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1 Introdu
tionOver the last de
ade, the semi
lassi
al study of string theory in an AdS5 � S5 ba
kground hasbeen a 
entral tool for exploring the AdS/CFT 
orresponden
e [1, 2, 3℄ beyond a supergravityapproximation. To date, an enormous amount of works has been done extending the basi
 pi
turelaid in [4, 5, 6℄, mat
hing quantum 
orre
tions to string energies to anomalous dimensions ofgauge invariant operators in the N = 4 super Yang-Mills theory.Sin
eAdS geometries that appear in the AdS/CFT 
orresponden
e are supported by Ramond-Ramond 
ux, it is hard to make use of the Ramond-Neveu-S
hwarz formalism. For an AdS5�S5ba
kground, one may either use the Green-S
hwarz formalism [7℄ or Berkovits' pure spinor for-malism [8℄. However, most of the works in the area have been done only in the former. Thisis a pity be
ause the pure spinor formalism has many aspe
ts that are simpler than the Green-S
hwarz formalism, and is potentially more powerful espe
ially if one wants more than the
u
tuation spe
trum around a given 
lassi
al solution.The purpose of this arti
le is to provide support for an equivalen
e of the Green-S
hwarz andpure spinor formalisms at a semi
lassi
al level. Using the pure spinor formalism we perform asemi
lassi
al analysis around a simple family of 
lassi
al solutions in an AdS5 � S5 ba
kgroundand show that the formalism reprodu
es the one-loop anomalous dimensions known from theGreen-S
hwarz formalism. It would be useful to exploit integrability methods for a more sys-temati
 
omparison, but in this arti
le we sti
k to a down-to-earth expli
it 
omparison.In the rest of this introdu
tion, we would like to put our study into 
ontext by brie
ysummarizing what has been known about the pure spinor formalism. For a more 
omplete list,we refer the reader to a re
ent review [9℄.Pure spinor formalism in a 
at ba
kground is de�ned as a worldsheet 
onformal �eld theorywith a BRST symmetry and it allows one to quantize a string in a super-Poin
ar�e 
ovariant man-ner. Its basi
s and validity have been established quite adequately. The formalism reprodu
esthe superstring spe
trum 
orre
tly [10℄[11℄, and is 
apable of 
omputing tree and multi-loopamplitudes in a 
ovariant manner [8, 12℄. There remains some subtleties at three-loops andhigher [13℄, but the formalism has been very su

essful going far beyond (e.g. [14, 15℄) whathave been done in other formalisms. Also, in a 
at ba
kground, it is known how the BRSTsymmetry of the formalism arises from the 
lassi
al Green-S
hwarz a
tion [16℄[17℄.In generi
 supergravity ba
kgrounds, both Green-S
hwarz and pure spinor formalisms 
anbe used to des
ribe a string at a 
lassi
al level. Equations of motion for the ba
kground �eldsare implied by the kappa symmetry [18℄ in the former (e.g. [19℄[20℄) and by the BRST symmetryin the latter [21℄. Preservation of these symmetries in worldsheet perturbation theories areexpe
ted to 
hara
terize stringy �0 
orre
tions to the ba
kground equations of motion. However,kappa symmetry is a 
ompli
ated gauge symmetry and it is diÆ
ult to dis
uss them quantumme
hani
ally. In pure spinor formalism, kappa symmetry is repla
ed by a BRST symmetry andit is straightforward to identify the 
onditions for 
onservation and nilpoten
y of the BRST
harge at a quantum level [21℄. By exploiting this simpli
ity, one-loop 
onformal invarian
e ingeneri
 supergravity ba
kgrounds has been shown in [22, 23℄.Spe
ializing to an AdS5�S5 ba
kground, a Green-S
hwarz a
tion with kappa symmetry was3




onstru
ted expli
itly as a super
oset model by Metsaev and Tseytlin [24℄. The key to their
onstru
tion was that the AdS5 � S5 spa
e 
an be realized as the bosoni
 body of a super
osetPSU(2; 2j4)=(SO(4; 1)�SO(5)) with 32 fermioni
 dire
tions. The super
oset has a Z4-stru
ture(a natural extension of the notion of the symmetri
 
oset spa
e) whi
h makes it possible torewrite the Metsaev-Tseytlin a
tion as a bilinear form of 
urrents [25℄. A 
lassi
al a
tion forthe pure spinor formalism 
an be expli
itly written down by applying the same te
hnique andby introdu
ing pure spinor variables adopted to AdS5 � S5 [8℄. Presumably, the pure spinora
tion 
an be understood as a BRST reformulation of the Metsaev-Tseytlin a
tion but to datethe expe
tation has not been shown expli
itly. Although these a
tions are 
onstru
ted from
urrents on a group manifold, these 
urrents are not holomorphi
. Therefore, unlike the Wess-Zumino-Witten models, it is not known how to solve the models based on symmetry prin
iples.On the other hand, both models are known to possess an integrable stru
ture [26℄[27℄ and onemay hope to eventually solve these models by 
ombining integrability and 
onformal �eld theoryte
hniques.Although exa
t quantizations of Green-S
hwarz and pure spinor superstrings in the AdS5 �S5 ba
kgrounds are not within a rea
h at the moment, there are no problems in performing
lassi
al and semi
lassi
al analyses. In the Green-S
hwarz formalism, basi
s of semi
lassi
alanalysis (in parti
ular subtleties arising from gauge �xing Virasoro and kappa symmetries) havebeen 
lari�ed in [28℄ and 
on
rete analyses around very many 
lassi
al solutions have beenperformed, providing strong supports in favour of the AdS/CFT 
onje
ture. In the pure spinorformalism, there are no 
ompli
ated gauge symmetries to be �xed and the semi
lassi
al analysisis straightforward. One-loop 
onformal invarian
e in the AdS5�S5 ba
kground has been shownin [29℄ and later extended to an all-loop proof [30℄. Although the pure spinor formalism has notbeen used mu
h for 
omputing 
on
rete quantities in the AdS/CFT 
ontext, it has been usedin [31℄ to 
ompute the anomalous dimensions of the Konishi multiplet at strong 
oupling, andthe result of [31℄ is in a

ord with the ones predi
ted from the Green-S
hwarz formalism [32℄and integrability te
hniques [33℄.So, all in all, parallel developments have been made in the Green-S
hwarz and pure spinorformalisms, but it has never been 
lari�ed why or how the two are equivalent at a (semi)
lassi
allevel. It is this relation of the two formalisms we wish to address in this arti
le.The plan of this arti
le is as follows. In se
tion 2 we review the 
lassi
al me
hani
s of thepure spinor formalism in an AdS5 � S5 ba
kground. Se
tion 3 
ontains the body of the arti
le.After a general dis
ussion on semi
lassi
al analyses in the pure spinor formalism, we introdu
ea simple family of 
lassi
al solutions and show that one-loop 
orre
tions to spa
etime energiesare related to the expe
tation values of the 
u
tuation Hamiltonians on the worldsheet. Wethen 
ompare the one-loop partition fun
tions in the Green-S
hwarz and pure spinor formalismsand argue that they agree. We 
on
lude in se
tion 4 and point out some future dire
tions. Anappendix is added to summarize our notation and 
onventions.
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2 Classi
al pure spinor superstring in AdS5 � S5 ba
kgroundWe start with a brief review of the pure spinor formalism in an AdS5 � S5 ba
kground, withsome emphases on 
omparison with the Green-S
hwarz formalism. To motivate the de�nition ofthe pure spinor superstring a
tion in the AdS5 � S5 ba
kground, we start from an explanationof the pure spinor formalism in trivial and generi
 supergravity ba
kgrounds.2.1 Trivial ba
kgroundIn 
ontrast to 
onventional approa
hes to string theory, the pure spinor formalism in a trivialba
kground starts o� by postulating a quadrati
 worldsheet a
tion with a BRST symmetry [8℄.For type II superstring the a
tion is given as1S
at = 1��0 Z d2z�12�xa�xa + p���� + bp�̂�b��̂ �w���� � bw�̂�b��̂� (2.1)where (xa; ��; b��̂) (a = 0; : : : ; 9; �; �̂ = 1; : : : ; 16) are the standard type II superspa
e variables,(p�; bp�̂) are 
onjugate momenta of (��; b��̂), and the rest are \ghost" variables 
onsisting of purespinors (��; b��̂) and their 
onjugates (w�; bw�̂). As 
an be seen from the a
tion, (p�; ��; w�; ��)are left moving (holomorphi
) and (bp�̂; b��̂; bw�̂; b��̂) are right moving (antiholomorphi
), and(xa; ��; b��̂; ��; b��̂) are all understood to 
arry 
onformal weight 0.The left and right moving ghosts ��(z) and b��̂(z) are subje
t to quadrati
 \pure spinor
onstraints" [34℄ ��
a����(z) = 0; b��̂
â��̂b��̂(z) = 0 (2.2)and their 
onjugates (w�; bw�̂) are de�ned only up to \gauge transformations"Æ
w�(z) = (
a�)�
a(z); Æ
 bw�̂(z) = (
ab�)�̂b
a(z): (2.3)The 
onstraints of (2.2) seems to imply 10 
onstraints for ea
h �� and b��̂, but a
tually one halfof them is ine�e
tive and a pure spinor has 16 � 5 = 11 independent 
omponents. The ghostse
tor therefore is a 
olle
tion of 11� 2 bosoni
 �
 systems of weight (1; 0) and has 
 = 22� 2.Note that the value is exa
tly what one needs to 
ompensate the 
entral 
harge 
 = (10�32)�2from the matter se
tor.Be
ause of the non-linear nature of the 
onstraints of (2.2), the simpli
ity of the ghost a
tionin (2.1) appears de
eptive, but there is a ni
e formalism 
alled the \theory of 
urved �
 systems"(or the \theory of 
hiral di�erential operators") that 
an be used to rigorously de�ne the �rstorder systems on 
ertain non-trivial spa
es su
h as the pure spinor 
one (2.2). For more on this,we refer the reader to the literature [35℄[36, 37, 38℄[11℄.The other input to the formalism, the BRST operator, is given byQB = Q+Q; Q = Z dz��d�(z); Q = Z dzb��̂ bd�̂(z) (2.4)1See appendix A for a summary of the notation. 5



where d� = p� + (
a�)�(�xa � 12(�
a��)); bd�̂ = bp�̂ + (
ab�)�̂(�xa � 12(b�
a�b�)) (2.5)are left and right moving supersymmetri
 fermioni
 momenta satisfying simple operator produ
texpansions d�(z)d�(w) = 
a���a(w)z � w ; �a = �xa � �
a��; (2.6)bd�̂(z)bd�̂(w) = 
â��̂ b�a(w)z � w ; b�a = �xa � b�
a�b�: (2.7)Thanks to the pure spinor 
onstraint (2.2), the BRST operator QB of (2.4) is nilpotent andit makes sense to talk of its 
ohomology. QB a
ts on operators via free �eld operator produ
texpansions and physi
al states are found as 
ohomologies with ghost numbers (1; 1), where �and b� are de�ned to 
arry ghost numbers (1; 0) and (0; 1). Cohomologies at other ghost numbersare interpreted as spa
etime ghosts and anti�elds. The 
ohomology has been rather thoroughlyinvestigated and there is no doubt that it reprodu
es the well-known superstring spe
trum inthe trivial ba
kground.2Of 
ourse, there have been attempts to explain how \natural" the BRST stru
ture is. Workstaking a 
onventional viewpoint have explained how the BRST stru
ture arises from the 
lassi-
al Green-S
hwarz superstring [16, 17℄. In these approa
hes, pure spinor \ghosts" in the BRSToperator are literally interpreted as the BRST ghosts for the kappa symmetry of the 
lassi
alGreen-S
hwarz a
tion. Less 
onventional (but potentially useful) interpretations of the BRSTstru
ture in
lude its relation to the so-
alled superembedding formalism [39℄, and re
ent \twisto-rial" interpretation of Berkovits [40℄.Note that the pure spinor formalism does not have the reparameterization b
 ghosts asfundamental �elds. However, one may de�ne 
omposite operators b(z) and bb(z) that makes leftand right moving stress tensors T (z) and T (z) BRST trivial [12℄:Qb(z) = T (z); Qbb(z) = T (z); Qbb(z) = Qb(z) = 0: (2.8)Although one 
annot de�ne the 
 ghosts 
onjugate to b's, presen
e of b ghosts is just enough forde�ning higher-loop amplitudes [12℄, Siegel gauge vertex operators [41℄ et
.At any rate, the 
ombination of the free �eld a
tion of (2.1) and the BRST symmetry of (2.4)is arguably mu
h simpler than the 
lassi
al Green-S
hwarz formalism with the troublesome kappasymmetry, and the pure spinor formalism has been proved very useful for 
omputing amplitudesin a 
at spa
etime (see e.g. [14, 15℄ and referen
es therein).2To be more pre
ise, the theory of 
urved �
 systems demands that the BRST operator be supplemented bya small extra term that takes 
are of �ne global issues on the pure spinor spa
e [38℄. This modi�
ation is 
ru
ialfor de�ning a 
omposite b-ghost [12℄ and for 
orre
tly reprodu
ing the higher massive spe
trum [11℄.
6



2.2 Generi
 supergravity ba
kgroundSin
e the pure spinor formalism is super-Poin
ar�e 
ovariant, it is straightforward to generalizethe 
at a
tion of (2.1) to a non-linear sigma model des
ribing a string propagating in a generi
supergravity ba
kground [21℄.Linearized 
oupling to a supergravity ba
kground is des
ribed by an integrated masslessvertex operator. In the pure spinor formalism, this 
an be 
onstru
ted from left-right produ
tsof supersymmetri
 
urrents (���;�a; d�; Nab) and (�b��̂;�a; bd�̂; bNab) asV = 12��0 Z d2z�����b��̂A��̂ + ����bA�b +�a�b��̂Aa�̂ +�a�bAab+ d�(��b��̂E�̂� +�bE�b ) + bd�̂(���E�̂� +�bE�̂b )+ 12Nab(�b�
̂
ab
̂ +�

ab
) + 12 bNab(��
 b
ab
 +�
b
ab
)+ d� bd�̂P��̂ +Nabd̂
̂C 
̂ab + d� bN 
d bC�
d + 14Nab bN 
dRab
d� (2.9)where A��̂ ; A�b; Aa�̂ ; Aab; E�̂� ; E�b ; E�̂� ; E�̂b ; 
ab
̂ ; 
ab
; b
ab
 ; b
ab
;P��̂ ; C 
̂ab; bC�
d; Rab
d (2.10)are super�elds (fun
tions of the zero-modes of (xa; ��; b��̂)) representing 
u
tuations of type IIBsupergravity. Physi
al state 
ondition and gauge invarian
e for integrated vertex operators aregiven by QV = QV = 0 and Æ�;�0V = Q�+Q�0 and these indeed imply linearized equations ofmotion and gauge invarian
es for the super�elds of (2.10) [21℄. For example, the superpotentialA��̂ of lowest dimension is found to satisfy the 
orre
t 
onstraints and gauge invarian
es(
ab
de)��D�A��̂ = (
ab
de)�̂�̂ bD�̂A��̂ = 0 (2.11)Æ�;�0A��̂ = D���̂ + bD�̂�0� (2.12)where D� = �� � (
a�)��a; bD�̂ = ��̂ � (
ab�)�̂�a (2.13)are the super
ovariant derivatives of type IIB superspa
e. Other super�elds of higher dimensions
an be 
onstru
ted from A��̂ and (D�; bD�̂).To 
onstru
t a non-linear a
tion whose linearization gives the vertex operator of (2.9), one
ovariantizes as usual S
at+ V with respe
t the target spa
e reparameterization by introdu
ingthe supervielbein EAM (M = (m;�; �̂), A = (a; �; �̂)) and the 
urved spa
etime 
oordinate
7



ZM = (xm; ��; b��̂):S = 1��0 Z d2z�12(GMN +BMN )�ZM�ZN+ d��ZME�M + �ZM bd�̂E�̂M + d� bd�̂P��̂+ (w���� + 12�ZMNab
abM) + ( bw�̂�b��̂ + 12�ZM bNabb
abM)+ d� bNabC�;ab + bd�̂Nab bC �̂;ab + 14Nab bN 
dRab
d�: (2.14)First line is just the standard non-linear sigma model of the Green-S
hwarz formalism in a
onformal gauge, where the term with GMN = �abEaMEbN is the kineti
 term and the one withBMN is the Wess-Zumino term (possibly with an integration over an extra dimension). It isuseful to remember that P��̂ is a super�eld whose lowest 
omponent is the Ramond-Ramond�eldstrength, and Rab
d is a super�eld whose lowest 
omponent is the spa
etime 
urvature.The BRST operator is still given by the expression of the form (2.4), but its a
tion on�elds is de�ned via 
ommutation relations between (ZM ; ��; b��) and their 
anoni
al 
onjugates.Conditions for this de�nition to make sense, namely the 
onservation of the BRST 
urrents�(��d�) = �(b��̂ bd�̂) = 0 and nilpoten
y of the BRST 
harge, a
tually imply supergravity equa-tions of motion for the ba
kground super�elds [21℄. Sin
e requiring the kappa symmetry ina generi
 supergravity puts the ba
kground super�elds on-shell in the Green-S
hwarz formal-ism [19℄[20℄, this is 
onsistent with the expe
tation that the kappa symmetry is repla
ed by theBRST symmetry in the pure spinor formalism.Also, note that the a
tion of (2.14) 
an be 
he
ked to be BRST invariant if the �rst line(the \Green-S
hwarz part") is assumed to be kappa symmetri
 [42℄. This is not entirely obviousand means that a Green-S
hwarz a
tion in any supergravity ba
kground 
an be 
onsistentlyextended to a pure spinor a
tion of the form (2.14). This observation, on the other hand, doesnot explain the equivalen
e of the two formalisms even at a 
lassi
al level.When the Ramond-Ramond super�eld P��̂ is invertible as a 16�16 matrix, (d�; bd�̂) be
omesauxiliary and the a
tion (2.14) 
an be simpli�ed toS = 1��0 Z d2z�12(GMN +BMN )�ZM�ZN+ (w�r�� + 12�ZMNab
abM ) + ( bw�̂�b��̂ + 12�ZM bNabb
abM ) + 14Nab bN 
dRab
d� (2.15)for some shifted ba
kground super�elds. The a
tion (2.15) still has a BRST symmetry and the
orresponding 
harge readsQB = Z dz���ZMEM� + Z dzb��̂�ZMEM̂� : (2.16)It is this form of the a
tion that we shall be using in our analysis of strings in an AdS5�S5 ba
k-ground, sin
e the Ramond-Ramond 
ux is non-degenerate (and 
onstant) in the ba
kground.8



2.3 AdS5 � S5 ba
kgroundFor a maximally supersymmetri
 AdS5 � S5 ba
kground with 
onstant Ramond-Ramond 
ux,one may use the Metsaev-Tseytlin 
onstru
tion [24℄ to expli
itly write down the ba
kgroundsuper�elds in the a
tion of (2.15) [8℄. A reason why it works is that an appropriate superspa
e
an be written as a super
oset of the form G=H = PSU(2; 2j4)=(SO(4; 1) � SO(5)).2.3.1 Metsaev-Tseytlin 
oset 
onstru
tion of Green-S
hwarz a
tion for AdS5 � S5The basi
 building blo
k for the Metsaev-Tseytlin 
oset 
onstru
tion is the left invariant Maurer-Cartan 1-form eJ = eg�1deg (eg 2 G) on G, or more pre
isely its pull-ba
k to G=H via a se
tiong : G=H ! G: J = g�1dg: (2.17)To 
onstru
t an a
tion on the 
oset G=H using J , an H gauge invarian
e shall be introdu
edto make the 
hoi
e of the se
tion g irrelevant. For an appli
ation to the AdS5 � S5 superstringrelevant groups are G = PSU(2; 2j4) and H = SO(4; 1) � SO(5) and J takes values in the Liealgebra g = psu(2; 2j4).3If one regards g = g(�; �) as a fun
tion on a worldsheet with values in the se
tion G=H � G,the 1-form J be
omes a 
urrent on the worldsheet. The Maurer-Cartan equation 
an then bepulled ba
k to the worldsheet and it implies that J satis�es�+J� � ��J+ + [J+; J�℄ = 0 (2.18)where J� = 12(J� � J�) are light
one 
omponents of the 
urrent J .The 
urrent J 
arries a lo
al H a
tion and a global G a
tion that are inherited from these
tion g : G=H ! G. Namely, under a lo
al H transformation of g de�ned byg ! gh(�; �); h = h(�; �) 2 H (2.19)J transforms as J ! h�1dh+ h�1Jh (2.20)and under a global G transformation of g de�ned byg(x)! g(xa) = ag(x)h(a; �; �)�1 ; x 2 G=H; a 2 G; h(a; �; �) 2 H (2.21)J transforms as J ! hJh�1 � (dh)h�1: (2.22)So, J is invariant under the global G transformation up to a 
ompensating H gauge transfor-mation.3See appendix A for our 
onventions for psu(2; 2j4). 9



For the 
ase at hand, Lie algebra g of G = PSU(2; 2j4) admits a Z4 grading,
g = 3Mi=0 gi; [gi; gj℄ � gi+j; i; j 2 Z4 (2.23)and the degree zero pie
e g0 is nothing but the Lie algebra of the denominator H = SO(4; 1)�SO(5). Hen
e, if one de
omposes the Metsaev-Tseytlin 
urrent by the Z4 grading asJ = JATA = J0 + J1 + J2 + J3; J i 2 gi;J0 = JabLab; J1 = JaQ�; J2 = JaPa; J3 = J �̂Q�̂ (2.24)the lo
al H transformations 
an be re�ned asJ0 ! h�1dh+ h�1J0h and J i ! h�1J ih (i = 1; 2; 3): (2.25)This re�nement fa
ilitates the 
onstru
tion of a G-invariant a
tion on a super
oset G=H, justlike in the 
ase of a symmetri
 
oset spa
e.Sin
e the 
urrents J i (i = 1; 2; 3) transforms homogeneously under the H gauge transforma-tion of (2.19) an a
tion of the formZ d2� str�12J2+J2� + aJ1+J3� + bJ3+J1�� (2.26)for any 
onstants a; b is invariant under the global G a
tion of (2.21) and the lo
al H a
tionof (2.19). However, the 
oset G=H has 32 (too many) fermioni
 dimensions and one does notexpe
t (2.26) to des
ribe a superstring ex
ept perhaps at some spe
ial values of (a; b). Justas in a 
at superspa
e, to 
onstru
t a superstring model using the 
oset a
tion of (2.26), onehas to kill a half of fermioni
 
oordinates either by introdu
ing a fermioni
 lo
al symmetry(kappa symmetry) [7℄, or by 
oupling it to appropriate bosoni
 ghosts (like pure spinors) [8℄.Remarkably, both 
an be done.In the works of Metsaev and Tseytlin [24℄ and Berkovits et al. [25℄, it was found that a kappasymmetri
 Green-S
hwarz a
tion in a 
onformal gauge 
an indeed be written in the form (2.26)and is essentially unique (a = �b = �1=4):SGS = R2��0 Z d2� str�12J2+J2� � 14(J1+J3� � J3+J1�)�: (2.27)That the Wess-Zumino term 
an be written as an integration over the two dimensional worldsheetfollows from the fa
t that psu(2; 2j4) admits a Z4 automorphism [25℄. The \radius" parameterR is related to the number N of D3-branes that sour
e the Ramond-Ramond 
ux supportingAdS5�S5, but the integrality of N 
annot be probed by an elementary string. From now on weset the radius R in the unit of p�0 to be one. In the 
ontext of the AdS/CFT 
orresponden
e,the semi
lassi
al parameter �0 then is related to the 't Hooft 
oupling � of the N = 4 superYang-Mills theory as �0 � 1=p�.Sin
e the Green-S
hwarz a
tion of (2.27) is written in a 
onformal gauge, it is understoodto be a

ompanied by Virasoro 
onstraintsT = 12�0 str(J2+J2+) � 0; T = 12�0 str(J2�J2�) � 0: (2.28)10



Note that the se
ond term of (2.27) is a topologi
al Wess-Zumino term (i.e. does not 
ouple toworldsheet metri
) and hen
e does not 
ontribute to the stress tensors. However, the Green-S
hwarz a
tion have more 
onstraints than the Virasoro 
onstraints of (2.28) and separationof the �rst and se
ond 
lass 
onstraints makes it more natural to improve the naive Virasoro
onstraints so that they be
ome �rst 
lass. The improved Virasoro 
onstraints are then 
loselyrelated to the stress tensor of the pure spinor formalism.2.3.2 Pure spinor a
tion for AdS5 � S5In subse
tion 2.2 we explained a relation between Green-S
hwarz a
tion and pure spinor a
tionin an arbitrary supergravity ba
kground. One 
an �nd a pure spinor a
tion in an AdS5 � S5ba
kground by applying the argument to the Metsaev-Tseytlin a
tion. In the \se
ond order"form it reads4 S = SGS + 1��0 Z d2� str�J3+J1��+ Sgh (2.29)= 1��0 Z d2� str�12J2+J2� + 14J1+J3� + 34J3+J1��+ Sgh: (2.30)where Sgh = 1��0 Z d2� str�w3[D�; �1℄ + bw1[D+; b�3℄�N bN�;(D� = [�� + J0�; � ℄) (2.31)des
ribes the 
ontribution of pure spinor ghosts and their 
oupling to the \matter" se
tor. These
ond term in (2.29) 
omes from integrating out the auxiliary �elds (d�; bd�̂) as explained at theend of subse
tion 2.2. In the \ghost" a
tion Sgh (2.31) we have introdu
ed pure spinor variablesas supermatri
es �1 = ��T� 2 g1; b�3 = b��̂T�̂ 2 g3 (2.32)satisfying SO(4; 1) � SO(5) pure spinor 
onstraintf�1; �1g = ��
a���� = 0; fb�3; b�3g = b��̂
â��̂b��̂ = 0: (2.33)Sin
e the pure spinor ghosts are bosoni
, supermatri
es �1 and b�3 have a wrong Grassmannparity. We have also introdu
ed the 
onjugates to �1 and b�3w3 = ���̂w�T�̂ 2 g3; bw1 = ��̂� bw�̂T� 2 g1 (2.34)and Lorentz (SO(4; 1) � SO(5)) generators of the pure spinor se
torN = �fw3; �1g; bN = �f bw1; b�3g: (2.35)4Here, we have judi
iously used the opposite sign for the Wess-Zumino term in SGS with respe
t to the onegiven in (2.27) be
ause it is the variables in (2.30) that have a simple relation to the Green-S
hwarz variablesof (2.27). Otherwise the relation between the variables of the two formalisms gets twisted by an automorphism
g1 $ g3 of psu(2; 2j4). Of 
ourse, this is a matter of 
onvention but we �nd it prettier this way.11



Note that the matter se
tor of pure spinor superstring a
tion (2.30) is not kappa symmetri
sin
e Green-S
hwarz a
tion of (2.27) is the unique su
h a
tion. Another important di�eren
e isthat the pure spinor a
tion is not a

ompanied by Virasoro 
onstraints even though it is writtenin a \
onformal gauge". In pure spinor formalism, both the kappa symmetry and the Virasoro
onstraint are repla
ed by a BRST symmetry.2.4 PSU(2; 2j4) symmetry and Noether 
urrentThe lo
al H = SO(4; 1) � SO(5) transformation of (2.19) and the global G = PSU(2; 2j4)transformation of (2.21) 
an be extended to the pure spinor se
tor in a way that the a
tion isinvariant. The 
oupling of pure spinors to the 
onne
tion J0 implies that the former isg ! gh(�; �); (w; �; bw; b�)! h(�; �)�1(w; �; bw; b�)h(�; �); h(�; �) 2 H (2.36)and the latter isg ! agh(a; �; �)�1; (w; �; bw; b�)! h(a; �; �)(w; �; bw; b�)h(a; �; �)�1; a 2 G; h(a; �; �) 2 H:(2.37)The Noether 
urrent asso
iated with the PSU(2; 2j4) symmetry 
an be 
omputed in a stan-dard manner, and is given byj = (j+; j�) = jATA 2 psu(2; 2j4);j+ = g(J2+ + 12J1+ + 32J3+ + 2N)g�1; j� = g(J2� + 32J1� + 12J3� + 2 bN )g�1: (2.38)The normalization of j here is su
h that the 
orresponding 
onserved 
harge is given by 14��0 R d�jA� .Individual 
omponents for ea
h psu(2; 2j4) generator 
an be extra
ted asjA = �AB str(TB j) (2.39)where �AB is the inverse of the tra
e metri
 �AB = str(TATB). Of parti
ular importan
e for usis the 
omponents for T0; T9 2 g2. Conserved 
harges asso
iated with them are the AdS energyand an angular momentum in S5E = 14��0 Z d�j0� ; J = 14��0 Z d�j9� : (2.40)2.5 BRST symmetry, 
omposite b-ghost and stress tensorThe pure spinor a
tion of (2.30) is invariant under an on-shell BRST transformation de�ned by5ÆBg = g(�1 + b�3); ÆBw3 = �J3+; ÆB bw1 = �J1�; ÆB�1 = ÆBb�3 = 0: (2.41)5The BRST symmetry 
an be promoted to an o�-shell symmetry by adding some auxiliary �elds [43, 44℄.12



On Metsaev-Tseytlin 
urrents, it a
ts asÆBJ0 = [J3; �1℄ + [J1; b�3℄; ÆBJ1 = [D;�1℄ + [J2; b�3℄; (2.42)ÆBJ2 = [J1; �1℄ + [J3; b�3℄; ÆBJ3 = [D; b�3℄ + [J2; �1℄: (2.43)Asso
iated BRST 
harge 
an be written as a sum of left-moving and right-moving 
omponentsQB = Q+Q; Q = Z d�+ str(�1J3+); Q = Z d�� str(b�3J1�) (2.44)where �� str(�1J3+) = �+ str(b�3J1�) = 0 be
ause of the equations of motion.In any BRST formulation of string theory, it is 
ru
ial to have b ghost �elds that make stresstensors BRST trivial as in fQB; bg = T , fQB;bbg = T . Sin
e the stress tensorsT = 1�0 str(12J2+J2+ + J1+J3+ +w3[D+; �1℄); T = 1�0 str(12J2�J2� + J1�J3� + bw1[D�; b�3℄) (2.45)
arry ghost number (0; 0) while Q and Q 
arry ghost numbers (1; 0) and (0; 1), one needsoperators of negative ghost numbers to 
onstru
t the b ghosts. In an AdS5 � S5 ba
kground(�b�) � str(�1b�3) is in the 
ohomology of QB, and it has been argued that it is 
onsistent toallow inverse powers of (�b�) [45℄. One 
an utilize this observation to 
onstru
t 
omposite bghosts with negative ghost numbers (�1; 0) and (0;�1) as [45, 46℄b = 1�0 str�b�3[J2+; J3+℄(�b�) � w3J1+ + fw3; b�3g[�1; J1+℄(�b�) �;bb = 1�0 str��1[J2�; J1�℄(�b�) � bw1J3� + f bw1; �1g[b�3; J3�℄(�b�) � (2.46)and it 
an be 
he
ked that these satisfyfQ; bg = T; fQ;bbg = T; fQ;bbg = fQ; bg = 0: (2.47)Note that b and bb are a
tually invariant under Æ
w3 = f
2; �1g and Æ
 bw1 = f
2; b�3g for anarbitrary operator 
2 and that, although b is not purely left-moving and bb is not purely right-moving, ��b and �+bb are BRST trivial [46℄.A remark is in order. The a
tion of (2.30) 
an be naively 
oupled to worldsheet gravityand the stress tensor of (2.45) are the ones that one would obtain from this 
oupling. However,as mentioned earlier, the a
tion of (2.30) should not be regarded as arising from gauge �xingthis naive reparameterization invariant a
tion, for that would imply that the stress tensor isa 
onstraint. If one wishes to start from a reparameterization invariant a
tion, the 
orre
tstarting point should rather be the 
lassi
al Green-S
hwarz a
tion. Studies along this line ina 
at ba
kground tell us that the pure spinor variables arise as bosoni
 ghosts for the kappasymmetry, and that one should think of the fundamental b
-ghosts to be \integrated out" fromthe theory, e�e
tively getting repla
ed by one of the pure spinor 
onstraints [10, 17℄.13



2.6 Classi
al equations of motionEquations of motion for both Green-S
hwarz and pure spinor superstrings 
an be readily 
om-puted from their a
tions (2.27) and (2.30).Green-S
hwarz Classi
al equations of motion for the Green-S
hwarz superstring in an AdS5�S5 ba
kground is well known. In a 
onformal gauge they read[D�; J2+℄ + [J1�; J1+℄ = 0; [D+; J2�℄ + [J3+; J3�℄ = 0; (2.48)[J2�; J3+℄ = 0; [J2+; J1�℄ = 0 (2.49)where, as before, the spin 
ovariant derivatives are de�ned as D� = �� + [J0�; � ℄. These areunderstood to be supplemented by the Maurer-Cartan equations�+J i� � ��J i+ + Xj+k=i[J j+; Jk�℄ = 0; (i 2 Z4) (2.50)and by the Virasoro 
onstraint 
oming from a 
hoi
e of the 
onformal gaugestr(J2+J2+) = str(J2�J2�) = 0: (2.51)Pure spinor The 
urrents from the matter se
tor of the pure spinor formalism satisfy thesame set of Maurer-Cartan equations as the ones in the Green-S
hwarz formalism, but theirequations of motion are di�erent:[D� � bN; J2+℄ + [J1�; J1+℄ = [J2�; N ℄; [D+ �N; J2�℄ + [J3+; J3�℄ = [J2+; bN ℄; (2.52)[D� � bN; J3+℄ = [J3�; N ℄; [D+ �N; J1�℄ = [J1+; bN ℄: (2.53)If one ignores ghost 
ontributions, the equations of motion for the bosoni
 
urrent J2� redu
eto that of the Green-S
hwarz formalism. On the other hand, the equations of motion for thefermioni
 
urrents J1� and J3� take the forms of 
ovariant 
onstan
y 
onditions even after drop-ping the ghost 
ontributions and do not redu
e to the \algebrai
" equations of motions of theGreen-S
hwarz formalism.Equations of motion for the pure spinor ghost variables are[D� � bN;�1℄ = 0; [D+ �N; b�3℄ = 0; (2.54)[D� � bN;w3℄ = 0; [D+ �N; bw1℄ = 0: (2.55)The equations for (w3; bw1) 
an be repla
ed by that for the gauge invariant Lorentz 
urrents[D� � bN;N ℄ = 0; [D+ �N; bN ℄ = 0: (2.56)Unlike in the Green-S
hwarz formalism, the Virasoro 
ondition is not a part of the equationsof motion. Nevertheless, in a semi
lassi
al setup, it is still true that the \
lassi
al solution"around whi
h one studies small 
u
tuations should have vanishing worldsheet energy and mo-mentum (L0 � L0), sin
e the Virasoro 
urrents T and T are BRST exa
t.14



3 Semi
lassi
al pure spinor superstring in AdS5�S5 ba
kgroundWe now turn to the main topi
 of the present arti
le. Our primary goal is to explain the reasonwhy the one-loop 
orre
tion to 
lassi
al string energy 
omputed using the pure spinor formalismagrees with that from the Green-S
hwarz formalism. For simpli
ity, we shall restri
t ourselvesto a simple family of 
lassi
al solutions (de�ned in se
tion 3.3), but we believe that the patternthat 
onne
ts the two formalisms stay the same for a broader 
lass of solutions.The stru
ture of our argument is as follows. After developing some semi
lassi
al formulasfor the pure spinor superstring around a generi
 
lassi
al solution, we show that, for a 
ertain
lass of solutions, the one-loop 
orre
tion to spa
etime energy 
omes entirely from the zero-point\energy" of worldsheet 
u
tuations. The zero-point \energy" is the normal ordering 
onstantin the Hamiltonian of quadrati
 
u
tuations, and 
an be 
omputed from the one-loop partitionfun
tion on the worldsheet. To argue that the one-loop partition fun
tions of Green-S
hwarz andpure spinor formalisms agree, we analyze the equations of motion for 
u
tuations of the latterand identify Green-S
hwarz like degrees of freedom. Morally speaking, those degrees of freedomare related to the BRST 
ohomology of 
u
tuations and yield the same zero-point \energy"as the Green-S
hwarz 
u
tuations. The remaining degrees of freedom, whi
h are de
oupledfrom the Green-S
hwarz like ones, have a trivial partition fun
tion and do not 
ontribute to thezero-point \energy".3.1 Comparison of semi
lassi
al analyses for Green-S
hwarz and pure spinorformalismsAs we have reviewed in the previous se
tion, 
ompared to the Green-S
hwarz formalism, thepure spinor formalism has an extended set of �elds and the Virasoro and kappa symmetries arerepla
ed by a BRST symmetry. To 
ompare semi
lassi
al analyses in Green-S
hwarz and purespinor formalisms, one has to identify 
lassi
al solutions of both sides and 
ompare the stru
tureof small 
u
tuations around them.From the forms of 
lassi
al equations of motion (subse
tion 2.6), one �nds that a purelybosoni
 solution of the Green-S
hwarz formalism is automati
ally a solution of the pure spinorformalism (with a trivial ghost pro�le). However, it is not 
lear if all 
lassi
al solutions of thepure spinor formalism 
an be obtained in this way. In this arti
le, we shall leave the 
omplete
omparison of the spa
e of 
lassi
al solutions along the line of [47℄ as an interesting open question.So in the dis
ussion that follows, we pi
k a solution of the Green-S
hwarz formalism andregard it as the solution of the pure spinor formalism des
ribing the same 
lassi
al string.Sin
e the Green-S
hwarz a
tion in a 
onformal gauge 
omes with Virasoro and kappa symme-tries, 
u
tuations around a 
lassi
al solution have to respe
t 
ertain 
onstraints. The presen
eof the kappa symmetry manifests itself in the semi
lassi
al analysis as a degenera
y of fermioni
propagators. Namely, one half of the fermioni
 
u
tuations does not propagate and one maysimply freeze these 
u
tuations to deal with the kappa symmetry. The Virasoro 
onstraintimplies that two of ten bosoni
 
u
tuations are fun
tionals of others, and normally the two
u
tuations are removed by either imposing a light
one gauge or a stati
 gauge 
ondition.15



After properly dealing with the 
onstraints, one may in prin
iple quantize the quadrati

u
tuations and 
ompute semi
lassi
al quantities. The 
lassi
al solution is identi�ed with theground state j
i of the worldsheet Hamiltonian H2 for the quadrati
 
u
tuations, and a semi-
lassi
al 
orre
tion to the spa
etime energy of the solution 
an be 
omputed as�E(
) = h
j(E �E)j
i: (3.1)Here, E on the right hand side is the Noether 
harge for the AdS time translation written interms of 
u
tuations and E denotes its 
lassi
al value. For the 
lass of solutions de�ned inse
tion 3.3, this quantity 
an be related to the expe
tation value of the worldsheet HamiltonianH2 by imposing Virasoro 
onstraint on 
u
tuations [6℄. This is a good fortune be
ause one 
anbypass the expli
it quantization of 
u
tuations when 
omputing �E(
).As an aside, let us mention that one may ignore the 
u
tuations of Goldstone modes to theone-loop approximation and that a quantum state j	i with some ex
itations over j
i representsa string state with slightly higher energy. Quantization of Goldstone modes is interesting (thisshould turn the ground state to a multiplet of spontaneously broken global symmetries), and is
ertainly important for two-loops and beyond. We, however, do not inquire into these issues inthis arti
le.In the pure spinor formalism, the pro
edure for the semi
lassi
al analysis is similar but nowthe Virasoro and kappa symmetries are repla
ed by a BRST symmetry.When performing a semi
lassi
al analysis for a BRST system in general, it is useful to keepthe following geometri
 pi
ture in mind (
f. [48℄). Presen
e of a (on-shell) nilpotent BRSTsymmetry implies that a 
riti
al point of the a
tion in the spa
e of �elds belongs either to atrivial orbit (BRST singlet) or a non-trivial orbit with zero volume (BRST doublet). A \
lassi
alsolution" around whi
h one performs a semi
lassi
al analysis has to be a solution to the equationsof motion and at the same time a BRST singlet. When a solution is a BRST singlet, the BRSTsymmetry indu
es a nilpotent a
tion on 
u
tuations around the solution. So one gets a newBRST system of 
u
tuations and the ground state j
i and ex
ited states j	i are de�ned asBRST 
ohomologies. Semi
lassi
al quantization of 
u
tuations of a BRST system around a\
lassi
al solution" is 
on
eptually simpler than that of a gauge invariant system be
ause allthe problems with degenerate phase spa
e of the latter are already taken 
are of by the BRSTsymmetry.Coming ba
k to the relation between Green-S
hwarz and pure spinor formalisms, one expe
tsthat a quantum state j	i of the former 
an be mapped to a BRST 
ohomology 
lass of thelatter. This mapping should allow one to dire
tly 
ompare the one-loop 
orre
tions �E(	) =h	j(E�E)j	i in the two formalisms. Unfortunately, however, it is not ne
essarily easy to showthe equivalen
e in this way, just be
ause quantization of 
u
tuations around a given 
lassi
alsolution 
ould be too hard. In general, both kineti
 and mass terms are not 
onstant andmoreover have 
ompli
ated mixing, so quantization is not easy even for the light
one Green-S
hwarz formalism.But if one is mainly interested in 
omparing one-loop 
orre
tions �E(
) to the energiesof the 
lassi
al solution, expli
it quantization 
an be sometimes 
ir
umvented. As mentioned16



above, there is a family of 
lassi
al solutions for whi
h one-loop energy 
orre
tions are related toexpe
tation values of their worldsheet Hamiltonians H2, both in Green-S
hwarz and pure spinorformalisms. Then, the equivalen
e of the two formalisms (as far as �E(
) is 
on
erned) is re-du
ed to a simpler problem of 
omparing one-loop partition fun
tions. In subse
tions 3.5 and 3.6we study equations of motions for 
u
tuations in Green-S
hwarz and pure spinor formalisms andargue that their one-loop partition fun
tions around the 
lassi
al solutions of subse
tion 3.3 doagree.3.2 Quadrati
 
u
tuationsComputations of semi
lassi
al quantities 
an be done by using a ba
kground �eld method. Fora sigma model on a group manifold, a 
onvenient way to separate the worldsheet variable g(�; �)to its ba
kground value g(�; �) and small 
u
tuations X(�; �) 2 g around it is asg = geX : (3.2)To perform a 
onsistent semi
lassi
al analysis, X is understood to be a quantity of order p�0.When the sigma model is on a 
oset G=H, g is a 
oset representative and the small 
u
tuationX takes values in a subspa
e of g. Identi�
ation (3.2) may require a 
ompensating H gaugetransformation whi
h, however, is irrelevant for gauge invariant quantities like a
tion. For the
ase at hand, the 
u
tuation X 
an be split a

ording to the Z4 grading of g = psu(2; 2j4) andwe 
hoose it to have the 
omponents orthogonal to g0(= h):X = 3Mi=1 Xi; Xi 2 gi: (3.3)For simpli
ity, we assume the ba
kground to be purely bosoni
 and ghost free (i.e. no ba
k-ground values for the fermioni
 
urrents (J1; J3) and the ghosts).3.2.1 Quadrati
 a
tionExpansion of the 
oset a
tion of the form (2.26) to quadrati
 order in 
u
tuations is straight-forward. Vast simpli�
ation for the end result o

ur pre
isely when the relative 
oeÆ
ients ofJ1+J3� and J3+J1� with respe
t to 12J2+J2� are either as in the Green-S
hwarz a
tion (2.27) or asin the pure spinor a
tion (2.30). Moreover, the 
u
tuation a
tions for these two 
ases bear astriking resemblan
e to ea
h other.Green-S
hwarz To the quadrati
 order, there is no mixing of bosoni
 and fermioni
 
u
tua-tions, so the quadrati
 a
tion is of the formSGS2 = SGS2B + SGS2F (3.4)
17



whereSGS2B = 12��0 Z d2� str�[D+;X2℄[D�;X2℄� [J2+;X2℄[J2�;X2℄�; (3.5)SGS2F = � 12��0 Z d2� str�[D+;X1℄[J2�;X1℄ + [J2+;X3℄[D�;X3℄ + 2[J2+;X3℄[J2�;X1℄�: (3.6)Here and hereafter, J� � g�1��g denotes the ba
kground values of the 
urrent J�.A 
hara
teristi
 feature of SGS2F is that it has a �rst order kineti
 term. On a slightly 
loserinspe
tion one �nds that a
tually one half of the fermioni
 
u
tuation modes are absent fromSGS2F . (Roughly speaking, the 
lassi
al Virasoro 
onstraint implies that matri
es representing[J2�; � ℄ have half maximal rank and proje
t out one halves of X1 and X3.) Of 
ourse, thisre
e
ts the fa
t that the Green-S
hwarz a
tion has a kappa symmetry.Pure spinor Sin
e we are assuming that the ba
kground values for pure spinor ghosts aretrivial, the quadrati
 a
tion for the 
u
tuations is of the formSPS2 = SPS2B + SPS2F + SPS2G (3.7)where SPS2B is the same as SGS2B of Green-S
hwarz formalism (3.5) andSPS2F = 12��0 Z d2� str�2[D+;X3℄[D�;X1℄ + [J2+;X1℄[D�;X1℄ + [D+;X3℄[J2�;X3℄�; (3.8)SPS2G = 1��0 Z d2� str�w[D�; �℄ + bw[D+; b�℄�: (3.9)Sin
e the 
u
tuation a
tions for the bosoni
 modes X2 in Green-S
hwarz and pure spinorformalisms are the same, their 
ontributions to the semi
lassi
al partition fun
tions of the Green-S
hwarz and pure spinor formalisms 
an be related trivially. Of 
ourse, 
onstraint stru
turesfor the 
u
tuations are di�erent (Virasoro in Green-S
hwarz and BRST in pure spinor), but itjust implies that 
ontributions of unphysi
al 
u
tuations along \light
one dire
tions" to phys-i
al quantities get neutralized by di�erent fermioni
 
u
tuations (reparameterization ghosts inGreen-S
hwarz and unphysi
al fermioni
 
u
tuations in pure spinor). We therefore fo
us onmore interesting fermioni
 
u
tuations (X1;X3) in the following dis
ussions.Note that the kineti
 term for the fermioni
 
u
tuations in SPS2F is of se
ond order and non-degenerate. This is in sharp 
ontrast to the 
ase of Green-S
hwarz. On the other hand, theappearan
e of SPS2F here is rather similar to SGS2F (3.6) of the Green-S
hwarz formalism and 
anbe obtained by formally repla
ing the \mass term" in SGS2F by the se
ond order kineti
 term.3.2.2 Linearized equations of motionTo 
ompare the stru
tures of 
u
tuations of Green-S
hwarz and pure spinor formalisms, it isuseful to 
ompare their equations of motions. We re
ord them here for future use. We alsointrodu
e a 
omponent notation by 
hoosing a basis of g1 and g3.18



Bosoni
 
u
tuations Equations of motion for bosoni
 
u
tuation X2 2 g2 are the same forGreen-S
hwarz and pure spinor formalisms:[D+; [D�;X2℄℄� [J2+; [J2�;X2℄℄ = 0: (3.10)Those modes 
ontribute the same amount to one-loop 
orre
tions in two formalisms and hen
eare not of primary interest to us.Green-S
hwarz By using the 
lassi
al equations of motion (2.48) for the ba
kgrounds andthe Maurer-Cartan equation, the equations of motion for X1 and X3 are found to be[D+; [J2�;X1℄℄ + [J2�; [J2+;X3℄℄ = 0; [D�; [J2+;X3℄℄ + [J2+; [J2�;X1℄℄ = 0: (3.11)To study these equations further, it is 
onvenient to take an expli
it basis for g1 and g3 anddenote X1 = ��T�; X3 = b��̂T�̂: (3.12)A
tions of D� and J2� on (��; b��̂) 
an be understood by noting that the bosoni
 
urrents J0 andJ2 are related to the spa
etime spin 
onne
tion !mab and vielbein eam respe
tively. We denote(��)�� � ��xmeam(
a)�� ; (��)�� � ��xmeam(
a)�� (3.13)where 
's are SO(4; 1) � SO(5) gamma matri
es. Spinor indi
es 
an be raised and loweredusing the invariant spinor metri
 ���̂ = ���̂� 
oupling g1 and g3 and its inverse. We often omitspinor indi
es assuming that they are 
ontra
ted appropriately. It is useful to remember thatthe 
lassi
al equations of motion for the ba
kground implies [D�; ��℄ = 0 and that the Virasoro
ondition implies �+�+ = ���� = 0. A
tually, �� have half the maximal ranks so they a
t asproje
tors on spinors.In terms of (��; b��̂) the equations of motion 
an be written asD+(����)� � 12(���)��̂(��+b�)�̂ = 0 ; D�(��+b�)�̂ + 12(��+)�̂�(����)� = 0 (3.14)where D� = �� � 14!�ab
ab denotes the a
tion of the 
ovariant derivative [D�; � ℄ on spinors.Sin
e �� behave as proje
tors, one halves of �� and b��̂ are absent from the equations of motion.Pure spinor Equations of motion for the fermioni
 
u
tuations X1 and X3 are[D+; [D�;X1℄℄ + [J2�; [D+;X3℄℄ = 0; [D�; [D+;X3℄℄ + [J2+; [D�;X1℄℄ = 0 (3.15)or in the 
omponent notationD+(D��)� � 12(���)��̂(D+b�)�̂ = 0; D�(D+b�)�̂ + 12(��+)�̂�(D��)� = 0: (3.16)Note well the di�eren
e and resemblan
e of these to the 
orresponding equations in the Green-S
hwarz formalism (3.14). Unlike in the Green-S
hwarz formalism, equations of motion (3.16)19



for fermioni
 
u
tuations here are of se
ond order and non-degenerate. On the other hand,if one de�nes S = (����) and bS = (��+b�) in Green-S
hwarz formalism and � = (D��) andb� = (D+b�) in pure spinor formalism, the equations here 
an be obtained by formally repla
ing(S; bS) in (3.14) by (�; b�). Sin
e (�; b�) do not 
ontain the proje
tors �� as (S; bS) do, one
annot immediately identify them with (S; bS), but we shall show in the subse
tion 3.5 that one
an further split (�; b�) to the Green-S
hwarz like degrees of freedom (S; bS) and the rest, atleast around the 
lassi
al solutions 
ontained in an Rt � S2 � AdS5 � S5.Equations of motion for the pure spinor ghosts are simply[D�; �1℄ = [D�; w3℄ = 0; [D+; b�3℄ = [D+; bw1℄ = 0 (3.17)or D��� = D�w� = 0; D+b��̂ = D+ bw�̂ = 0: (3.18)Note that (D��) = (D+b�) = 0 is a solution to the equations of motion (3.16). So there are22� 2 bosoni
 modes and 16� 2 fermioni
 modes satisfying the same equations of motion, andone already expe
ts a huge 
an
ellation of zero-point energies.3.2.3 BRST transformations of 
u
tuationsAlthough we will not need it in this arti
le, the a
tion of the BRST symmetry on 
u
tuationsX = X1 +X2 +X3 
an be 
omputed from the \�nite" BRST transformationg = geX ! geXe�1+b�3 (3.19)by using the Baker-Campbell-Hausdor� formula. To the se
ond order in 
u
tuations, they aregiven by ÆBX2 = 0 + 12([X1; �1℄ + [X3; b�3℄) + � � � ;ÆBX1 = �1 + 12[X2; �3℄ + � � � ; ÆBX3 = �1 + 12[X2; �3℄ + � � � : (3.20)Note that, be
ause of pure spinor 
onstraints f�1; �1g = fb�3; b�3g = 0, the right hand sidesof these equations are linear in (�1; b�3). Pure spinors �1 and b�3 are BRST invariant and the
onjugates w3 and bw1 transform asÆBw3 = �[D+;X3℄� [J2+;X1℄ + � � � ; ÆB bw1 = �[D�;X1℄� [J2+;X3℄ + � � � : (3.21)3.3 A family of 
lassi
al solutions in AdS5 � S5For simpli
ity, we from now on restri
t ourselves to a rather simple family of 
lassi
al solutionsin whi
h the string sits at the 
enter of AdS5 and (possibly) extended in an S2 � S5. Moreover,20



we assume that the string is rigid, meaning that the 
oeÆ
ients of 
u
tuation a
tion is � -independent.6 More 
on
retely, if one denotes AdS time by t and azimuthal and polar angles ofS2 by ( ; �) with  = 0 � � and � = 0 � 2�, a solution in the family 
an be written ast = ��;  =  (�); � = �� + �0(�) (3.22)for some 
onstants � and �, and � -independent fun
tions  (�) and �0(�). Solutions in this
lass in
lude the point-like rotating BMN string [4℄, the folded spinning string [5℄, and if theperiodi
ity in � dire
tion is relaxed, the giant magnon [49℄.We shall identify (t;  ; �) dire
tions to the dire
tions generated by (T0; T8; T9) 2 g2. Theparameterization of the 
oset representative g(�; �) in terms of (t;  ; �) is theng = etT0e�T9e( ��=2)T8 : (3.23)The non-vanishing 
omponents of the Metsaev-Tseytlin 
urrent areJ� � g�1��g = ��tT0 + �� T8 + ��� sin T9 � ��� 
os T89: (3.24)Components of the 
urrent J� are just the pullba
ks of vielbein and spin 
onne
tion on S2e0t = 1; e8 = 1; e9� = sin ; (3.25)!�89 = 
os : (3.26)3.4 Relation between �E and worldsheet Hamiltonian H2For the 
lass of solutions des
ribed in the previous subse
tion, the one-loop 
orre
tion to thespa
etime energy h
j(E � E)j
i has a rather simple relation to a properly de�ned worldsheetHamiltonian H2 for 
u
tuations. This is well-known in the Green-S
hwarz formalism (both in
onformal and stati
 gauges) and it will be shown here that the same is true for the pure spinorformalism as well. To be more spe
i�
, it will now be shown that the relation7h	j��(E �E)� �(J � J)�j	i = h	jH2j	i (3.27)holds for any quantum state j	i in the BRST 
ohomology built on the ground state j
i. More-over, sin
e J is a 
ompa
t generator with dis
rete eigenvalues, the ground state j
i is supposedto have the same eigenvalue J as the 
lassi
al solution. Exploiting the relation (3.27) is use-ful be
ause the expe
tation value of H2 (zero-point energy) for the ground state j
i 
an be
omputed from the one-loop partition fun
tion of 
u
tuations.A proof of a relation of the type (3.27) in the Green-S
hwarz formalism in a 
onformal gaugeis given [6℄ by noting �(E �E)� �(J � J) + (L0 + L0) � H2 (3.28)6The rigidity assumption is for fa
ilitating the proof of a relation between the one-loop 
orre
tion to spa
etimeenergy and the expe
tation value of worldsheet Hamiltonian (see next subse
tion); it is unne
essary for the
omparison of semi
lassi
al partition fun
tions of the Green-S
hwarz and pure spnior formalisms.7Here, (J; J) are an angular momentum in S5 and its 
lassi
al value, and have nothing to do with the Metsaev-Tseytlin 
urrent J . 21



where L0 + L0 is the zero-mode of the Green-S
hwarz Virasoro operator (in
luding 
ontri-butions from reparameterization ghosts) expanded to quadrati
 order in 
u
tuations and theequality holds up to fermioni
 
onstraints of the Green-S
hwarz formalism. In (3.28) both�(E�E)��(J �J) and L0+L0 
ontain terms linear in 
u
tuations along a light
one dire
tion,but the linear terms 
an
el in the sum and the remaining expression quadrati
 in 
u
tuations
oin
ides with H2. In simple situations where one 
an take a light
one gauge, the HamiltonianH2 
an be de
omposed into three pie
es Hphys+Hl
+Hb
 ea
h representing the Hamiltonian forphysi
al transverse dire
tions, light
one dire
tions (x� = t��), and reparameterization ghosts.Contributions from Hl
+Hb
 
an
el out from the expe
tation value h	jH2j	i in the right handside of (3.27) and leaves a result identi
al to the one in a light
one gauge.In the pure spinor formalism, even though the Virasoro operator is not a 
onstraint, a
ohomology of the BRST operator has to have a vanishing eigenvalue of L0 + L0 sin
e there isa 
omposite b-ghost that makes the Virasoro operator trivial. So one hopes that the expressionof the form (3.27) with L0 + L0 = fQB; b0 + b0g is also true in the pure spinor formalism.Although the appearan
e of Virasoro operators as well as the 
harges (E; J) and Hamiltoniansin Green-S
hwarz and pure spinor formalisms are quite di�erent, this hope turns out to be true.The rest of this subse
tion is devoted to some details of the proof of (3.27). First we notethat the proper de�nition of the quadrati
 Hamiltonian (written in terms of \velo
ity variables")should be H2 = H2B +H2F +H2G = 12��0 Z d�(H2B +H2F +H2G) (3.29)where H2B = 14 str�([�� ;X2℄)2 � ([J0� ;X2℄)2 + ([J2� ;X2℄)2 + ([D� ;X2℄)2 � ([J2�;X2℄)2�;H2F = str�[D+ � J0� ;X1℄[D+;X3℄� [J0�;X1℄[J2+;X1℄ + 12[�� ;X1℄[J2� ;X1℄+ [D� � J0� ;X3℄[D�;X1℄� [J0+;X3℄[J2�;X3℄� 12[��;X3℄[J2� ;X3℄�;H2G = str�w3[D+; �1℄ + bw1[D�; b�3℄�NJ0� � bNJ0��:The bosoni
 Hamiltonian H2B is nothing but the 
anoni
al Hamiltonian 
omputed from thequadrati
 Lagrangian L2B of (3.5),H2B = P2��X2 � L2B ; P2 � �L2B�(��X2) = 14��0 [D� ;X2℄: (3.30)The Hamiltonians for fermions H2F and ghosts H2G are not in a naive 
anoni
al form, butthey redu
e to the standard Hamiltonians for the se
ond order fermions and the left and rightmoving �
 systems of weight (1; 0) when the 
oupling to the ba
kground 
urrents J0 and J2is dropped. The 
oupling to the ba
kground 
urrents is �xed by the BRST symmetry up toan addition of BRST trivial terms so we 
laim that (3.29) is the 
orre
t Hamiltonian for thequadrati
 
u
tuations. 22



As mentioned above, in order to relate the one-loop 
orre
tion to the spa
etime energy tothe expe
tation value of H2, it is 
onvenient to look at the quantity�E � �J = � 14��0 Z d� str�j� �(�� t)T0 + (���)T9�� (3.31)where j� = j+ + j� = g(J2� + J1� + J3� � 12(J1� � J3�) + 2N + 2 bN)g�1 (3.32)is the � -
omponent of the PSU(2; 2j4) Noether 
urrent de�ned in (2.38). Classi
al values (E; J)of (E; J) are given byE = 14��0 Z d��� t = �2�0 ; J = 14��0 Z d� sin2  ��� = �4��0 Z d� sin2  (3.33)and semi
lassi
al expressions for (E; J) 
an be 
omputed by separating g = g(�; �) and the
urrents (J� ; J� ; N; bN) in (3.32) to their ba
kground values and 
u
tuations. (Re
all that weare expanding around a trivial ghost pro�le so N and bN are understood to be quadrati
 in
u
tuations.) It is useful to note that the rigidity assumption �� = 0 impliesg�1((�� t)T0 + (���)T9)g = (�� tT0 + ��� sin T9)� ��� 
os T89 = J2� + J0� : (3.34)Computation of �E� �J is then straightforward and to the quadrati
 order in 
u
tuations it isgiven by �E � �J = �E � �J � 12��0 Z d�(C1 + C2B + C2F + C2G) (3.35)where C1 = 12 str�([D� ;X2℄ + [J0� ;X2℄)J2��;C2B = 12 str�[D� ;X2℄[J0� ;X2℄� ([J2� ;X2℄)2�;C2F = 14 str�� [D�;X1℄[J2� ;X1℄ + 2[J0� ;X1℄[J2� ;X1℄ + [J0� ;X1℄[J2�;X1℄+ [D�;X3℄[J2� ;X3℄ + 2[J0� ;X3℄[J2� ;X3℄� [J0� ;X3℄[J2�;X3℄� [J2� ;X1℄[J2�;X3℄ + [J2�;X1℄[J2� ;X3℄ + 2[D� ;X1℄[J0� ;X3℄ + 2[J0� ;X1℄[D� ;X3℄� [D�;X1℄[J0� ;X3℄ + [J0� ;X1℄[D� ;X3℄�;C2G = str�(N + bN)J0��:The semi
lassi
al expression for the worldsheet energy L0 + L0 (whi
h is BRST trivial) 
anbe 
omputed in a similar manner. To quadrati
 order in 
u
tuations it is given byL0 + L0 = 12��0 Z d�(L1 + L2B + L2F + L2G) (3.36)23



where L1 = str(J2+[D+;X2℄ + J2�[D�;X2℄);L2B = 12 str�([D+;X2℄)2 + ([D�;X2℄)2 � ([J2+;X2℄)2 � ([J2�;X2℄)2�;L2F = str�[D+;X1℄[D+;X3℄ + [D�;X1℄[D�;X3℄+ 12 Xi=1;3([J0+;Xi℄[J2+;Xi℄ + [J0�;Xi℄[J2�;Xi℄)�;L2G = str�w[D+; �℄ + bw[D�; b�℄�:Upon integrating a �-derivative by parts and using the Maurer-Cartan equation as well as��J2� = 0 (the rigidity assumption on the 
lassi
al solution), L1 is found to be equal to C1. Then,one �nds that the sum of �(E �E)� �(J � J) and (L0 + L0) only 
ontains terms quadrati
 in
u
tuations and is nothing but the worldsheet Hamiltonian H2:�(E �E)� �(J � J) + (L0 + L0) = H2: (3.37)This is the analogue of (3.28) for the pure spinor formalism that we wanted to show. Note thatthis in
identally shows that H2 is BRST invariant, sin
e both PSU(2; 2j4) and Virasoro 
hargesare BRST invariant.3.5 Disentangling fermioni
 
u
tuationsHere, we study in detail the fermioni
 
u
tuations around the family of 
lassi
al solutions (3.22)but with the rigidity assumption relaxed:t = ��;  =  (�; �); � = �(�; �); ( ; �) 2 S2 � S5:For notational simpli
ity we set � = 2�0E = 1 by adjusting �0.Green-S
hwarz We �rst study the fermioni
 
u
tuations (��; b��̂) in the Green-S
hwarz for-malism whose equations of motion are (3.14)D+(����)� � 12(���)��̂(��+b�)�̂ = 0 ; D�(��+b�)�̂ + 12(��+)�̂�(����)� = 0:For the 
lass of solutions at hand, matri
es �� and 
ovariant derivatives D� 
an be diagonalizedneatly.It will be 
onvenient to take our basis of 16� 16 
-matri
es to have
8 = (��2 
 18); 
9 = (�1 
 18) (3.38)so that the spin 
onne
tion be
omes diagonal:!� = ���!89� 
89; 
89 � 12(
8
9 � 
9
8) = i2(�3 
 18): (3.39)24



Below, we shall often display 
-matri
es in a 2 � 2 format and leave the trivial fa
tor of 18impli
it. In this basis, �� = ��xmeam
a takes the form(��)�� = 
0 + a�(��2 
 18) + b�(�1 
 18) = � 1 
�
�� 1 � (3.40)where a� = �� ; b� = ��� sin ; 
� = ia� + b�: (3.41)Note that the Virasoro 
ondition implies
��
� = a2� + b2� = 1 (3.42)so 
� are 
omplex numbers of modulus 1. We denote by �� the phase of 
�:
� = ei�� : (3.43)Classi
al equations of motion for the ba
kground �eld implies(�� � i!�)
� = 0; ���� = !�: (3.44)With these notational preparation, it is straightforward to �nd a basis in whi
h �� and D�simplify simultaneously. Namely, forU =  e� i2�+ e+ i2�+� e� i2�+ e+ i2�+! ; V =  e� i2�� e+ i2��� e� i2�� e+ i2��! (3.45)one �nds that�+ = U�1�2 00 0�U; �� = V �1�2 00 0�V; (3.46)D+ = V �1�+V � �+ + V �1(�+V ); D� = U�1��U � �� + U�1(�+U): (3.47)Substituting these into the equations of motion, one �nds�+�1 00 0�V � � ��1 00 0�V U�1�1 00 0�Ub� = 0;���1 00 0�Ub� + ��1 00 0�UV �1�1 00 0�V � = 0: (3.48)This 
learly shows that one-halves of V � and Ub� do not propagate.To be more 
on
rete, introdu
e variables (S; bS; T; bT ) and � viaV � = �ST� ; Ub� =  bSbT! ; (3.49)� = 12(�+ � ��) ! UV �1 = � 
os � i sin�i sin� 
os �� : (3.50)25



Then, T and bT de
ouple from the equations of motion and S and bS obeyrGS SbS! = 0; rGS � � �+ �� 
os �� 
os � �� � : (3.51)It is amusing to note that the 
ombination �s = 2� = (�+ � ��) is the solution to thesine-Gordon equation 4�+��(�s) = sin(�s) whi
h determines our solution (t;  ; �) 
ompletely.For example, � = 0 
orresponds to the rotating point-like string t = � = ��;  = �=2 of [4℄and (3.51) redu
es to the well-known equations of motion for the light
one fermions in a Ramond-Ramond plane-wave ba
kground [50℄.Pure spinor Re
all that the 
oupled equations of motion for 
u
tuations areD+(D��)� � 12(���)��̂(D+b�)�̂ = 0; D�(D+b�)�̂ + 12(��+)�̂�(D��)� = 0: (3.52)These have two \bran
hes" of solutions. First bran
h is given byD�� = D+b� = 0 (3.53)where D�� = 0 implies D+b� = 0 and vi
e versa. To show that D�� = 0 implies D+b� = 0,denote for 
onvenien
e 	 = U�; b	 = V b�: (3.54)Note that D�� = 0 is equivalent to ��	 = 0 and that D+b� = 0 is equivalent to �+b	 = 0. Now,assuming ��	 = 0, the equations of (3.52) imply that b	 satis�es�1 00 0� �+b	 = 0; ��� 
os � i sin�i sin� 
os �� �+b	 = 0: (3.55)In terms of the 8 + 8 splitting b	 =  b	1b	2! these are equivalent to�+b	1 = 0; �+��b	2 = �(���) 
ot ��+b	2; �+��b	2 = (���) tan ��+b	2: (3.56)Thus for non-
onstant � one �nds �+b	2 = 0 as well. When � is a 
onstant its only possiblevalues are 0 mod �=2 sin
e 2� is a solution to the sine-Gordon equation. Then equations ofmotion for b	2 is just �+��b	2 = 0 and one 
an in
lude a half of the solutions �+b	2 = 0 inthe present bran
h, and the other half ��b	2 = 0 in the other bran
h des
ribed shortly. This
ompletes the proof that D�� = 0 impliesD+b� = 0, and we have learnt that this solution bran
h
onsists of 16 left-moving �elds 	�(��) and 16 right-moving �elds b	�̂(�+).To des
ribe the other bran
h, it is useful to introdu
e the variables (S; bS; T; bT ) viaV (D��) = �ST� ; U(D+b�) =  bSbT! : (3.57)26



Sin
e we have already taken 
are of the bran
h D�� = D+b� = 0, one may assume that neither(S; T ) nor (bS; bT ) is identi
ally zero. Equations of motion for (S; bS; T; bT ) are found to be�+�ST� � ��1 00 0�� 
os � �i sin��i sin� 
os � �  bSbT! = 0;�� bSbT! + ��1 00 0�� 
os � i sin�i sin� 
os �� �ST� = 0: (3.58)Compared to the Green-S
hwarz equations in the same basis (3.48), one here does not haveproje
tions to (S; bS) so there remains a mixing between (S; bS) and (T; bT ):rF 0BBB�SbSTbT1CCCA = 0; rF � 0BB� �+ �� 
os � 0 i� sin�� 
os � �� i� sin� 00 0 �+ 00 0 0 �� 1CCA : (3.59)However, the mixing is minor as 
an be seen from the blo
k triangular stru
ture of the matrixdi�erential operator rF in (3.59). In parti
ular, equations of motion for T and bT are simply�+T = �� bT = 0 and the fun
tional determinant of rF fa
torize asdetrF = (detrGS)(det �+)(det ��) (3.60)where detrGS is the fun
tional determinant of the matrix di�erential operator appeared in theequations of motion (3.51) for the Green-S
hwarz fermions. Although we do not quite pretend tohave shown the fa
torization (3.60) rigorously, we believe that it is possible to do so for exampleby employing the te
hnique of [51℄.3.6 Comparison of 1-loop 
orre
tionsPartition fun
tion Based on the analyses made thus far, it will now be shown that one-looppartition fun
tions of 
u
tuations in Green-S
hwarz and pure spinor formalisms agree for any
lassi
al solution in the family of subse
tion 3.3. The following table summarizes the 
ontri-butions of various 
u
tuations to the partition fun
tions (the partition fun
tion for the Green-S
hwarz formalism is for a 
onformal semilight
one gauge in whi
h non-propagating fermioni

u
tuations are dropped):Bosons Fermions GhostsGreen-S
hwarz t;  ; �; xi SA; bSA { b; 
; b; 
 {(
onf. gauge) (det�3)�1(det�7)�1 detrGS { (det�)2 {Pure spinor t;  ; �; xi SA; bSA T _A; bT _A;	�; b	�̂ { w�; ��; bw _�; b��(det�3)�1(det�7)�1 detrGS (det�)8+16 { (det�)�22Table 1. Contribution of 
u
tuation modes to partition fun
tionsAs 
an be immediately seen, the produ
ts of relevant fa
tors do agree in the two formalisms, soto 
omplete our proof it only remains to explain individual fa
tors. Basi
ally, the only fa
torswhi
h we have not explained are those for ghosts.27



Re
all that the 
u
tuation a
tion for the pure spinor ghosts to the quadrati
 order is simplyR (w�D��� + bw�̂D+b��̂) so it 
an be diagonalized just as fermioni
 
u
tuations by using thematri
es U and V of (3.45). Then, the pure spinor ghosts and their 
onjugates be
ome (11 +11)� 2 left and right moving �elds so their 
ontributions to the partition fun
tion 
ombine into(det�)�22 as 
laimed. Here, � = 4�+�� is the massless Klein-Gordon operator. Similarly, thereparameterization ghosts in the Green-S
hwarz formalism 
onsists of 2 left movers (b; 
) and 2right movers (b; 
) as usual so they 
ontribute (det�)2.Contributions from the fermioni
 
oordinates (��; b��̂) 
an be inferred from the analysis ofthe previous subse
tion. In the Green-S
hwarz formalism, only a half of (��; b��̂) are propagatingbe
ause of the kappa symmetry, and their partition fun
tion 
an be written as (detrGS) whererGS is de�ned in (3.51). In the pure spinor formalism, partition fun
tion of (��; b��̂) 
an bewritten as (detrGS)(det�)24 and is interpreted as 
oming from Green-S
hwarz like degrees offreedom (SA; bSA) and the rest 
onsiting of (8+16)� 2 left and right moving variables ( bT _A; b	�̂)and (T _A;	�). A
tual 
omputation of (detrGS) is not ne
essarily easy, but the diÆ
ulty doesnot hamper the 
omparison of the Green-S
hwarz and pure spinor formalisms.As for bosoni
 
u
tuations (~t; ~xi; ~ ; ~�), (i = 1; : : : ; 7; ~t = t � t et
.), re
all that they aregoverned by the same quadrati
 a
tion (3.5) in the two formalisms, so the detailed study of theirpartition fun
tions is not really ne
essary for showing the equivalen
e. However, it is of someinterest to look into their stru
tures. For a 
lassi
al solution of the type dis
ussed in this arti
lepartition fun
tion fa
torizes into a produ
t of fun
tional determinants as (det�3)�1(det�7)�1where �3 and �7 are some se
ond order matrix di�erential operators that a
t on (~t; ~ ; ~�) 2Rt � S2 and on the remaining bosoni
 
u
tuations ~xi (i = 1; : : : ; 7). A
tually, the operator�7 is diagonal in the present setting and (det�7) = (det��)7 where �� is the Klein-Gordonoperator with mass �. The other fa
tor �3 a
ts as � on ~t and does not mix it with ( ~ ; ~�), butits a
tion on ( ~ ; ~�) is 
ompli
ated in general. Nevertheless, if one believes in the equivalen
e ofthe 
onformal gauge 
omputation to a stati
 gauge (~t = ~� = 0) one, the fun
tional determinantof �3 should further fa
torize as (det�3) = (det�)2(det� ) where � is the se
ond orderdi�erential operator a
ting on ~ in the stati
 gauge. In 
onne
tion with this, note that it hasbeen argued quite 
onvin
ingly that (det�3) a
tually 
an be fa
torized in this way when afolded string is spinning rigidly in an AdS3 � AdS5 instead of Rt � S2 [51℄.Putting everything together, we have learnt that the one-loop partition fun
tions of Green-S
hwarz and pure spinor formalisms agree for the 
lassi
al solutions of subse
tion 3.3, and thatthe partition fun
tion is given asZ = (det� )�1(det��)�7(detrGS): (3.61)Sin
e the one-loop partition fun
tion is related to the one-loop 
orre
tion �E to spa
etimeenergy in the present setup, this amounts to a proof of the equivalen
e of �E 
omputed in thetwo formalisms.Flu
tuation spe
tra It is tempting to interprete the agreement of the partition fun
tions asindi
ating that the pure spinor partition fun
tion re
eives non-trivial 
ontributions only fromphysi
al 
u
tuations, i.e. from BRST 
ohomologies. Su
h an interpretation is possible if, after28



a quantization, one 
an 
onstru
t transverse DDF operators [52℄ that generate the BRST 
o-homologies. The DDF operators should be in one-to-one 
orresponden
e with the transverseos
illators of the light
one Green-S
hwarz formalism, and 
ompleteness of the DDF operatorsimplies that the remaining degrees of freedom form BRST quartets with a BRST trivial Hamil-tonian.Although an expli
it quantization of 
u
tuation is not easy in general even in the Green-S
hwarz formalism, it is straightforward around a point-like rotating string of Berenstein, Mal-da
ena and Nastase [4℄. The semi
lassi
al analysis around the BMN string in the pure spinorformalism is just a linearization of the formalism in a Ramond-Ramond plane-wave ba
k-ground [53, 45℄. We here wish to explain brie
y how a physi
al state of the light
one Green-S
hwarz formalism is mapped to a BRST 
ohomology in this 
ase.In the plane-wave ba
kground, physi
al states of light
one Green-S
hwarz formalism aredes
ribed by 8 massive bosoni
 �elds xI and 8 pairs of massive fermioni
 �elds (SA; bSA), where Iand A are the ve
tor and 
hiral spinor of SO(4)�SO(4) [50℄. As explained in subse
tion 3.5, it iseasy to identify the �elds with same properties in the pure spinor formalism at a linearlized level.Remaining degrees of freedom are light
one 
oordinates x�, extra fermioni
 
oordinates (TA; bTA)and (� _A; b� _A), and pure spinor ghosts (w�; ��; bw�̂; b��̂). Although the modes of (xI ; SA; bSA) donot dire
tly generate the BRST 
ohomology, it should be able to show that elements in theirFo
k spa
e are in one-to-one 
orresponden
e with BRST 
ohomologies at ghost number (1; 1)by adopting the methods of [10℄ or [54℄ developed for a 
at ba
kground.4 Con
lusionIn this arti
le we have explained how the one-loop semi
lassi
al analyses of Green-S
hwarz andpure spinor superstrings in an AdS5 � S5 ba
kground are related. In parti
ular, we have shownthat one-loop 
orre
tions to spa
etime energies of a 
lassi
al solution is the same when thesolution is rigid and 
ontained in an Rt �S2 � AdS5�S5. We would like to interprete the resultas a support for the equivalen
e of the two formalisms at a semi
lassi
al level.Let us re
apture the main points:1. Any purely bosoni
 
lassi
al solution of the Green-S
hwarz formalism 
an be regarded asa 
lassi
al solution of the pure spinor formalism des
ribing the same 
lassi
al string.2. To the quadrati
 order, a
tions for bosoni
 
u
tuations around a generi
 
lassi
al solutionare the same for the two formalisms. (Stru
tures at higher orders are di�erent be
auseof their 
oupling to fermioni
 
u
tuations.) By 
ontrast, quadrati
 a
tions for fermioni

u
tuations are di�erent, yet their stru
tures are strikingly similar. See equations (2.27)and (2.30).3. When a 
lassi
al string is rigid and 
ontained in an Rt � S2 � AdS5 � S5, the one-loop
orre
tion �E to its spa
etime energy is given by the zero point energy of the worldsheetHamiltonian H2, both in Green-S
hwarz and pure spinor formalisms. To show that �Eare the same in two formalisms, it therefore suÆ
es to show that the one-loop partition29



fun
tions are the same. Moreover, in view of the se
ond item, it is enough to 
ompare thepartition fun
tions of fermions and ghosts.4. Even if the rigidity assumption in the previous item is dropped, fermioni
 
u
tuations inpure spinor formalisms 
an be separated into the Green-S
hwarz fermions (SA; bSA) and therest 
onsisting of (8+16)�2 left and right movers. There is a minor 
oupling between thetwo types of degrees of freedom, but the partition fun
tion fa
torizes to the 
ontributionsfrom the two.5. Reparameterization b
 ghosts in Green-S
hwarz formalism in a 
onformal gauge 
onsistsof (1 + 1)� 2 left and right movers.Pure spinor ghosts are also massless and 
onsists of (11 + 11)� 2 left and right movers.6. The 
ombined partition fun
tion of the extra fermions and ghosts in the pure spinorformalism 
oin
ides with that of the b
 ghosts in the Green-S
hwarz formalism. Thisshows that the total partition fun
tions of the two formalisms are the same. Hen
e, if thestring is rigid, the one-loop 
orre
tion �E to the spa
etime energy 
omputed in the twoformalisms agree.It is natural to ask how far does the equivalen
e above 
an be generalized. As a matter of fa
t, webelieve that the agreement of one-loop partition fun
tions holds quite generally. Indeed, aroundany 
lassi
al 
on�guration, D��� = D+b��̂ = 0 gives a solution to 
u
tuation equations of motionfor the pure spinor formalism and the equations of motion for the 
ombination (��; b��̂) �(D���;D+b��̂) is 
losely related to that of Green-S
hwarz formalism. De
oupling between theD��� = D+b��̂ = 0 se
tor and the (��; b��̂) se
tor, and splitting of (��; b��̂) into the Green-S
hwarz (SA; bSA) variables and the rest depend on some details of the 
lassi
al solution in
on
ern, but it appears reasonable to expe
t that the 
ombined partition fun
tion of fermionsand ghosts in the pure spinor formalism just gives (detrGS)(det�b
)2 whenever the Green-S
hwarz partition fun
tion fa
torizes as in table 1. It would be interesting to expli
itly 
he
kthese expe
tations by studying 
lassi
al strings in Rt�S3 2 AdS5�S5 and AdS3�S1 2 AdS5�S5(so-
alled SU(2) and SL(2) se
tors).The interpretation of the agreement of partition fun
tions requires additional 
onsideration.In this arti
le, to obtain a simple relation between �E and the worldsheet Hamiltonian H2, wehave put a rigidity assumption on our strings in Rt � S2. Presumably, the simple relation 
on-tinues to hold as long as t = �� (targetspa
e time is proportional to worldsheet time 
lassi
ally)and the 
lassi
al motion is periodi
 in time. However, a dire
t proof purely within a 
onformalgauge is not ne
essarily easy.Extension along another obvious dire
tion, namely, 
omparison of semi
lassi
al Green-S
hwarzand pure spinor formalisms at two-loops and higher is of 
ourse important. At higher loops,stru
tures of bosoni
 
u
tuations in the two formalisms are no longer the same due to their 
ou-pling to fermions (and ghosts). Also, quarti
 self-
oupling of ghosts N bN , whi
h is essential forthe 
onformal invarian
e of the model, should play an important role to establish an equivalen
e.It would be interesting to understand the relation expli
itly.30



True power of the pure spinor formalism, however, should be in its generality. The fa
t thatone may treat all 
lassi
al solutions uniformly without being bothered with gauge �xing appearsto make it more suitable for exploiting integrability. As is well known, both Green-S
hwarzand pure spinor superstrings in the AdS5 � S5 ba
kground possess Lax 
onne
tions whose
atness imply 
lassi
al equations of motion [26℄[27℄. To show the integrals of motion generatedby the 
at 
onne
tion to be mutually 
ommutative, one wishes to 
he
k that the 
onne
tionsatis�es a 
ertain ex
hange algebra introdu
ed by Maillet [55℄. In [56℄[57℄, the Green-S
hwarz 
at
onne
tion of Bena-Pol
hinski-Roiban [26℄ have been investigated within the Dira
-Hamiltonianformalism, and it have been found that the 
at 
onne
tion have to be improved by addingphase spa
e 
onstraints to satisfy the ex
hange property. Moreover, the 
at 
onne
tion after theimprovement have been found to be the one in the pure spinor formalism 
onstru
ted by one ofthe authors [27℄ (minus the ghost 
ontribution). This indi
ates that the pure spinor formalismis a properly gauge �xed version of the Green-S
hwarz formalism. It would be reasonable andinteresting, therefore, to exploit the integrability of the pure spinor formalism systemati
ally.Ultimately, one would like to solve the string theory in the AdS5�S5 ba
kground by an exa
tquantization. In super
oset models des
ribing Ramond-Ramond ba
kgrounds, 
urrents J are notholomorphi
 unlike in the Wess-Zumino-Witten models, so their operator produ
t expansions arediÆ
ult to 
ontrol. It is just about hopeless to �nd a good theory for arbitrary non-holomorphi

urrents, but one 
ould hope that the Ramond-Ramond super
oset models form a good 
lass of
onformal �eld theories. For example, the 
urrents J are a
tually 
ovariantly holomorphi
 asin (2.52) indi
ating an enhan
ement of 
hiral algebra from the Virasoro algebra [58℄.We would like to 
ome ba
k to some of these issues in the near future.A
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� Coordinates on worldsheet 
ylinder:�� = (�; �); � + 2� = �; (��� = �1; ��� = 1) (A.1)� Light
one: �� = � � �; �� = 12(�� � ��) (A.2)� Coordinates on a (Eu
lidean) 
omplex plane:z = e~�+i� ; z = e~��i� ; (~� = i�) (A.3)Gamma matri
es� SO(9; 1) and SO(4; 1)�SO(5) gamma matri
es of size 16� 16 are denoted by (
a)�� and(
a)�� . They satisfy f(
a)�� ; (
b)�
g = 2�abÆa
 . We assume that a basis for spinors is
hosen so that (
0)�� = �(
0)�� = 116.� For SO(4; 1)�SO(5) there is an invariant tensor given by an antisymmetri
 produ
t 
01234of gamma matri
es:��̂� � ����̂ � (
01234)�̂�; ��̂� � ����̂ � (
01234)�̂� (A.4)���̂��̂� = Æ��; ��̂����̂ = Æ�̂�̂ (A.5)We use � to de�ne spinor indi
es with hats. In parti
ular, gamma matri
es with hattedindi
es are de�ned via(
a)�̂�̂ = ��̂�(
a)�����̂ ; (
a)�̂�̂ = ��̂�(
a)�����̂ (A.6)� In the 
ontext of psu(2; 2j4), ���̂ 
an be identi�ed as the \spinor metri
" 
oupling g1 and
g3. See below.

psu(2; 2j4)� Generators: TA = (Ta; Tab;T�; T�̂) = (Pa; Lab;Q�; bQ�̂); A = (a; ab;�; �̂) (A.7)� Z4 stru
ture:
psu(2; 2j4) = g0 + g1 + g2 + g3 (A.8)Lab 2 g0; Pa 2 g2; Q� 2 g1; bQ�̂ 2 g3 (A.9)Both 
ommutation relations and inner produ
t below respe
t Z4:[gi; gj ℄ = gi+j; str(gigj) 6= 0 only when i+ j = 0 (A.10)32



� Tra
e metri
: �AB � str(TATB); (A.11)str(PaPb) = �ab (A.12)str(LabL
d) = �Rab
d = (� (�a
�bd � �b
�ad) AdS5Æa
Æbd � Æb
Æad S5 (A.13)str( bQ�̂Q�) = � str(Q� bQ�̂) = 
01234�̂� (A.14)� Commutation relations:It is 
onvenient to split a = (a00; a0) where a00 = 0; : : : ; 4 are AdS5 dire
tions and a0 =5; : : : ; 9 are S5 dire
tions. Non-trivial 
ommutation relations are then[Paa00 ; Pb00 ℄ = La00b00 ; [Pa0 ; Pb0 ℄ = �La0b0 (A.15)[La00b00 ; P
00 ℄ = �b00
00Pa00 � �a00
00Pb00 ; [La0b0 ; P
0 ℄ = �b0
0Pa0 � �a0
0Pb0 (A.16)[La00b00 ; L
00d00 ℄ = �b00
00La00d00 � � � � ; [La0b0 ; L
0d0 ℄ = �b0
0La0d0 � � � � (A.17)[Lab; Q�℄ = �12(
ab)��Q�; [Lab; bQ�̂℄ = �12(
ab)�̂�̂ bQ�̂ (A.18)[Pa; Q�℄ = 12(�
a)��̂ bQ�̂; [Pa; bQ�̂℄ = �12(�
a)�̂�Q� (A.19)fQ�; Q�g = 
a��Pa; f bQ�̂; bQ�̂g = 
â��̂Pa (A.20)fQ�; Q�̂g = 12(�
a00b00)��̂La00b00 � 12(�
a0b0)��̂La0b0 (A.21)Referen
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