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tWe dis
uss the problem of initial states for a system of 
oupled s
alar�elds out of equilibrium in the one-loop approximation. The �elds 
onsistof 
lassi
al ba
kground �elds, taken 
onstant in spa
e, and quantum 
u
tu-ations. If the initial state is the adiabati
 va
uum, i.e., the ground state ofa Fo
k spa
e of parti
le ex
itations that diagonalize the mass matrix, theenergy-momentum tensor is in�nite at t = 0, its most singular part behavesas 1=t. When the system is 
oupled to gravity this presents a problem thatwe solve by a Bogoliubov transformation of the naive initial state. As aside result we also dis
uss the 
anoni
al formalism and the adiabati
 parti
lenumber for su
h a system. Most of the formalism is presented for Minkowksispa
e. Embedding the system and its dynami
s into a 
at FRW universe isstraightforward and we brie
y address the essential modi�
ations.1e-mail: juergen.baa
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1 Introdu
tionThe question of initial states in nonequilibrium quantum �eld theory hasfound 
onsiderable interest re
ently [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12℄, onvarious grounds. As a very pra
ti
al aspe
t it was realized in numeri
al simu-lations of quantum �elds in 
osmology [13, 2, 14℄, that the energy-momentumtensor had initial time singularities if the initial state was taken as the naiveFo
k-spa
e va
uum. These had to be removed when 
oupling the �eld togravity, e.g. in a Friedmann universe. A more spe
ulative aspe
t that hasattra
ted some interest re
ently was the question, whether the 
hoi
e of ini-tial state 
an be expe
ted to leave an imprint in the CMB spe
trum. In any
ase it is a question of prin
iple, to what extent the 
hoi
e of initial state is
onstrained in an intera
ting theory of parti
les by 
onsisten
y requirements.As a general aspe
t of quantum �eld theory, the problem of initial 
on-ditions was realized long ago. It ultimately 
an tra
ed ba
k to the fa
t thatone swit
hes on the intera
tion at some time t = 0. In the 
ase of nonequi-librium dynami
s we have to impose initial 
onditions for the ba
kground�elds. In most appli
ations the initial state was taken to be the adiabati
va
uum, whi
h would be the ground state if all ba
kground �elds were held�xed forever. When one starts to evolve the system dynami
ally at least these
ond derivative of the �elds will be dis
ontinuous on a

ount of the se
-ond order di�erential equation, whi
h for t > 0 determines their evolution.In 
osmology it is already the �rst derivative of the s
ale parameter whi
hfor t > 0 is determined by the Friedmann equation. Su
h singularities havebeen noted for the �rst time by St�u
kelberg [15℄, they are dis
ussed brie
yin the textbook of Bogoliubov and Shirkov [16℄. The phenomenon has beenidenti�ed as a kind of `Casimir e�e
t' 
onne
ted to the initial time surfa
eby Symanzik [17℄. In the 
ontext of quantum �eld theory out of equilibriumthe presen
e of su
h singularities has been noti
ed by various authors.The solution proposed by Symanzik is the introdu
tion of surfa
e 
oun-terterms in addition to the usual \bulk" 
ounterterms of perturbative quan-tum �eld theory. In the 
ontext of nonequilibrium quantum �eld theory thisline has been pursued in Refs. [9, 10℄.The introdu
tion of initial time surfa
es singles out the parti
ular timeat whi
h one starts the evolution to the extent that the surfa
e 
ountertermsbe
ome part of the �eld theory for t > 0. The approa
h of modifying thenaive initial va
uum state [18, 2, 8℄ seems to be more pragmati
; the ideais to �nd the minimal requirements on an initial state that 
ould arise from2



a previous dynami
al evolution. The latter aspe
t is dis
ussed in [19℄. Thete
hnique used for 
onstru
ting su
h an initial state 
onsists of �nding aBogoliubov transformation of the naive adiabati
 va
uum. For the single-
hannel 
ase and s
alar 
u
tuations this has been done in Ref. [2℄ and forfermion 
u
tuations in Ref. [20℄. These results were used in Refs. [21, 14℄ informulating the renormalized equations in a 
at FRW universe.Our approa
h is based on a mode fun
tion formalism that has been in-trodu
ed, for 
oupled 
hannels, in Ref. [22℄. The formalism ensures the
onservation of energy with one-loop or Hartree quantum ba
krea
tion andhas been renormalized along the lines of Ref. [23℄. There the initial statewas 
hosen to be the adiabati
 va
uum based on a Fo
k spa
e of parti
leex
itations that diagonalize the initial mass matrix. It is this initial statethat we will improve here. In Ref. [22℄ renormalization is based on a per-turbative expansion 
lose to standard perturbation theory, in the same wayas in Ref. [23℄. The same expansion was used in Ref. [2℄ for analyzing theinitial time singularity. This analysis 
an be 
arried over in a straightforwardway to the 
ase of 
oupled �elds. Most other analyses of the singular earlytime behavior were based on the eikonal expansion. An eikonal formalismfor 
oupled systems has been formulated re
ently [24℄. We are not aware,however, of an eikonal expansion for 
oupled-
hannel systems.The quantum expansion of the 
u
tuation �elds is formulated in su
h away that the 
anoni
al 
ommutation relations hold for t = 0. It was not dis-
ussed in Ref. [22℄ how they 
ontinue to hold for t > 0. Though this is to beexpe
ted it is not entirely obvious, and in fa
t leads some nontrivial relationsfor the 
u
tuation modes whi
h prove to be useful for our formalism. Thisis dis
ussed in Appendix B. Another approa
h to the 
anoni
al formalismfor 
oupled-
hannel systems was introdu
ed in Ref. [24℄, and this is anotherreason for verifying that the s
heme of Ref. [22℄ works 
orre
tly.Though our main subje
t here is the 
hoi
e of the initial state, with hind-sight of 
oupling the system to gravity, we take the o

asion for dis
ussingthe 
on
ept of adiabati
 parti
le number within our formalism. This is sug-gested by the fa
t that we have to dis
uss Bogoliubov transformations for
oupled systems anyway and that parti
le numbers are usually de�ned bythe 
oeÆ
ients of these transformations.The paper is organized as follows: In Se
. 2 we introdu
e the model wewant to 
onsider, a system of two 
oupled quantum �elds with masses anda general fourth order potential. We de�ne the de
omposition into 
lassi
aland 
u
tuation �elds and the evolution of the 
u
tuations. In Se
. 3 we3



dis
uss the behavior of the Green's fun
tion at early times and 
onstru
t aBogoliubov transformation in order to redu
e the leading singular behaviorsu
h that the leading time derivatives be
ome �nite at the intial time. InSe
. 4 we present the expe
tation value of the energy-momentum tensor inthe Bogoliubov-transformed initial state. In Se
. 5 we dis
uss the 
on
eptof adiabati
 parti
le number. Some more te
hni
al subje
ts are transferredto the Appendi
es: the Bogoliubov transformation for 
oupled systems inAppendix A and some aspe
ts of the 
anoni
al formalism in Appendix B.2 The modelWe 
onsider a system of two 
oupled s
alar quantum �elds with a Lagrangiandensity of the formL = �12���i���i + 12m2i�2i�+ �ij4 �2i�2j ; (2.1)where the indi
es i; j take the values 1 and 2. The hybrid model of in
ation[25, 26, 27℄ withL = 12������+ 12������+ 12m2�2 + �4 ��2 � v2�2 + �2�2�2 (2.2)is of this form with �11 = 0,�12 = �, �22 = �,m21 = m2 and m22 = ��v2.Also some models involving supersymmetri
 
at dire
tions [28, 29℄ are of thistype. The generalization to a general mass matrix and a general fourth orderpotential is possible, but we do not want do overburden the formalism witha profusion of indi
es. Also, the limitation to two �elds is not essential.We separate the �elds � into 
lassi
al �elds and 
u
tuations via�i = 'i +  i : (2.3)The 
lassi
al Lagrangian density then retains the formL(0) = �12��'i��'i + 12m2i'2i�+ �ij4 '2i'2j ; (2.4)while the 
u
tuation Lagrangian, of se
ond order in the 
u
tuations, be
omesL(2) = �12�� i�� i + 12m2i 2i �+ �ij2 �'2i 2j + 2'i'j i j� : (2.5)4



This 
an be written asL(2) = 2Xi=1 �12�� i�� i + 12M2ij(') i j� ; (2.6)with M211 = m21 + 3�11'21 + �12'22 ;M212 = 2�12'1'2 ; (2.7)M222 = m22 + 3�22'22 + �12'21 : (2.8)If the �eld is 
oupled to gravity in a 
at FRW universe, the 
u
tuation massmatrix takes a similar form. After 
onformal res
aling of �elds and momenta(see, e.g., Refs. [30, 13℄) one just has to repla
em2i ! �m2i + (�i � 16)R� a2 : (2.9)Here a is the s
ale parameter, R the Ri

i s
alar, and the �i are the 
onformal
ouplings.In the following we restri
t ourselves to homogeneous ba
kground �elds'i(t), so the mass matrix depends on time only. In the FRW universe the timeparameter is 
onformal time, and we have an additional time dependen
e viaa(�) and R(�).We separate the 
u
tuation mass matrix into its initial value and a "po-tential" V via M2ij(t) =M2ij(0) + Vij(t) : (2.10)We diagonalize the initial mass matrix byM2ij(0)f�j0 = m2�0f�i0 : (2.11)The eigenve
tors f�i0 are 
hosen to be real, and normalized to unity:2Xi=1 f�i0f�i0 = Æ�� : (2.12)The latin subs
ripts refer to the �eld 
omponents, as before, and the Greeksupers
ripts refer to the two independent solutions of the eigenvalue equation.We now de�ne a set of mode fun
tions f�i (k; t) for homogeneous ba
kground5



�eld in the following way:(i) their time evolution is determined by�f�i (k; t) + k2f�i (k; t) +M2ij(t)f�j (k; t) = 0 ; (2.13)(ii) the initial 
onditions are spe
i�ed asf�i (k; 0) = f�i0 ; (2.14)_f�i (k; 0) = �i
�0f�i0 ; (2.15)where we have introdu
ed the frequen
ies
�0(k) =qm2�0 + k2 : (2.16)The fun
tions f�i (k; t) form a set of linearly independent solutions of thesystem of mode equations.The �elds  i(x; t) are quantum �elds. For a homogeneous ba
kground we
an expand them as i(x; t) =X� Z d3k(2�)32
�0 �a�(k)f�i (k; t) + ay�(�k)f��i (k; t)� eikx : (2.17)The 
anoni
al 
ommutation relations areha�(k); ay�(k0)i = (2�)32
�0(k)Æ��Æ3(k� k0) : (2.18)In the following we will need the two-point fun
tions at the 
oin
iden
e limit,the \
u
tuation integrals"Fij(t) = < 0j i(x; t) j(x; t)j0 >= X� Z d3k(2�)32
�0(k)f�i (k; t)f��j (k; t) : (2.19)Here the expe
tation value is taken in the va
uum state of a Fo
k spa
e,whose quanta have the initial masses m�(0). This is the \adiabati
 va
uum",de�ned by a�(k)j0 >= 0 8�;k : (2.20)Of 
ourse this is not the ground state of the system, and the 
reation andannihilation operators ay�(k) and a�(k) do not 
reate free parti
les with themasses mi. We dis
uss some aspe
ts of the 
anoni
al formalism in AppendixB; in parti
ular we establish that the 
u
tuation integral as de�ned above isreal and symmetri
 in i and j, though this is not apparent on the right handside of Eq (2.19). 6



3 The initial time singularity of the Green'sfun
tion and the modi�ed initial stateThe quantum ba
krea
tion of the 
u
tuations onto the 
lassi
al �elds 
anbe derived using the 
losed-time-path formalism [31, 32℄. For the quantum�eld theories that we 
onsider here, it has been formulated in several seminalpubli
ations [33, 34, 35, 18, 36℄. We do not repeat this here. If one just
onsiders the one-loop quantum ba
krea
tion the relevant equations take arather intuitive form. The equations of motion for the 
lassi
al �elds be
ome�'1 +m21'1 + �11'31 + �12'1'22+3�11'1F11 + �12'1F22 + 2�12'2F12 = 0 ; (3.1)and an analogous equation for '2. As will be analyzed below, the 
u
tuationintegrals Fij(t) are singular at t = 0, the time where we start the evolution.As t & 0 it behaves as t ln t. Though this represents a mathemati
al sin-gularity, it is �nite and even zero at t = 0. So it will not prevent us fromstarting a numeri
al simulation. The singular behavior be
omes a problemwhen we 
ouple the �eld to gravity. The dynami
s of the FRW s
ale fa
tor ais determined by the energy-momentum tensor, whi
h involves se
ond timederivatives of the two-point fun
tion. If one analyzes the energy-momentumtensor, one indeed �nds, near t = 0, a time dependen
e of the form 1=t inT �� . This then prevents one from starting the dynami
al evolution. Of 
ourse,even in 
at spa
e this in�nity is an undesirable and unphysi
al feature of theenergy-momentum tensor.As the energy-momentum tensor is a rather involved expression, espe-
ially after renormalization, we �rst 
onsider the 
u
tuation integral and�nd a way to remove its initial singularity, su
h that its �rst and se
ond timederivatives at t = 0 be
ome �nite. This requires less algebra and, as we haveseen previously [2℄, this is suÆ
ient for making the energy-momentum tensor�nite near t = 0.The 
u
tuation integrals are ultraviolet divergent. The divergen
es 
anbe analyzed [23℄ by expanding with respe
t to orders in V whi
h is equivalentto expanding with respe
t to the 
ouplings �ij. This allows one to removethe divergent parts and the dynami
s is determined by the remaining �niteparts. A 
loser analysis shows that, on the level of 
u
tuation integrals, the
ontributions of zeroth and �rst order in V are ultraviolet divergent. One7



�nds [23℄, up to �rst order in V,Fij = Z d3k(2�)3 X� 12
�0f�i (t)f��j (t) ' Z d3k(2�)3 (X� 12
�0 f�i0f��j0+X�� 12
�0
�0 f�i0f�j0 �� 1
�0 + 
�0�V��(t)� V��(0) 
os [(
�0 + 
�0)t℄�+ 1(
�0 + 
�0)2 _V��(0) sin [(
�0 + 
�0)t℄+ 1(
�0 + 
�0)3 ��V��(t)� �V��(0) 
os [(
�0 + 
�0)t℄�+ 1(
�0 + 
�0)3 Z dt0 :::V�� (t0) 
os [(
�0 + 
�0)(t� t0)℄�� : (3.2)Several integrations by parts have been performed in order to separate thehigh momentum power behavior. The �rst term in the integrand is quadrati-
ally divergent, and the one proportional to V(t) is logarithmi
ally divergent.In the pro
ess of renormalization these terms are removed and in
luded in themass and 
oupling 
onstant renormalizations. The 
ontribution proportionalto V(0) vanishes as V(0) = 0 by de�nition, see Eq. (2.10). The terms pro-portional to _V(t) and �V(t) are �nite at all times. The nonanalyti
 parts arethose proportional to _V(0) and �V(0). Near t = 0 we �nd that the momentumintegrals whi
h multiply _V(0) and �V(0) behave asZ d3k(2�)3 12
�0
�0(
�0 + 
�0)2 sin[(
�0 + 
�0)t℄ ' � 18�2 t ln[(m� +m�)t℄ ;Z d3k(2�)3 12
�0
�0(
�0 + 
�0)3 
os[(
�0 + 
�0)t℄ ' 116�2 t2 ln[(m� +m�)t℄ :So in general the �rst and se
ond derivatives of the 
u
tuation integralswould be in�nite at t = 0.As we have mentioned previously there are two methods for getting ridof this singular behavior: either one introdu
es surfa
e 
ounterterms or onemodi�es the initial state. Our approa
h is the se
ond one, and we have for-mulated this modi�
ation of the initial state as a Bogoliubov transformation.The singular behavior is obviously related to the large momentum behaviorof the integrand. So the modi�
ation of the initial state will 
onstrain onlyits ultraviolet behavior. We are still free to modify it at �nite momenta, or8



with 
ontributions that vanish suÆ
iently fast at large momenta, as e.g. athermal initial state.The Bogoliubov transformation and its 
onsequen
es for the 
u
tuationintegral are presented in detail in Appendix A. The general 
on
ept im-plies that we repla
e our naive initial state, the va
uum state for quanta ofmasses mi0 by a transformed va
uum state, annihilated by a superposition ofannihilation operators a�(k) and 
reation operators ay�(�k). The essentialformulae are:(i) the de�nition of the transformation~a�(k) =X� s
�0
�0 hC��a�(k)� S��ay�(�k)i ; (3.3)(ii) the de�nition of a new va
uum state j~0 > via~a
(k)j~0 >=r

0
�0C
� "a�(k)�s
�0
�0 ���ay�(�k)# j~0 >= 0 ; (3.4)where � = C�1S is a symmetri
 matrix;(iii) the de�nition of a matrix M�� whi
h is introdu
ed via the expe
tationvalue of a�(k)ay�(k0) in the new va
uum:< ~0ja�(k)ay�(k0)j~0 >= (2�)3Æ3(k� k0)2p
�0
�0M��(k) ; (3.5)and(iv) the relation between � and MM � �MT�y = I ; (3.6)whi
h ensures that the 
ommutator of ~a�(k) and ~ay�(k0) is 
anoni
al. Allmatri
es whi
h we have introdu
ed here depend on k = jkj.As derived in Appendix A, the 
u
tuation integral, when evaluated inthe Bogoliubov-transformed va
uum, takes the form~Fij(t) =< ~0j i(x; t) j(x; t)j~0 >= 12 Z d3k(2�)3 X�;� 12p
�0
�0 hf�i (t)f�j (t)���M��+f�i (t)f��j (t)M��+f��i (t)f�j (t)�������M��+f��i (t)f��j (t)����M��i : (3.7)9



We now have to determine � in su
h a way as to 
an
el the initial sin-gularities whi
h are 
ontained in the integral over f�i (t)f��j (t). As dis
ussedbelow Eq. (3.2) the dangerous 
ontributions are those involving_V��(0) sin [(
�0 + 
�0)t℄ and �V��(0) 
os [
�0 + 
�0)t℄. They have to be 
an-
elled by the terms proportional to � and �2 generated by the Bogoliubovtransformation. If one 
onsiders Eqs. (3.6) and (3.7) one realizes that thedetermination of � seems to be marred already by the nonlinear relation be-tween M and �. We have to realize, however, that there is no unique 
hoi
efor �, anyway. All we need is a 
an
ellation of the dangerous terms at largemomenta. These 
ontributions are divided, in the integrand, by 
ombinationsof 
�0 and 
�0 whi
h asymptoti
ally behave as k�4 and k�5, respe
tively. Sothese terms be
ome small asymptoti
ally, and to get the 
orre
t asymptoti
behavior of the matrix elements of � we 
an work in the linear approxi-mation. In this approximation we have M�� ' Æ��, ���M�� ' ���, andM��������� ' 0. Furthermore, we 
an approximate f�i (t) ' f�i0 exp(�i
�0t),whenever it appears multiplied by �. Corre
tions would be of order � � V; asV is of order � this would be of order �2.When rewriting the 
u
tuation integral in the Bogoliubov-transformedva
uum ~Fij we use the approximations we have just mentioned. We furtheruse the expansion of f�i (t)f��j (t) as it appears in Eq. (3.2), but we removethe renormalization parts. We then obtain, to �rst order in V and �~Fij ' Z d3k(2�)3 (X�;� 12p
�0
�0 f�i0f�j0 ����e�i(
�0+
�0)t + ����ei(
�0+
�0)t�+X�;� 12
�0
�0 f�i0f�j0 � 1(
�0 + 
�0)2 _V��(0) sin [(
�0 + 
�0)t℄+ 1(
�0 + 
�0)3 ��V��(t)� �V��(0) 
os [(
�0 + 
�0)t℄�+ 1(
�0 + 
�0)3 Z dt0 :::V�� (t0) 
os [(
�0 + 
�0)(t� t0)℄�� : (3.8)The 
an
ellation of the terms whi
h would produ
e a singularity at t = 0then requires Im ��� = 12
�0
�0 1(
�0 + 
�0)2 _V��(0) ; (3.9)Re ��� = 12
�0
�0 1(
�0 + 
�0)3 �V��(0) : (3.10)10



If the �elds were independent V�� would be diagonal and we would obtain(omitting the indi
es of the diagonal elements)Im �Re � = 2
0 _V(0)�V(0) (3.11)and j�j = 18
30s _V(0)2 + �V(0)24
20 (3.12)for the separate Bogoliubov transformations of the two �elds. This agreesin the approximation of large momenta with the results for the one-�eld
ase, Eqs. (51) and (52) of Ref. [2℄. There it was possible to remove the
ontributions proportional to _V(0) and �V(0) for all momenta. Here theseterms are 
an
elled at large momenta only.With Eqs. (3.9) and (3.10) we have obtained a solution to our problem ofinitial singularities. We have to stress that there is an in�nite manifold of su
hsolutions, di�ering, e.g., by a di�erent 
hoi
e of initial o

upation numbers at�nite momenta. They all have to share the same large momentum behavior,however.On
e we have � we now must determine M , using (3.6), without anyapproximation, be
ause otherwise our transformation would not be 
anoni
al.Though � appears nonlinearly, Eq.(3.6) is simply a system of four linearequations for the matrix elements of M . Finally, the 
u
tuation integral(3.7) has to be 
omputed using the exa
t numeri
al solutions f�i (t) in allfour terms of the integrand.For the numeri
al 
omputations it is preferable to implement the Bogoli-ubov transformation in a di�erent way, by rede�ning the mode fun
tions.For this purpose we introdu
e~f 
i (k; t) =X� p2

0p2
�0 [f�i (k; t)N�
 + f��i (k; t)����N�
℄ ; (3.13)where the matrix N satis�es N �N =M 3. It 
an be determined using theeigenvalues and eigenve
tors of M . One easily veri�es that~Fij(t) =X� Z d3k(2�)32

0 ~f 
i (k; t) ~f 
�j (k; t) (3.14)3N is not uniquely determined, all we need is one parti
ular matrix that satis�es thisrelation. As M is Hermitian, so is N . 11



is identi
al to the previous de�nition, Eq. (3.7). As f�i and f��i are solutionsof the same equation of motion, Eq. (2.13), so is ~f 
i . It is suÆ
ient, therefore,to determine ~f 
i as a solution to this equation with the initial 
onditionsimplied by Eqs. (3.13),(2.14) and (2.15).Having presented the te
hni
al pro
edure we would like to add some 
om-ments 
on
erning the interpretation. In order to do so we need to dis
ussthe problem of initial states in a more general way.The adiabati
 va
uum has often been used as an initial state for preheat-ing simulations, maybe on the grounds that after in
ation one ends up in atemperature zero state, i.e. an \empty" va
uum. Indeed if this is the 
ase,and if the evolution of the 
lassi
al �elds is very slow (\adiabati
"), this 
anbe 
onsidered to be a reasonable guess for an initial state. Another 
hoi
ethat may be reasonable, e.g. after thermalization and in a period of adiabati
evolution, is a thermal initial state. This is of 
ourse not a pure state. For athermal state the 
u
tuation integral would be repla
ed byFij(t) =X� Z d3k(2�)32
�0(k)(2N�(k) + 1)f�i (k; t)f��j (k; t) ; (3.15)with N�(k) = [exp(
�(k)=T )� 1℄�1 : (3.16)Here we have used the fa
t that the mass matrix and therefore the 
u
tuationHamiltonian is diagonal in the basis f�i0 at t = 0.If one takes into a

ount the real evolution of the system before t = 0 thenneither the adiabati
 va
uum nor a thermal initial state will be appropriate.If the system has started, before t = 0, in a pure quantum state, it 
annothave ended up, at t = 0, in a thermal state or in any other state des
ribedsimply by parti
le numbers N�(k). The quantum system 
an be interpretedas a system of independent free parti
le only after \de
oheren
e", a 
on
eptthat has been addressed in the present 
ontext in Refs. [37, 38℄. But even ifthe system has started, at an earlier time, with a mixed state, the intera
-tion with the ba
kground �eld will have 
reated a 
oheren
e in the di�erent
omponents of su
h a state at t = 0, and a representation in the form (3.15)will not be possible.So, if one takes into a

ount the evolution of the system prior to t = 0then one would have to know the entire prehistory or at least the prehistoryof a long period in order to des
ribe the state at t = 0 with its full quantum
oheren
e. This is of 
ourse not possible unless one knows how to start the12



system at an earlier time, fa
ing then the same problem. The best one 
anhope for is that after some time the system will not remember mu
h of itsinitial state. This is presumably the 
ase if the ba
kground �elds produ
elarge quantum 
u
tuations at later times.The purpose of the Bogoliubov transformation is di�erent. If we know theevolution of the ba
kground �elds near t = 0 (and by 
ontinuity this meansalso shortly before t = 0), to the extent that we know _V(0) and �V(0), or,equivalently, _�(0) and ��(0), then we have a limited information on the initialstate. Constant ba
kground �elds at t < 0 and the adiabati
 va
uum stateas initial state would produ
e a singularity of the �rst two derivatives of theGreen's fun
tion. The Bogoliubov transformation removes this singularity,or, more pre
isely, it redu
es it to higher orders in the derivatives. In thisway it takes a minimal a

ount of the fa
t that the system is not stati
 beforet = 0. As we have displayed above the transformation may be 
onsidered as amodi�
ation of the state or of the mode fun
tions. The new state should notbe 
onsidered as a va
uum state. The adiabati
 va
uum state remains thelowest energy state for a given set of ba
kground �elds. The analysis of thehigh momentum behavior of the 
u
tuation integral simply shows that thesystem will never arrive at this state if the ba
kground �elds keep 
hangingwith time. In reality, of 
ourse, we would rather expe
t the quantum stateof the 
u
tuations to be an ex
ited one, parti
ularly at low momentum. Oursimple requirement of 
ontinuity for the Green's fun
tion does not give usany information on this ex
ited state, ex
ept at high momenta.The state generated by the Bogoliubov transformation applied to the adi-abati
 va
uum is a pure state. Therefore, it 
annot be des
ribed by a mixedstate with suitable parti
le numbers N�(k). If for some physi
al motivationwe want to start with a thermal state or some other state spe
i�ed by parti-
le numbers we have to 
ombine two di�erent 
on
epts: a mixed state madeup of di�erent ex
ited Fo
k-spa
e states and a pure state that ensures the
ontinuity of the Green' s fun
tion. For a thermal state the parti
le numbersde
rease exponentially as k ! 1; then the dis
ontinuity of the Green' sfun
tion solely arises from the va
uum 
ontribution. Its Bogoliubov trans-formation is well-de�ned and 
ompulsory at high momenta only. There arethen, among many others, two pragmati
 ways of de�ning a thermal initialstate: (i) One de�nes the thermal state using for all momenta the modi�edmode fun
tions ~f�i (k; t). This is not a quite a thermal state, though, as themodi�ed mode fun
tions are not eigenfun
tions of i�=�t. (ii) One uses theintegrand of Eq. (3.15) with the original mode fun
tions f�i (k; t) for low13



momenta only, and the integrand of Eq. (3.14) at high momenta.4 The energy-momentum tensorThe energy-momentum tensor for the 
u
tuations t�� = (T 
u
)�� in a homo-geneous ba
kground �eld is diagonal and has identi
al spa
e-spa
e 
ompo-nents. It may be spe
i�ed by the two independent expe
tation valuest00 = � = 12 < _ i(x; t) _ i(x; t) (4.1)+~r i(x; t)~r i(x; t) +M2ij(t) i(x; t) j(x; t) >and t�� = �� 3p = < � _ i(x; t) _ i(x; t) (4.2)+~r i(x; t)~r i(x; t) + 2M2ij(t) i(x; t) j(x; t) > :� is the energy density and p the pressure. t00 and t�� 
an be evaluated in theadiabati
 va
uum and in the Bogoliubov-transformed va
uum in the sameway as the 
u
tuation integrals. We just present the expe
tation valuesin the Bogoliubov-transformed va
uum, the one in the adiabati
 va
uum isobtained by substituting �! 0 and M ! I. For ~t00 we obtain~t00 = Z d3k(2�)3 X�;� 14
�0 nRe h���M�� � _f�i _f�i + k2f�i f�i +M2ijf�i f�j �i+ �M�� +M���������� � _f�i _f��i + k2f�i f��i +M2ijf�i f��j �o : (4.3)For the tra
e we �nd~t�� = Z d3k(2�)3 X�;� 14
�0 nRe h���M�� �� _f�i _f�i + k2f�i f�i + 2M2ijf�i f�j �i+ �M�� +M���������� �� _f�i _f��i + k2f�i f��i + 2M2ijf�i f��j �o : (4.4)Both expressions 
an alternatively be rewritten in terms of the modi�ed modefun
tions of Eq. (3.13). 14



Using the equation of motion for the 
u
tuations we 
an write� _f�i _f��i + k2f�i f��i +M2ijf�i f��j = �12 d2dt2f�i f��j ; (4.5)� _f�i _f�i + k2f�i f�i +M2ijf�i f�j = �12 d2dt2f�i f�j : (4.6)Therefore the tra
e 
an be expressed in terms of the 
u
tuation integrals(3.7) as ~t�� = �12 d2dt2 ~Fii +Mij ~Fij : (4.7)Both the energy density and the tra
e 
ontain se
ond spa
e and time deriva-tives of the two-point fun
tion and this 
an transform the mild singularitiesfound in the 
u
tuation integrals Fij into in�nities at t = 0. In Ref. [2℄ it wasfound that the energy density remains �nite even in the adiabati
 va
uum.As the se
ond derivatives only appear in the kineti
 terms whi
h are diag-onal this analysis remains valid for the 
oupled-
hannel 
ase. However, thetra
e of the energy-momentum tensor t�� in the adiabati
 va
uum 
ontainsthe se
ond time derivative of the 
u
tuation integrals Fii and this behavesas d2(t ln t)=dt2 = 1=t as t& 0. In the transformed 
u
tuation integrals ~Fijwe have removed the dangerous terms, and so ~t�� has a �nite value at t = 0.When the �eld is 
oupled to gravity [39℄ the expressions (4.1) and (4.2)re
eive some further 
ontributions that we do not want to dis
uss herein detail. They 
an be written in terms of the 
u
tuation integrals andtheir �rst derivatives. The 
u
tuation integrals themselves are not in�niteat t = 0. The most singular of the additional terms are proportional to(�i � 1=6)HdFii=dt and appear both in t00 and t��. They behave as ln t ast& 0; in the Bogoliubov-transformed initial state Fii is repla
ed by ~Fii andthen the energy-momentum tensor remains �nite at t = 0.5 The adiabati
 parti
le numberThe adiabati
 parti
le number is obtained by representing the 
u
tuation�eld at time t in terms of the adiabati
 Fo
k spa
e at time t. The 
u
tuation�eld is given by Eq. (2.17). The adiabati
 Fo
k spa
e at time t is de�ned interms of parti
le ex
itations whi
h are eigenstates of the mass matrixM2ij(t).We de�ne the eigenve
tors of the mass matrix byM2ij(t)f�jt = m2�tf�it ; (5.1)15



we again 
hoose them to be real and normalized viaXi f�itf�it = Æ�� (5.2)and de�ne 
�t = pk2 +m2�t. We further expand the �elds with respe
t tothe new basis as i(x; t) = X� Z d3k(2�)32
�t ha�t(k)f�it + ay�t(�k)f�iti eikx ; (5.3)_ i(x; t) = �iX� Z d3k(2�)32 ha�t(k)f�it � ay�t(�k)f�iti eikx ; (5.4)where we have 
hosen the initial 
onditions for the modes f�it(k; t) in analogyto Eqs. (2.14) and (2.15). Using the �eld expansion the new annihilationoperators a�t(k) 
an be expressed asa�t(k) = Z d3xe�ikx h
�t i(x; t) + i _ i(x; t)i f�it : (5.5)They annihilate the adiabati
 va
uum de�ned at time t. The relation to theoriginal operators a�(k) is obtained by inserting the �eld expansion (2.17)into Eq. (5.5). We �nda�t(k) =X� s
�t
�0 hC��a�(k)� S��ay�(�k)i ; (5.6)with C�� = 12p
�t
�0 h
�tf�i (k; t) + i _f�i (k; t)i f�it ; (5.7)S�� = �12p
�t
�0 h
�tf��i (k; t) + i _f��i (k; t)i f�it : (5.8)Using the relations (B.8), (B.9) and (B.10) of Appendix B it is straightfor-ward to verify that this is a Bogoliubov transform, i.e., that Eqs. (A.23) and(A.26) are satis�ed. In terms of the matri
es C and S the adiabati
 parti
lenumber density is given by 4,n�(k; t) = 12V 
�t < 0jay�t(k)a�t(k)j0 >=X
 S�
�S�
 : (5.9)4No summation over �. For simpli
ity of presentation we assume the adiabati
 va
uumas initial state. 16



Inserting Eq. (5.8) we obtainn�(k; t) = 12
�t X
 12

0 h
2�tf 
i f 
�j + _f 
i _f 
�j i f�itf�jt : (5.10)This has a simple interpretation: one de
omposes the energy density withrespe
t to the 
u
tuations f�it . Then n�(k; t) is obtained by dividing the part
orresponding to the 
u
tuations f�it by the frequen
y 
�t of these 
u
tua-tions. This result is analogous to the one-
hannel 
ase.While the de�nition (5.9) is suggestive we would like to add that thisparti
le number does not imply a representation of the 
u
tuation integral inthe form (3.15) in terms of the mode fun
tions f�it(k; t). Indeed, if one wantsto use the representation (5.3) for 
al
ulating the 
u
tuation integral one getsnontrivial 
ontributions from the operators a�t(k)a�t(k0), ay�t(k)ay�t(k0) anday�t(k)ay�t(k0) as well, see Eqs. (A.38), (A.39) and (A.40). These 
ontributionsto the 
u
tuation integral are negligible for large parti
le numbers only, i.e.,if the matrix elements S�
 are mu
h larger than the C�
 .6 SummaryWe have addressed here two topi
s of the nonequilibrium dynami
s of 
oupled�elds in a one-loop approximation to quantum ba
krea
tion: the problem ofthe initial time singularity in the energy-momentum tensor and the de�nitionof the adiabati
 parti
le number for a system of 
oupled s
alar �elds. Alongwith these topi
s we have 
onsidered Bogoliubov transformations and someaspe
ts of the 
anoni
al formalism for su
h 
oupled systems.Our main interest, as evident from the title, were the initial time sin-gularities. We have been able to de�ne a Bogoliubov transformation of theinitial state that removes the initial time singularities in su
h a way that theenergy-momentum tensor is �nite in the limit t& 0. This is important if one
onsiders the evolution of su
h a system of �elds 
oupled to gravity. Clearly,this Bogoliubov transformation is 
onstrained only at large momenta. Somodi�
ations that are subleading at high momenta are still a

eptable. Wehad to in
lude a dis
ussion of the 
anoni
al formalism for a 
oupled-
hannelsystem, as some of the results were needed in the 
onstru
tion of the initialtime singularities: we had to ensure that the 
u
tuation integrals are realand symmetri
 in the indi
es, as they should be on a

ount of their de�nition.17



Both the dis
ussion of the 
anoni
al formalism and of Bogoliubov trans-formations for 
oupled-
hannel systems are at the same time the basis forde�ning the adiabati
 parti
le number density. So we have derived an ex-pression for this density in terms of the 
oupled system mode fun
tions.It is analogous to the de�nition in the single-
hannel 
ase and has a sim-ple intuitive interpretation. Another formulation for the adiabati
 parti
lenumber, based in an eikonal formalism and the evolution of Bogoliubov 
oef-�
ients, has been presented re
ently [24℄. As both formalisms are 
anoni
al,the results should be equivalent, though it may be diÆ
ult to verify thisanalyti
ally.A
knowledgmentsOne of us (N.K.) thanks the Humboldt Foundation for �nan
ial support, andthe Deuts
he Elektronensyn
hrotron DESY, Hamburg, for hospitality.A The Bogoliubov transformation for a 
ou-pled systemWe �rst re
all some basi
 relations for the 
ase of a single quantum �eld, see,e.g., Ref. [40℄. The Bogoliubov transformation rotates 
reation into annihila-tion operators and vi
e versa, su
h as to preserve the 
anoni
al 
ommutationrelations [a(k); a(k0)℄ = 0 ;�a(k); ay(k0)� = (2�)32!Æ3(k� k0) ; (A.1)�ay(k); ay(k0)� = 0 :Furthermore the transformation has to be 
hosen in su
h a way that theva
uum retains its total momentum zero and remains isotropi
. The mostgeneral form of su
h a transformation is then indu
ed by the operatorQ = 12 Z d3k(2�)32! �q(k)ay(k)ay(�k)� q�(k)a(k)a(�k)� ; (A.2)via ~a(k) = exp(Q)a(k) exp(Qy) = exp(Q)a(k) exp(�Q) (A.3)18



and j~0 >= exp(Q)j0 > : (A.4)Here q(k) is a general 
omplex fun
tion of k = jkj.We have[a(k); Q℄ = q(k)ay(�k) ; (A.5)�ay(�k); Q� = q�(k)a(k) : (A.6)We have in generala(k) exp(�Q) = exp(�Q) 1Xn=1 (�1)nn! [[[[[a(k); Q℄; Q℄:::℄; Q℄n ; (A.7)where the n-th term in the sum 
ontains n 
ommutators. The even 
ommu-tators (n = 2l) yield[[[[[a(k); Q℄; Q℄:::℄; Q℄2l = jq(k)j2la(k) ; (A.8)the odd ones (n = 2l + 1) yield[[[[[a(k); Q℄; Q℄:::℄; Q℄2l+1 = jq(k)j2lq(k)ay(�k) : (A.9)Writing q(k) = 
(k)eiÆ(k) with real 
onstants 
 and Æ we �nda(k) exp(�Q) = exp(�Q) �
osh(
)a(k)� sinh(
)eiÆay(�k)� = exp(�Q)~a(k) :(A.10)With these preliminaries the generalization is straightforward. We havetwo sets of 
reation and annihilation operators ay�(k) and a�(k), where � =1; 2 labels the two independent solutions f�i (k). We have the �eld expansion i(x; t) = Z d3k(2�)3 X� 12
�0 �a�(k)f�i (k; t)eikx + ay�(�k)f��i (k; t)e�ikx	(A.11)and the 
ommutation relationsha�(k); ay�(k0)i = (2�)32
�0Æ��Æ3(k� k0) : (A.12)The operator Q now takes the formQ = 12 Z d3k(2�)3 X�;� 12p
�0
�0 hq��(k)ay�(k)ay�(�k)� q���(k)a�(k)a�(�k)i :(A.13)19



The normalization 
onvention introdu
ed by writing p
�0
�0 has the ad-vantage of keeping the fun
tions q��(k) symmetri
 in the indi
es. Indeedthis symmetry is the only restri
tion on these fun
tions; as they are 
omplexwe have six free parameters, whi
h are fun
tions of k. The symmetry arisesfrom the fa
t that the produ
ts a�(k)a�(�k) and a�(k)a�(�k) are equiva-lent. On the one hand the operators 
ommute, and on the other hand thearguments k and �k may be ex
hanged as the integration is symmetri
 inthe sign of k and the fun
tions q�� only depend on jkj. An asymmetri
 partof these fun
tions would simply be summed and integrated away. We againhave Qy = �Q and the transformation matrix exp(Q) is unitary.What does not work here, at least not in a general parameterization q��, isthe expli
it evaluation of the transformation of the annihilation and 
reationoperators. The matrix q�
q
�� whi
h appears after every se
ond step in theevaluation of the multiple 
ommutators, is given byq�
q
�� = � jq11j2 + jq12j2 q11q12� + q12q22�q11�q12 + q12�q22 jq12j2 + jq22j2 ��� : (A.14)It is Hermitian, in analogy to the reality of jqj2 in the single-
hannel 
ase. Itis diagonal in two 
ases: (i) q12 = 0 and (ii) q11 = q22 = 0. It is instru
tiveto evaluate the transformation of a�(k) in the two 
ases. In the �rst 
ase we�nd ~a1(k) = 
osh(jq11j)a1(k)� sinh(jq11j)ei arg(q11)ay1(�k) ; (A.15)~a2(k) = 
osh(jq22j)a2(k)� sinh(jq22j)ei arg(q22)ay2(�k) ; (A.16)i.e., a simple Bogoliubov transformation for ea
h 
hannel. In the se
ond 
asewe have~a1(k) = 
osh(jq12j)a1(k)� sinh(jq12j)ei arg(q12)r
10
20ay2(�k) ; (A.17)~a2(k) = 
osh(jq12j)a2(k)� sinh(jq12j)ei arg(q12)r
20
10ay1(�k) ; (A.18)i.e., an annihilation operator in 
hannel 1 is mixed with a 
reation operatorin 
hannel 2.In the general 
ase the matrix q�
q
�� is not diagonal. Still we 
an sumup the series formally, as a series of matrix produ
ts. As the exponential20



series 
onverges well this 
an be done even numeri
ally. We write~a�(k) =X� s
�0
�0 hC��a�(k)� S��ay�(�k)i : (A.19)In terms of the matrix q�� we then haveC�� =Xn 1(2n)! [(qq�)n℄�� ; (A.20)where qq� is the matrix produ
t q�
q
�� and the power series is a series ofpowers of this matrix. Further, we haveS�� =Xn 1(2n+ 1)! [(qq�)n℄�
 q
� : (A.21)Instead of writing these matri
es as power series in q�� we 
an ask for the 
on-ditions on C and S that follow from the requirement that the 
ommutationrules should be 
onserved. From[a�(k); a�(k0)℄ = 0 (A.22)one �nds X
 �C�
S�
 � S�
C�
� = 0 ; (A.23)or CST = SCT = �CST�T : (A.24)Multiplying from the left with C�1 and from the right with (CT)�1 one �ndsC�1S = �C�1S�T ; (A.25)i.e., this a symmetri
 matrix.Considering the nonvanishing 
ommutator we �ndX
 �C�
C�
� � S�
S�
�� = Æ�� ; (A.26)or, in matrix form, CCy � SSy = I ; (A.27)21



the obvious generalization of
osh2(
)� sinh2(
) = 1 : (A.28)Instead of having to deal with two matri
es it may be more 
onvenient todeal with just one: the 
ondition that the operators ~a�(k) annihilate theva
uum j~0 > reads~a
(k)j~0 >=r

0
�0C
� "a�(k)�s
�0
�0 ���ay�(�k)# j~0 >= 0 ; (A.29)where we have de�ned the matrix� = C�1S : (A.30)From Eq. (A.25) we see that � is a symmetri
 matrix. Indeed we had foundpreviously that we have six free parameters for the most general transforma-tion.To begin with we 
ompute the expe
tation value of a�(k)ay�(k0) in thenew va
uum. As va
ua are homogeneous and isotropi
 we 
an write< ~0ja�(k)ay�(k0)j~0 >= (2�)3Æ3(k� k0)2p
�0
�0M��(k) : (A.31)This de�nition implies thatM is a Hermitian matrix. Using the 
ommutationrelations and (A.29) we have< ~0ja�(k)ay�(k0)j~0 > (A.32)= (2�)32
�0Æ3(k� k0)Æ��+ < ~0jay�(k0)a�(k)j~0 >= (2�)32
�0Æ3(k� k0)Æ�� +r
�0
�0
�0
�0 ������� < ~0ja�(�k0)ay�(�k)j~0 > :In terms of the matrix M we �ndM��p
�0
�0 = Æ��
�0 +p
�0
�0�������M�� ; (A.33)or M � �MT�y = I : (A.34)This 
an be solved expli
itly for M . Using the symmetry of � it easy toverify, e.g., using the series expansion in ��y, thatM = (I � ��y)�1 : (A.35)22



Furthermore, using S = C� it is easy to see, using Eq. (A.27), thatCCy = (I � ��y)�1 =M : (A.36)This implies that knowing � the matrix C is not determined uniquely. If oneuses a basis in whi
h � is diagonal, CCy is diagonal as well, and we have twofree phases in the matrix C. A further useful identity isM� = �MT : (A.37)It 
an easily be veri�ed using again the expansion of M interms of ��y.We next evaluate the expe
tation values of the other produ
ts:< ~0ja�(k)a�(k0)j~0 >=r
�0
�0��� < ~0ja�(k)ay�(�k0)j~0 >= (2�)3Æ3(k + k0)2p
�0
�0���M��(k) ; (A.38)< ~0jay�(k)ay�(k0)j~0 >=r
�0
�0 ���� < ~0ja�(�k)ay�(k0)j~0 >= (2�)3Æ3(k+ k0)2p
�0
�0����M��(k) ; (A.39)< ~0jay�(k)a�(k0)j~0 >=r
�0
�0
�0
�0 ������� < ~0ja�(�k)ay�(�k0)j~0 >= (2�)3Æ3(k� k0)2p
�0
�0�������M��(k) : (A.40)In terms of the matri
es � and M the 
u
tuation integral, evaluated inthe Bogoliubov-transformed va
uum takes the form~Fij(t) =< ~0j i(x; t) j(x; t)j~0 >= Z d3k(2�)3 X�;� 12p
�0
�0 hf�i (t)f�j (t)���M��+f�i (t)f��j (t)M��+f��i (t)f�j (t)�������M��+f��i (t)f��j (t)����M��i : (A.41)This is the basis for determining �, this is dis
ussed in Se
. 3.23



As we have performed a 
anoni
al transformation it is to be expe
ted that~Fij is real and symmetri
 in i and j, as it holds for Fij. The sum of the �rstand fourth terms in the bra
ket 
an be shown to be real and symmetri
 ini and j using the relation (A.37), the symmetry of � and the Hermiti
ity ofM . The sum of the se
ond and third terms in the bra
ket 
an be rewritten,using Eq. (A.34) and the symmetry in the summation over � and �, asM��f�i f��j + ���M������f��i f�j= Æ��f�i f��j + ���M������f�i f��j + ���M������f��i f�j : (A.42)The �rst term on the right hand side is the one that appears in the 
u
tuationintegrals Fij. Its sum over � = � with prefa
tor 1=
�0 is real and symmetri
in i and j, see Eq. (B.8). The sum of the se
ond and third terms on theright hand side is obviously symmetri
 in i and j. It 
an be shown to be realas well.The analogy of the various matri
es we have de�ned here with the 
o-eÆ
ients obtained in the one-
hannel 
ase of Ref. [2℄ is given by C $
osh 
, S $ sinh 
 exp(iÆ), � $ tanh 
 exp(iÆ), M $ 
osh2 
 , M� $sinh 2
 exp(iÆ)=2, and 2M � I $ 
osh 2
.B Canoni
al formalism at t > 0In Se
. 2 we have de�ned the 
u
tuation integralFij(t) = <  i(x; t) j(x; t) >= X� Z d3k(2�)32
�0(k) �f�i (k; t)f��j (k; t)� :The expression on the right hand side does not appear to be symmetri
 inthe indi
es i and j, and does not appear to be real. On the other hand the�elds  i(x; t) and  j(x; t) should 
ommute with ea
h other. Furthermore, the
ommutator between  i(x; t) and  j(y; t) is given by the same integral withthe only modi�
ation that a fa
tor exp[ik(y � x)℄ appears in the integrand.As these �elds 
ommute as well for arbitrary x and y, the expressionX� 12
�0(k)f�i (k; t)f��j (k; t) (B.1)24



should be real. This is not quite obvious.To begin with we 
onsider the 
ommutators in x spa
e. If we 
al
ulatethe time derivative of the equal time 
ommutator between the �elds we getddt [ i(x; t);  j(y; t)℄ = [ i(x; t); _ j(y; t)℄ + [ _ i(x; t);  j(y; t)℄ ; (B.2)and this is zero if the 
anoni
al 
ommutation relations[ i(x; t); _ j(y; t)℄ = iÆijÆ(x� y) (B.3)hold at time t. If we require that this relation 
ontinues to hold we get the
onditionddt [ i(x; t); _ j(y; t)℄ = [ _ i(x; t); _ j(y; t)℄ + [ i(x; t); � j(y; t)℄ = 0 : (B.4)The se
ond term 
an be expressed, using the equation of motion� j �� j +Mjk k = 0 ; (B.5)by the �eld 
ommutators; the term vanishes if these 
ommutators take their
anoni
al form at time t. We have to require that the �rst term vanishes:[ _ i(x; t); _ j(y; t)℄ = 0 (B.6)at time t. If this identity shall 
ontinue to hold we have to make sure thatddt [ _ i(x; t); _ j(y; t)℄ = [ _ i(x; t); � j(y; t)℄ + [ � i(x; t); _ j(y; t)℄ = 0 : (B.7)Using again the equation of motion and the symmetry ofMij(t) this 
an beveri�ed, if the nontrivial 
ommutations (B.3) hold, whereupon the s
heme
loses.This is of 
ourse the standard way for proving the time independen
e ofthe 
anoni
al 
ommutation relations. But this analysis in x spa
e show ushow to pro
eed in proving the identityIm X� 1
�0(k)f�i (k; t)f��j (k; t) = 0 (B.8)
25



that guarantees the reality and symmetry of the 
u
tuation integrals. Inorder for the identity (B.8) to hold at all times, we have to require in additionthat the identities Im X� 1
�0(k)f�i (k; t) _f��j (k; t) = Æij (B.9)and Im X� 1
�0(k) _f�i (k; t) _f��j (k; t) = 0 (B.10)hold independent of time, and that they hold at t = 0. There is no dire
teviden
e for any of these relations; we just 
an prove that they 
ontinue tohold if they hold at one time. In the one-�eld 
ase one just has to provethat the 
anoni
al 
ommutator is satis�ed at all times and that follows fromthe 
onservation of the Wronskian. Here the Wronskian of the 
u
tuationsis given, with our initial 
onditions, byW (f�; f�) =Xi �f�i _f��i � _f�i f��i � = 2iÆ��
�0 ; (B.11)where the summation is with respe
t to the lower indi
es, while in the 
om-mutators we need summations over the upper indi
es, weighted with 1=
�0.The proof that the 
onditions Eqs. (B.8)-(B.10) hold independent of timegoes through in analogy to the proof in x spa
e given above, using this timethe equations of motion (2.13). The time derivative (on both sides) of Eq.(B.8) holds, if the relation (B.9) holds. The time derivative of Eq. (B.9) 
anbe shown to hold by using the equations of motion for the 
u
tuations, andassuming that the relations (B.8) and (B.10) hold. Using again the equationsof motion, the time derivative of the relation (B.10) holds if Eq. (B.9) holds.We still have to 
onsider the initial time t = 0. With the initial 
onditionsEqs. (2.14) and (2.15) the relations (B.8) and (B.10) hold trivially as we have
hosen the f�i (0) = f�i0 to be the real eigenve
tors of the mass matrix. We
ould still multiply the two eigenve
tors with two di�erent phase fa
torsexp(iÆ�) without spoiling these 
onditions. Eq.(B.9) at t = 0 redu
es toX� f�i0f�j0 = Æij ; (B.12)and this is the orthogonality relation dual toXi f�i0f�i0 = Æ�� : (B.13)26



So at t = 0 all three relations are satis�ed, and then will so for t > 0.Aside from their importan
e for the formalism developed here the rela-tions (B.8)-(B.10) represent useful 
he
ks for numeri
al simulations, alongwith the time independen
e of the Wronskian; we have veri�ed this numeri-
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