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Abstra
tThe well{known Giudi
e{Masiero me
hanism explains the presen
e of a � termof the order of the gravitino mass, but does not explain why the holomorphi
 massterm is absent in the superpotential. We dis
uss anomaly{free dis
rete symmetrieswhi
h are both 
ompatible with SU(5) uni�
ation of matter and the Giudi
e{Masiero me
hanism, i.e. forbid the � term in the superpotential while allowingthe ne
essary K�ahler potential term. We �nd that these are ZRM symmetrieswith the following properties: (i) M is a multiple of four; (ii) the Higgs bilinearHuHd transforms trivially; (iii) the superspa
e 
oordinate � has 
harge M=4 and,a

ordingly, the superpotential has 
harge M=2; (iv) dimension �ve proton de
ayoperators are automati
ally absent. All ZRM symmetries are anomaly{free due toa non{trivial transformation of a Green{S
hwarz axion, and, as a 
onsequen
e,a holomorphi
 � term appears at the non{perturbative level. There is a uniquesymmetry that is 
onsistent with the Weinberg operator while there is a 
lass ofZRM symmetries whi
h explain suppressed Dira
 neutrino masses.1Email: mu
hun
�u
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1 MotivationThe minimal supersymmetri
 standard model (MSSM) is a very appealing extension ofthe standard model of parti
le physi
s. Supersymmetry promises to stabilize the ele
-troweak s
ale against radiative 
orre
tions. The stru
ture of matter hints at uni�
ation,and the attra
tive pi
ture of pre
ision gauge uni�
ation [1℄ enabled by supersymmetryintrodu
es the s
ale of grand uni�
ation MGUT = a few � 1016GeV. The MSSM alsoprovides a 
ompelling dark matter 
andidate.On the other hand, the MSSM has various problems. Usually the MSSM 
omes withmatter or R parity [2,3℄ whi
h eliminates the most troublesome baryon number violatingintera
tions, and ensures the stability of the aforementioned dark matter parti
le. Yet,even after imposing matter parity, there are 
ertain serious short
omings. One of themis the so{
alled \� problem" whi
h 
onsists in the question why the holomorphi
 massterm for the Higgs bilinear is of the order of the ele
troweak s
ale. In addition, there isthe dimension �ve proton de
ay problem [3{5℄ (
f. also [6℄).It is hen
e 
lear that the MSSM requires additional ingredients beyond matter parity.In this study we analyze anomaly{free dis
rete symmetries whi
h forbid the � term. Aswe shall demonstrate, requiring that the symmetries be 
ompatible with the Giudi
e{Masiero solution [7℄ to the � problem and SU(5) leads to very restri
ted 
lasses ofsolutions, depending on whether neutrinos are Majorana or Dira
 parti
les. In the �rst
ase, the solution is unique and even 
ompatible with SO(10) while in the se
ond 
asethe smallness of the Dira
 neutrino Yukawa 
oupling 
an be related to the suppressionof the � parameter.2 Naturally suppressed � term and Dira
 neutrinoYukawa 
ouplings from anomaly{free symmetriesWe start by reviewing the explanations of a suppressed � term through K�ahler potentialterms in Se
tion 2.1. Next, we dis
uss anomaly 
onstraints in Se
tion 2.2. In Se
tion 2.3we 
omment on proton de
ay operators and study settings with SO(10) relations inSe
tion 2.4. Then, we dis
uss the appearan
e of a suppressed holomorphi
 � term andDira
 Yukawa 
ouplings in Se
tion 2.5 and Se
tion 2.6, respe
tively, and give a shortre
ap in Se
tion 2.7.2.1 Giudi
e{Masiero me
hanismThe famous Giudi
e{Masiero me
hanism [7℄ provides a solution to the � problem in theMSSM. Giudi
e and Masiero pointed out that in supergravity an e�e
tive holomorphi
HuHd bilinear, i.e. an e�e
tive � term, 
an arise from the (non{holomorphi
) K�ahlerpotential termK � kHuHd XyMP HuHd + h.
. : (2.1)
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Here X is the (spurion) �eld that breaks supersymmetry and kHuHd and MP denote a
oeÆ
ient and the Plan
k s
ale, respe
tively. Inserting the F term va
uum expe
tationvalue (VEV) FX of X leads to an e�e
tive superpotential termWe� � FXMP HuHd =: �e� HuHd ; (2.2)with �e� of the order of the gravitino mass m3=2, whi
h sets the size of soft superpartnermasses in gravity mediation.However, for the Giudi
e{Masiero me
hanism to work, the holomorphi
 superpoten-tial term �HuHd needs to be absent in the �rst pla
e, or better forbidden by a symmetry.As it turns out, symmetries that 
an forbid the � term are rather 
onstrained. It hasbeen shown [8℄ that, if one requires the symmetry to be anomaly{free and to 
ommutewith SU(5) (in the matter se
tor), it has to be an R symmetry (
f. the similar dis
ussionin [9℄). As shown by Chamseddine and Dreiner [10℄, in the MSSM gauged anomaly{free
ontinuous R symmetries are not available. On the other hand, there are strong argu-ments against global symmetries (
f. [11℄ for a re
ent dis
ussion). We are hen
e led tothe 
on
lusion that the symmetry needs to be dis
rete. In what follows, we thereforewill only 
onsider anomaly{free dis
rete R symmetries. Spe
i�
ally, we will look at oneparti
ular generator whi
h forbids the � term. This generator will generate an Abeliandis
rete R symmetry of order M , i.e. a ZRM symmetry.One 
an a
tually narrow down the potential symmetries even further. Suppose weseek to generate an e�e
tive � term, Equation (2.2), from the K�ahler potential term.Here we assume that X is the �eld that breaks supersymmetry and generates gauginomasses. Then its F 
omponent has to have minus the R 
harge of the superpotential.One way to see this is by re
alling that gaugino masses get indu
ed by the operatorR d2� X W�W � (with � and W� denoting the superspa
e 
oordinate and the gauge mul-tiplets, respe
tively). Sin
e the superpotential R 
harge qW equals twi
e the R 
hargeof �, q�, and the lowest 
omponents of W� (i.e. the gauginos) 
arry R 
harge q�, theX super�eld needs to be inert under the (dis
rete) R symmetry. Therefore, the Higgsbilinear HuHd needs to be neutral as well. Altogether we have found that an anomaly{free and SU(5) 
ompatible symmetry that forbids the � term in the MSSM has to bedis
rete, and under this symmetry,� ! e2� i q�M � ; (2.3a)W ! e2� i qWM W where qW = 2 q� ; (2.3b)X ! X ; (2.3
)HuHd ! HuHd : (2.3d)Here and throughout this study we normalize the dis
rete 
harges to be integer, i.e.q� 2 Z.It is immediately 
lear that su
h a symmetry allows e�e
tive superpotential terms ofthe formW � 

 
M2P HuHd ; (2.4)2



where 
 (with R 
harge qW ) denotes the superpotential of some `hidden se
tor'. Asusual, a non{trivial VEV of 
 is required to 
an
el the va
uum energy. This VEVwill break the R symmetry, but the breaking is hierar
hi
ally small, i.e. of the order ofthe gravitino mass m3=2 (
f. the dis
ussion in [12℄). That means that, apart from theGiudi
e{Masiero 
ontribution, one would expe
t to have a holomorphi
 (`Kim{Nillestype' [13℄) 
ontribution to the � parameter of the right size.2.2 Anomaly 
onstraintsUp to now we have only used the fa
t derived in [8℄ that SU(5){
ompatible and anomaly{free non{R symmetries 
annot forbid the � term. Now we dis
uss anomaly 
onstraintson ZRM symmetries. These 
onstraints have been re{derived re
ently in [8℄. However,there only the spe
ial 
ase q� = 1 has been 
onsidered, whi
h is too strong a require-ment. To see this, 
onsider a ZR8 symmetry, for whi
h there are two di�erent non{trivialpossibilities for the superspa
e 
harge, q� = 1 and q� = 2. At �rst glan
e, one may thinkthat one may rewrite the q� = 2 
ase as a ZR4 �Z2 symmetry. This is not the 
ase sin
e2 and 8 are not 
oprime.1 The generalization of the anomaly 
oeÆ
ients to arbitrary q�is straightforward and deferred to appendix A.After summarizing the relevant anomaly 
oeÆ
ients for the MSSM in Se
tion 2.2.1we explain in Se
tion 2.2.2 why `anomaly universality' must be imposed in models inwhi
h the SM gauge group is uni�ed into a simple gauge group. We then pro
eed byverifying the 
onsisten
y with anomaly mat
hing in Se
tion 2.2.3 and show that onlyR symmetries 
an forbid the � term in Se
tion 2.2.4. Finally, we derive 
onstraints onthe order M in Se
tion 2.2.5 and 
omment on the (ir)relevan
e of the universality of themixed hyper
harge anomaly in Se
tion 2.2.6.2.2.1 ZRM anomaly 
oeÆ
ients in the MSSMIn the 
ase of the MSSM the anomaly 
oeÆ
ients AR3 := ASU(3)C�SU(3)C�ZRM , AR2 :=ASU(2)L�SU(2)L�ZRM and AR1 := AU(1)Y �U(1)Y �ZRM readAR3 = 12 3Xg=1 �3qg10 + qg5�� 3q� ; (2.5a)AR2 = 12 3Xg=1 �3qg10 + qg5�+ 12 (qHu + qHd)� 5q� ; (2.5b)AR1 = 12 3Xg=1 �3qg10 + qg5�+ 35 �12 (qHu + qHd)� 11q�� : (2.5
)Here, qg10 and qg5 denote the SU(5){universalR 
harges of the MSSM super�elds (Qg; Ug; Eg)and (Dg; Lg), respe
tively, and g represents the 
avor index. A

ordingly, matter1A simple way of seeing this is to re
all that all elements of ZR4 �Z2 have the property that takingthem to the fourth power yields identity, whi
h is obviously not the 
ase for ZR8 .3



fermions and Higgsinos have 
harges q � q� while gauginos have 
harge q�.2.2.2 Anomaly universality and dis
rete Green{S
hwarz me
hanismIf the standard model gauge group is to be uni�ed into SU(5) or SO(10), a ne
essary
ondition for anomaly 
an
ellation is the universality (
f. the dis
ussion in appendix B.3)AR3 = AR2 = AR1 = � mod � : (2.6)Here we introdu
e� := � M=2 ; if M even ;M ; if M odd : (2.7)� is a 
onstant whi
h indi
ates whether or not a Green{S
hwarz (GS) me
hanism [14℄ isat work. Spe
i�
ally, � is related to the dis
rete shift of the GS axion (see Equation (B.9)in appendix B.2). � = 0 means that the symmetry is anomaly{free in the 
onventionalsense, i.e. without GS me
hanism.At this point, we would like to 
omment on 
ertain important properties of theGreen{S
hwarz me
hanism and its dis
rete version as there seems to be some 
onfusionin the literature:1. Although the GS me
hanism plays a prominent role in string theory, it does notrely on strings. In fa
t, as shown in appendix B.2, it 
an entirely be understoodin (the path integral formulation of) quantum �eld theory.2. Unlike in the 
ontinuous 
ase, for dis
rete symmetries the transformation of theaxion is only �xed modulo �. It will be interesting to see whether this ambiguity
an be �xed somehow, e.g. in expli
it string{derived models.3. In the 
ontinuous 
ase, the axion has to be massless for the shift symmetry tobe a symmetry of the Lagrangean. That is, the axion potential needs to be 
at.By 
ontrast, in the dis
rete 
ase the potential is only required to be periodi
,i.e. invariant under the dis
rete shift, Equation (B.9). Therefore the axion mayhave a non{trivial mass prior to the breakdown of the symmetry. This is, ina way, somewhat surprising as it means that a massive (and bosoni
) state 
an
ontribute to an anomaly. Of 
ourse, in both 
ases the symmetry will be broken(spontaneously) on
e the axion a a
quires its VEV.2.2.3 Anomaly mat
hingIt is instru
tive to use 't Hooft anomaly mat
hing [15℄ (see [16℄ for dis
rete anomalymat
hing) in order to 
onstrain the properties of anomaly{free GUT{
ompatible ZRMsymmetries. At the SU(5) level, there is only one anomaly 
oeÆ
ient ASU(5)2�ZRM , whi
hwe 
an split into three parts,ASU(5)2�ZRM = AmatterSU(5)2�ZRM + AextraSU(5)2�ZRM + 5q� : (2.8)4



The �rst term 
ontains the 
ontribution of matter and is given byAmatterSU(5)2�ZRM = 12 3Xg=1 �3qg10 + qg5�� 6q� : (2.9)Here, we used Equation (A.4a) with Dynkin indi
es `(5) = 13`(10) = 12 . The se
ondterm in (2.8), AextraSU(5)2�ZRM , denotes the 
ontributions of additional �elds, e.g. the SM andSU(5) breaking Higgs. Finally, the last term in (2.8) represents the gaugino 
ontributionfor SU(5). Yet, by 
onsidering the SU(3)C and SU(2)L subgroups of SU(5), one 
anintrodu
e two anomaly 
oeÆ
ients ASU(5)SU(3)2C�ZRM = ASU(5)SU(2)2L�ZRM at the GUT level,ASU(5)SU(3)2C�ZRM = AmatterSU(3)2C�ZRM + AextraSU(3)2C�ZRM + 3q� + 12 � 2 � 2 � q� ; (2.10a)ASU(5)SU(2)2L�ZRM = AmatterSU(2)2L�ZRM + AextraSU(2)2L�ZRM + 2q� + 12 � 2 � 3 � q� ; (2.10b)where we arti�
ially split the gaugino 
ontributions into those from the adjoint represen-tations of SU(2)L or SU(3)C, respe
tively, and in those 
oming from the extra gauginosin the (3; 2)�5=6�(3; 2)5=6 representation. Assume now there is some (unspe
i�ed) me
h-anism that breaks the GUT symmetry down to the SM symmetry, and thus removes theextra gauginos, while leaving ZRM unbroken.2 Then, the 
oeÆ
ientsASU(5) brokenSU(3)2C�ZRM = ASU(5)SU(3)2C�ZRM � 2q� ; (2.11a)ASU(5) brokenSU(2)2L�ZRM = ASU(5)SU(2)2L�ZRM � 3q� (2.11b)
annot be equal, i.e. the anomaly 
oeÆ
ients 
annot be universal, unless there are splitmultiplets 
ontributing to AextraSU(N)2�ZRM (where we use AmatterSU(3)2C�ZRM = AmatterSU(2)2L�ZRM ). Thatis, 't Hooft anomaly mat
hing for (dis
rete) R symmetries implies the presen
e of splitmultiplets below the GUT s
ale.2.2.4 Only R symmetries 
an forbid the � termGiven that SM matter furnishes 
omplete SU(5) representations and the attra
tive pi
-ture of MSSM gauge uni�
ation, arguably the most plausible 
andidates for su
h splitmultiplets are the Higgs �elds. Requiring that the Higgs �elds 
an
el the mismat
h ofgaugino 
ontributions to the anomalies, we obtain12 (qHu + qHd � 2q�) = q� mod � ; (2.12)2If one is to obtain the exa
t MSSM spe
trum after GUT breaking, this me
hanism 
annot bespontaneous symmetry breaking in four dimensions [17℄. On the other hand, extra dimensions, espe
iallyin the framework of heteroti
 orbifolds, naturally 
an give dis
rete R symmetries as remnants of higherdimensional Lorentz symmetry, see e.g. [18℄.
5



implyingqHu + qHd = 4q� mod 2� (2.13a)= 2qW mod 2� (2.13b)6= qW mod M for qW 6= 0 mod M : (2.13
)Therefore, non{R symmetries with q� = qW = 0 
annot forbid the � term. But in 
aseof non{trivial ZRM symmetries (i.e. M � 3) the � term will always be forbidden, as itshould be, sin
e only 
hiral 
ontributions 
an `repair' the gaugino mismat
h.A remark is in order to show that ZRM with qW = 0 mod M is not an R symmetry.In the 
ase qW = 0 mod M we �nd two solutions for q�: either q� = 0, su
h that thesymmetry is 
learly non{R, or (for M even) q� = M=2. However, sin
e the transfor-mation � 7! �� and 	 7! �	 for all fermions 	 is always a symmetry, one 
an shiftthe ZRM 
harges by M=2 su
h that again q� = 0. Hen
e, ZRM with qW = 0 mod M isequivalent to a non{R symmetry [19℄.2.2.5 Constraints on the order MUsing Equation (2.13) and assuming a Giudi
e{Masiero{like me
hanism su
h that qHu+qHd = 0 mod M from (2.3d), we obtain2qW = 0 mod M ; (2.14)whi
h implies, given the freedom to 
hoose qW between 0 and M �1, that the only non{trivial solution for even M is qW = M=2. For odd M there is no non{trivial solution.Sin
e the superpotential 
harge is given by qW = 2q�, the order M has to be divisibleby 4. Hen
e we 
an fo
us onM = 4� integer and q� = M=4 (2.15)in the rest of our dis
ussion.2.2.6 No additional 
ondition from AR1Subtra
ting AR3 from AR1 yields35 �12 (qHu + qHd)� 11q��+ 3q� = 0 mod � : (2.16)Sin
e M is even and qHu + qHd = 0 mod M by (2.3d), this equation is equivalent to3 kM + 2 (15� 33) q� = 5`M (2.17)with some integers k and `. That is,36 q� = [3 k � 5 `℄ M = Z �M : (2.18)For a given order M , this relation 
onstrains q�. However, we know already from ourdis
ussion below Equation (2.14) thatM needs to be an integral multiple of 4, su
h that(2.18) does not lead to an additional 
onstraint.6



2.3 Family{independent symmetries and proton de
ayLet us now assume further that the dis
rete symmetry be Abelian, i.e. of ZRM type, withfamily{independent 
harges. Assuming the presen
e of Yukawa 
ouplings, symmetrieswith the above properties have automati
ally the virtue of solving the dimension �veproton de
ay problem of the MSSM, as we will see in the following.The requirement that up- and down{type Yukawa 
ouplings be allowed,2q10 + qHu = qW mod M ; (2.19a)q10 + q5 + qHd = qW mod M ; (2.19b)implies3q10 + q5 + qHu + qHd = 2qW mod M : (2.20)Imposing (2.3d) gives3q10 + q5 = 2qW mod M 6= qW mod M ; (2.21)for an R symmetry (i.e. for qW 6= 0 mod M), showing that the troublesome dimension�ve operators 1010 10 5 are automati
ally forbidden whenever the Yukawa 
ouplingsare allowed. In [8℄ the same 
on
lusion was obtained from anomaly 
an
ellation.Re
alling further that 2qW = 4q� =M leads us to the 
on
lusion thatq5 = � 3q10 mod M : (2.22)This means that the 
ontributions of matter �elds to the anomaly 
oeÆ
ients (2.5)vanish, and that the universal anomaly 
oeÆ
ients are simply given byARi = � = q� mod M=2 (2.23)for 1 � i � 3.Next, one 
an also dis
uss proton de
ay originating from the dimension four operator10 55. This operator has R 
hargeq10 + 2q5 = � 5q10 mod M : (2.24)Hen
e, these operators are also forbidden if �5q10 6= qW mod M , or equivalently10q10 6= kM with k odd.2.4 Imposing SO(10) relationsLet us now 
omment on the spe
ial 
ase that the ZRM symmetry 
ommutes with SO(10)for the matter �elds, i.e. q10 = q5 = q16. The requirements that the up{type anddown{type quark Yukawa 
ouplings be allowed imply that qHu = qHd =: qH (modM).Furthermore, from the anomaly universality 
ondition (2.13b) we �nd qH = qW mod �.In the following, we 
onsider two 
ases: in 
ase (i) we demand in addition the Weinbergneutrino mass operator, and in 
ase (ii) a Giudi
e{Masiero{like me
hanism.7



(i) If we require the Weinberg neutrino mass operator, i.e. 2q16+2qH = qW mod M ,we �nd M = 4m, m 2 N andq� = m ; qW = 2m ; qH = 0 and q16 = m : (2.25)This symmetry automati
ally allows for the Giudi
e{Masiero term and the universalanomaly 
oeÆ
ients ARi = m 6= 0 indi
ate a dis
rete GS me
hanism. The simplest
ase m = 1 is the ZR4 symmetry dis
ussed in [20, 21℄. All other 
ases are just trivialextensions as long as one 
onsiders the MSSM states only. Of 
ourse, if additional statesare introdu
ed, they 
an have ZR4m 
harges in su
h a way that one 
annot redu
e it toZR4 . Another version of the uniqueness proof of ZR4 
an be found in [8℄. However, theanalysis in [8℄ assumed that q� = 1. Here we show that uniqueness also survives thegeneralization to general q� 6= 1.(ii) If we do not require the Weinberg neutrino mass operator but a Giudi
e{Masiero{like me
hanism, i.e. 2qH = 0 mod M , there are two 
ases: both 
ases have M = 4m,m 2 N, q� = m and qW = 2m. In addition, in the �rst 
ase we get qH = 0 as dis
ussedabove in 
ase (i), and in the se
ond one we �nd qH = M=2 = 2m and q16 = 2`m with` 2 Z. However, this 
hoi
e forbids the Weinberg neutrino mass operator.2.5 Non{perturbative holomorphi
 � termIf the above dis
rete R symmetry appears anomalous, i.e. if anomaly freedom is dueto a GS me
hanism (see appendix B for a dis
ussion of its dis
rete variant), then su
hholomorphi
 
ontributions will appear as arising at the non{perturbative level [8, 21℄.To see this, re
all that the super�eld S 
ontaining the axion a, i.e. Sj�=0 = s+i a, needsto enter the gauge{kineti
 fun
tion, or, in other words, L � R d2� fS S W�W � (withsome 
oeÆ
ient fS). Non{invariant terms in the superpotential 
an be made invariantby multiplying them by e�b S with appropriate b. As s 
ontrols 1=g2 su
h terms golike e�b0=g2 , i.e. have the form of instanton 
ontributions. This then �ts ni
ely into thes
heme of dynami
al supersymmetry breaking [22℄ (see also the more re
ent dis
ussionon \retro�tting" [23℄), where the s
ale for supersymmetry breaking is set by a gaugino
ondensate [24℄, or a more 
ompli
ated dynami
al term (see e.g. [25℄ for a review ofsimple models).2.6 Small Dira
 neutrino Yukawa 
ouplingsBy relating them to supersymmetry breaking one may explain suppressed neutrino Dira
Yukawa 
ouplings [26{28℄. That is, similarly to the � term, one 
an get e�e
tive Dira
neutrino Yukawa 
ouplings from the K�ahler potential termsK � kLHu�� XyM2P LHu �� + h.
. (2.26a)as well asK � kHydL�� 1MP Hyd L �� + h.
. : (2.26b)8



Here, in an obvious notation, �� denotes the right{handed neutrino super�eld(s), kLHu��and kHydL�� are dimensionless 
oeÆ
ients, and we suppress 
avor indi
es. The �rstterm (2.26a) leads to Dira
 neutrino masses when X attains its F{term VEV, hFXi �m3=2MP, while in the 
ase of (2.26b) one has to observe that, due to the presen
e of the`non{perturbative' � term, alsoHd attains an F term VEV, hFHdi � � hHui � m3=2 vEW.As qHu+qHd = 0 mod M , both terms are allowed if q��+qHu+qL = 0 mod M , whi
h ispre
isely the 
ondition that an e�e
tive holomorphi
 Y� term is allowed. Altogether we�nd, analogous to what we have dis
ussed around (2.2), that e�e
tive neutrino Yukawa
ouplingsY� � m3=2MP � �MP (2.27)will arise. For m3=2 in the multi{TeV range this 
an lead to realisti
 Dira
 neutrinomasses. If we are to 
onne
t the suppression of Y� to the smallness of the � term, itis natural to assume that the neutrino Yukawa 
oupling is forbidden by the same Rsymmetry that also forbids �. As dis
ussed above, LHu �� has to have R 
harge 0.Moreover, there will also be holomorphi
 
ontributions to the Yukawa 
oupling. Thatis, even if both kLHu�� and kHydL�� vanish, Dira
 Yukawa 
ouplings of the order m3=2=MPwill get indu
ed, where, as in our dis
ussion of the � term, m3=2 represents the orderparameter for R symmetry breaking.2.7 Dis
ussionWe have surveyed anomaly{free symmetries whi
h forbid the � term and are 
onsistentwith the Giudi
e{Masiero me
hanism and SU(5). We �nd that these are dis
rete Rsymmetries ZRM with M = 4m, m 2 N. The R 
harges of the HuHd are su
h thatone expe
ts a holomorphi
 
ontribution to the � term of similar size. That is, theGiudi
e{Masiero me
hanism strongly suggests the presen
e of additional holomorphi

ontributions to the e�e
tive � term!Assuming further that the symmetries allow the up- and down{type Yukawa 
oup-lings and 
ommute with 
avor we �nd that they automati
ally forbid the troublesomedimension �ve proton de
ay operators and in many 
ases those of dimension four. In-terestingly, all these symmetries require a GS axion for anomaly 
an
ellation. That is,these symmetries appear to be broken at the non{perturbative level. In other words,imposing 
ompatibility with the Giudi
e{Masiero me
hanism leads us to a situation inwhi
h a holomorphi
 � term appears at the non{perturbative level, i.e. in a way theGiudi
e{Masiero term is unne
essary.3 Classi�
ation and modelsIn this se
tion, we explore anomaly{free dis
rete symmetries that solve some of the mostsevere problems of the MSSM. We will demand that the symmetry1. is 
avor{universal and Abelian, i.e. a ZRM symmetry;9



2. 
ommutes with SU(5);3. forbids the � term perturbatively;4. allows the usual Yukawa 
ouplings;After revisiting in Se
tion 3.1 the s
an performed in [8℄, where Majorana neutrinos were
onsidered, we turn to the Dira
 
ase in Se
tion 3.2.3.1 Models with Majorana neutrinosIn [8, 21℄, anomaly{free dis
rete R symmetries with q� = 1 were studied whi
h satisfythe requirements 1{4 and in addition5. allow the Weinberg neutrino mass operator.It was found that there are only �ve phenomenologi
ally attra
tive symmetries that
ommute with SU(5), one of whi
h, a simple ZR4 symmetry, 
ommutes also with SO(10).Further, the � term, while perturbatively forbidden, appears at the non{perturbativelevel in four out of the �ve symmetries, and thus 
an explain its suppression. There isone symmetry whi
h is anomaly{free without GS 
ontribution; here anomaly freedomrequires the number of generations to be a multiple of 3 [29℄ (for a similar 
onne
tionbetween the number of generations and anomaly{free non{R symmetries see [6, 30℄).In the 
lassi�
ation of [8℄, ZR4 appears to be parti
ularly attra
tive. Apart from thefa
t that it is the unique solution that 
ommutes with SO(10), only ZR4 provides a realsolution to the � problem. In this 
ase, the dis
rete 
harges of Hu and Hd add up to0 mod M = 4 su
h that the � parameter will be of the order of the gravitino mass,i.e. the order parameter of R breaking. This feature is not shared by the other four ZRMsymmetries, as also 
an be seen from our analysis in Se
tion 2.4. In parti
ular, it wasargued that � � m3=2 for the 
ase of ZR4 . To substantiate these 
laims, an expli
it stringmodel with exa
t MSSM spe
trum and the ZR4 symmetry was 
onstru
ted in whi
h therelation � � hW i � m3=2 is due to gauge invarian
e in extra dimensions [31℄.Assuming in addition a Giudi
e{Masiero{like me
hanism, one 
an see that ZR4 is theunique solution also for general q� as follows. From the requirement that the Weinbergoperator be allowed we infer that2q5 + 2qHu = 2q� mod M y q5 = q� � qHu mod M=2 : (3.1)On the other hand, from the down{type Yukawa 
oupling it followsq10 = � q5 � qHd + 2q� mod M (3:1)= q� + qHu � qHd mod M=2 : (3.2)Demanding that the up{type Yukawa 
oupling be allowed leads toqHu = 2q� � 2q10 mod M(3:2)= �2qHu + 2qHd mod M = � 4qHu mod M ; (3.3)10



su
h that 5qHu = 0 mod M . This means that qHu = 0 mod M unless the order is amultiple of 5. In the latter 
ase we 
an write the ZRM symmetry as Z5�ZRM=5 where theZ5 fa
tor is a non{R symmetry. Hen
e we 
an fo
us on qHu = 0 mod M , whi
h implies,by (2.3d), that qHd = 0 mod M . Then Equations (3.1) and (3.2) implyq10 = q5 = q� mod M : (3.4)That is, the symmetry 
ommutes with SO(10) in the matter se
tor. We already knowfrom our dis
ussion in Se
tion 2.4 that the only meaningful R symmetry with thisproperty is ZR4 .We also s
anned the dis
rete ZRM symmetries up to order 200 with general q� withoutassuming a Giudi
e{Masiero{like me
hanism. We obtain, apart from the symmetriesof Tables 2.1 and 2.2 of [8℄, only a few new symmetries. However, as we show in thefollowing in an example, these additional symmetries are redundant: 
onsider a ZR20symmetry with (q10; q5; qHu; qHd; q�) = (1; 17; 8; 52; 5). This is equivalent to a ZR4 � Z5symmetry with 
harge assignment ((1; 3); (1; 1); (0; 4); (0; 1); (1; 0)). The Z5 is nothingbut the non{trivial 
enter of SU(5), i.e. it does not forbid any 
ouplings (see the dis-
ussion in [16, 32℄) and the (non{trivial) ZR4 fa
tor is the one just dis
ussed in the lastparagraph.3.2 Models with Dira
 neutrinosBy modifying the above 
onditions, i.e. by demanding that the symmetry5. forbids the Weinberg neutrino mass operator perturbativelyand6. is 
ompatible with the Giudi
e{Masiero me
hanismwe obtain further interesting dis
rete R symmetries. Some sample symmetries arelisted in Table 1. Anomaly{free (non{R) ZN symmetries whi
h allow for Dira
 neu-trino Yukawa 
ouplings have been dis
ussed in [33℄. The symmetries of Table 1 areinequivalent. One way of verifying this is to 
he
k whether or not two given 
hargeassignments are equivalent by 
omputing their Hilbert superpotential basis [34℄. Onlyif the bases 
oin
ide, the assignments are equivalent. In the 
ase of R symmetries, theHilbert superpotential basis 
omprises homogeneous and inhomogeneous elements, ormonomials. Every possible superpotential term 
ontains pre
isely one inhomogeneousmonomial and an arbitrary number of homogeneous monomials. In appendix C we listthe Hilbert superpotential basis for examples with the ZR12 symmetries.3.2.1 Comments on the ZR8 symmetryOne of simplest 
harge assignments appears to be the one of the ZR8 symmetry. Clearlythe usual Yukawa 
ouplings 10 10Hu and 10 5Hd are allowed. Further, the Higgsbilinear HuHd has R 
harge 0 mod 8. If we assign the right{handed neutrino �� R11



(a) ZRM symmetries.M q10 q5 qHu qHd q� � q��4 0 0 2 2 1 1 24 2 2 2 2 1 1 08 1 5 2 6 2 2 112 1 9 4 8 3 3 1112 2 6 2 10 3 3 412 4 0 10 2 3 3 216 1 13 6 10 4 4 1324 1 21 10 14 6 6 1728 1 25 12 16 7 7 1928 2 22 10 18 7 7 2428 4 16 6 22 7 7 632 1 29 14 18 8 8 2136 1 33 16 20 9 9 2336 2 30 14 22 9 9 2836 4 24 10 26 9 9 2

(b) Residual symmetries.M 0 q10 q5 qHu qHd q��2 0 0 0 0 02 0 0 0 0 04 1 1 2 2 16 1 3 4 2 53 1 0 1 2 23 2 0 2 1 18 1 5 6 2 512 1 9 10 2 514 1 11 12 2 57 1 4 5 2 57 2 1 3 4 316 1 13 14 2 518 1 15 16 2 59 1 6 7 2 59 2 3 5 4 1Table 1: Classi�
ation of anomaly{free dis
rete R symmetries that forbid neutrinomasses perturbatively. We restri
t to orders � 36. (a) shows some sample symmetries.The equality between q� and � is due to Equation (2.23). The 
harge of the right{handedneutrino super�eld �� is determined by the requirement that q�� + qHu + qL = 0 mod M(
f. the dis
ussion below (2.26)). In (b) we display the residual symmetries that remainafter the (`hidden se
tor') superpotential a
quires its VEV.
harge 1, the Dira
 neutrino Yukawa 
oupling will also be indu
ed by R breaking. Thatis, we will have an e�e
tive superpotential whi
h is s
hemati
ally of the formWe� � m3=2HuHd + m3=2MP LHu �� + m3=2M2P QQQL : (3.5)Here we suppress 
avor indi
es. On
e the superpotential of the hidden se
tor a
quires aVEV, the ZR8 is spontaneously broken down to a Z4 symmetry under whi
h all matter�elds have 
harge 1 and the Higgs �elds have 
harge 2 (Table 1 (b)). Of 
ourse, thissymmetry gets broken down to the usual matter (or `R') parity on
e the Higgs s
alarsattain their VEVs.The Hilbert superpotential basis [34℄ for this model (setting all quarks to zero) isgiven by the inhomogeneous monomials��4 ; �LLE� �� ; �LHdE� ; �LLE�4 ; �LLE�2 (LHu)2 ; (LHu)4 ; (3.6)
12



while the homogeneous monomials are��8 ; (LHu) �� ; (LHu)8 ; �LLE�5 �� ; �LLE�4 �LHdE� ;HuHd ; �LLE� ��5 ; �LHdE� ��4 ; �LLE�2 �LHdE� (LHu)2 ;�LLE�8 ; �LHdE�2 ; �LLE� �LHdE� �� ; �LLE�2 ��2 ;�LLE�3 (LHu) ; �LHdE� (LHu)4 ; �LLE� (LHu)3 : (3.7)Furthermore, there will be K�ahler potential termsK � Xy �kHuHdMP HuHd + kLHu��M2P LHu �� + kQQQLM3P QQQL�+ h.
. (3.8)with X denoting the �eld that breaks supersymmetry, kHuHd, kLHu�� and kQQQL being
oeÆ
ients (and the 
avor indi
es again are suppressed). The kHuHd term is nothing butthe famous Giudi
e{Masiero term [7℄.An important feature of this setting is that lepton number is violated at the quarti
level, but bilinear lepton number violating terms are absent. That is, this model predi
tsthe absen
e of neutrinoless double � de
ays. On the other hand, lepton number is nota good symmetry, whi
h might have, for instan
e, important impli
ations for the earlyuniverse.Let us also note that the 
oeÆ
ients in the above K�ahler potential are not ne
essarilyof order unity. In spe
i�
 string 
onstru
tions, these 
oeÆ
ients 
an in fa
t be as large asO(10�100) due to the presen
e of 
opious heavy states and/or 
ombinatori
al fa
tors (
f.the dis
ussion in [35℄), enabling realisti
 predi
tions for neutrino masses in the sub{eVrange.3.2.2 Comments on the ZR4 symmetriesBoth ZR4 symmetries of Table 1 are problemati
 as they allow some R parity violating
ouplings. In parti
ular, the �rst ZR4 allows for bi{linear R parity violation, i.e. the 5Hu
oupling, while the se
ond ZR4 admits the tri{linear R parity violating terms 105 5. Inaddition, both settings allow for a non{perturbative neutrino bilinear �� ��. That is, thesesymmetries 
an give us a non{perturbative Majorana neutrino mass term, whi
h mightbe relevant for the 
onstru
tion of models realizing a TeV{s
ale see{saw s
enario. Givenour previous dis
ussion, a straightforward possibility of re
tifying this is to amend thesettings by the residual Z4 symmetry from above (Table 2).The ZR4 symmetries originally give us two inequivalent Hilbert superpotential bases,however, amending the settings by the above{mentioned Z4 symmetry leads to the samebasis. Therefore, both ZR4 � Z4 symmetries give us the inhomogeneous monomials�LHdE� ; �LLE� �� ; �LLE� (LHu)3 ; �LLE�3 (LHu) ; (3.9)
13



(a) First ZR4 .q10 q5 qHu qHd q� � q��ZR4 0 0 2 2 1 1 2Z4 1 1 2 2 0 0 1 (b) Se
ond ZR4 .q10 q5 qHu qHd q� � q��ZR4 2 2 2 2 1 1 0Z4 1 1 2 2 0 0 1Table 2: Z4 extensions of the ZR4 symmetries of Table 1.whereas the homogeneous ones are given by��4 ; HuHd ; (LHu) �� ; (LHu)4 ; �LHdE� (LHu) �LLE�3 ;�LHdE�2 ; �LLE� �LHdE� �� ; �LLE�2 ��2 ;�LLE�2 (LHu)2 ; �LHdE� (LHu)3 �LLE� ; �LLE�4 : (3.10)As before in our ZR8 setting, bilinear lepton number violating terms are absent. In both
ases this feature is due to the (anomaly{free non{R) Z4 symmetry, whi
h 
ommuteswith SO(10) for the matter �elds and is a 
onsistent symmetry of the MSSM. Unlike theR symmetries, this symmetry does not forbid the � term nor the dimension �ve protonde
ay operators.4 SummaryThe MSSM provides a very attra
tive s
heme for physi
s beyond the standard model.However, in order to address its short
omings, one, arguably, has to impose additionalsymmetries. Motivated by the stru
ture of matter and the attra
tive pi
ture of gaugeuni�
ation, we have 
onsidered symmetries that 
ommute with SU(5) in the matter se
-tor. From the requirement of anomaly freedom it follows that only dis
rete R symmetries
an forbid the � term. We also pointed out that anomaly mat
hing for R symmetriesin SU(5) symmetri
 models implies the existen
e of split multiplets below the GUTs
ale, with the simplest option being that a pair of Higgs doublets 
an
els the anomalymismat
h between the gauginos. Further demanding that a � term of the order of thegravitino mass arises from supersymmetry breaking, i.e. either from the K�ahler potentialor from the non{trivial superpotential VEV in the `hidden se
tor', we showed that theHiggs bilinear HuHd has to 
arry trivial R 
harge. We �nd that dis
rete R symmetrieswith these properties automati
ally forbid dimension{�ve proton de
ay operators on
ethe usual Yukawa 
ouplings are allowed. Even more, all symmetries appear anomaloussu
h that a holomorphi
 � term gets indu
ed at the non{perturbative level. That is, de-manding 
ompatibility with the Giudi
e{Masiero me
hanism brings us to the situationin whi
h a � term of the desired magnitude appears even without the Giudi
e{Masieroterm in the K�ahler potential.We then dis
ussed neutrino masses in the emerging MSSM models amended by dis-
rete R symmetries. Restri
ting ourselves to 
avor{universal Abelian, i.e. ZRM , sym-14



metries we �nd that, by demanding that the Weinberg operator LHu LHu be allowed,there exists only one possible symmetry, namely a ZR4 symmetry. Following a di�erentapproa
h, this ZR4 has also re
ently been shown to be the unique anomaly{free symmetrythat 
ommutes with SO(10) [21℄. The proof in [21℄ assumed that the 
harge of the su-perspa
e 
oordinate � 
an always be set 1, whi
h we �nd to be too strong a requirement.However, we �nd that, if one is to allow for arbitrary � 
harges, this only leads to trivialextensions of ZR4 , su
h that the uniqueness of ZR4 still prevails.If one requires instead the dis
rete symmetry to forbid the Weinberg operator, one
an explain small Dira
 neutrino masses. In parti
ular, we su

essfully obtain a relationbetween the smallness of Dira
 neutrino Yukawa 
ouplings and the � term whi
h isbased on anomaly{free dis
rete R symmetries with the above properties. Spe
i�
ally,we �nd a 
lass of anomaly{free dis
rete symmetries in whi
h the appealing relations� � hW i=M2P � m3=2 and Y� � �=MP naturally emerge.A
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oeÆ
ients for ZRM symmetries with ar-bitrary q�The anomaly 
onditions for dis
rete R symmetries depend on q�. Consider a ZRM sym-metry, under whi
h the superpotential transforms asW ! e2� i qW =M W (A.1)with qW = 2q� (su
h that R d2�W is invariant). Super�elds �(f) = �(f) + p2 � (f) +�� F (f) transform as�(f) ! e2� i q(f)=M �(f) : (A.2)Correspondingly, the fermions transform as (f) = e2� i (q(f)�q�)=M  (f) : (A.3)15



The anomaly 
oeÆ
ients hen
e read (
f. [8, Appendix B℄, where the anomaly 
oeÆ
ientsfor the spe
ial 
ase q� = 1 are shown)AG�G�ZRM = Xf `(r(f)) � (q(f) � q�) + q� `(adjG) ; (A.4a)AU(1)�U(1)�ZRM = Xf (Q(f))2 dim(r(f)) � (q(f) � q�) ; (A.4b)Agrav�grav�ZRM = �21 q� + q� XG dim(adjG) +Xf dim(r(f)) � (q(f) � q�) : (A.4
)Here q(f) denote the ZRM 
harges of the super�elds, the 
harges of the 
orrespondingfermions are shifted by q�, q (f) = q(f) � q�. In Equation (A.4a), `(r(f)) denotes theDynkin index of representation r(f) normalized to `(N) = 12 for the fundamental rep-resentation N of SU(N) and `(adjG) = 
2(G) represents the 
ontribution from thegauginos, i.e. `(adj SU(N)) = N . The �rst and se
ond terms on the right{hand side ofEquation (A.4
) represent the 
ontributions from the gravitino and gauginos.B Green{S
hwarz anomaly 
an
ellation and anomalyuniversalityIn this Appendix, we dis
uss the dis
rete Green{S
hwarz (GS) anomaly 
an
ellationme
hanism, following [8℄. We start by reviewing the GS me
hanism for a 
ontinuousU(1) symmetry in B.1. In B.2 we dis
uss the dis
rete version while B.3 is dedi
ated tothe dis
ussion of anomaly universality.B.1 Anomaly 
an
ellation for `anomalous U(1)' symmetriesWe start by dis
ussing the mixed anomaly 
oeÆ
ients G � G � U(1)anom for a simplegauge group G. There will be an axion a whi
h 
ouples to the �eld strength of G viaLaxion � a8F b eF b : (B.1)A possible prefa
tor 
an be absorbed in the normalization of a, whi
h we do not spe
ifyhere. Consider now the gauge transformation (f) ! ei�(x)Q(f)anom  (f) ; (B.2)where  (f) (1 � f � F ) denotes the fermions of the theory and Q(f)anom their 
harges.The 
ru
ial property of the axion a is that it shifts under (B.2) asa ! a + 12ÆGS �(x) : (B.3)
16



We 
an now �x the the Green{S
hwarz 
oeÆ
ient ÆGS from the requirement of in-varian
e of the full quantum theory. It follows from (B.3) that, under a U(1)anom trans-formation with parameter �, the axioni
 Lagrangean shifts by�Laxion = � �16ÆGS F b eF b : (B.4)The Green{S
hwarz term ÆGS 
an now be inferred by demanding that the transformationof the axion a 
an
els the anomalous variation of the path integral measure [36,37℄. Thelatter 
an be absorbed in a 
hange of the Lagrangean�Lanomaly = �32�2F b eF bAG�G�U(1)anom : (B.5)The 
oeÆ
ient A is the anomaly 
oeÆ
ient, given byAG�G�U(1)anom = Xr(f) `(r(f))Q(f)anom ; (B.6)where the sum runs over all irredu
ible (fermioni
) representations r(f) of G, `(r(f))denotes the Dynkin index of r(f) and Q(f)anom is the U(1)anom 
harge.The axion shift allows us to 
an
el the G � G � U(1)anom anomaly by demanding�Lanomaly +�Laxion = 0. This �xes the Green{S
hwarz 
onstant to be2�2 ÆGS = AG�G�U(1)anom : (B.7)B.2 Dis
rete Green{S
hwarz me
hanismThe Green{S
hwarz me
hanism also works if we repla
e U(1)anom by a dis
rete ZM . Inthis 
ase the parameter � is no longer 
ontinuous but � = 2�nM with some integer n. Of
ourse, there is no gauge �eld asso
iated with the ZM . The dis
ussion then goes as inthe previous subse
tion. The dis
rete Green{S
hwarz 
onstant is now de�ned in su
h away that under the ZM transformation of fermions (f) ! e�i 2�M q(f)  (f) (B.8)the axion shifts a

ording toa ! a + 12�GS ; (B.9)where �GS is �xed only modulo �,�M �GS � AG�G�ZM mod � : (B.10)The anomaly 
oeÆ
ients 
an be obtained from Equation (B.6) by repla
ing the U(1)anom
harges Q(m)anom by the ZM 
harges q(m).
17



B.3 Multiple gauge groups and \anomaly universality"Let us now dis
uss the 
ase of multiple gauge groups Gi. In heteroti
 string models veryoften the U(1)anom, ZN or ZRM anomaly 
oeÆ
ients ful�ll 
ertain universality relations,AGi�Gi�H = � (B.11)for all i and in this se
tion H denotes either U(1)anom, ZN or ZRM . We will refer to (B.11)as \anomaly universality". In a re
ent paper [38℄ it has been pointed out 
orre
tly thatthis may not ne
essarily be the 
ase in general. That is, the anomaly universality (B.11)is not a dire
t 
onsequen
e of GS anomaly 
an
ellation.In detail, multiple gauge groups Gi in general do allow us to introdu
e di�erent
ouplings 
i of the axion a to the various �eld strengths,Laxion � Xi 
i a8F bi eF bi : (B.12)The requirement that under anH transformation the 
ontribution from the path integralmeasure gets 
an
elled by the dis
rete shift of the axion then implies that2�2 
i ÆGS = AGi�Gi�H (B.13)for all i. That means that the 
i 
oeÆ
ients 
an be 
hosen in su
h a way that thetransformation of the path integral measure gets 
an
elled for ea
h Gi gauge fa
torseparately. In parti
ular, one �nds (in agreement with [38℄) that in general the mixedAGi�Gi�H do not need to be universal.However, if this was the 
ase in a given model, one would spoil the beautiful pi
tureof MSSM gauge 
oupling uni�
ation. Let us spell out the argument in some more detail.In supersymmetry, the Lagrangean (B.12) implies that there are 
ouplings between thesuper�eld S whi
h 
ontains the axion, Sj�=0 = s + i a, and the supersymmetri
 �eldstrengths W (i) asso
iated to the gauge group fa
tors Gi, i.e.Laxion � Xi Z d2� 
i8 S W (i)� W (i)� : (B.14)On
e the real part of S a
quires a VEV this will give rise to a non{universal 
hangeof the gauge 
ouplings unless the 
i 
oeÆ
ients are all equal for the SM gauge groupfa
tors Gi = SU(3)C, SU(2)L and U(1)Y . That is, anomaly universality is also requiredin order not to spoil the beautiful pi
ture of MSSM gauge 
oupling uni�
ation.Furthermore, there might be model{dependent reasons why the AGi�Gi�H 
an beuniversal, for instan
e if all Gi 
ome from a (for instan
e grand uni�ed) simple gaugegroup, as we assume in the main body of this paper. Then the termLaxion � aF bGUT eF bGUT (B.15)is obviously gauge invariant. Hen
e, the anomalies need to be universal at least at theGUT level, as dis
ussed around Equation (2.10).18



How 
ould this universality possibly be broken? One may now worry about additionalterms of the formLaxion � a ��GUTM FGUT eFGUT� ; (B.16)where the operator �GUT furnishes a non{trivial GUT representation (su
h as a 24{pletof SU(5)) and the parentheses denote a non{trivial 
ontra
tion of the group indi
es.3However, at the GUT level, i.e. for a trivial �GUT VEV, su
h a term 
an not 
an
el thetransformation of the path integral measure by a shift transformation of the axion a. Inother words, it is not allowed by the symmetries of the a
tion if we require that a shifts.Hen
e, these operators 
an not break anomaly universality.However, there is a se
ond possibility. In higher{dimensional, e.g. in orbifold GUTtype, models there 
an be lo
alized terms whi
h do not respe
t the GUT symmetry.That is, in settings where the GUT symmetry is broken lo
ally in some regions of
ompa
t spa
e su
h as orbifold �xed points, anomaly non{universality 
an arise. Afterintegrating over 
ompa
t spa
e in order to derive the four{dimensional e�e
tive a
tionone 
an indeed arrive at non{universal 
ouplings 
i of the axion to the three F eF terms ofthe standard model. Still, as dis
ussed before, if one is not to spoil the beautiful pi
tureof MSSM gauge 
oupling uni�
ation, the AGi�Gi�H 
oeÆ
ients need to be universaland these lo
alized 
ontributions have to be avoided. One possibility to avoid themis \non{lo
al GUT breaking" in extra dimensions, whi
h has been argued to yield themost appealing s
enarios of pre
ision gauge uni�
ation [40{42℄. In su
h s
enarios, thelo
alized dangerous GUT{breaking operators do not exist and hen
e the anomalies areuniversal.4Let us also 
omment on another statement in [38℄. First, we would like to pointout that the number of axions is not related to anomaly universality. Spe
i�
ally, in thepresen
e of multiple axions, whi
h are available in heteroti
 
ompa
ti�
ations [43,44℄, onewould have to de�ne how they transform under a U(1)anom (or dis
rete) transformation.Sin
e there is only one su
h transformation, this allows us to identify one unique linear
ombination of axions, 
alled a as in our dis
ussion above, whi
h shifts while the other`would{be axions' stay inert. Therefore, the number of axions is not related to thequestion of anomaly (non{)universality.Furthermore, the authors of [38℄ argue that the anomalies 
annot be universal bothbefore and after doublet{triplet splitting. We disagree with this statement. First ofall, `before doublet{triplet splitting', i.e. before GUT breaking, there are more states3The relative 
oeÆ
ients 
i of the axion 
oupling to the three Fi eFi terms of the standard modeloriginating from �GUT 
an be inferred from [39℄.4In Abelian orbifold models su
h operators 
an only stem from lo
alized 
uxes, whi
h are Abelian(i.e. U(1)) 
uxes. Hen
e, the AGi�Gi�H 
oeÆ
ients 
oin
ide for all non{Abelian fa
tors Gi from ea
hE8 in su
h models. This is also in agreement with [38℄ where it is found that, in 
ompa
ti�
ations of theheteroti
 E8 � E8 string on blown{up orbifolds with Abelian 
uxes, non{Abelian anomalies of ea
h E8fa
tor are still universal. Sin
e the relevant assumption in Se
tion 2.2 needed to prove the uniqueness ofZR4 (see also Se
tion 2.2.6) is that ASU(2)L�SU(2)L�ZRM and ASU(3)C�SU(3)C�ZRM 
oin
ide, the uniquenessof ZR4 is also given in su
h 
onstru
tions. 19



around whi
h 
ontribute to the anomalies and anomaly universality follows from gaugeinvarian
e under the GUT group, see Equation (B.15). Moreover, in the absen
e oflo
alized GUT breaking terms, if the anomaly 
oeÆ
ients are universal at the GUTlevel, where the 
ontributions of extra states have to be taken into a

ount, they shouldalso be so in the MSSM. This is, again, nothing but 't Hooft anomaly mat
hing (seeSe
tion 2.2.3). In fa
t, at the GUT level there is just one (uni�ed) gauge group, su
hthat universality is trivial.C The Hilbert superpotential bases for models withZR12 symmetriesIn Se
tion 3.2, we dis
uss several ZRM symmetries that forbid neutrino masses perturba-tively and also present the Hilbert superpotential basis for a model with a ZR8 symmetryand two ZR4 symmetries amended by an extra Z4 fa
tor. In this appendix we providefurther examples based on the ZR12 symmetries. As we have already stated above, ev-ery possible superpotential termM 
ontains only one inhomogeneous monomial and anarbitrary 
ombination of homogeneous monomials [34℄, i.e.M = M (i)in Yj=1 �M (j)hom��j with �j 2 N ; (C.1)where M (i)in is an inhomogeneous andM (j)hom a homogeneous monomial.In Se
tion 3.2 we list three examples whi
h have a ZR12 symmetry. As we will see inthe following, the three sets of monomials di�er. Hen
e, the three ZR12 symmetries areinequivalent. The �rst symmetry has the 
harge assignment� q10 q5 qHu qHd q� � q�� � = � 1 9 4 8 3 3 11 � ; (C.2)whi
h leads to the inhomogeneous monomials�LHdE� ; (LHu)6 ; ��6 ; �LLE� �� ;�LLE�6 ; �LLE�4 (LHu)2 ; �LLE�2 (LHu)4 ; (C.3)whereas the homogeneous ones are given by�LLE�12 ; (LHu)12 ; HuHd ; (LHu) �� ; �LLE� �LHdE� �� ;��12 ; �LHdE� (LHu)6 ; �LHdE�2 ; �LLE�7 �� ;�LLE� (LHu)5 ; �LLE�6 �LHdE� ; �LHdE� ��6 ;�LLE�2 ��2 ; �LHdE� �LLE�4 (LHu)2 ; �LLE�5 (LHu) ;�LHdE� �LLE�2 (LHu)4 ; �LLE� ��7 ; �LLE�3 (LHu)3 : (C.4)
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The se
ond ZR12 symmetry has the 
harges� q10 q5 qHu qHd q� � q�� � = � 2 6 2 10 3 3 4 � ; (C.5)whi
h gives us for the inhomogeneous monomials�LHdE� ; �LLE�3 ; �LLE� �� ; �LLE� (LHu)2 ; (C.6)and for the homogeneous monomials�LLE�6 ; �LLE�4 �� ; �LHdE� �LLE�3 ; HuHd ;(LHu) �� ; ��3 ; (LHu)3 ; �LHdE� (LHu)2 �LLE� ;�LLE�2 (LHu) ; �LHdE�2 ; �LLE�2 ��2 ; �LHdE� �LLE� �� : (C.7)The last ZR12 symmetry has� q10 q5 qHu qHd q� � q�� � = � 4 0 10 2 3 3 2 � ; (C.8)as its 
harge assignment, with these we get the inhomogeneous monomials��3 ; �LHdE� ; �LLE� �� ; (LHu)3 ; �LLE�2 (LHu) ; (C.9)and the following homogeneous ones(LHu)6 ; �LHdE� (LHu)3 ; HuHd ; �LHdE� �LLE�2 (LHu) ;(LHu) �� ; �LLE�3 ; �LLE� (LHu)2 ; �LHdE�2 ;�LHdE� ��3 ; �LHdE� �LLE� �� ; �LLE� ��4 ; ��6 ;�LLE�2 ��2 : (C.10)Referen
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