

If one wants to reach the same seed power with a single cascade, one needs
to increase the power at the exit of the first undulator up to about 5 GW, thus
perturbing the electron beam more. Simulations show that due to electron
beam perturbations, in this case one cannot reach the same final output level
of 2 TW.

3 FEL studies

With reference to Fig. 1 we performed feasibility studies pertaining the
energy range considered in this article. These studies were performed with
the help of the FEL code GENESIS 1.3 [28] running on a parallel machine.
Simulations are based on a statistical analysis consisting of 100 runs.

The main undulator parameters are reported in Table 1. The electron beam
characteristics at the entrance of the setup are summarized in Fig. 9, where
we plot the results of start-to-end simulations [29].

First, the electron beam passes through the first part of the undulator and
lases as a SASE source. The power and the spectrum after this first undulator,
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Fig. 9. Results from electron beam start-to-end simulations at the entrance of SASE3
[29] for the hard X-ray case. (First Row, Left) Current profile. (First Row, Right) Nor-
malized emittance as a function of the position inside the electron beam. (Second
Row, Left) Energy profile along the beam, lower curve. The effects of resistive wake-
fields along SASE1 are illustrated by the comparison with the upper curve, referring
to the entrance of SASE1 (Second Row, Right) Electron beam energy spread profile,
upper curve. The effects of quantum diffusion along SASE1 are illustrated by the
comparison with the lower curve, referring to the entrance of SASE1. (Bottom row)
Resistive wakefields in the SASE3 undulator [29].

and before the first self-seeding monochromator setup are shown in Fig. 10.
This photon pulse passes through the first crystal acting as a band-stop filter
as described before.

The results in frequency and time domain are shown in Fig. 11, where
the trailing radiation pulse in the time-domain, due to the presence of the
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Table 1
Undulator parameters

Units

Undulator period mm 68

Periods per cell - 73

Total number of cells - 40

Intersection length m 1.1

Photon energy keV 3-5
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Fig. 10. Power and spectrum before the first hard X-ray self-seeding monochromator
setup. Grey lines refer to single shot realizations, the black line refers to the average
over a hundred realizations.
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Fig. 11. Power and spectrum after the first hard X-ray self-seeding monochromator
setup. Grey lines refer to single shot realizations, the black line refers to the average
over a hundred realizations.

monochromator, is evident.

The electron beam modulations are washed-out by passing through the chi-
cane, and is seeded with the trailing radiation pulse, which is then amplified
in the second undulator part. The power and the spectrum of the radiation
after the second part of the undulator is shown in Fig. 13.
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Fig. 12. Power and spectrum before the second hard X-ray self-seeding monochro-
mator setup. Grey lines refer to single shot realizations, the black line refers to the
average over a hundred realizations.
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Fig. 13. Power and spectrum after the second hard X-ray self-seeding monochro-
mator setup. Grey lines refer to single shot realizations, the black line refers to the
average over a hundred realizations.
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Fig. 14. Tapering law.

At this point the radiation pulse passes through the second monochromator
setup. The fact that it is nearly Fourier limited allows a betterment of the
signal-to-noise ratio of a large factor∆ωSASE ·σT. This helps in countering the
high absorption in the crystal. Fig. 13 shows the power and the spectrum
after the second monochromator station.
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Fig. 15. Final output in the case of tapered output undulator for λ = 0.35 nm. Power
and spectrum are shown. Grey lines refer to single shot realizations, the black line
refers to the average over a hundred realizations.
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Fig. 16. Energy and energy variance of output pulses in the case of tapered output
undulator forλ = 0.35 nm. In the left plot, grey lines refer to single shot realizations,
the black line refers to the average over a hundred realizations.
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Fig. 17. Final output. X-ray radiation pulse energy distribution per unit surface and
angular distribution of the X-ray pulse energy at the exit of output undulator for
the case λ = 0.35 nm.

The electron beam finally goes through the output undulator, which is ta-
pered according to the law shown in Fig. 14. Fig. 15, Fig. 16 and Fig. 17
show the output from the entire setup. Fig. 15 demonstrates that nearly
Fourier-limited pulses with a power level of about 2 TW can be reached by
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tapering the output undulator. Fig. 16 shows the energy and the variance
of the radiation pulses as a function of the position inside the undulator.
Finally, size and divergence of the X-ray pulses are plotted in Fig. 17.

4 Conclusions

A self-seeding scheme based on single crystal monochromator has been
demonstrated experimentally and successfully compared with simulations
[30]. Self-seeding is an excellent method for generating both monochromatic
X-rays and high power pulses. Up to now, all studies have focused on
operation in the hard X-ray energies (between 7 keV and 13 keV). However,
future setups may need to be operated at lower energies. The interest in
biomolecular imaging now includes also sources between 3 keV and 5 keV,
and self-seeding schemes began to cope with this energy range [23]. In
this paper we demonstrated the flexibility of our self-seeding scheme with
single crystal monochromator to cover a wide photon energy range. This
kind of operation is easily achieved with diamond crystals in symmetric
Bragg reflection geometry. In particular, based on the use C(400), C(220), and
C(111) reflections it will be possible to cover photon energy range from 13
keV down to 3.5 keV. Therefore, this extremely compact self-seeding scheme
is ideally suited for bio-imaging applications. In this paper we proposed a
study of the performance of the self-seeding scheme with single crystal
monochromator for the European X-ray FEL at X-ray energies lower than 5
keV. By combining the two techniques of cascade self-seeding and undulator
tapering we found that 2 TW X-ray, nearly transform-limited pulses down
to photon energy range 3.5 keV can be generated from baseline-scale 40 cells
undulators.
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