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AbstratThe well{known Giudie{Masiero mehanism explains the presene of a � termof the order of the gravitino mass, but does not explain why the holomorphi massterm is absent in the superpotential. We disuss anomaly{free disrete symmetrieswhih are both ompatible with SU(5) uni�ation of matter and the Giudie{Masiero mehanism, i.e. forbid the � term in the superpotential while allowingthe neessary K�ahler potential term. We �nd that these are ZRM symmetrieswith the following properties: (i) M is a multiple of four; (ii) the Higgs bilinearHuHd transforms trivially; (iii) the superspae oordinate � has harge M=4 and,aordingly, the superpotential has harge M=2; (iv) dimension �ve proton deayoperators are automatially absent. All ZRM symmetries are anomaly{free due toa non{trivial transformation of a Green{Shwarz axion, and, as a onsequene,a holomorphi � term appears at the non{perturbative level. There is a uniquesymmetry that is onsistent with the Weinberg operator while there is a lass ofZRM symmetries whih explain suppressed Dira neutrino masses.1Email: muhun�ui.edu2Email: mihael.ratz�tum.de3Email: hristian.staudt�tum.de4Email: patrik.vaudrevange�desy.de
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1 MotivationThe minimal supersymmetri standard model (MSSM) is a very appealing extension ofthe standard model of partile physis. Supersymmetry promises to stabilize the ele-troweak sale against radiative orretions. The struture of matter hints at uni�ation,and the attrative piture of preision gauge uni�ation [1℄ enabled by supersymmetryintrodues the sale of grand uni�ation MGUT = a few � 1016GeV. The MSSM alsoprovides a ompelling dark matter andidate.On the other hand, the MSSM has various problems. Usually the MSSM omes withmatter or R parity [2,3℄ whih eliminates the most troublesome baryon number violatinginterations, and ensures the stability of the aforementioned dark matter partile. Yet,even after imposing matter parity, there are ertain serious shortomings. One of themis the so{alled \� problem" whih onsists in the question why the holomorphi massterm for the Higgs bilinear is of the order of the eletroweak sale. In addition, there isthe dimension �ve proton deay problem [3{5℄ (f. also [6℄).It is hene lear that the MSSM requires additional ingredients beyond matter parity.In this study we analyze anomaly{free disrete symmetries whih forbid the � term. Aswe shall demonstrate, requiring that the symmetries be ompatible with the Giudie{Masiero solution [7℄ to the � problem and SU(5) leads to very restrited lasses ofsolutions, depending on whether neutrinos are Majorana or Dira partiles. In the �rstase, the solution is unique and even ompatible with SO(10) while in the seond asethe smallness of the Dira neutrino Yukawa oupling an be related to the suppressionof the � parameter.2 Naturally suppressed � term and Dira neutrinoYukawa ouplings from anomaly{free symmetriesWe start by reviewing the explanations of a suppressed � term through K�ahler potentialterms in Setion 2.1. Next, we disuss anomaly onstraints in Setion 2.2. In Setion 2.3we omment on proton deay operators and study settings with SO(10) relations inSetion 2.4. Then, we disuss the appearane of a suppressed holomorphi � term andDira Yukawa ouplings in Setion 2.5 and Setion 2.6, respetively, and give a shortreap in Setion 2.7.2.1 Giudie{Masiero mehanismThe famous Giudie{Masiero mehanism [7℄ provides a solution to the � problem in theMSSM. Giudie and Masiero pointed out that in supergravity an e�etive holomorphiHuHd bilinear, i.e. an e�etive � term, an arise from the (non{holomorphi) K�ahlerpotential termK � kHuHd XyMP HuHd + h.. : (2.1)
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Here X is the (spurion) �eld that breaks supersymmetry and kHuHd and MP denote aoeÆient and the Plank sale, respetively. Inserting the F term vauum expetationvalue (VEV) FX of X leads to an e�etive superpotential termWe� � FXMP HuHd =: �e� HuHd ; (2.2)with �e� of the order of the gravitino mass m3=2, whih sets the size of soft superpartnermasses in gravity mediation.However, for the Giudie{Masiero mehanism to work, the holomorphi superpoten-tial term �HuHd needs to be absent in the �rst plae, or better forbidden by a symmetry.As it turns out, symmetries that an forbid the � term are rather onstrained. It hasbeen shown [8℄ that, if one requires the symmetry to be anomaly{free and to ommutewith SU(5) (in the matter setor), it has to be an R symmetry (f. the similar disussionin [9℄). As shown by Chamseddine and Dreiner [10℄, in the MSSM gauged anomaly{freeontinuous R symmetries are not available. On the other hand, there are strong argu-ments against global symmetries (f. [11℄ for a reent disussion). We are hene led tothe onlusion that the symmetry needs to be disrete. In what follows, we thereforewill only onsider anomaly{free disrete R symmetries. Spei�ally, we will look at onepartiular generator whih forbids the � term. This generator will generate an Abeliandisrete R symmetry of order M , i.e. a ZRM symmetry.One an atually narrow down the potential symmetries even further. Suppose weseek to generate an e�etive � term, Equation (2.2), from the K�ahler potential term.Here we assume that X is the �eld that breaks supersymmetry and generates gauginomasses. Then its F omponent has to have minus the R harge of the superpotential.One way to see this is by realling that gaugino masses get indued by the operatorR d2� X W�W � (with � and W� denoting the superspae oordinate and the gauge mul-tiplets, respetively). Sine the superpotential R harge qW equals twie the R hargeof �, q�, and the lowest omponents of W� (i.e. the gauginos) arry R harge q�, theX super�eld needs to be inert under the (disrete) R symmetry. Therefore, the Higgsbilinear HuHd needs to be neutral as well. Altogether we have found that an anomaly{free and SU(5) ompatible symmetry that forbids the � term in the MSSM has to bedisrete, and under this symmetry,� ! e2� i q�M � ; (2.3a)W ! e2� i qWM W where qW = 2 q� ; (2.3b)X ! X ; (2.3)HuHd ! HuHd : (2.3d)Here and throughout this study we normalize the disrete harges to be integer, i.e.q� 2 Z.It is immediately lear that suh a symmetry allows e�etive superpotential terms ofthe formW � 
 
M2P HuHd ; (2.4)2



where 
 (with R harge qW ) denotes the superpotential of some `hidden setor'. Asusual, a non{trivial VEV of 
 is required to anel the vauum energy. This VEVwill break the R symmetry, but the breaking is hierarhially small, i.e. of the order ofthe gravitino mass m3=2 (f. the disussion in [12℄). That means that, apart from theGiudie{Masiero ontribution, one would expet to have a holomorphi (`Kim{Nillestype' [13℄) ontribution to the � parameter of the right size.2.2 Anomaly onstraintsUp to now we have only used the fat derived in [8℄ that SU(5){ompatible and anomaly{free non{R symmetries annot forbid the � term. Now we disuss anomaly onstraintson ZRM symmetries. These onstraints have been re{derived reently in [8℄. However,there only the speial ase q� = 1 has been onsidered, whih is too strong a require-ment. To see this, onsider a ZR8 symmetry, for whih there are two di�erent non{trivialpossibilities for the superspae harge, q� = 1 and q� = 2. At �rst glane, one may thinkthat one may rewrite the q� = 2 ase as a ZR4 �Z2 symmetry. This is not the ase sine2 and 8 are not oprime.1 The generalization of the anomaly oeÆients to arbitrary q�is straightforward and deferred to appendix A.After summarizing the relevant anomaly oeÆients for the MSSM in Setion 2.2.1we explain in Setion 2.2.2 why `anomaly universality' must be imposed in models inwhih the SM gauge group is uni�ed into a simple gauge group. We then proeed byverifying the onsisteny with anomaly mathing in Setion 2.2.3 and show that onlyR symmetries an forbid the � term in Setion 2.2.4. Finally, we derive onstraints onthe order M in Setion 2.2.5 and omment on the (ir)relevane of the universality of themixed hyperharge anomaly in Setion 2.2.6.2.2.1 ZRM anomaly oeÆients in the MSSMIn the ase of the MSSM the anomaly oeÆients AR3 := ASU(3)C�SU(3)C�ZRM , AR2 :=ASU(2)L�SU(2)L�ZRM and AR1 := AU(1)Y �U(1)Y �ZRM readAR3 = 12 3Xg=1 �3qg10 + qg5�� 3q� ; (2.5a)AR2 = 12 3Xg=1 �3qg10 + qg5�+ 12 (qHu + qHd)� 5q� ; (2.5b)AR1 = 12 3Xg=1 �3qg10 + qg5�+ 35 �12 (qHu + qHd)� 11q�� : (2.5)Here, qg10 and qg5 denote the SU(5){universalR harges of the MSSM super�elds (Qg; Ug; Eg)and (Dg; Lg), respetively, and g represents the avor index. Aordingly, matter1A simple way of seeing this is to reall that all elements of ZR4 �Z2 have the property that takingthem to the fourth power yields identity, whih is obviously not the ase for ZR8 .3



fermions and Higgsinos have harges q � q� while gauginos have harge q�.2.2.2 Anomaly universality and disrete Green{Shwarz mehanismIf the standard model gauge group is to be uni�ed into SU(5) or SO(10), a neessaryondition for anomaly anellation is the universality (f. the disussion in appendix B.3)AR3 = AR2 = AR1 = � mod � : (2.6)Here we introdue� := � M=2 ; if M even ;M ; if M odd : (2.7)� is a onstant whih indiates whether or not a Green{Shwarz (GS) mehanism [14℄ isat work. Spei�ally, � is related to the disrete shift of the GS axion (see Equation (B.9)in appendix B.2). � = 0 means that the symmetry is anomaly{free in the onventionalsense, i.e. without GS mehanism.At this point, we would like to omment on ertain important properties of theGreen{Shwarz mehanism and its disrete version as there seems to be some onfusionin the literature:1. Although the GS mehanism plays a prominent role in string theory, it does notrely on strings. In fat, as shown in appendix B.2, it an entirely be understoodin (the path integral formulation of) quantum �eld theory.2. Unlike in the ontinuous ase, for disrete symmetries the transformation of theaxion is only �xed modulo �. It will be interesting to see whether this ambiguityan be �xed somehow, e.g. in expliit string{derived models.3. In the ontinuous ase, the axion has to be massless for the shift symmetry tobe a symmetry of the Lagrangean. That is, the axion potential needs to be at.By ontrast, in the disrete ase the potential is only required to be periodi,i.e. invariant under the disrete shift, Equation (B.9). Therefore the axion mayhave a non{trivial mass prior to the breakdown of the symmetry. This is, ina way, somewhat surprising as it means that a massive (and bosoni) state anontribute to an anomaly. Of ourse, in both ases the symmetry will be broken(spontaneously) one the axion a aquires its VEV.2.2.3 Anomaly mathingIt is instrutive to use 't Hooft anomaly mathing [15℄ (see [16℄ for disrete anomalymathing) in order to onstrain the properties of anomaly{free GUT{ompatible ZRMsymmetries. At the SU(5) level, there is only one anomaly oeÆient ASU(5)2�ZRM , whihwe an split into three parts,ASU(5)2�ZRM = AmatterSU(5)2�ZRM + AextraSU(5)2�ZRM + 5q� : (2.8)4



The �rst term ontains the ontribution of matter and is given byAmatterSU(5)2�ZRM = 12 3Xg=1 �3qg10 + qg5�� 6q� : (2.9)Here, we used Equation (A.4a) with Dynkin indies `(5) = 13`(10) = 12 . The seondterm in (2.8), AextraSU(5)2�ZRM , denotes the ontributions of additional �elds, e.g. the SM andSU(5) breaking Higgs. Finally, the last term in (2.8) represents the gaugino ontributionfor SU(5). Yet, by onsidering the SU(3)C and SU(2)L subgroups of SU(5), one anintrodue two anomaly oeÆients ASU(5)SU(3)2C�ZRM = ASU(5)SU(2)2L�ZRM at the GUT level,ASU(5)SU(3)2C�ZRM = AmatterSU(3)2C�ZRM + AextraSU(3)2C�ZRM + 3q� + 12 � 2 � 2 � q� ; (2.10a)ASU(5)SU(2)2L�ZRM = AmatterSU(2)2L�ZRM + AextraSU(2)2L�ZRM + 2q� + 12 � 2 � 3 � q� ; (2.10b)where we arti�ially split the gaugino ontributions into those from the adjoint represen-tations of SU(2)L or SU(3)C, respetively, and in those oming from the extra gauginosin the (3; 2)�5=6�(3; 2)5=6 representation. Assume now there is some (unspei�ed) meh-anism that breaks the GUT symmetry down to the SM symmetry, and thus removes theextra gauginos, while leaving ZRM unbroken.2 Then, the oeÆientsASU(5) brokenSU(3)2C�ZRM = ASU(5)SU(3)2C�ZRM � 2q� ; (2.11a)ASU(5) brokenSU(2)2L�ZRM = ASU(5)SU(2)2L�ZRM � 3q� (2.11b)annot be equal, i.e. the anomaly oeÆients annot be universal, unless there are splitmultiplets ontributing to AextraSU(N)2�ZRM (where we use AmatterSU(3)2C�ZRM = AmatterSU(2)2L�ZRM ). Thatis, 't Hooft anomaly mathing for (disrete) R symmetries implies the presene of splitmultiplets below the GUT sale.2.2.4 Only R symmetries an forbid the � termGiven that SM matter furnishes omplete SU(5) representations and the attrative pi-ture of MSSM gauge uni�ation, arguably the most plausible andidates for suh splitmultiplets are the Higgs �elds. Requiring that the Higgs �elds anel the mismath ofgaugino ontributions to the anomalies, we obtain12 (qHu + qHd � 2q�) = q� mod � ; (2.12)2If one is to obtain the exat MSSM spetrum after GUT breaking, this mehanism annot bespontaneous symmetry breaking in four dimensions [17℄. On the other hand, extra dimensions, espeiallyin the framework of heteroti orbifolds, naturally an give disrete R symmetries as remnants of higherdimensional Lorentz symmetry, see e.g. [18℄.
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implyingqHu + qHd = 4q� mod 2� (2.13a)= 2qW mod 2� (2.13b)6= qW mod M for qW 6= 0 mod M : (2.13)Therefore, non{R symmetries with q� = qW = 0 annot forbid the � term. But in aseof non{trivial ZRM symmetries (i.e. M � 3) the � term will always be forbidden, as itshould be, sine only hiral ontributions an `repair' the gaugino mismath.A remark is in order to show that ZRM with qW = 0 mod M is not an R symmetry.In the ase qW = 0 mod M we �nd two solutions for q�: either q� = 0, suh that thesymmetry is learly non{R, or (for M even) q� = M=2. However, sine the transfor-mation � 7! �� and 	 7! �	 for all fermions 	 is always a symmetry, one an shiftthe ZRM harges by M=2 suh that again q� = 0. Hene, ZRM with qW = 0 mod M isequivalent to a non{R symmetry [19℄.2.2.5 Constraints on the order MUsing Equation (2.13) and assuming a Giudie{Masiero{like mehanism suh that qHu+qHd = 0 mod M from (2.3d), we obtain2qW = 0 mod M ; (2.14)whih implies, given the freedom to hoose qW between 0 and M �1, that the only non{trivial solution for even M is qW = M=2. For odd M there is no non{trivial solution.Sine the superpotential harge is given by qW = 2q�, the order M has to be divisibleby 4. Hene we an fous onM = 4� integer and q� = M=4 (2.15)in the rest of our disussion.2.2.6 No additional ondition from AR1Subtrating AR3 from AR1 yields35 �12 (qHu + qHd)� 11q��+ 3q� = 0 mod � : (2.16)Sine M is even and qHu + qHd = 0 mod M by (2.3d), this equation is equivalent to3 kM + 2 (15� 33) q� = 5`M (2.17)with some integers k and `. That is,36 q� = [3 k � 5 `℄ M = Z �M : (2.18)For a given order M , this relation onstrains q�. However, we know already from ourdisussion below Equation (2.14) thatM needs to be an integral multiple of 4, suh that(2.18) does not lead to an additional onstraint.6



2.3 Family{independent symmetries and proton deayLet us now assume further that the disrete symmetry be Abelian, i.e. of ZRM type, withfamily{independent harges. Assuming the presene of Yukawa ouplings, symmetrieswith the above properties have automatially the virtue of solving the dimension �veproton deay problem of the MSSM, as we will see in the following.The requirement that up- and down{type Yukawa ouplings be allowed,2q10 + qHu = qW mod M ; (2.19a)q10 + q5 + qHd = qW mod M ; (2.19b)implies3q10 + q5 + qHu + qHd = 2qW mod M : (2.20)Imposing (2.3d) gives3q10 + q5 = 2qW mod M 6= qW mod M ; (2.21)for an R symmetry (i.e. for qW 6= 0 mod M), showing that the troublesome dimension�ve operators 1010 10 5 are automatially forbidden whenever the Yukawa ouplingsare allowed. In [8℄ the same onlusion was obtained from anomaly anellation.Realling further that 2qW = 4q� =M leads us to the onlusion thatq5 = � 3q10 mod M : (2.22)This means that the ontributions of matter �elds to the anomaly oeÆients (2.5)vanish, and that the universal anomaly oeÆients are simply given byARi = � = q� mod M=2 (2.23)for 1 � i � 3.Next, one an also disuss proton deay originating from the dimension four operator10 55. This operator has R hargeq10 + 2q5 = � 5q10 mod M : (2.24)Hene, these operators are also forbidden if �5q10 6= qW mod M , or equivalently10q10 6= kM with k odd.2.4 Imposing SO(10) relationsLet us now omment on the speial ase that the ZRM symmetry ommutes with SO(10)for the matter �elds, i.e. q10 = q5 = q16. The requirements that the up{type anddown{type quark Yukawa ouplings be allowed imply that qHu = qHd =: qH (modM).Furthermore, from the anomaly universality ondition (2.13b) we �nd qH = qW mod �.In the following, we onsider two ases: in ase (i) we demand in addition the Weinbergneutrino mass operator, and in ase (ii) a Giudie{Masiero{like mehanism.7



(i) If we require the Weinberg neutrino mass operator, i.e. 2q16+2qH = qW mod M ,we �nd M = 4m, m 2 N andq� = m ; qW = 2m ; qH = 0 and q16 = m : (2.25)This symmetry automatially allows for the Giudie{Masiero term and the universalanomaly oeÆients ARi = m 6= 0 indiate a disrete GS mehanism. The simplestase m = 1 is the ZR4 symmetry disussed in [20, 21℄. All other ases are just trivialextensions as long as one onsiders the MSSM states only. Of ourse, if additional statesare introdued, they an have ZR4m harges in suh a way that one annot redue it toZR4 . Another version of the uniqueness proof of ZR4 an be found in [8℄. However, theanalysis in [8℄ assumed that q� = 1. Here we show that uniqueness also survives thegeneralization to general q� 6= 1.(ii) If we do not require the Weinberg neutrino mass operator but a Giudie{Masiero{like mehanism, i.e. 2qH = 0 mod M , there are two ases: both ases have M = 4m,m 2 N, q� = m and qW = 2m. In addition, in the �rst ase we get qH = 0 as disussedabove in ase (i), and in the seond one we �nd qH = M=2 = 2m and q16 = 2`m with` 2 Z. However, this hoie forbids the Weinberg neutrino mass operator.2.5 Non{perturbative holomorphi � termIf the above disrete R symmetry appears anomalous, i.e. if anomaly freedom is dueto a GS mehanism (see appendix B for a disussion of its disrete variant), then suhholomorphi ontributions will appear as arising at the non{perturbative level [8, 21℄.To see this, reall that the super�eld S ontaining the axion a, i.e. Sj�=0 = s+i a, needsto enter the gauge{kineti funtion, or, in other words, L � R d2� fS S W�W � (withsome oeÆient fS). Non{invariant terms in the superpotential an be made invariantby multiplying them by e�b S with appropriate b. As s ontrols 1=g2 suh terms golike e�b0=g2 , i.e. have the form of instanton ontributions. This then �ts niely into thesheme of dynamial supersymmetry breaking [22℄ (see also the more reent disussionon \retro�tting" [23℄), where the sale for supersymmetry breaking is set by a gauginoondensate [24℄, or a more ompliated dynamial term (see e.g. [25℄ for a review ofsimple models).2.6 Small Dira neutrino Yukawa ouplingsBy relating them to supersymmetry breaking one may explain suppressed neutrino DiraYukawa ouplings [26{28℄. That is, similarly to the � term, one an get e�etive Diraneutrino Yukawa ouplings from the K�ahler potential termsK � kLHu�� XyM2P LHu �� + h.. (2.26a)as well asK � kHydL�� 1MP Hyd L �� + h.. : (2.26b)8



Here, in an obvious notation, �� denotes the right{handed neutrino super�eld(s), kLHu��and kHydL�� are dimensionless oeÆients, and we suppress avor indies. The �rstterm (2.26a) leads to Dira neutrino masses when X attains its F{term VEV, hFXi �m3=2MP, while in the ase of (2.26b) one has to observe that, due to the presene of the`non{perturbative' � term, alsoHd attains an F term VEV, hFHdi � � hHui � m3=2 vEW.As qHu+qHd = 0 mod M , both terms are allowed if q��+qHu+qL = 0 mod M , whih ispreisely the ondition that an e�etive holomorphi Y� term is allowed. Altogether we�nd, analogous to what we have disussed around (2.2), that e�etive neutrino YukawaouplingsY� � m3=2MP � �MP (2.27)will arise. For m3=2 in the multi{TeV range this an lead to realisti Dira neutrinomasses. If we are to onnet the suppression of Y� to the smallness of the � term, itis natural to assume that the neutrino Yukawa oupling is forbidden by the same Rsymmetry that also forbids �. As disussed above, LHu �� has to have R harge 0.Moreover, there will also be holomorphi ontributions to the Yukawa oupling. Thatis, even if both kLHu�� and kHydL�� vanish, Dira Yukawa ouplings of the order m3=2=MPwill get indued, where, as in our disussion of the � term, m3=2 represents the orderparameter for R symmetry breaking.2.7 DisussionWe have surveyed anomaly{free symmetries whih forbid the � term and are onsistentwith the Giudie{Masiero mehanism and SU(5). We �nd that these are disrete Rsymmetries ZRM with M = 4m, m 2 N. The R harges of the HuHd are suh thatone expets a holomorphi ontribution to the � term of similar size. That is, theGiudie{Masiero mehanism strongly suggests the presene of additional holomorphiontributions to the e�etive � term!Assuming further that the symmetries allow the up- and down{type Yukawa oup-lings and ommute with avor we �nd that they automatially forbid the troublesomedimension �ve proton deay operators and in many ases those of dimension four. In-terestingly, all these symmetries require a GS axion for anomaly anellation. That is,these symmetries appear to be broken at the non{perturbative level. In other words,imposing ompatibility with the Giudie{Masiero mehanism leads us to a situation inwhih a holomorphi � term appears at the non{perturbative level, i.e. in a way theGiudie{Masiero term is unneessary.3 Classi�ation and modelsIn this setion, we explore anomaly{free disrete symmetries that solve some of the mostsevere problems of the MSSM. We will demand that the symmetry1. is avor{universal and Abelian, i.e. a ZRM symmetry;9



2. ommutes with SU(5);3. forbids the � term perturbatively;4. allows the usual Yukawa ouplings;After revisiting in Setion 3.1 the san performed in [8℄, where Majorana neutrinos wereonsidered, we turn to the Dira ase in Setion 3.2.3.1 Models with Majorana neutrinosIn [8, 21℄, anomaly{free disrete R symmetries with q� = 1 were studied whih satisfythe requirements 1{4 and in addition5. allow the Weinberg neutrino mass operator.It was found that there are only �ve phenomenologially attrative symmetries thatommute with SU(5), one of whih, a simple ZR4 symmetry, ommutes also with SO(10).Further, the � term, while perturbatively forbidden, appears at the non{perturbativelevel in four out of the �ve symmetries, and thus an explain its suppression. There isone symmetry whih is anomaly{free without GS ontribution; here anomaly freedomrequires the number of generations to be a multiple of 3 [29℄ (for a similar onnetionbetween the number of generations and anomaly{free non{R symmetries see [6, 30℄).In the lassi�ation of [8℄, ZR4 appears to be partiularly attrative. Apart from thefat that it is the unique solution that ommutes with SO(10), only ZR4 provides a realsolution to the � problem. In this ase, the disrete harges of Hu and Hd add up to0 mod M = 4 suh that the � parameter will be of the order of the gravitino mass,i.e. the order parameter of R breaking. This feature is not shared by the other four ZRMsymmetries, as also an be seen from our analysis in Setion 2.4. In partiular, it wasargued that � � m3=2 for the ase of ZR4 . To substantiate these laims, an expliit stringmodel with exat MSSM spetrum and the ZR4 symmetry was onstruted in whih therelation � � hW i � m3=2 is due to gauge invariane in extra dimensions [31℄.Assuming in addition a Giudie{Masiero{like mehanism, one an see that ZR4 is theunique solution also for general q� as follows. From the requirement that the Weinbergoperator be allowed we infer that2q5 + 2qHu = 2q� mod M y q5 = q� � qHu mod M=2 : (3.1)On the other hand, from the down{type Yukawa oupling it followsq10 = � q5 � qHd + 2q� mod M (3:1)= q� + qHu � qHd mod M=2 : (3.2)Demanding that the up{type Yukawa oupling be allowed leads toqHu = 2q� � 2q10 mod M(3:2)= �2qHu + 2qHd mod M = � 4qHu mod M ; (3.3)10



suh that 5qHu = 0 mod M . This means that qHu = 0 mod M unless the order is amultiple of 5. In the latter ase we an write the ZRM symmetry as Z5�ZRM=5 where theZ5 fator is a non{R symmetry. Hene we an fous on qHu = 0 mod M , whih implies,by (2.3d), that qHd = 0 mod M . Then Equations (3.1) and (3.2) implyq10 = q5 = q� mod M : (3.4)That is, the symmetry ommutes with SO(10) in the matter setor. We already knowfrom our disussion in Setion 2.4 that the only meaningful R symmetry with thisproperty is ZR4 .We also sanned the disrete ZRM symmetries up to order 200 with general q� withoutassuming a Giudie{Masiero{like mehanism. We obtain, apart from the symmetriesof Tables 2.1 and 2.2 of [8℄, only a few new symmetries. However, as we show in thefollowing in an example, these additional symmetries are redundant: onsider a ZR20symmetry with (q10; q5; qHu; qHd; q�) = (1; 17; 8; 52; 5). This is equivalent to a ZR4 � Z5symmetry with harge assignment ((1; 3); (1; 1); (0; 4); (0; 1); (1; 0)). The Z5 is nothingbut the non{trivial enter of SU(5), i.e. it does not forbid any ouplings (see the dis-ussion in [16, 32℄) and the (non{trivial) ZR4 fator is the one just disussed in the lastparagraph.3.2 Models with Dira neutrinosBy modifying the above onditions, i.e. by demanding that the symmetry5. forbids the Weinberg neutrino mass operator perturbativelyand6. is ompatible with the Giudie{Masiero mehanismwe obtain further interesting disrete R symmetries. Some sample symmetries arelisted in Table 1. Anomaly{free (non{R) ZN symmetries whih allow for Dira neu-trino Yukawa ouplings have been disussed in [33℄. The symmetries of Table 1 areinequivalent. One way of verifying this is to hek whether or not two given hargeassignments are equivalent by omputing their Hilbert superpotential basis [34℄. Onlyif the bases oinide, the assignments are equivalent. In the ase of R symmetries, theHilbert superpotential basis omprises homogeneous and inhomogeneous elements, ormonomials. Every possible superpotential term ontains preisely one inhomogeneousmonomial and an arbitrary number of homogeneous monomials. In appendix C we listthe Hilbert superpotential basis for examples with the ZR12 symmetries.3.2.1 Comments on the ZR8 symmetryOne of simplest harge assignments appears to be the one of the ZR8 symmetry. Clearlythe usual Yukawa ouplings 10 10Hu and 10 5Hd are allowed. Further, the Higgsbilinear HuHd has R harge 0 mod 8. If we assign the right{handed neutrino �� R11



(a) ZRM symmetries.M q10 q5 qHu qHd q� � q��4 0 0 2 2 1 1 24 2 2 2 2 1 1 08 1 5 2 6 2 2 112 1 9 4 8 3 3 1112 2 6 2 10 3 3 412 4 0 10 2 3 3 216 1 13 6 10 4 4 1324 1 21 10 14 6 6 1728 1 25 12 16 7 7 1928 2 22 10 18 7 7 2428 4 16 6 22 7 7 632 1 29 14 18 8 8 2136 1 33 16 20 9 9 2336 2 30 14 22 9 9 2836 4 24 10 26 9 9 2

(b) Residual symmetries.M 0 q10 q5 qHu qHd q��2 0 0 0 0 02 0 0 0 0 04 1 1 2 2 16 1 3 4 2 53 1 0 1 2 23 2 0 2 1 18 1 5 6 2 512 1 9 10 2 514 1 11 12 2 57 1 4 5 2 57 2 1 3 4 316 1 13 14 2 518 1 15 16 2 59 1 6 7 2 59 2 3 5 4 1Table 1: Classi�ation of anomaly{free disrete R symmetries that forbid neutrinomasses perturbatively. We restrit to orders � 36. (a) shows some sample symmetries.The equality between q� and � is due to Equation (2.23). The harge of the right{handedneutrino super�eld �� is determined by the requirement that q�� + qHu + qL = 0 mod M(f. the disussion below (2.26)). In (b) we display the residual symmetries that remainafter the (`hidden setor') superpotential aquires its VEV.harge 1, the Dira neutrino Yukawa oupling will also be indued by R breaking. Thatis, we will have an e�etive superpotential whih is shematially of the formWe� � m3=2HuHd + m3=2MP LHu �� + m3=2M2P QQQL : (3.5)Here we suppress avor indies. One the superpotential of the hidden setor aquires aVEV, the ZR8 is spontaneously broken down to a Z4 symmetry under whih all matter�elds have harge 1 and the Higgs �elds have harge 2 (Table 1 (b)). Of ourse, thissymmetry gets broken down to the usual matter (or `R') parity one the Higgs salarsattain their VEVs.The Hilbert superpotential basis [34℄ for this model (setting all quarks to zero) isgiven by the inhomogeneous monomials��4 ; �LLE� �� ; �LHdE� ; �LLE�4 ; �LLE�2 (LHu)2 ; (LHu)4 ; (3.6)
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while the homogeneous monomials are��8 ; (LHu) �� ; (LHu)8 ; �LLE�5 �� ; �LLE�4 �LHdE� ;HuHd ; �LLE� ��5 ; �LHdE� ��4 ; �LLE�2 �LHdE� (LHu)2 ;�LLE�8 ; �LHdE�2 ; �LLE� �LHdE� �� ; �LLE�2 ��2 ;�LLE�3 (LHu) ; �LHdE� (LHu)4 ; �LLE� (LHu)3 : (3.7)Furthermore, there will be K�ahler potential termsK � Xy �kHuHdMP HuHd + kLHu��M2P LHu �� + kQQQLM3P QQQL�+ h.. (3.8)with X denoting the �eld that breaks supersymmetry, kHuHd, kLHu�� and kQQQL beingoeÆients (and the avor indies again are suppressed). The kHuHd term is nothing butthe famous Giudie{Masiero term [7℄.An important feature of this setting is that lepton number is violated at the quartilevel, but bilinear lepton number violating terms are absent. That is, this model preditsthe absene of neutrinoless double � deays. On the other hand, lepton number is nota good symmetry, whih might have, for instane, important impliations for the earlyuniverse.Let us also note that the oeÆients in the above K�ahler potential are not neessarilyof order unity. In spei� string onstrutions, these oeÆients an in fat be as large asO(10�100) due to the presene of opious heavy states and/or ombinatorial fators (f.the disussion in [35℄), enabling realisti preditions for neutrino masses in the sub{eVrange.3.2.2 Comments on the ZR4 symmetriesBoth ZR4 symmetries of Table 1 are problemati as they allow some R parity violatingouplings. In partiular, the �rst ZR4 allows for bi{linear R parity violation, i.e. the 5Huoupling, while the seond ZR4 admits the tri{linear R parity violating terms 105 5. Inaddition, both settings allow for a non{perturbative neutrino bilinear �� ��. That is, thesesymmetries an give us a non{perturbative Majorana neutrino mass term, whih mightbe relevant for the onstrution of models realizing a TeV{sale see{saw senario. Givenour previous disussion, a straightforward possibility of retifying this is to amend thesettings by the residual Z4 symmetry from above (Table 2).The ZR4 symmetries originally give us two inequivalent Hilbert superpotential bases,however, amending the settings by the above{mentioned Z4 symmetry leads to the samebasis. Therefore, both ZR4 � Z4 symmetries give us the inhomogeneous monomials�LHdE� ; �LLE� �� ; �LLE� (LHu)3 ; �LLE�3 (LHu) ; (3.9)
13



(a) First ZR4 .q10 q5 qHu qHd q� � q��ZR4 0 0 2 2 1 1 2Z4 1 1 2 2 0 0 1 (b) Seond ZR4 .q10 q5 qHu qHd q� � q��ZR4 2 2 2 2 1 1 0Z4 1 1 2 2 0 0 1Table 2: Z4 extensions of the ZR4 symmetries of Table 1.whereas the homogeneous ones are given by��4 ; HuHd ; (LHu) �� ; (LHu)4 ; �LHdE� (LHu) �LLE�3 ;�LHdE�2 ; �LLE� �LHdE� �� ; �LLE�2 ��2 ;�LLE�2 (LHu)2 ; �LHdE� (LHu)3 �LLE� ; �LLE�4 : (3.10)As before in our ZR8 setting, bilinear lepton number violating terms are absent. In bothases this feature is due to the (anomaly{free non{R) Z4 symmetry, whih ommuteswith SO(10) for the matter �elds and is a onsistent symmetry of the MSSM. Unlike theR symmetries, this symmetry does not forbid the � term nor the dimension �ve protondeay operators.4 SummaryThe MSSM provides a very attrative sheme for physis beyond the standard model.However, in order to address its shortomings, one, arguably, has to impose additionalsymmetries. Motivated by the struture of matter and the attrative piture of gaugeuni�ation, we have onsidered symmetries that ommute with SU(5) in the matter se-tor. From the requirement of anomaly freedom it follows that only disrete R symmetriesan forbid the � term. We also pointed out that anomaly mathing for R symmetriesin SU(5) symmetri models implies the existene of split multiplets below the GUTsale, with the simplest option being that a pair of Higgs doublets anels the anomalymismath between the gauginos. Further demanding that a � term of the order of thegravitino mass arises from supersymmetry breaking, i.e. either from the K�ahler potentialor from the non{trivial superpotential VEV in the `hidden setor', we showed that theHiggs bilinear HuHd has to arry trivial R harge. We �nd that disrete R symmetrieswith these properties automatially forbid dimension{�ve proton deay operators onethe usual Yukawa ouplings are allowed. Even more, all symmetries appear anomaloussuh that a holomorphi � term gets indued at the non{perturbative level. That is, de-manding ompatibility with the Giudie{Masiero mehanism brings us to the situationin whih a � term of the desired magnitude appears even without the Giudie{Masieroterm in the K�ahler potential.We then disussed neutrino masses in the emerging MSSM models amended by dis-rete R symmetries. Restriting ourselves to avor{universal Abelian, i.e. ZRM , sym-14



metries we �nd that, by demanding that the Weinberg operator LHu LHu be allowed,there exists only one possible symmetry, namely a ZR4 symmetry. Following a di�erentapproah, this ZR4 has also reently been shown to be the unique anomaly{free symmetrythat ommutes with SO(10) [21℄. The proof in [21℄ assumed that the harge of the su-perspae oordinate � an always be set 1, whih we �nd to be too strong a requirement.However, we �nd that, if one is to allow for arbitrary � harges, this only leads to trivialextensions of ZR4 , suh that the uniqueness of ZR4 still prevails.If one requires instead the disrete symmetry to forbid the Weinberg operator, onean explain small Dira neutrino masses. In partiular, we suessfully obtain a relationbetween the smallness of Dira neutrino Yukawa ouplings and the � term whih isbased on anomaly{free disrete R symmetries with the above properties. Spei�ally,we �nd a lass of anomaly{free disrete symmetries in whih the appealing relations� � hW i=M2P � m3=2 and Y� � �=MP naturally emerge.AknowledgmentsWe would like to thank Maximilian Fallbaher and Hans Peter Nilles for useful dis-ussions. M.R. would like to thank the UC Irvine, where part of this work was done,for hospitality. M.-C.C. would like to thank TU M�unhen, where part of the work wasdone, for hospitality. This work was partially supported by the DFG luster of exellene\Origin and Struture of the Universe" and the Graduiertenkolleg \Partile Physis atthe Energy Frontier of New Phenomena" by Deutshe Forshungsgemeinshaft (DFG).P.V. is supported by SFB grant 676. The work of M.-C.C. was supported, in part,by the U.S. National Siene Foundation under Grant No. PHY-0970173. M.-C.C.,M.R. and P.V. would like to thank the Aspen Center for Physis for hospitality andsupport. M.-.C.C. thanks the Galileo Galilei Institute for Theoretial Physis for thehospitality. This researh was done in the ontext of the ERC Advaned Grant projet\FLAVOUR" (267104).A Anomaly oeÆients for ZRM symmetries with ar-bitrary q�The anomaly onditions for disrete R symmetries depend on q�. Consider a ZRM sym-metry, under whih the superpotential transforms asW ! e2� i qW =M W (A.1)with qW = 2q� (suh that R d2�W is invariant). Super�elds �(f) = �(f) + p2 � (f) +�� F (f) transform as�(f) ! e2� i q(f)=M �(f) : (A.2)Correspondingly, the fermions transform as (f) = e2� i (q(f)�q�)=M  (f) : (A.3)15



The anomaly oeÆients hene read (f. [8, Appendix B℄, where the anomaly oeÆientsfor the speial ase q� = 1 are shown)AG�G�ZRM = Xf `(r(f)) � (q(f) � q�) + q� `(adjG) ; (A.4a)AU(1)�U(1)�ZRM = Xf (Q(f))2 dim(r(f)) � (q(f) � q�) ; (A.4b)Agrav�grav�ZRM = �21 q� + q� XG dim(adjG) +Xf dim(r(f)) � (q(f) � q�) : (A.4)Here q(f) denote the ZRM harges of the super�elds, the harges of the orrespondingfermions are shifted by q�, q (f) = q(f) � q�. In Equation (A.4a), `(r(f)) denotes theDynkin index of representation r(f) normalized to `(N) = 12 for the fundamental rep-resentation N of SU(N) and `(adjG) = 2(G) represents the ontribution from thegauginos, i.e. `(adj SU(N)) = N . The �rst and seond terms on the right{hand side ofEquation (A.4) represent the ontributions from the gravitino and gauginos.B Green{Shwarz anomaly anellation and anomalyuniversalityIn this Appendix, we disuss the disrete Green{Shwarz (GS) anomaly anellationmehanism, following [8℄. We start by reviewing the GS mehanism for a ontinuousU(1) symmetry in B.1. In B.2 we disuss the disrete version while B.3 is dediated tothe disussion of anomaly universality.B.1 Anomaly anellation for `anomalous U(1)' symmetriesWe start by disussing the mixed anomaly oeÆients G � G � U(1)anom for a simplegauge group G. There will be an axion a whih ouples to the �eld strength of G viaLaxion � a8F b eF b : (B.1)A possible prefator an be absorbed in the normalization of a, whih we do not speifyhere. Consider now the gauge transformation (f) ! ei�(x)Q(f)anom  (f) ; (B.2)where  (f) (1 � f � F ) denotes the fermions of the theory and Q(f)anom their harges.The ruial property of the axion a is that it shifts under (B.2) asa ! a + 12ÆGS �(x) : (B.3)
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We an now �x the the Green{Shwarz oeÆient ÆGS from the requirement of in-variane of the full quantum theory. It follows from (B.3) that, under a U(1)anom trans-formation with parameter �, the axioni Lagrangean shifts by�Laxion = � �16ÆGS F b eF b : (B.4)The Green{Shwarz term ÆGS an now be inferred by demanding that the transformationof the axion a anels the anomalous variation of the path integral measure [36,37℄. Thelatter an be absorbed in a hange of the Lagrangean�Lanomaly = �32�2F b eF bAG�G�U(1)anom : (B.5)The oeÆient A is the anomaly oeÆient, given byAG�G�U(1)anom = Xr(f) `(r(f))Q(f)anom ; (B.6)where the sum runs over all irreduible (fermioni) representations r(f) of G, `(r(f))denotes the Dynkin index of r(f) and Q(f)anom is the U(1)anom harge.The axion shift allows us to anel the G � G � U(1)anom anomaly by demanding�Lanomaly +�Laxion = 0. This �xes the Green{Shwarz onstant to be2�2 ÆGS = AG�G�U(1)anom : (B.7)B.2 Disrete Green{Shwarz mehanismThe Green{Shwarz mehanism also works if we replae U(1)anom by a disrete ZM . Inthis ase the parameter � is no longer ontinuous but � = 2�nM with some integer n. Ofourse, there is no gauge �eld assoiated with the ZM . The disussion then goes as inthe previous subsetion. The disrete Green{Shwarz onstant is now de�ned in suh away that under the ZM transformation of fermions (f) ! e�i 2�M q(f)  (f) (B.8)the axion shifts aording toa ! a + 12�GS ; (B.9)where �GS is �xed only modulo �,�M �GS � AG�G�ZM mod � : (B.10)The anomaly oeÆients an be obtained from Equation (B.6) by replaing the U(1)anomharges Q(m)anom by the ZM harges q(m).
17



B.3 Multiple gauge groups and \anomaly universality"Let us now disuss the ase of multiple gauge groups Gi. In heteroti string models veryoften the U(1)anom, ZN or ZRM anomaly oeÆients ful�ll ertain universality relations,AGi�Gi�H = � (B.11)for all i and in this setion H denotes either U(1)anom, ZN or ZRM . We will refer to (B.11)as \anomaly universality". In a reent paper [38℄ it has been pointed out orretly thatthis may not neessarily be the ase in general. That is, the anomaly universality (B.11)is not a diret onsequene of GS anomaly anellation.In detail, multiple gauge groups Gi in general do allow us to introdue di�erentouplings i of the axion a to the various �eld strengths,Laxion � Xi i a8F bi eF bi : (B.12)The requirement that under anH transformation the ontribution from the path integralmeasure gets anelled by the disrete shift of the axion then implies that2�2 i ÆGS = AGi�Gi�H (B.13)for all i. That means that the i oeÆients an be hosen in suh a way that thetransformation of the path integral measure gets anelled for eah Gi gauge fatorseparately. In partiular, one �nds (in agreement with [38℄) that in general the mixedAGi�Gi�H do not need to be universal.However, if this was the ase in a given model, one would spoil the beautiful pitureof MSSM gauge oupling uni�ation. Let us spell out the argument in some more detail.In supersymmetry, the Lagrangean (B.12) implies that there are ouplings between thesuper�eld S whih ontains the axion, Sj�=0 = s + i a, and the supersymmetri �eldstrengths W (i) assoiated to the gauge group fators Gi, i.e.Laxion � Xi Z d2� i8 S W (i)� W (i)� : (B.14)One the real part of S aquires a VEV this will give rise to a non{universal hangeof the gauge ouplings unless the i oeÆients are all equal for the SM gauge groupfators Gi = SU(3)C, SU(2)L and U(1)Y . That is, anomaly universality is also requiredin order not to spoil the beautiful piture of MSSM gauge oupling uni�ation.Furthermore, there might be model{dependent reasons why the AGi�Gi�H an beuniversal, for instane if all Gi ome from a (for instane grand uni�ed) simple gaugegroup, as we assume in the main body of this paper. Then the termLaxion � aF bGUT eF bGUT (B.15)is obviously gauge invariant. Hene, the anomalies need to be universal at least at theGUT level, as disussed around Equation (2.10).18



How ould this universality possibly be broken? One may now worry about additionalterms of the formLaxion � a ��GUTM FGUT eFGUT� ; (B.16)where the operator �GUT furnishes a non{trivial GUT representation (suh as a 24{pletof SU(5)) and the parentheses denote a non{trivial ontration of the group indies.3However, at the GUT level, i.e. for a trivial �GUT VEV, suh a term an not anel thetransformation of the path integral measure by a shift transformation of the axion a. Inother words, it is not allowed by the symmetries of the ation if we require that a shifts.Hene, these operators an not break anomaly universality.However, there is a seond possibility. In higher{dimensional, e.g. in orbifold GUTtype, models there an be loalized terms whih do not respet the GUT symmetry.That is, in settings where the GUT symmetry is broken loally in some regions ofompat spae suh as orbifold �xed points, anomaly non{universality an arise. Afterintegrating over ompat spae in order to derive the four{dimensional e�etive ationone an indeed arrive at non{universal ouplings i of the axion to the three F eF terms ofthe standard model. Still, as disussed before, if one is not to spoil the beautiful pitureof MSSM gauge oupling uni�ation, the AGi�Gi�H oeÆients need to be universaland these loalized ontributions have to be avoided. One possibility to avoid themis \non{loal GUT breaking" in extra dimensions, whih has been argued to yield themost appealing senarios of preision gauge uni�ation [40{42℄. In suh senarios, theloalized dangerous GUT{breaking operators do not exist and hene the anomalies areuniversal.4Let us also omment on another statement in [38℄. First, we would like to pointout that the number of axions is not related to anomaly universality. Spei�ally, in thepresene of multiple axions, whih are available in heteroti ompati�ations [43,44℄, onewould have to de�ne how they transform under a U(1)anom (or disrete) transformation.Sine there is only one suh transformation, this allows us to identify one unique linearombination of axions, alled a as in our disussion above, whih shifts while the other`would{be axions' stay inert. Therefore, the number of axions is not related to thequestion of anomaly (non{)universality.Furthermore, the authors of [38℄ argue that the anomalies annot be universal bothbefore and after doublet{triplet splitting. We disagree with this statement. First ofall, `before doublet{triplet splitting', i.e. before GUT breaking, there are more states3The relative oeÆients i of the axion oupling to the three Fi eFi terms of the standard modeloriginating from �GUT an be inferred from [39℄.4In Abelian orbifold models suh operators an only stem from loalized uxes, whih are Abelian(i.e. U(1)) uxes. Hene, the AGi�Gi�H oeÆients oinide for all non{Abelian fators Gi from eahE8 in suh models. This is also in agreement with [38℄ where it is found that, in ompati�ations of theheteroti E8 � E8 string on blown{up orbifolds with Abelian uxes, non{Abelian anomalies of eah E8fator are still universal. Sine the relevant assumption in Setion 2.2 needed to prove the uniqueness ofZR4 (see also Setion 2.2.6) is that ASU(2)L�SU(2)L�ZRM and ASU(3)C�SU(3)C�ZRM oinide, the uniquenessof ZR4 is also given in suh onstrutions. 19



around whih ontribute to the anomalies and anomaly universality follows from gaugeinvariane under the GUT group, see Equation (B.15). Moreover, in the absene ofloalized GUT breaking terms, if the anomaly oeÆients are universal at the GUTlevel, where the ontributions of extra states have to be taken into aount, they shouldalso be so in the MSSM. This is, again, nothing but 't Hooft anomaly mathing (seeSetion 2.2.3). In fat, at the GUT level there is just one (uni�ed) gauge group, suhthat universality is trivial.C The Hilbert superpotential bases for models withZR12 symmetriesIn Setion 3.2, we disuss several ZRM symmetries that forbid neutrino masses perturba-tively and also present the Hilbert superpotential basis for a model with a ZR8 symmetryand two ZR4 symmetries amended by an extra Z4 fator. In this appendix we providefurther examples based on the ZR12 symmetries. As we have already stated above, ev-ery possible superpotential termM ontains only one inhomogeneous monomial and anarbitrary ombination of homogeneous monomials [34℄, i.e.M = M (i)in Yj=1 �M (j)hom��j with �j 2 N ; (C.1)where M (i)in is an inhomogeneous andM (j)hom a homogeneous monomial.In Setion 3.2 we list three examples whih have a ZR12 symmetry. As we will see inthe following, the three sets of monomials di�er. Hene, the three ZR12 symmetries areinequivalent. The �rst symmetry has the harge assignment� q10 q5 qHu qHd q� � q�� � = � 1 9 4 8 3 3 11 � ; (C.2)whih leads to the inhomogeneous monomials�LHdE� ; (LHu)6 ; ��6 ; �LLE� �� ;�LLE�6 ; �LLE�4 (LHu)2 ; �LLE�2 (LHu)4 ; (C.3)whereas the homogeneous ones are given by�LLE�12 ; (LHu)12 ; HuHd ; (LHu) �� ; �LLE� �LHdE� �� ;��12 ; �LHdE� (LHu)6 ; �LHdE�2 ; �LLE�7 �� ;�LLE� (LHu)5 ; �LLE�6 �LHdE� ; �LHdE� ��6 ;�LLE�2 ��2 ; �LHdE� �LLE�4 (LHu)2 ; �LLE�5 (LHu) ;�LHdE� �LLE�2 (LHu)4 ; �LLE� ��7 ; �LLE�3 (LHu)3 : (C.4)
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The seond ZR12 symmetry has the harges� q10 q5 qHu qHd q� � q�� � = � 2 6 2 10 3 3 4 � ; (C.5)whih gives us for the inhomogeneous monomials�LHdE� ; �LLE�3 ; �LLE� �� ; �LLE� (LHu)2 ; (C.6)and for the homogeneous monomials�LLE�6 ; �LLE�4 �� ; �LHdE� �LLE�3 ; HuHd ;(LHu) �� ; ��3 ; (LHu)3 ; �LHdE� (LHu)2 �LLE� ;�LLE�2 (LHu) ; �LHdE�2 ; �LLE�2 ��2 ; �LHdE� �LLE� �� : (C.7)The last ZR12 symmetry has� q10 q5 qHu qHd q� � q�� � = � 4 0 10 2 3 3 2 � ; (C.8)as its harge assignment, with these we get the inhomogeneous monomials��3 ; �LHdE� ; �LLE� �� ; (LHu)3 ; �LLE�2 (LHu) ; (C.9)and the following homogeneous ones(LHu)6 ; �LHdE� (LHu)3 ; HuHd ; �LHdE� �LLE�2 (LHu) ;(LHu) �� ; �LLE�3 ; �LLE� (LHu)2 ; �LHdE�2 ;�LHdE� ��3 ; �LHdE� �LLE� �� ; �LLE� ��4 ; ��6 ;�LLE�2 ��2 : (C.10)Referenes[1℄ S. Dimopoulos, S. Raby, and F. Wilzek, Phys. Rev. D24 (1981), 1681.[2℄ G. R. Farrar and P. Fayet, Phys. Lett. B76 (1978), 575.[3℄ S. Dimopoulos, S. Raby, and F. Wilzek, Phys. Lett. B112 (1982), 133.[4℄ N. Sakai and T. Yanagida, Nul. Phys. B197 (1982), 533.[5℄ S. Weinberg, Phys. Rev. D26 (1982), 287.[6℄ I. Hinhli�e and T. Kaeding, Phys. Rev. D47 (1993), 279.[7℄ G. F. Giudie and A. Masiero, Phys. Lett. B206 (1988), 480.[8℄ H. M. Lee, S. Raby, M. Ratz, G. G. Ross, R. Shieren, K. Shmidt-Hoberg, andP. K. Vaudrevange, Nul.Phys. B850 (2011), 1, arXiv:1102.3595 [hep-ph℄.21
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