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1 IntrodutionOver the last deade, the semilassial study of string theory in an AdS5 � S5 bakground hasbeen a entral tool for exploring the AdS/CFT orrespondene [1, 2, 3℄ beyond a supergravityapproximation. To date, an enormous amount of works has been done extending the basi piturelaid in [4, 5, 6℄, mathing quantum orretions to string energies to anomalous dimensions ofgauge invariant operators in the N = 4 super Yang-Mills theory.SineAdS geometries that appear in the AdS/CFT orrespondene are supported by Ramond-Ramond ux, it is hard to make use of the Ramond-Neveu-Shwarz formalism. For an AdS5�S5bakground, one may either use the Green-Shwarz formalism [7℄ or Berkovits' pure spinor for-malism [8℄. However, most of the works in the area have been done only in the former. Thisis a pity beause the pure spinor formalism has many aspets that are simpler than the Green-Shwarz formalism, and is potentially more powerful espeially if one wants more than theutuation spetrum around a given lassial solution.The purpose of this artile is to provide support for an equivalene of the Green-Shwarz andpure spinor formalisms at a semilassial level. Using the pure spinor formalism we perform asemilassial analysis around a simple family of lassial solutions in an AdS5 � S5 bakgroundand show that the formalism reprodues the one-loop anomalous dimensions known from theGreen-Shwarz formalism. It would be useful to exploit integrability methods for a more sys-temati omparison, but in this artile we stik to a down-to-earth expliit omparison.In the rest of this introdution, we would like to put our study into ontext by brieysummarizing what has been known about the pure spinor formalism. For a more omplete list,we refer the reader to a reent review [9℄.Pure spinor formalism in a at bakground is de�ned as a worldsheet onformal �eld theorywith a BRST symmetry and it allows one to quantize a string in a super-Poinar�e ovariant man-ner. Its basis and validity have been established quite adequately. The formalism reproduesthe superstring spetrum orretly [10℄[11℄, and is apable of omputing tree and multi-loopamplitudes in a ovariant manner [8, 12℄. There remains some subtleties at three-loops andhigher [13℄, but the formalism has been very suessful going far beyond (e.g. [14, 15℄) whathave been done in other formalisms. Also, in a at bakground, it is known how the BRSTsymmetry of the formalism arises from the lassial Green-Shwarz ation [16℄[17℄.In generi supergravity bakgrounds, both Green-Shwarz and pure spinor formalisms anbe used to desribe a string at a lassial level. Equations of motion for the bakground �eldsare implied by the kappa symmetry [18℄ in the former (e.g. [19℄[20℄) and by the BRST symmetryin the latter [21℄. Preservation of these symmetries in worldsheet perturbation theories areexpeted to haraterize stringy �0 orretions to the bakground equations of motion. However,kappa symmetry is a ompliated gauge symmetry and it is diÆult to disuss them quantummehanially. In pure spinor formalism, kappa symmetry is replaed by a BRST symmetry andit is straightforward to identify the onditions for onservation and nilpoteny of the BRSTharge at a quantum level [21℄. By exploiting this simpliity, one-loop onformal invariane ingeneri supergravity bakgrounds has been shown in [22, 23℄.Speializing to an AdS5�S5 bakground, a Green-Shwarz ation with kappa symmetry was3



onstruted expliitly as a superoset model by Metsaev and Tseytlin [24℄. The key to theironstrution was that the AdS5 � S5 spae an be realized as the bosoni body of a superosetPSU(2; 2j4)=(SO(4; 1)�SO(5)) with 32 fermioni diretions. The superoset has a Z4-struture(a natural extension of the notion of the symmetri oset spae) whih makes it possible torewrite the Metsaev-Tseytlin ation as a bilinear form of urrents [25℄. A lassial ation forthe pure spinor formalism an be expliitly written down by applying the same tehnique andby introduing pure spinor variables adopted to AdS5 � S5 [8℄. Presumably, the pure spinoration an be understood as a BRST reformulation of the Metsaev-Tseytlin ation but to datethe expetation has not been shown expliitly. Although these ations are onstruted fromurrents on a group manifold, these urrents are not holomorphi. Therefore, unlike the Wess-Zumino-Witten models, it is not known how to solve the models based on symmetry priniples.On the other hand, both models are known to possess an integrable struture [26℄[27℄ and onemay hope to eventually solve these models by ombining integrability and onformal �eld theorytehniques.Although exat quantizations of Green-Shwarz and pure spinor superstrings in the AdS5 �S5 bakgrounds are not within a reah at the moment, there are no problems in performinglassial and semilassial analyses. In the Green-Shwarz formalism, basis of semilassialanalysis (in partiular subtleties arising from gauge �xing Virasoro and kappa symmetries) havebeen lari�ed in [28℄ and onrete analyses around very many lassial solutions have beenperformed, providing strong supports in favour of the AdS/CFT onjeture. In the pure spinorformalism, there are no ompliated gauge symmetries to be �xed and the semilassial analysisis straightforward. One-loop onformal invariane in the AdS5�S5 bakground has been shownin [29℄ and later extended to an all-loop proof [30℄. Although the pure spinor formalism has notbeen used muh for omputing onrete quantities in the AdS/CFT ontext, it has been usedin [31℄ to ompute the anomalous dimensions of the Konishi multiplet at strong oupling, andthe result of [31℄ is in aord with the ones predited from the Green-Shwarz formalism [32℄and integrability tehniques [33℄.So, all in all, parallel developments have been made in the Green-Shwarz and pure spinorformalisms, but it has never been lari�ed why or how the two are equivalent at a (semi)lassiallevel. It is this relation of the two formalisms we wish to address in this artile.The plan of this artile is as follows. In setion 2 we review the lassial mehanis of thepure spinor formalism in an AdS5 � S5 bakground. Setion 3 ontains the body of the artile.After a general disussion on semilassial analyses in the pure spinor formalism, we introduea simple family of lassial solutions and show that one-loop orretions to spaetime energiesare related to the expetation values of the utuation Hamiltonians on the worldsheet. Wethen ompare the one-loop partition funtions in the Green-Shwarz and pure spinor formalismsand argue that they agree. We onlude in setion 4 and point out some future diretions. Anappendix is added to summarize our notation and onventions.
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2 Classial pure spinor superstring in AdS5 � S5 bakgroundWe start with a brief review of the pure spinor formalism in an AdS5 � S5 bakground, withsome emphases on omparison with the Green-Shwarz formalism. To motivate the de�nition ofthe pure spinor superstring ation in the AdS5 � S5 bakground, we start from an explanationof the pure spinor formalism in trivial and generi supergravity bakgrounds.2.1 Trivial bakgroundIn ontrast to onventional approahes to string theory, the pure spinor formalism in a trivialbakground starts o� by postulating a quadrati worldsheet ation with a BRST symmetry [8℄.For type II superstring the ation is given as1Sat = 1��0 Z d2z�12�xa�xa + p���� + bp�̂�b��̂ �w���� � bw�̂�b��̂� (2.1)where (xa; ��; b��̂) (a = 0; : : : ; 9; �; �̂ = 1; : : : ; 16) are the standard type II superspae variables,(p�; bp�̂) are onjugate momenta of (��; b��̂), and the rest are \ghost" variables onsisting of purespinors (��; b��̂) and their onjugates (w�; bw�̂). As an be seen from the ation, (p�; ��; w�; ��)are left moving (holomorphi) and (bp�̂; b��̂; bw�̂; b��̂) are right moving (antiholomorphi), and(xa; ��; b��̂; ��; b��̂) are all understood to arry onformal weight 0.The left and right moving ghosts ��(z) and b��̂(z) are subjet to quadrati \pure spinoronstraints" [34℄ ��a����(z) = 0; b��̂â��̂b��̂(z) = 0 (2.2)and their onjugates (w�; bw�̂) are de�ned only up to \gauge transformations"Æ
w�(z) = (a�)�
a(z); Æ
 bw�̂(z) = (ab�)�̂b
a(z): (2.3)The onstraints of (2.2) seems to imply 10 onstraints for eah �� and b��̂, but atually one halfof them is ine�etive and a pure spinor has 16 � 5 = 11 independent omponents. The ghostsetor therefore is a olletion of 11� 2 bosoni � systems of weight (1; 0) and has  = 22� 2.Note that the value is exatly what one needs to ompensate the entral harge  = (10�32)�2from the matter setor.Beause of the non-linear nature of the onstraints of (2.2), the simpliity of the ghost ationin (2.1) appears deeptive, but there is a nie formalism alled the \theory of urved � systems"(or the \theory of hiral di�erential operators") that an be used to rigorously de�ne the �rstorder systems on ertain non-trivial spaes suh as the pure spinor one (2.2). For more on this,we refer the reader to the literature [35℄[36, 37, 38℄[11℄.The other input to the formalism, the BRST operator, is given byQB = Q+Q; Q = Z dz��d�(z); Q = Z dzb��̂ bd�̂(z) (2.4)1See appendix A for a summary of the notation. 5



where d� = p� + (a�)�(�xa � 12(�a��)); bd�̂ = bp�̂ + (ab�)�̂(�xa � 12(b�a�b�)) (2.5)are left and right moving supersymmetri fermioni momenta satisfying simple operator produtexpansions d�(z)d�(w) = a���a(w)z � w ; �a = �xa � �a��; (2.6)bd�̂(z)bd�̂(w) = â��̂ b�a(w)z � w ; b�a = �xa � b�a�b�: (2.7)Thanks to the pure spinor onstraint (2.2), the BRST operator QB of (2.4) is nilpotent andit makes sense to talk of its ohomology. QB ats on operators via free �eld operator produtexpansions and physial states are found as ohomologies with ghost numbers (1; 1), where �and b� are de�ned to arry ghost numbers (1; 0) and (0; 1). Cohomologies at other ghost numbersare interpreted as spaetime ghosts and anti�elds. The ohomology has been rather thoroughlyinvestigated and there is no doubt that it reprodues the well-known superstring spetrum inthe trivial bakground.2Of ourse, there have been attempts to explain how \natural" the BRST struture is. Workstaking a onventional viewpoint have explained how the BRST struture arises from the lassi-al Green-Shwarz superstring [16, 17℄. In these approahes, pure spinor \ghosts" in the BRSToperator are literally interpreted as the BRST ghosts for the kappa symmetry of the lassialGreen-Shwarz ation. Less onventional (but potentially useful) interpretations of the BRSTstruture inlude its relation to the so-alled superembedding formalism [39℄, and reent \twisto-rial" interpretation of Berkovits [40℄.Note that the pure spinor formalism does not have the reparameterization b ghosts asfundamental �elds. However, one may de�ne omposite operators b(z) and bb(z) that makes leftand right moving stress tensors T (z) and T (z) BRST trivial [12℄:Qb(z) = T (z); Qbb(z) = T (z); Qbb(z) = Qb(z) = 0: (2.8)Although one annot de�ne the  ghosts onjugate to b's, presene of b ghosts is just enough forde�ning higher-loop amplitudes [12℄, Siegel gauge vertex operators [41℄ et.At any rate, the ombination of the free �eld ation of (2.1) and the BRST symmetry of (2.4)is arguably muh simpler than the lassial Green-Shwarz formalism with the troublesome kappasymmetry, and the pure spinor formalism has been proved very useful for omputing amplitudesin a at spaetime (see e.g. [14, 15℄ and referenes therein).2To be more preise, the theory of urved � systems demands that the BRST operator be supplemented bya small extra term that takes are of �ne global issues on the pure spinor spae [38℄. This modi�ation is ruialfor de�ning a omposite b-ghost [12℄ and for orretly reproduing the higher massive spetrum [11℄.
6



2.2 Generi supergravity bakgroundSine the pure spinor formalism is super-Poinar�e ovariant, it is straightforward to generalizethe at ation of (2.1) to a non-linear sigma model desribing a string propagating in a generisupergravity bakground [21℄.Linearized oupling to a supergravity bakground is desribed by an integrated masslessvertex operator. In the pure spinor formalism, this an be onstruted from left-right produtsof supersymmetri urrents (���;�a; d�; Nab) and (�b��̂;�a; bd�̂; bNab) asV = 12��0 Z d2z�����b��̂A��̂ + ����bA�b +�a�b��̂Aa�̂ +�a�bAab+ d�(��b��̂E�̂� +�bE�b ) + bd�̂(���E�̂� +�bE�̂b )+ 12Nab(�b�̂
ab̂ +�
ab) + 12 bNab(�� b
ab +�b
ab)+ d� bd�̂P��̂ +Nabd̂̂C ̂ab + d� bN d bC�d + 14Nab bN dRabd� (2.9)where A��̂ ; A�b; Aa�̂ ; Aab; E�̂� ; E�b ; E�̂� ; E�̂b ; 
ab̂ ; 
ab; b
ab ; b
ab;P��̂ ; C ̂ab; bC�d; Rabd (2.10)are super�elds (funtions of the zero-modes of (xa; ��; b��̂)) representing utuations of type IIBsupergravity. Physial state ondition and gauge invariane for integrated vertex operators aregiven by QV = QV = 0 and Æ�;�0V = Q�+Q�0 and these indeed imply linearized equations ofmotion and gauge invarianes for the super�elds of (2.10) [21℄. For example, the superpotentialA��̂ of lowest dimension is found to satisfy the orret onstraints and gauge invarianes(abde)��D�A��̂ = (abde)�̂�̂ bD�̂A��̂ = 0 (2.11)Æ�;�0A��̂ = D���̂ + bD�̂�0� (2.12)where D� = �� � (a�)��a; bD�̂ = ��̂ � (ab�)�̂�a (2.13)are the superovariant derivatives of type IIB superspae. Other super�elds of higher dimensionsan be onstruted from A��̂ and (D�; bD�̂).To onstrut a non-linear ation whose linearization gives the vertex operator of (2.9), oneovariantizes as usual Sat+ V with respet the target spae reparameterization by introduingthe supervielbein EAM (M = (m;�; �̂), A = (a; �; �̂)) and the urved spaetime oordinate
7



ZM = (xm; ��; b��̂):S = 1��0 Z d2z�12(GMN +BMN )�ZM�ZN+ d��ZME�M + �ZM bd�̂E�̂M + d� bd�̂P��̂+ (w���� + 12�ZMNab
abM) + ( bw�̂�b��̂ + 12�ZM bNabb
abM)+ d� bNabC�;ab + bd�̂Nab bC �̂;ab + 14Nab bN dRabd�: (2.14)First line is just the standard non-linear sigma model of the Green-Shwarz formalism in aonformal gauge, where the term with GMN = �abEaMEbN is the kineti term and the one withBMN is the Wess-Zumino term (possibly with an integration over an extra dimension). It isuseful to remember that P��̂ is a super�eld whose lowest omponent is the Ramond-Ramond�eldstrength, and Rabd is a super�eld whose lowest omponent is the spaetime urvature.The BRST operator is still given by the expression of the form (2.4), but its ation on�elds is de�ned via ommutation relations between (ZM ; ��; b��) and their anonial onjugates.Conditions for this de�nition to make sense, namely the onservation of the BRST urrents�(��d�) = �(b��̂ bd�̂) = 0 and nilpoteny of the BRST harge, atually imply supergravity equa-tions of motion for the bakground super�elds [21℄. Sine requiring the kappa symmetry ina generi supergravity puts the bakground super�elds on-shell in the Green-Shwarz formal-ism [19℄[20℄, this is onsistent with the expetation that the kappa symmetry is replaed by theBRST symmetry in the pure spinor formalism.Also, note that the ation of (2.14) an be heked to be BRST invariant if the �rst line(the \Green-Shwarz part") is assumed to be kappa symmetri [42℄. This is not entirely obviousand means that a Green-Shwarz ation in any supergravity bakground an be onsistentlyextended to a pure spinor ation of the form (2.14). This observation, on the other hand, doesnot explain the equivalene of the two formalisms even at a lassial level.When the Ramond-Ramond super�eld P��̂ is invertible as a 16�16 matrix, (d�; bd�̂) beomesauxiliary and the ation (2.14) an be simpli�ed toS = 1��0 Z d2z�12(GMN +BMN )�ZM�ZN+ (w�r�� + 12�ZMNab
abM ) + ( bw�̂�b��̂ + 12�ZM bNabb
abM ) + 14Nab bN dRabd� (2.15)for some shifted bakground super�elds. The ation (2.15) still has a BRST symmetry and theorresponding harge readsQB = Z dz���ZMEM� + Z dzb��̂�ZMEM̂� : (2.16)It is this form of the ation that we shall be using in our analysis of strings in an AdS5�S5 bak-ground, sine the Ramond-Ramond ux is non-degenerate (and onstant) in the bakground.8



2.3 AdS5 � S5 bakgroundFor a maximally supersymmetri AdS5 � S5 bakground with onstant Ramond-Ramond ux,one may use the Metsaev-Tseytlin onstrution [24℄ to expliitly write down the bakgroundsuper�elds in the ation of (2.15) [8℄. A reason why it works is that an appropriate superspaean be written as a superoset of the form G=H = PSU(2; 2j4)=(SO(4; 1) � SO(5)).2.3.1 Metsaev-Tseytlin oset onstrution of Green-Shwarz ation for AdS5 � S5The basi building blok for the Metsaev-Tseytlin oset onstrution is the left invariant Maurer-Cartan 1-form eJ = eg�1deg (eg 2 G) on G, or more preisely its pull-bak to G=H via a setiong : G=H ! G: J = g�1dg: (2.17)To onstrut an ation on the oset G=H using J , an H gauge invariane shall be introduedto make the hoie of the setion g irrelevant. For an appliation to the AdS5 � S5 superstringrelevant groups are G = PSU(2; 2j4) and H = SO(4; 1) � SO(5) and J takes values in the Liealgebra g = psu(2; 2j4).3If one regards g = g(�; �) as a funtion on a worldsheet with values in the setion G=H � G,the 1-form J beomes a urrent on the worldsheet. The Maurer-Cartan equation an then bepulled bak to the worldsheet and it implies that J satis�es�+J� � ��J+ + [J+; J�℄ = 0 (2.18)where J� = 12(J� � J�) are lightone omponents of the urrent J .The urrent J arries a loal H ation and a global G ation that are inherited from thesetion g : G=H ! G. Namely, under a loal H transformation of g de�ned byg ! gh(�; �); h = h(�; �) 2 H (2.19)J transforms as J ! h�1dh+ h�1Jh (2.20)and under a global G transformation of g de�ned byg(x)! g(xa) = ag(x)h(a; �; �)�1 ; x 2 G=H; a 2 G; h(a; �; �) 2 H (2.21)J transforms as J ! hJh�1 � (dh)h�1: (2.22)So, J is invariant under the global G transformation up to a ompensating H gauge transfor-mation.3See appendix A for our onventions for psu(2; 2j4). 9



For the ase at hand, Lie algebra g of G = PSU(2; 2j4) admits a Z4 grading,
g = 3Mi=0 gi; [gi; gj℄ � gi+j; i; j 2 Z4 (2.23)and the degree zero piee g0 is nothing but the Lie algebra of the denominator H = SO(4; 1)�SO(5). Hene, if one deomposes the Metsaev-Tseytlin urrent by the Z4 grading asJ = JATA = J0 + J1 + J2 + J3; J i 2 gi;J0 = JabLab; J1 = JaQ�; J2 = JaPa; J3 = J �̂Q�̂ (2.24)the loal H transformations an be re�ned asJ0 ! h�1dh+ h�1J0h and J i ! h�1J ih (i = 1; 2; 3): (2.25)This re�nement failitates the onstrution of a G-invariant ation on a superoset G=H, justlike in the ase of a symmetri oset spae.Sine the urrents J i (i = 1; 2; 3) transforms homogeneously under the H gauge transforma-tion of (2.19) an ation of the formZ d2� str�12J2+J2� + aJ1+J3� + bJ3+J1�� (2.26)for any onstants a; b is invariant under the global G ation of (2.21) and the loal H ationof (2.19). However, the oset G=H has 32 (too many) fermioni dimensions and one does notexpet (2.26) to desribe a superstring exept perhaps at some speial values of (a; b). Justas in a at superspae, to onstrut a superstring model using the oset ation of (2.26), onehas to kill a half of fermioni oordinates either by introduing a fermioni loal symmetry(kappa symmetry) [7℄, or by oupling it to appropriate bosoni ghosts (like pure spinors) [8℄.Remarkably, both an be done.In the works of Metsaev and Tseytlin [24℄ and Berkovits et al. [25℄, it was found that a kappasymmetri Green-Shwarz ation in a onformal gauge an indeed be written in the form (2.26)and is essentially unique (a = �b = �1=4):SGS = R2��0 Z d2� str�12J2+J2� � 14(J1+J3� � J3+J1�)�: (2.27)That the Wess-Zumino term an be written as an integration over the two dimensional worldsheetfollows from the fat that psu(2; 2j4) admits a Z4 automorphism [25℄. The \radius" parameterR is related to the number N of D3-branes that soure the Ramond-Ramond ux supportingAdS5�S5, but the integrality of N annot be probed by an elementary string. From now on weset the radius R in the unit of p�0 to be one. In the ontext of the AdS/CFT orrespondene,the semilassial parameter �0 then is related to the 't Hooft oupling � of the N = 4 superYang-Mills theory as �0 � 1=p�.Sine the Green-Shwarz ation of (2.27) is written in a onformal gauge, it is understoodto be aompanied by Virasoro onstraintsT = 12�0 str(J2+J2+) � 0; T = 12�0 str(J2�J2�) � 0: (2.28)10



Note that the seond term of (2.27) is a topologial Wess-Zumino term (i.e. does not ouple toworldsheet metri) and hene does not ontribute to the stress tensors. However, the Green-Shwarz ation have more onstraints than the Virasoro onstraints of (2.28) and separationof the �rst and seond lass onstraints makes it more natural to improve the naive Virasoroonstraints so that they beome �rst lass. The improved Virasoro onstraints are then loselyrelated to the stress tensor of the pure spinor formalism.2.3.2 Pure spinor ation for AdS5 � S5In subsetion 2.2 we explained a relation between Green-Shwarz ation and pure spinor ationin an arbitrary supergravity bakground. One an �nd a pure spinor ation in an AdS5 � S5bakground by applying the argument to the Metsaev-Tseytlin ation. In the \seond order"form it reads4 S = SGS + 1��0 Z d2� str�J3+J1��+ Sgh (2.29)= 1��0 Z d2� str�12J2+J2� + 14J1+J3� + 34J3+J1��+ Sgh: (2.30)where Sgh = 1��0 Z d2� str�w3[D�; �1℄ + bw1[D+; b�3℄�N bN�;(D� = [�� + J0�; � ℄) (2.31)desribes the ontribution of pure spinor ghosts and their oupling to the \matter" setor. Theseond term in (2.29) omes from integrating out the auxiliary �elds (d�; bd�̂) as explained at theend of subsetion 2.2. In the \ghost" ation Sgh (2.31) we have introdued pure spinor variablesas supermatries �1 = ��T� 2 g1; b�3 = b��̂T�̂ 2 g3 (2.32)satisfying SO(4; 1) � SO(5) pure spinor onstraintf�1; �1g = ��a���� = 0; fb�3; b�3g = b��̂â��̂b��̂ = 0: (2.33)Sine the pure spinor ghosts are bosoni, supermatries �1 and b�3 have a wrong Grassmannparity. We have also introdued the onjugates to �1 and b�3w3 = ���̂w�T�̂ 2 g3; bw1 = ��̂� bw�̂T� 2 g1 (2.34)and Lorentz (SO(4; 1) � SO(5)) generators of the pure spinor setorN = �fw3; �1g; bN = �f bw1; b�3g: (2.35)4Here, we have judiiously used the opposite sign for the Wess-Zumino term in SGS with respet to the onegiven in (2.27) beause it is the variables in (2.30) that have a simple relation to the Green-Shwarz variablesof (2.27). Otherwise the relation between the variables of the two formalisms gets twisted by an automorphism
g1 $ g3 of psu(2; 2j4). Of ourse, this is a matter of onvention but we �nd it prettier this way.11



Note that the matter setor of pure spinor superstring ation (2.30) is not kappa symmetrisine Green-Shwarz ation of (2.27) is the unique suh ation. Another important di�erene isthat the pure spinor ation is not aompanied by Virasoro onstraints even though it is writtenin a \onformal gauge". In pure spinor formalism, both the kappa symmetry and the Virasoroonstraint are replaed by a BRST symmetry.2.4 PSU(2; 2j4) symmetry and Noether urrentThe loal H = SO(4; 1) � SO(5) transformation of (2.19) and the global G = PSU(2; 2j4)transformation of (2.21) an be extended to the pure spinor setor in a way that the ation isinvariant. The oupling of pure spinors to the onnetion J0 implies that the former isg ! gh(�; �); (w; �; bw; b�)! h(�; �)�1(w; �; bw; b�)h(�; �); h(�; �) 2 H (2.36)and the latter isg ! agh(a; �; �)�1; (w; �; bw; b�)! h(a; �; �)(w; �; bw; b�)h(a; �; �)�1; a 2 G; h(a; �; �) 2 H:(2.37)The Noether urrent assoiated with the PSU(2; 2j4) symmetry an be omputed in a stan-dard manner, and is given byj = (j+; j�) = jATA 2 psu(2; 2j4);j+ = g(J2+ + 12J1+ + 32J3+ + 2N)g�1; j� = g(J2� + 32J1� + 12J3� + 2 bN )g�1: (2.38)The normalization of j here is suh that the orresponding onserved harge is given by 14��0 R d�jA� .Individual omponents for eah psu(2; 2j4) generator an be extrated asjA = �AB str(TB j) (2.39)where �AB is the inverse of the trae metri �AB = str(TATB). Of partiular importane for usis the omponents for T0; T9 2 g2. Conserved harges assoiated with them are the AdS energyand an angular momentum in S5E = 14��0 Z d�j0� ; J = 14��0 Z d�j9� : (2.40)2.5 BRST symmetry, omposite b-ghost and stress tensorThe pure spinor ation of (2.30) is invariant under an on-shell BRST transformation de�ned by5ÆBg = g(�1 + b�3); ÆBw3 = �J3+; ÆB bw1 = �J1�; ÆB�1 = ÆBb�3 = 0: (2.41)5The BRST symmetry an be promoted to an o�-shell symmetry by adding some auxiliary �elds [43, 44℄.12



On Metsaev-Tseytlin urrents, it ats asÆBJ0 = [J3; �1℄ + [J1; b�3℄; ÆBJ1 = [D;�1℄ + [J2; b�3℄; (2.42)ÆBJ2 = [J1; �1℄ + [J3; b�3℄; ÆBJ3 = [D; b�3℄ + [J2; �1℄: (2.43)Assoiated BRST harge an be written as a sum of left-moving and right-moving omponentsQB = Q+Q; Q = Z d�+ str(�1J3+); Q = Z d�� str(b�3J1�) (2.44)where �� str(�1J3+) = �+ str(b�3J1�) = 0 beause of the equations of motion.In any BRST formulation of string theory, it is ruial to have b ghost �elds that make stresstensors BRST trivial as in fQB; bg = T , fQB;bbg = T . Sine the stress tensorsT = 1�0 str(12J2+J2+ + J1+J3+ +w3[D+; �1℄); T = 1�0 str(12J2�J2� + J1�J3� + bw1[D�; b�3℄) (2.45)arry ghost number (0; 0) while Q and Q arry ghost numbers (1; 0) and (0; 1), one needsoperators of negative ghost numbers to onstrut the b ghosts. In an AdS5 � S5 bakground(�b�) � str(�1b�3) is in the ohomology of QB, and it has been argued that it is onsistent toallow inverse powers of (�b�) [45℄. One an utilize this observation to onstrut omposite bghosts with negative ghost numbers (�1; 0) and (0;�1) as [45, 46℄b = 1�0 str�b�3[J2+; J3+℄(�b�) � w3J1+ + fw3; b�3g[�1; J1+℄(�b�) �;bb = 1�0 str��1[J2�; J1�℄(�b�) � bw1J3� + f bw1; �1g[b�3; J3�℄(�b�) � (2.46)and it an be heked that these satisfyfQ; bg = T; fQ;bbg = T; fQ;bbg = fQ; bg = 0: (2.47)Note that b and bb are atually invariant under Æ
w3 = f
2; �1g and Æ
 bw1 = f
2; b�3g for anarbitrary operator 
2 and that, although b is not purely left-moving and bb is not purely right-moving, ��b and �+bb are BRST trivial [46℄.A remark is in order. The ation of (2.30) an be naively oupled to worldsheet gravityand the stress tensor of (2.45) are the ones that one would obtain from this oupling. However,as mentioned earlier, the ation of (2.30) should not be regarded as arising from gauge �xingthis naive reparameterization invariant ation, for that would imply that the stress tensor isa onstraint. If one wishes to start from a reparameterization invariant ation, the orretstarting point should rather be the lassial Green-Shwarz ation. Studies along this line ina at bakground tell us that the pure spinor variables arise as bosoni ghosts for the kappasymmetry, and that one should think of the fundamental b-ghosts to be \integrated out" fromthe theory, e�etively getting replaed by one of the pure spinor onstraints [10, 17℄.13



2.6 Classial equations of motionEquations of motion for both Green-Shwarz and pure spinor superstrings an be readily om-puted from their ations (2.27) and (2.30).Green-Shwarz Classial equations of motion for the Green-Shwarz superstring in an AdS5�S5 bakground is well known. In a onformal gauge they read[D�; J2+℄ + [J1�; J1+℄ = 0; [D+; J2�℄ + [J3+; J3�℄ = 0; (2.48)[J2�; J3+℄ = 0; [J2+; J1�℄ = 0 (2.49)where, as before, the spin ovariant derivatives are de�ned as D� = �� + [J0�; � ℄. These areunderstood to be supplemented by the Maurer-Cartan equations�+J i� � ��J i+ + Xj+k=i[J j+; Jk�℄ = 0; (i 2 Z4) (2.50)and by the Virasoro onstraint oming from a hoie of the onformal gaugestr(J2+J2+) = str(J2�J2�) = 0: (2.51)Pure spinor The urrents from the matter setor of the pure spinor formalism satisfy thesame set of Maurer-Cartan equations as the ones in the Green-Shwarz formalism, but theirequations of motion are di�erent:[D� � bN; J2+℄ + [J1�; J1+℄ = [J2�; N ℄; [D+ �N; J2�℄ + [J3+; J3�℄ = [J2+; bN ℄; (2.52)[D� � bN; J3+℄ = [J3�; N ℄; [D+ �N; J1�℄ = [J1+; bN ℄: (2.53)If one ignores ghost ontributions, the equations of motion for the bosoni urrent J2� redueto that of the Green-Shwarz formalism. On the other hand, the equations of motion for thefermioni urrents J1� and J3� take the forms of ovariant onstany onditions even after drop-ping the ghost ontributions and do not redue to the \algebrai" equations of motions of theGreen-Shwarz formalism.Equations of motion for the pure spinor ghost variables are[D� � bN;�1℄ = 0; [D+ �N; b�3℄ = 0; (2.54)[D� � bN;w3℄ = 0; [D+ �N; bw1℄ = 0: (2.55)The equations for (w3; bw1) an be replaed by that for the gauge invariant Lorentz urrents[D� � bN;N ℄ = 0; [D+ �N; bN ℄ = 0: (2.56)Unlike in the Green-Shwarz formalism, the Virasoro ondition is not a part of the equationsof motion. Nevertheless, in a semilassial setup, it is still true that the \lassial solution"around whih one studies small utuations should have vanishing worldsheet energy and mo-mentum (L0 � L0), sine the Virasoro urrents T and T are BRST exat.14



3 Semilassial pure spinor superstring in AdS5�S5 bakgroundWe now turn to the main topi of the present artile. Our primary goal is to explain the reasonwhy the one-loop orretion to lassial string energy omputed using the pure spinor formalismagrees with that from the Green-Shwarz formalism. For simpliity, we shall restrit ourselvesto a simple family of lassial solutions (de�ned in setion 3.3), but we believe that the patternthat onnets the two formalisms stay the same for a broader lass of solutions.The struture of our argument is as follows. After developing some semilassial formulasfor the pure spinor superstring around a generi lassial solution, we show that, for a ertainlass of solutions, the one-loop orretion to spaetime energy omes entirely from the zero-point\energy" of worldsheet utuations. The zero-point \energy" is the normal ordering onstantin the Hamiltonian of quadrati utuations, and an be omputed from the one-loop partitionfuntion on the worldsheet. To argue that the one-loop partition funtions of Green-Shwarz andpure spinor formalisms agree, we analyze the equations of motion for utuations of the latterand identify Green-Shwarz like degrees of freedom. Morally speaking, those degrees of freedomare related to the BRST ohomology of utuations and yield the same zero-point \energy"as the Green-Shwarz utuations. The remaining degrees of freedom, whih are deoupledfrom the Green-Shwarz like ones, have a trivial partition funtion and do not ontribute to thezero-point \energy".3.1 Comparison of semilassial analyses for Green-Shwarz and pure spinorformalismsAs we have reviewed in the previous setion, ompared to the Green-Shwarz formalism, thepure spinor formalism has an extended set of �elds and the Virasoro and kappa symmetries arereplaed by a BRST symmetry. To ompare semilassial analyses in Green-Shwarz and purespinor formalisms, one has to identify lassial solutions of both sides and ompare the strutureof small utuations around them.From the forms of lassial equations of motion (subsetion 2.6), one �nds that a purelybosoni solution of the Green-Shwarz formalism is automatially a solution of the pure spinorformalism (with a trivial ghost pro�le). However, it is not lear if all lassial solutions of thepure spinor formalism an be obtained in this way. In this artile, we shall leave the ompleteomparison of the spae of lassial solutions along the line of [47℄ as an interesting open question.So in the disussion that follows, we pik a solution of the Green-Shwarz formalism andregard it as the solution of the pure spinor formalism desribing the same lassial string.Sine the Green-Shwarz ation in a onformal gauge omes with Virasoro and kappa symme-tries, utuations around a lassial solution have to respet ertain onstraints. The preseneof the kappa symmetry manifests itself in the semilassial analysis as a degeneray of fermionipropagators. Namely, one half of the fermioni utuations does not propagate and one maysimply freeze these utuations to deal with the kappa symmetry. The Virasoro onstraintimplies that two of ten bosoni utuations are funtionals of others, and normally the twoutuations are removed by either imposing a lightone gauge or a stati gauge ondition.15



After properly dealing with the onstraints, one may in priniple quantize the quadratiutuations and ompute semilassial quantities. The lassial solution is identi�ed with theground state j
i of the worldsheet Hamiltonian H2 for the quadrati utuations, and a semi-lassial orretion to the spaetime energy of the solution an be omputed as�E(
) = h
j(E �E)j
i: (3.1)Here, E on the right hand side is the Noether harge for the AdS time translation written interms of utuations and E denotes its lassial value. For the lass of solutions de�ned insetion 3.3, this quantity an be related to the expetation value of the worldsheet HamiltonianH2 by imposing Virasoro onstraint on utuations [6℄. This is a good fortune beause one anbypass the expliit quantization of utuations when omputing �E(
).As an aside, let us mention that one may ignore the utuations of Goldstone modes to theone-loop approximation and that a quantum state j	i with some exitations over j
i representsa string state with slightly higher energy. Quantization of Goldstone modes is interesting (thisshould turn the ground state to a multiplet of spontaneously broken global symmetries), and isertainly important for two-loops and beyond. We, however, do not inquire into these issues inthis artile.In the pure spinor formalism, the proedure for the semilassial analysis is similar but nowthe Virasoro and kappa symmetries are replaed by a BRST symmetry.When performing a semilassial analysis for a BRST system in general, it is useful to keepthe following geometri piture in mind (f. [48℄). Presene of a (on-shell) nilpotent BRSTsymmetry implies that a ritial point of the ation in the spae of �elds belongs either to atrivial orbit (BRST singlet) or a non-trivial orbit with zero volume (BRST doublet). A \lassialsolution" around whih one performs a semilassial analysis has to be a solution to the equationsof motion and at the same time a BRST singlet. When a solution is a BRST singlet, the BRSTsymmetry indues a nilpotent ation on utuations around the solution. So one gets a newBRST system of utuations and the ground state j
i and exited states j	i are de�ned asBRST ohomologies. Semilassial quantization of utuations of a BRST system around a\lassial solution" is oneptually simpler than that of a gauge invariant system beause allthe problems with degenerate phase spae of the latter are already taken are of by the BRSTsymmetry.Coming bak to the relation between Green-Shwarz and pure spinor formalisms, one expetsthat a quantum state j	i of the former an be mapped to a BRST ohomology lass of thelatter. This mapping should allow one to diretly ompare the one-loop orretions �E(	) =h	j(E�E)j	i in the two formalisms. Unfortunately, however, it is not neessarily easy to showthe equivalene in this way, just beause quantization of utuations around a given lassialsolution ould be too hard. In general, both kineti and mass terms are not onstant andmoreover have ompliated mixing, so quantization is not easy even for the lightone Green-Shwarz formalism.But if one is mainly interested in omparing one-loop orretions �E(
) to the energiesof the lassial solution, expliit quantization an be sometimes irumvented. As mentioned16



above, there is a family of lassial solutions for whih one-loop energy orretions are related toexpetation values of their worldsheet Hamiltonians H2, both in Green-Shwarz and pure spinorformalisms. Then, the equivalene of the two formalisms (as far as �E(
) is onerned) is re-dued to a simpler problem of omparing one-loop partition funtions. In subsetions 3.5 and 3.6we study equations of motions for utuations in Green-Shwarz and pure spinor formalisms andargue that their one-loop partition funtions around the lassial solutions of subsetion 3.3 doagree.3.2 Quadrati utuationsComputations of semilassial quantities an be done by using a bakground �eld method. Fora sigma model on a group manifold, a onvenient way to separate the worldsheet variable g(�; �)to its bakground value g(�; �) and small utuations X(�; �) 2 g around it is asg = geX : (3.2)To perform a onsistent semilassial analysis, X is understood to be a quantity of order p�0.When the sigma model is on a oset G=H, g is a oset representative and the small utuationX takes values in a subspae of g. Identi�ation (3.2) may require a ompensating H gaugetransformation whih, however, is irrelevant for gauge invariant quantities like ation. For thease at hand, the utuation X an be split aording to the Z4 grading of g = psu(2; 2j4) andwe hoose it to have the omponents orthogonal to g0(= h):X = 3Mi=1 Xi; Xi 2 gi: (3.3)For simpliity, we assume the bakground to be purely bosoni and ghost free (i.e. no bak-ground values for the fermioni urrents (J1; J3) and the ghosts).3.2.1 Quadrati ationExpansion of the oset ation of the form (2.26) to quadrati order in utuations is straight-forward. Vast simpli�ation for the end result our preisely when the relative oeÆients ofJ1+J3� and J3+J1� with respet to 12J2+J2� are either as in the Green-Shwarz ation (2.27) or asin the pure spinor ation (2.30). Moreover, the utuation ations for these two ases bear astriking resemblane to eah other.Green-Shwarz To the quadrati order, there is no mixing of bosoni and fermioni utua-tions, so the quadrati ation is of the formSGS2 = SGS2B + SGS2F (3.4)
17



whereSGS2B = 12��0 Z d2� str�[D+;X2℄[D�;X2℄� [J2+;X2℄[J2�;X2℄�; (3.5)SGS2F = � 12��0 Z d2� str�[D+;X1℄[J2�;X1℄ + [J2+;X3℄[D�;X3℄ + 2[J2+;X3℄[J2�;X1℄�: (3.6)Here and hereafter, J� � g�1��g denotes the bakground values of the urrent J�.A harateristi feature of SGS2F is that it has a �rst order kineti term. On a slightly loserinspetion one �nds that atually one half of the fermioni utuation modes are absent fromSGS2F . (Roughly speaking, the lassial Virasoro onstraint implies that matries representing[J2�; � ℄ have half maximal rank and projet out one halves of X1 and X3.) Of ourse, thisreets the fat that the Green-Shwarz ation has a kappa symmetry.Pure spinor Sine we are assuming that the bakground values for pure spinor ghosts aretrivial, the quadrati ation for the utuations is of the formSPS2 = SPS2B + SPS2F + SPS2G (3.7)where SPS2B is the same as SGS2B of Green-Shwarz formalism (3.5) andSPS2F = 12��0 Z d2� str�2[D+;X3℄[D�;X1℄ + [J2+;X1℄[D�;X1℄ + [D+;X3℄[J2�;X3℄�; (3.8)SPS2G = 1��0 Z d2� str�w[D�; �℄ + bw[D+; b�℄�: (3.9)Sine the utuation ations for the bosoni modes X2 in Green-Shwarz and pure spinorformalisms are the same, their ontributions to the semilassial partition funtions of the Green-Shwarz and pure spinor formalisms an be related trivially. Of ourse, onstraint struturesfor the utuations are di�erent (Virasoro in Green-Shwarz and BRST in pure spinor), but itjust implies that ontributions of unphysial utuations along \lightone diretions" to phys-ial quantities get neutralized by di�erent fermioni utuations (reparameterization ghosts inGreen-Shwarz and unphysial fermioni utuations in pure spinor). We therefore fous onmore interesting fermioni utuations (X1;X3) in the following disussions.Note that the kineti term for the fermioni utuations in SPS2F is of seond order and non-degenerate. This is in sharp ontrast to the ase of Green-Shwarz. On the other hand, theappearane of SPS2F here is rather similar to SGS2F (3.6) of the Green-Shwarz formalism and anbe obtained by formally replaing the \mass term" in SGS2F by the seond order kineti term.3.2.2 Linearized equations of motionTo ompare the strutures of utuations of Green-Shwarz and pure spinor formalisms, it isuseful to ompare their equations of motions. We reord them here for future use. We alsointrodue a omponent notation by hoosing a basis of g1 and g3.18



Bosoni utuations Equations of motion for bosoni utuation X2 2 g2 are the same forGreen-Shwarz and pure spinor formalisms:[D+; [D�;X2℄℄� [J2+; [J2�;X2℄℄ = 0: (3.10)Those modes ontribute the same amount to one-loop orretions in two formalisms and heneare not of primary interest to us.Green-Shwarz By using the lassial equations of motion (2.48) for the bakgrounds andthe Maurer-Cartan equation, the equations of motion for X1 and X3 are found to be[D+; [J2�;X1℄℄ + [J2�; [J2+;X3℄℄ = 0; [D�; [J2+;X3℄℄ + [J2+; [J2�;X1℄℄ = 0: (3.11)To study these equations further, it is onvenient to take an expliit basis for g1 and g3 anddenote X1 = ��T�; X3 = b��̂T�̂: (3.12)Ations of D� and J2� on (��; b��̂) an be understood by noting that the bosoni urrents J0 andJ2 are related to the spaetime spin onnetion !mab and vielbein eam respetively. We denote(��)�� � ��xmeam(a)�� ; (��)�� � ��xmeam(a)�� (3.13)where 's are SO(4; 1) � SO(5) gamma matries. Spinor indies an be raised and loweredusing the invariant spinor metri ���̂ = ���̂� oupling g1 and g3 and its inverse. We often omitspinor indies assuming that they are ontrated appropriately. It is useful to remember thatthe lassial equations of motion for the bakground implies [D�; ��℄ = 0 and that the Virasoroondition implies �+�+ = ���� = 0. Atually, �� have half the maximal ranks so they at asprojetors on spinors.In terms of (��; b��̂) the equations of motion an be written asD+(����)� � 12(���)��̂(��+b�)�̂ = 0 ; D�(��+b�)�̂ + 12(��+)�̂�(����)� = 0 (3.14)where D� = �� � 14!�abab denotes the ation of the ovariant derivative [D�; � ℄ on spinors.Sine �� behave as projetors, one halves of �� and b��̂ are absent from the equations of motion.Pure spinor Equations of motion for the fermioni utuations X1 and X3 are[D+; [D�;X1℄℄ + [J2�; [D+;X3℄℄ = 0; [D�; [D+;X3℄℄ + [J2+; [D�;X1℄℄ = 0 (3.15)or in the omponent notationD+(D��)� � 12(���)��̂(D+b�)�̂ = 0; D�(D+b�)�̂ + 12(��+)�̂�(D��)� = 0: (3.16)Note well the di�erene and resemblane of these to the orresponding equations in the Green-Shwarz formalism (3.14). Unlike in the Green-Shwarz formalism, equations of motion (3.16)19



for fermioni utuations here are of seond order and non-degenerate. On the other hand,if one de�nes S = (����) and bS = (��+b�) in Green-Shwarz formalism and � = (D��) andb� = (D+b�) in pure spinor formalism, the equations here an be obtained by formally replaing(S; bS) in (3.14) by (�; b�). Sine (�; b�) do not ontain the projetors �� as (S; bS) do, oneannot immediately identify them with (S; bS), but we shall show in the subsetion 3.5 that onean further split (�; b�) to the Green-Shwarz like degrees of freedom (S; bS) and the rest, atleast around the lassial solutions ontained in an Rt � S2 � AdS5 � S5.Equations of motion for the pure spinor ghosts are simply[D�; �1℄ = [D�; w3℄ = 0; [D+; b�3℄ = [D+; bw1℄ = 0 (3.17)or D��� = D�w� = 0; D+b��̂ = D+ bw�̂ = 0: (3.18)Note that (D��) = (D+b�) = 0 is a solution to the equations of motion (3.16). So there are22� 2 bosoni modes and 16� 2 fermioni modes satisfying the same equations of motion, andone already expets a huge anellation of zero-point energies.3.2.3 BRST transformations of utuationsAlthough we will not need it in this artile, the ation of the BRST symmetry on utuationsX = X1 +X2 +X3 an be omputed from the \�nite" BRST transformationg = geX ! geXe�1+b�3 (3.19)by using the Baker-Campbell-Hausdor� formula. To the seond order in utuations, they aregiven by ÆBX2 = 0 + 12([X1; �1℄ + [X3; b�3℄) + � � � ;ÆBX1 = �1 + 12[X2; �3℄ + � � � ; ÆBX3 = �1 + 12[X2; �3℄ + � � � : (3.20)Note that, beause of pure spinor onstraints f�1; �1g = fb�3; b�3g = 0, the right hand sidesof these equations are linear in (�1; b�3). Pure spinors �1 and b�3 are BRST invariant and theonjugates w3 and bw1 transform asÆBw3 = �[D+;X3℄� [J2+;X1℄ + � � � ; ÆB bw1 = �[D�;X1℄� [J2+;X3℄ + � � � : (3.21)3.3 A family of lassial solutions in AdS5 � S5For simpliity, we from now on restrit ourselves to a rather simple family of lassial solutionsin whih the string sits at the enter of AdS5 and (possibly) extended in an S2 � S5. Moreover,20



we assume that the string is rigid, meaning that the oeÆients of utuation ation is � -independent.6 More onretely, if one denotes AdS time by t and azimuthal and polar angles ofS2 by ( ; �) with  = 0 � � and � = 0 � 2�, a solution in the family an be written ast = ��;  =  (�); � = �� + �0(�) (3.22)for some onstants � and �, and � -independent funtions  (�) and �0(�). Solutions in thislass inlude the point-like rotating BMN string [4℄, the folded spinning string [5℄, and if theperiodiity in � diretion is relaxed, the giant magnon [49℄.We shall identify (t;  ; �) diretions to the diretions generated by (T0; T8; T9) 2 g2. Theparameterization of the oset representative g(�; �) in terms of (t;  ; �) is theng = etT0e�T9e( ��=2)T8 : (3.23)The non-vanishing omponents of the Metsaev-Tseytlin urrent areJ� � g�1��g = ��tT0 + �� T8 + ��� sin T9 � ��� os T89: (3.24)Components of the urrent J� are just the pullbaks of vielbein and spin onnetion on S2e0t = 1; e8 = 1; e9� = sin ; (3.25)!�89 = os : (3.26)3.4 Relation between �E and worldsheet Hamiltonian H2For the lass of solutions desribed in the previous subsetion, the one-loop orretion to thespaetime energy h
j(E � E)j
i has a rather simple relation to a properly de�ned worldsheetHamiltonian H2 for utuations. This is well-known in the Green-Shwarz formalism (both inonformal and stati gauges) and it will be shown here that the same is true for the pure spinorformalism as well. To be more spei�, it will now be shown that the relation7h	j��(E �E)� �(J � J)�j	i = h	jH2j	i (3.27)holds for any quantum state j	i in the BRST ohomology built on the ground state j
i. More-over, sine J is a ompat generator with disrete eigenvalues, the ground state j
i is supposedto have the same eigenvalue J as the lassial solution. Exploiting the relation (3.27) is use-ful beause the expetation value of H2 (zero-point energy) for the ground state j
i an beomputed from the one-loop partition funtion of utuations.A proof of a relation of the type (3.27) in the Green-Shwarz formalism in a onformal gaugeis given [6℄ by noting �(E �E)� �(J � J) + (L0 + L0) � H2 (3.28)6The rigidity assumption is for failitating the proof of a relation between the one-loop orretion to spaetimeenergy and the expetation value of worldsheet Hamiltonian (see next subsetion); it is unneessary for theomparison of semilassial partition funtions of the Green-Shwarz and pure spnior formalisms.7Here, (J; J) are an angular momentum in S5 and its lassial value, and have nothing to do with the Metsaev-Tseytlin urrent J . 21



where L0 + L0 is the zero-mode of the Green-Shwarz Virasoro operator (inluding ontri-butions from reparameterization ghosts) expanded to quadrati order in utuations and theequality holds up to fermioni onstraints of the Green-Shwarz formalism. In (3.28) both�(E�E)��(J �J) and L0+L0 ontain terms linear in utuations along a lightone diretion,but the linear terms anel in the sum and the remaining expression quadrati in utuationsoinides with H2. In simple situations where one an take a lightone gauge, the HamiltonianH2 an be deomposed into three piees Hphys+Hl+Hb eah representing the Hamiltonian forphysial transverse diretions, lightone diretions (x� = t��), and reparameterization ghosts.Contributions from Hl+Hb anel out from the expetation value h	jH2j	i in the right handside of (3.27) and leaves a result idential to the one in a lightone gauge.In the pure spinor formalism, even though the Virasoro operator is not a onstraint, aohomology of the BRST operator has to have a vanishing eigenvalue of L0 + L0 sine there isa omposite b-ghost that makes the Virasoro operator trivial. So one hopes that the expressionof the form (3.27) with L0 + L0 = fQB; b0 + b0g is also true in the pure spinor formalism.Although the appearane of Virasoro operators as well as the harges (E; J) and Hamiltoniansin Green-Shwarz and pure spinor formalisms are quite di�erent, this hope turns out to be true.The rest of this subsetion is devoted to some details of the proof of (3.27). First we notethat the proper de�nition of the quadrati Hamiltonian (written in terms of \veloity variables")should be H2 = H2B +H2F +H2G = 12��0 Z d�(H2B +H2F +H2G) (3.29)where H2B = 14 str�([�� ;X2℄)2 � ([J0� ;X2℄)2 + ([J2� ;X2℄)2 + ([D� ;X2℄)2 � ([J2�;X2℄)2�;H2F = str�[D+ � J0� ;X1℄[D+;X3℄� [J0�;X1℄[J2+;X1℄ + 12[�� ;X1℄[J2� ;X1℄+ [D� � J0� ;X3℄[D�;X1℄� [J0+;X3℄[J2�;X3℄� 12[��;X3℄[J2� ;X3℄�;H2G = str�w3[D+; �1℄ + bw1[D�; b�3℄�NJ0� � bNJ0��:The bosoni Hamiltonian H2B is nothing but the anonial Hamiltonian omputed from thequadrati Lagrangian L2B of (3.5),H2B = P2��X2 � L2B ; P2 � �L2B�(��X2) = 14��0 [D� ;X2℄: (3.30)The Hamiltonians for fermions H2F and ghosts H2G are not in a naive anonial form, butthey redue to the standard Hamiltonians for the seond order fermions and the left and rightmoving � systems of weight (1; 0) when the oupling to the bakground urrents J0 and J2is dropped. The oupling to the bakground urrents is �xed by the BRST symmetry up toan addition of BRST trivial terms so we laim that (3.29) is the orret Hamiltonian for thequadrati utuations. 22



As mentioned above, in order to relate the one-loop orretion to the spaetime energy tothe expetation value of H2, it is onvenient to look at the quantity�E � �J = � 14��0 Z d� str�j� �(�� t)T0 + (���)T9�� (3.31)where j� = j+ + j� = g(J2� + J1� + J3� � 12(J1� � J3�) + 2N + 2 bN)g�1 (3.32)is the � -omponent of the PSU(2; 2j4) Noether urrent de�ned in (2.38). Classial values (E; J)of (E; J) are given byE = 14��0 Z d��� t = �2�0 ; J = 14��0 Z d� sin2  ��� = �4��0 Z d� sin2  (3.33)and semilassial expressions for (E; J) an be omputed by separating g = g(�; �) and theurrents (J� ; J� ; N; bN) in (3.32) to their bakground values and utuations. (Reall that weare expanding around a trivial ghost pro�le so N and bN are understood to be quadrati inutuations.) It is useful to note that the rigidity assumption �� = 0 impliesg�1((�� t)T0 + (���)T9)g = (�� tT0 + ��� sin T9)� ��� os T89 = J2� + J0� : (3.34)Computation of �E� �J is then straightforward and to the quadrati order in utuations it isgiven by �E � �J = �E � �J � 12��0 Z d�(C1 + C2B + C2F + C2G) (3.35)where C1 = 12 str�([D� ;X2℄ + [J0� ;X2℄)J2��;C2B = 12 str�[D� ;X2℄[J0� ;X2℄� ([J2� ;X2℄)2�;C2F = 14 str�� [D�;X1℄[J2� ;X1℄ + 2[J0� ;X1℄[J2� ;X1℄ + [J0� ;X1℄[J2�;X1℄+ [D�;X3℄[J2� ;X3℄ + 2[J0� ;X3℄[J2� ;X3℄� [J0� ;X3℄[J2�;X3℄� [J2� ;X1℄[J2�;X3℄ + [J2�;X1℄[J2� ;X3℄ + 2[D� ;X1℄[J0� ;X3℄ + 2[J0� ;X1℄[D� ;X3℄� [D�;X1℄[J0� ;X3℄ + [J0� ;X1℄[D� ;X3℄�;C2G = str�(N + bN)J0��:The semilassial expression for the worldsheet energy L0 + L0 (whih is BRST trivial) anbe omputed in a similar manner. To quadrati order in utuations it is given byL0 + L0 = 12��0 Z d�(L1 + L2B + L2F + L2G) (3.36)23



where L1 = str(J2+[D+;X2℄ + J2�[D�;X2℄);L2B = 12 str�([D+;X2℄)2 + ([D�;X2℄)2 � ([J2+;X2℄)2 � ([J2�;X2℄)2�;L2F = str�[D+;X1℄[D+;X3℄ + [D�;X1℄[D�;X3℄+ 12 Xi=1;3([J0+;Xi℄[J2+;Xi℄ + [J0�;Xi℄[J2�;Xi℄)�;L2G = str�w[D+; �℄ + bw[D�; b�℄�:Upon integrating a �-derivative by parts and using the Maurer-Cartan equation as well as��J2� = 0 (the rigidity assumption on the lassial solution), L1 is found to be equal to C1. Then,one �nds that the sum of �(E �E)� �(J � J) and (L0 + L0) only ontains terms quadrati inutuations and is nothing but the worldsheet Hamiltonian H2:�(E �E)� �(J � J) + (L0 + L0) = H2: (3.37)This is the analogue of (3.28) for the pure spinor formalism that we wanted to show. Note thatthis inidentally shows that H2 is BRST invariant, sine both PSU(2; 2j4) and Virasoro hargesare BRST invariant.3.5 Disentangling fermioni utuationsHere, we study in detail the fermioni utuations around the family of lassial solutions (3.22)but with the rigidity assumption relaxed:t = ��;  =  (�; �); � = �(�; �); ( ; �) 2 S2 � S5:For notational simpliity we set � = 2�0E = 1 by adjusting �0.Green-Shwarz We �rst study the fermioni utuations (��; b��̂) in the Green-Shwarz for-malism whose equations of motion are (3.14)D+(����)� � 12(���)��̂(��+b�)�̂ = 0 ; D�(��+b�)�̂ + 12(��+)�̂�(����)� = 0:For the lass of solutions at hand, matries �� and ovariant derivatives D� an be diagonalizedneatly.It will be onvenient to take our basis of 16� 16 -matries to have8 = (��2 
 18); 9 = (�1 
 18) (3.38)so that the spin onnetion beomes diagonal:!� = ���!89� 89; 89 � 12(89 � 98) = i2(�3 
 18): (3.39)24



Below, we shall often display -matries in a 2 � 2 format and leave the trivial fator of 18impliit. In this basis, �� = ��xmeama takes the form(��)�� = 0 + a�(��2 
 18) + b�(�1 
 18) = � 1 ��� 1 � (3.40)where a� = �� ; b� = ��� sin ; � = ia� + b�: (3.41)Note that the Virasoro ondition implies��� = a2� + b2� = 1 (3.42)so � are omplex numbers of modulus 1. We denote by �� the phase of �:� = ei�� : (3.43)Classial equations of motion for the bakground �eld implies(�� � i!�)� = 0; ���� = !�: (3.44)With these notational preparation, it is straightforward to �nd a basis in whih �� and D�simplify simultaneously. Namely, forU =  e� i2�+ e+ i2�+� e� i2�+ e+ i2�+! ; V =  e� i2�� e+ i2��� e� i2�� e+ i2��! (3.45)one �nds that�+ = U�1�2 00 0�U; �� = V �1�2 00 0�V; (3.46)D+ = V �1�+V � �+ + V �1(�+V ); D� = U�1��U � �� + U�1(�+U): (3.47)Substituting these into the equations of motion, one �nds�+�1 00 0�V � � ��1 00 0�V U�1�1 00 0�Ub� = 0;���1 00 0�Ub� + ��1 00 0�UV �1�1 00 0�V � = 0: (3.48)This learly shows that one-halves of V � and Ub� do not propagate.To be more onrete, introdue variables (S; bS; T; bT ) and � viaV � = �ST� ; Ub� =  bSbT! ; (3.49)� = 12(�+ � ��) ! UV �1 = � os � i sin�i sin� os �� : (3.50)25



Then, T and bT deouple from the equations of motion and S and bS obeyrGS SbS! = 0; rGS � � �+ �� os �� os � �� � : (3.51)It is amusing to note that the ombination �s = 2� = (�+ � ��) is the solution to thesine-Gordon equation 4�+��(�s) = sin(�s) whih determines our solution (t;  ; �) ompletely.For example, � = 0 orresponds to the rotating point-like string t = � = ��;  = �=2 of [4℄and (3.51) redues to the well-known equations of motion for the lightone fermions in a Ramond-Ramond plane-wave bakground [50℄.Pure spinor Reall that the oupled equations of motion for utuations areD+(D��)� � 12(���)��̂(D+b�)�̂ = 0; D�(D+b�)�̂ + 12(��+)�̂�(D��)� = 0: (3.52)These have two \branhes" of solutions. First branh is given byD�� = D+b� = 0 (3.53)where D�� = 0 implies D+b� = 0 and vie versa. To show that D�� = 0 implies D+b� = 0,denote for onveniene 	 = U�; b	 = V b�: (3.54)Note that D�� = 0 is equivalent to ��	 = 0 and that D+b� = 0 is equivalent to �+b	 = 0. Now,assuming ��	 = 0, the equations of (3.52) imply that b	 satis�es�1 00 0� �+b	 = 0; ��� os � i sin�i sin� os �� �+b	 = 0: (3.55)In terms of the 8 + 8 splitting b	 =  b	1b	2! these are equivalent to�+b	1 = 0; �+��b	2 = �(���) ot ��+b	2; �+��b	2 = (���) tan ��+b	2: (3.56)Thus for non-onstant � one �nds �+b	2 = 0 as well. When � is a onstant its only possiblevalues are 0 mod �=2 sine 2� is a solution to the sine-Gordon equation. Then equations ofmotion for b	2 is just �+��b	2 = 0 and one an inlude a half of the solutions �+b	2 = 0 inthe present branh, and the other half ��b	2 = 0 in the other branh desribed shortly. Thisompletes the proof that D�� = 0 impliesD+b� = 0, and we have learnt that this solution branhonsists of 16 left-moving �elds 	�(��) and 16 right-moving �elds b	�̂(�+).To desribe the other branh, it is useful to introdue the variables (S; bS; T; bT ) viaV (D��) = �ST� ; U(D+b�) =  bSbT! : (3.57)26



Sine we have already taken are of the branh D�� = D+b� = 0, one may assume that neither(S; T ) nor (bS; bT ) is identially zero. Equations of motion for (S; bS; T; bT ) are found to be�+�ST� � ��1 00 0�� os � �i sin��i sin� os � �  bSbT! = 0;�� bSbT! + ��1 00 0�� os � i sin�i sin� os �� �ST� = 0: (3.58)Compared to the Green-Shwarz equations in the same basis (3.48), one here does not haveprojetions to (S; bS) so there remains a mixing between (S; bS) and (T; bT ):rF 0BBB�SbSTbT1CCCA = 0; rF � 0BB� �+ �� os � 0 i� sin�� os � �� i� sin� 00 0 �+ 00 0 0 �� 1CCA : (3.59)However, the mixing is minor as an be seen from the blok triangular struture of the matrixdi�erential operator rF in (3.59). In partiular, equations of motion for T and bT are simply�+T = �� bT = 0 and the funtional determinant of rF fatorize asdetrF = (detrGS)(det �+)(det ��) (3.60)where detrGS is the funtional determinant of the matrix di�erential operator appeared in theequations of motion (3.51) for the Green-Shwarz fermions. Although we do not quite pretend tohave shown the fatorization (3.60) rigorously, we believe that it is possible to do so for exampleby employing the tehnique of [51℄.3.6 Comparison of 1-loop orretionsPartition funtion Based on the analyses made thus far, it will now be shown that one-looppartition funtions of utuations in Green-Shwarz and pure spinor formalisms agree for anylassial solution in the family of subsetion 3.3. The following table summarizes the ontri-butions of various utuations to the partition funtions (the partition funtion for the Green-Shwarz formalism is for a onformal semilightone gauge in whih non-propagating fermioniutuations are dropped):Bosons Fermions GhostsGreen-Shwarz t;  ; �; xi SA; bSA { b; ; b;  {(onf. gauge) (det�3)�1(det�7)�1 detrGS { (det�)2 {Pure spinor t;  ; �; xi SA; bSA T _A; bT _A;	�; b	�̂ { w�; ��; bw _�; b��(det�3)�1(det�7)�1 detrGS (det�)8+16 { (det�)�22Table 1. Contribution of utuation modes to partition funtionsAs an be immediately seen, the produts of relevant fators do agree in the two formalisms, soto omplete our proof it only remains to explain individual fators. Basially, the only fatorswhih we have not explained are those for ghosts.27



Reall that the utuation ation for the pure spinor ghosts to the quadrati order is simplyR (w�D��� + bw�̂D+b��̂) so it an be diagonalized just as fermioni utuations by using thematries U and V of (3.45). Then, the pure spinor ghosts and their onjugates beome (11 +11)� 2 left and right moving �elds so their ontributions to the partition funtion ombine into(det�)�22 as laimed. Here, � = 4�+�� is the massless Klein-Gordon operator. Similarly, thereparameterization ghosts in the Green-Shwarz formalism onsists of 2 left movers (b; ) and 2right movers (b; ) as usual so they ontribute (det�)2.Contributions from the fermioni oordinates (��; b��̂) an be inferred from the analysis ofthe previous subsetion. In the Green-Shwarz formalism, only a half of (��; b��̂) are propagatingbeause of the kappa symmetry, and their partition funtion an be written as (detrGS) whererGS is de�ned in (3.51). In the pure spinor formalism, partition funtion of (��; b��̂) an bewritten as (detrGS)(det�)24 and is interpreted as oming from Green-Shwarz like degrees offreedom (SA; bSA) and the rest onsiting of (8+16)� 2 left and right moving variables ( bT _A; b	�̂)and (T _A;	�). Atual omputation of (detrGS) is not neessarily easy, but the diÆulty doesnot hamper the omparison of the Green-Shwarz and pure spinor formalisms.As for bosoni utuations (~t; ~xi; ~ ; ~�), (i = 1; : : : ; 7; ~t = t � t et.), reall that they aregoverned by the same quadrati ation (3.5) in the two formalisms, so the detailed study of theirpartition funtions is not really neessary for showing the equivalene. However, it is of someinterest to look into their strutures. For a lassial solution of the type disussed in this artilepartition funtion fatorizes into a produt of funtional determinants as (det�3)�1(det�7)�1where �3 and �7 are some seond order matrix di�erential operators that at on (~t; ~ ; ~�) 2Rt � S2 and on the remaining bosoni utuations ~xi (i = 1; : : : ; 7). Atually, the operator�7 is diagonal in the present setting and (det�7) = (det��)7 where �� is the Klein-Gordonoperator with mass �. The other fator �3 ats as � on ~t and does not mix it with ( ~ ; ~�), butits ation on ( ~ ; ~�) is ompliated in general. Nevertheless, if one believes in the equivalene ofthe onformal gauge omputation to a stati gauge (~t = ~� = 0) one, the funtional determinantof �3 should further fatorize as (det�3) = (det�)2(det� ) where � is the seond orderdi�erential operator ating on ~ in the stati gauge. In onnetion with this, note that it hasbeen argued quite onviningly that (det�3) atually an be fatorized in this way when afolded string is spinning rigidly in an AdS3 � AdS5 instead of Rt � S2 [51℄.Putting everything together, we have learnt that the one-loop partition funtions of Green-Shwarz and pure spinor formalisms agree for the lassial solutions of subsetion 3.3, and thatthe partition funtion is given asZ = (det� )�1(det��)�7(detrGS): (3.61)Sine the one-loop partition funtion is related to the one-loop orretion �E to spaetimeenergy in the present setup, this amounts to a proof of the equivalene of �E omputed in thetwo formalisms.Flutuation spetra It is tempting to interprete the agreement of the partition funtions asindiating that the pure spinor partition funtion reeives non-trivial ontributions only fromphysial utuations, i.e. from BRST ohomologies. Suh an interpretation is possible if, after28



a quantization, one an onstrut transverse DDF operators [52℄ that generate the BRST o-homologies. The DDF operators should be in one-to-one orrespondene with the transverseosillators of the lightone Green-Shwarz formalism, and ompleteness of the DDF operatorsimplies that the remaining degrees of freedom form BRST quartets with a BRST trivial Hamil-tonian.Although an expliit quantization of utuation is not easy in general even in the Green-Shwarz formalism, it is straightforward around a point-like rotating string of Berenstein, Mal-daena and Nastase [4℄. The semilassial analysis around the BMN string in the pure spinorformalism is just a linearization of the formalism in a Ramond-Ramond plane-wave bak-ground [53, 45℄. We here wish to explain briey how a physial state of the lightone Green-Shwarz formalism is mapped to a BRST ohomology in this ase.In the plane-wave bakground, physial states of lightone Green-Shwarz formalism aredesribed by 8 massive bosoni �elds xI and 8 pairs of massive fermioni �elds (SA; bSA), where Iand A are the vetor and hiral spinor of SO(4)�SO(4) [50℄. As explained in subsetion 3.5, it iseasy to identify the �elds with same properties in the pure spinor formalism at a linearlized level.Remaining degrees of freedom are lightone oordinates x�, extra fermioni oordinates (TA; bTA)and (� _A; b� _A), and pure spinor ghosts (w�; ��; bw�̂; b��̂). Although the modes of (xI ; SA; bSA) donot diretly generate the BRST ohomology, it should be able to show that elements in theirFok spae are in one-to-one orrespondene with BRST ohomologies at ghost number (1; 1)by adopting the methods of [10℄ or [54℄ developed for a at bakground.4 ConlusionIn this artile we have explained how the one-loop semilassial analyses of Green-Shwarz andpure spinor superstrings in an AdS5 � S5 bakground are related. In partiular, we have shownthat one-loop orretions to spaetime energies of a lassial solution is the same when thesolution is rigid and ontained in an Rt �S2 � AdS5�S5. We would like to interprete the resultas a support for the equivalene of the two formalisms at a semilassial level.Let us reapture the main points:1. Any purely bosoni lassial solution of the Green-Shwarz formalism an be regarded asa lassial solution of the pure spinor formalism desribing the same lassial string.2. To the quadrati order, ations for bosoni utuations around a generi lassial solutionare the same for the two formalisms. (Strutures at higher orders are di�erent beauseof their oupling to fermioni utuations.) By ontrast, quadrati ations for fermioniutuations are di�erent, yet their strutures are strikingly similar. See equations (2.27)and (2.30).3. When a lassial string is rigid and ontained in an Rt � S2 � AdS5 � S5, the one-looporretion �E to its spaetime energy is given by the zero point energy of the worldsheetHamiltonian H2, both in Green-Shwarz and pure spinor formalisms. To show that �Eare the same in two formalisms, it therefore suÆes to show that the one-loop partition29



funtions are the same. Moreover, in view of the seond item, it is enough to ompare thepartition funtions of fermions and ghosts.4. Even if the rigidity assumption in the previous item is dropped, fermioni utuations inpure spinor formalisms an be separated into the Green-Shwarz fermions (SA; bSA) and therest onsisting of (8+16)�2 left and right movers. There is a minor oupling between thetwo types of degrees of freedom, but the partition funtion fatorizes to the ontributionsfrom the two.5. Reparameterization b ghosts in Green-Shwarz formalism in a onformal gauge onsistsof (1 + 1)� 2 left and right movers.Pure spinor ghosts are also massless and onsists of (11 + 11)� 2 left and right movers.6. The ombined partition funtion of the extra fermions and ghosts in the pure spinorformalism oinides with that of the b ghosts in the Green-Shwarz formalism. Thisshows that the total partition funtions of the two formalisms are the same. Hene, if thestring is rigid, the one-loop orretion �E to the spaetime energy omputed in the twoformalisms agree.It is natural to ask how far does the equivalene above an be generalized. As a matter of fat, webelieve that the agreement of one-loop partition funtions holds quite generally. Indeed, aroundany lassial on�guration, D��� = D+b��̂ = 0 gives a solution to utuation equations of motionfor the pure spinor formalism and the equations of motion for the ombination (��; b��̂) �(D���;D+b��̂) is losely related to that of Green-Shwarz formalism. Deoupling between theD��� = D+b��̂ = 0 setor and the (��; b��̂) setor, and splitting of (��; b��̂) into the Green-Shwarz (SA; bSA) variables and the rest depend on some details of the lassial solution inonern, but it appears reasonable to expet that the ombined partition funtion of fermionsand ghosts in the pure spinor formalism just gives (detrGS)(det�b)2 whenever the Green-Shwarz partition funtion fatorizes as in table 1. It would be interesting to expliitly hekthese expetations by studying lassial strings in Rt�S3 2 AdS5�S5 and AdS3�S1 2 AdS5�S5(so-alled SU(2) and SL(2) setors).The interpretation of the agreement of partition funtions requires additional onsideration.In this artile, to obtain a simple relation between �E and the worldsheet Hamiltonian H2, wehave put a rigidity assumption on our strings in Rt � S2. Presumably, the simple relation on-tinues to hold as long as t = �� (targetspae time is proportional to worldsheet time lassially)and the lassial motion is periodi in time. However, a diret proof purely within a onformalgauge is not neessarily easy.Extension along another obvious diretion, namely, omparison of semilassial Green-Shwarzand pure spinor formalisms at two-loops and higher is of ourse important. At higher loops,strutures of bosoni utuations in the two formalisms are no longer the same due to their ou-pling to fermions (and ghosts). Also, quarti self-oupling of ghosts N bN , whih is essential forthe onformal invariane of the model, should play an important role to establish an equivalene.It would be interesting to understand the relation expliitly.30



True power of the pure spinor formalism, however, should be in its generality. The fat thatone may treat all lassial solutions uniformly without being bothered with gauge �xing appearsto make it more suitable for exploiting integrability. As is well known, both Green-Shwarzand pure spinor superstrings in the AdS5 � S5 bakground possess Lax onnetions whoseatness imply lassial equations of motion [26℄[27℄. To show the integrals of motion generatedby the at onnetion to be mutually ommutative, one wishes to hek that the onnetionsatis�es a ertain exhange algebra introdued by Maillet [55℄. In [56℄[57℄, the Green-Shwarz atonnetion of Bena-Polhinski-Roiban [26℄ have been investigated within the Dira-Hamiltonianformalism, and it have been found that the at onnetion have to be improved by addingphase spae onstraints to satisfy the exhange property. Moreover, the at onnetion after theimprovement have been found to be the one in the pure spinor formalism onstruted by one ofthe authors [27℄ (minus the ghost ontribution). This indiates that the pure spinor formalismis a properly gauge �xed version of the Green-Shwarz formalism. It would be reasonable andinteresting, therefore, to exploit the integrability of the pure spinor formalism systematially.Ultimately, one would like to solve the string theory in the AdS5�S5 bakground by an exatquantization. In superoset models desribing Ramond-Ramond bakgrounds, urrents J are notholomorphi unlike in the Wess-Zumino-Witten models, so their operator produt expansions arediÆult to ontrol. It is just about hopeless to �nd a good theory for arbitrary non-holomorphiurrents, but one ould hope that the Ramond-Ramond superoset models form a good lass ofonformal �eld theories. For example, the urrents J are atually ovariantly holomorphi asin (2.52) indiating an enhanement of hiral algebra from the Virasoro algebra [58℄.We would like to ome bak to some of these issues in the near future.AknowledgmentsWe would like to thank Nathan Berkovits and Volker Shomerus for useful disussions, enour-agement and omments on a draft of this artile, and IFT/UNESP where a part of this researhwas done. YA would also like to thank Carlo Meneghelli and Benô�t Viedo for useful disussionsand enouragement, and is grateful to Soo-Jong Rey for a disussion on Goldstone modes in thesemilassial pure spinor formalism that initiated our study. LIB would like to thank Vitor O.Rivelles for disussions. The work of YA is supported by SFB 676 and a part of the work wasdone under a support of FAPESP grant 06/59970-5. The work of LIB was partially supportedby Conselho Naional de Desenvolvimento Cient���o e Tenol�ogio (CNPq) and Funda�~ao deApoio �a Pesquisa do Estado do Rio Grande do Norte (FAPERN). The work of BCV is partiallysupported by FONDECYT grant number 1120263.A Appendix: Notation and onventionsWorldsheetWorldsheet of a string is assumed to be a ylinder. We keep the worldsheet to be Minkowskianexept in subsetion 2.1 where we review the pure spinor formalism in a at bakground.31



� Coordinates on worldsheet ylinder:�� = (�; �); � + 2� = �; (��� = �1; ��� = 1) (A.1)� Lightone: �� = � � �; �� = 12(�� � ��) (A.2)� Coordinates on a (Eulidean) omplex plane:z = e~�+i� ; z = e~��i� ; (~� = i�) (A.3)Gamma matries� SO(9; 1) and SO(4; 1)�SO(5) gamma matries of size 16� 16 are denoted by (a)�� and(a)�� . They satisfy f(a)�� ; (b)�g = 2�abÆa . We assume that a basis for spinors ishosen so that (0)�� = �(0)�� = 116.� For SO(4; 1)�SO(5) there is an invariant tensor given by an antisymmetri produt 01234of gamma matries:��̂� � ����̂ � (01234)�̂�; ��̂� � ����̂ � (01234)�̂� (A.4)���̂��̂� = Æ��; ��̂����̂ = Æ�̂�̂ (A.5)We use � to de�ne spinor indies with hats. In partiular, gamma matries with hattedindies are de�ned via(a)�̂�̂ = ��̂�(a)�����̂ ; (a)�̂�̂ = ��̂�(a)�����̂ (A.6)� In the ontext of psu(2; 2j4), ���̂ an be identi�ed as the \spinor metri" oupling g1 and
g3. See below.

psu(2; 2j4)� Generators: TA = (Ta; Tab;T�; T�̂) = (Pa; Lab;Q�; bQ�̂); A = (a; ab;�; �̂) (A.7)� Z4 struture:
psu(2; 2j4) = g0 + g1 + g2 + g3 (A.8)Lab 2 g0; Pa 2 g2; Q� 2 g1; bQ�̂ 2 g3 (A.9)Both ommutation relations and inner produt below respet Z4:[gi; gj ℄ = gi+j; str(gigj) 6= 0 only when i+ j = 0 (A.10)32



� Trae metri: �AB � str(TATB); (A.11)str(PaPb) = �ab (A.12)str(LabLd) = �Rabd = (� (�a�bd � �b�ad) AdS5ÆaÆbd � ÆbÆad S5 (A.13)str( bQ�̂Q�) = � str(Q� bQ�̂) = 01234�̂� (A.14)� Commutation relations:It is onvenient to split a = (a00; a0) where a00 = 0; : : : ; 4 are AdS5 diretions and a0 =5; : : : ; 9 are S5 diretions. Non-trivial ommutation relations are then[Paa00 ; Pb00 ℄ = La00b00 ; [Pa0 ; Pb0 ℄ = �La0b0 (A.15)[La00b00 ; P00 ℄ = �b0000Pa00 � �a0000Pb00 ; [La0b0 ; P0 ℄ = �b00Pa0 � �a00Pb0 (A.16)[La00b00 ; L00d00 ℄ = �b0000La00d00 � � � � ; [La0b0 ; L0d0 ℄ = �b00La0d0 � � � � (A.17)[Lab; Q�℄ = �12(ab)��Q�; [Lab; bQ�̂℄ = �12(ab)�̂�̂ bQ�̂ (A.18)[Pa; Q�℄ = 12(�a)��̂ bQ�̂; [Pa; bQ�̂℄ = �12(�a)�̂�Q� (A.19)fQ�; Q�g = a��Pa; f bQ�̂; bQ�̂g = â��̂Pa (A.20)fQ�; Q�̂g = 12(�a00b00)��̂La00b00 � 12(�a0b0)��̂La0b0 (A.21)Referenes[1℄ J. M. Maldaena, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999)1113℄ [hep-th/9711200℄.[2℄ S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Phys. Lett. B 428 (1998) 105 [hep-th/9802109℄.[3℄ E. Witten, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150℄.[4℄ D. E. Berenstein, J. M. Maldaena and H. S. Nastase, JHEP 0204 (2002) 013 [hep-th/0202021℄.[5℄ S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Nul. Phys. B 636 (2002) 99 [hep-th/0204051℄.[6℄ S. Frolov and A. A. Tseytlin, JHEP 0206 (2002) 007 [hep-th/0204226℄.[7℄ M. B. Green and J. H. Shwarz, Phys. Lett. B 136 (1984) 367.[8℄ N. Berkovits, JHEP 0004 (2000) 018. [hep-th/0001035℄.33



[9℄ L. Mazzuato, arXiv:1104.2604 [hep-th℄.[10℄ N. Berkovits, JHEP 0009 (2000) 046 [arXiv:hep-th/0006003℄.[11℄ Y. Aisaka, E. A. Arroyo, N. Berkovits and N. Nekrasov, JHEP 0808 (2008) 050[arXiv:0806.0584 [hep-th℄℄.[12℄ N. Berkovits, JHEP 0409 (2004) 047 [hep-th/0406055℄.[13℄ N. Berkovits and N. Nekrasov, JHEP 0612 (2006) 029 [hep-th/0609012℄.[14℄ C. R. Mafra, O. Shlotterer and S. Stieberger, arXiv:1106.2645 [hep-th℄.[15℄ C. R. Mafra and O. Shlotterer, arXiv:1203.6215 [hep-th℄.[16℄ N. Berkovits and D. Z. Marhioro, JHEP 0501 (2005) 018 [arXiv:hep-th/0412198℄.[17℄ Y. Aisaka and Y. Kazama, JHEP 0505 (2005) 046 [arXiv:hep-th/0502208℄.[18℄ W. Siegel, Phys. Lett. B 128 (1983) 397.[19℄ M. T. Grisaru, P. S. Howe, L. Mezinesu, B. Nilsson and P. K. Townsend, Phys. Lett. B162 (1985) 116.[20℄ E. Witten, Nul. Phys. B 266 (1986) 245.[21℄ N. Berkovits and P. S. Howe, Nul. Phys. B 635 (2002) 75 [hep-th/0112160℄.[22℄ O. Chandia and B. C. Vallilo, JHEP 0404 (2004) 041 [hep-th/0401226℄.[23℄ O. A. Bedoya and O. Chandia, JHEP 0701 (2007) 042 [hep-th/0609161℄.[24℄ R. R. Metsaev and A. A. Tseytlin, Nul. Phys. B 533 (1998) 109 [hep-th/9805028℄.[25℄ N. Berkovits, M. Bershadsky, T. Hauer, S. Zhukov and B. Zwiebah, Nul. Phys. B 567(2000) 61 [hep-th/9907200℄.[26℄ I. Bena, J. Polhinski and R. Roiban, Phys. Rev. D 69 (2004) 046002 [hep-th/0305116℄.[27℄ B. C. Vallilo, JHEP 0403 (2004) 037 [hep-th/0307018℄.[28℄ N. Drukker, D. J. Gross and A. A. Tseytlin, JHEP 0004 (2000) 021 [hep-th/0001204℄.[29℄ B. C. Vallilo, JHEP 0212 (2002) 042 [hep-th/0210064℄.[30℄ N. Berkovits, JHEP 0503 (2005) 041 [hep-th/0411170℄.[31℄ B. C. Vallilo and L. Mazzuato, JHEP 1112 (2011) 029 [arXiv:1102.1219 [hep-th℄℄.[32℄ R. Roiban and A. A. Tseytlin, Nul. Phys. B 848 (2011) 251 [arXiv:1102.1209 [hep-th℄℄.[33℄ N. Gromov, D. Serban, I. Shenderovih and D. Volin, JHEP 1108 (2011) 046[arXiv:1102.1040 [hep-th℄℄. 34



[34℄ E. Cartan, Le�on sur la Theorie des Spineurs, Hermann, Paris, 1937.(The Theory of Spinors, MIT Press, 1966.)[35℄ F. Malikov, V. Shehtman and A. Vaintrob, Commun. Math. Phys. 204 (1999) 439[arXiv:math/9803041℄.[36℄ A. Kapustin, [arXiv:hep-th/0504074℄.[37℄ E. Witten, [arXiv:hep-th/0504078℄.[38℄ N. A. Nekrasov, [arXiv:hep-th/0511008℄.[39℄ M. Matone, L. Mazzuato, I. Oda, D. Sorokin and M. Tonin, Nul. Phys. B 639 (2002)182 [arXiv:hep-th/0206104℄.[40℄ N. Berkovits, arXiv:1105.1147 [hep-th℄.[41℄ Y. Aisaka and N. Berkovits, JHEP 0907 (2009) 062 [arXiv:0903.3443 [hep-th℄℄.[42℄ I. Oda and M. Tonin, Phys. Lett. B 520 (2001) 398 [hep-th/0109051℄.[43℄ N. Berkovits and C. Vafa, JHEP 0803 (2008) 031 [AIP Conf. Pro. 1031 (2008) 21℄[arXiv:0711.1799 [hep-th℄℄.[44℄ G. Boussard, Unpublished[45℄ N. Berkovits, JHEP 0909 (2009) 051 [arXiv:0812.5074 [hep-th℄℄.[46℄ N. Berkovits and L. Mazzuato, JHEP 1011 (2010) 019 [arXiv:1004.5140 [hep-th℄℄.[47℄ N. Beisert, V. A. Kazakov, K. Sakai and K. Zarembo, Commun. Math. Phys. 263 (2006)659 [hep-th/0502226℄.[48℄ A. S. Shwarz, Commun. Math. Phys. 155 (1993) 249 [hep-th/9205088℄; Commun. Math.Phys. 158 (1993) 373 [hep-th/9210115℄.[49℄ D. M. Hofman and J. M. Maldaena, J. Phys. A A 39 (2006) 13095 [hep-th/0604135℄.[50℄ R. R. Metsaev and A. A. Tseytlin, Phys. Rev. D 65 (2002) 126004 [hep-th/0202109℄.[51℄ M. Bearia, G. V. Dunne, V. Forini, M. Pawellek and A. A. Tseytlin, J. Phys. A A 43(2010) 165402 [arXiv:1001.4018 [hep-th℄℄.[52℄ E. Del Giudie, P. Di Vehia and S. Fubini, Annals Phys. 70 (1972) 378.[53℄ N. Berkovits, JHEP 0204 (2002) 037 [hep-th/0203248℄.[54℄ Y. Aisaka and Y. Kazama, JHEP 0404 (2004) 070 [hep-th/0404141℄.[55℄ J. M. Maillet, Nul. Phys. B 269 (1986) 54.[56℄ M. Magro, JHEP 0901 (2009) 021 [arXiv:0810.4136 [hep-th℄℄.35



[57℄ B. Viedo, JHEP 1001 (2010) 102 [arXiv:0910.0221 [hep-th℄℄.[58℄ M. Bershadsky, S. Zhukov and A. Vaintrob, Nul. Phys. B 559 (1999) 205 [hep-th/9902180℄.

36


	1 Introduction
	2 Classical pure spinor superstring in AdS5 x S5 background
	2.1 Trivial background
	2.2 Generic supergravity background
	2.3 AdS5 x S5 background
	2.3.1 Metsaev-Tseytlin coset construction of Green-Schwarz action for AdS5 x S5
	2.3.2 Pure spinor action for AdS5 x S5

	2.4 PSU(2,2|4) symmetry and Noether current
	2.5 BRST symmetry, composite b-ghost and stress tensor
	2.6 Classical equations of motion

	3 Semiclassical pure spinor superstring in AdS5 x S5 background
	3.1 Comparison of semiclassical analyses for Green-Schwarz and pure spinor formalisms
	3.2 Quadratic fluctuations
	3.2.1 Quadratic action
	3.2.2 Linearized equations of motion
	3.2.3 BRST transformations of fluctuations

	3.3 A family of classical solutions in AdS5 x S5
	3.4 Relation between dE and worldsheet Hamiltonian H2
	3.5 Disentangling fermionic fluctuations
	3.6 Comparison of 1-loop corrections

	4 Conclusion
	A Appendix: Notation and conventions

