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1 IntrodutionThe question of initial states in nonequilibrium quantum �eld theory hasfound onsiderable interest reently [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12℄, onvarious grounds. As a very pratial aspet it was realized in numerial simu-lations of quantum �elds in osmology [13, 2, 14℄, that the energy-momentumtensor had initial time singularities if the initial state was taken as the naiveFok-spae vauum. These had to be removed when oupling the �eld togravity, e.g. in a Friedmann universe. A more speulative aspet that hasattrated some interest reently was the question, whether the hoie of ini-tial state an be expeted to leave an imprint in the CMB spetrum. In anyase it is a question of priniple, to what extent the hoie of initial state isonstrained in an interating theory of partiles by onsisteny requirements.As a general aspet of quantum �eld theory, the problem of initial on-ditions was realized long ago. It ultimately an traed bak to the fat thatone swithes on the interation at some time t = 0. In the ase of nonequi-librium dynamis we have to impose initial onditions for the bakground�elds. In most appliations the initial state was taken to be the adiabativauum, whih would be the ground state if all bakground �elds were held�xed forever. When one starts to evolve the system dynamially at least theseond derivative of the �elds will be disontinuous on aount of the se-ond order di�erential equation, whih for t > 0 determines their evolution.In osmology it is already the �rst derivative of the sale parameter whihfor t > 0 is determined by the Friedmann equation. Suh singularities havebeen noted for the �rst time by St�ukelberg [15℄, they are disussed brieyin the textbook of Bogoliubov and Shirkov [16℄. The phenomenon has beenidenti�ed as a kind of `Casimir e�et' onneted to the initial time surfaeby Symanzik [17℄. In the ontext of quantum �eld theory out of equilibriumthe presene of suh singularities has been notied by various authors.The solution proposed by Symanzik is the introdution of surfae oun-terterms in addition to the usual \bulk" ounterterms of perturbative quan-tum �eld theory. In the ontext of nonequilibrium quantum �eld theory thisline has been pursued in Refs. [9, 10℄.The introdution of initial time surfaes singles out the partiular timeat whih one starts the evolution to the extent that the surfae ountertermsbeome part of the �eld theory for t > 0. The approah of modifying thenaive initial vauum state [18, 2, 8℄ seems to be more pragmati; the ideais to �nd the minimal requirements on an initial state that ould arise from2



a previous dynamial evolution. The latter aspet is disussed in [19℄. Thetehnique used for onstruting suh an initial state onsists of �nding aBogoliubov transformation of the naive adiabati vauum. For the single-hannel ase and salar utuations this has been done in Ref. [2℄ and forfermion utuations in Ref. [20℄. These results were used in Refs. [21, 14℄ informulating the renormalized equations in a at FRW universe.Our approah is based on a mode funtion formalism that has been in-trodued, for oupled hannels, in Ref. [22℄. The formalism ensures theonservation of energy with one-loop or Hartree quantum bakreation andhas been renormalized along the lines of Ref. [23℄. There the initial statewas hosen to be the adiabati vauum based on a Fok spae of partileexitations that diagonalize the initial mass matrix. It is this initial statethat we will improve here. In Ref. [22℄ renormalization is based on a per-turbative expansion lose to standard perturbation theory, in the same wayas in Ref. [23℄. The same expansion was used in Ref. [2℄ for analyzing theinitial time singularity. This analysis an be arried over in a straightforwardway to the ase of oupled �elds. Most other analyses of the singular earlytime behavior were based on the eikonal expansion. An eikonal formalismfor oupled systems has been formulated reently [24℄. We are not aware,however, of an eikonal expansion for oupled-hannel systems.The quantum expansion of the utuation �elds is formulated in suh away that the anonial ommutation relations hold for t = 0. It was not dis-ussed in Ref. [22℄ how they ontinue to hold for t > 0. Though this is to beexpeted it is not entirely obvious, and in fat leads some nontrivial relationsfor the utuation modes whih prove to be useful for our formalism. Thisis disussed in Appendix B. Another approah to the anonial formalismfor oupled-hannel systems was introdued in Ref. [24℄, and this is anotherreason for verifying that the sheme of Ref. [22℄ works orretly.Though our main subjet here is the hoie of the initial state, with hind-sight of oupling the system to gravity, we take the oasion for disussingthe onept of adiabati partile number within our formalism. This is sug-gested by the fat that we have to disuss Bogoliubov transformations foroupled systems anyway and that partile numbers are usually de�ned bythe oeÆients of these transformations.The paper is organized as follows: In Se. 2 we introdue the model wewant to onsider, a system of two oupled quantum �elds with masses anda general fourth order potential. We de�ne the deomposition into lassialand utuation �elds and the evolution of the utuations. In Se. 3 we3



disuss the behavior of the Green's funtion at early times and onstrut aBogoliubov transformation in order to redue the leading singular behaviorsuh that the leading time derivatives beome �nite at the intial time. InSe. 4 we present the expetation value of the energy-momentum tensor inthe Bogoliubov-transformed initial state. In Se. 5 we disuss the oneptof adiabati partile number. Some more tehnial subjets are transferredto the Appendies: the Bogoliubov transformation for oupled systems inAppendix A and some aspets of the anonial formalism in Appendix B.2 The modelWe onsider a system of two oupled salar quantum �elds with a Lagrangiandensity of the formL = �12���i���i + 12m2i�2i�+ �ij4 �2i�2j ; (2.1)where the indies i; j take the values 1 and 2. The hybrid model of ination[25, 26, 27℄ withL = 12������+ 12������+ 12m2�2 + �4 ��2 � v2�2 + �2�2�2 (2.2)is of this form with �11 = 0,�12 = �, �22 = �,m21 = m2 and m22 = ��v2.Also some models involving supersymmetri at diretions [28, 29℄ are of thistype. The generalization to a general mass matrix and a general fourth orderpotential is possible, but we do not want do overburden the formalism witha profusion of indies. Also, the limitation to two �elds is not essential.We separate the �elds � into lassial �elds and utuations via�i = 'i +  i : (2.3)The lassial Lagrangian density then retains the formL(0) = �12��'i��'i + 12m2i'2i�+ �ij4 '2i'2j ; (2.4)while the utuation Lagrangian, of seond order in the utuations, beomesL(2) = �12�� i�� i + 12m2i 2i �+ �ij2 �'2i 2j + 2'i'j i j� : (2.5)4



This an be written asL(2) = 2Xi=1 �12�� i�� i + 12M2ij(') i j� ; (2.6)with M211 = m21 + 3�11'21 + �12'22 ;M212 = 2�12'1'2 ; (2.7)M222 = m22 + 3�22'22 + �12'21 : (2.8)If the �eld is oupled to gravity in a at FRW universe, the utuation massmatrix takes a similar form. After onformal resaling of �elds and momenta(see, e.g., Refs. [30, 13℄) one just has to replaem2i ! �m2i + (�i � 16)R� a2 : (2.9)Here a is the sale parameter, R the Rii salar, and the �i are the onformalouplings.In the following we restrit ourselves to homogeneous bakground �elds'i(t), so the mass matrix depends on time only. In the FRW universe the timeparameter is onformal time, and we have an additional time dependene viaa(�) and R(�).We separate the utuation mass matrix into its initial value and a "po-tential" V via M2ij(t) =M2ij(0) + Vij(t) : (2.10)We diagonalize the initial mass matrix byM2ij(0)f�j0 = m2�0f�i0 : (2.11)The eigenvetors f�i0 are hosen to be real, and normalized to unity:2Xi=1 f�i0f�i0 = Æ�� : (2.12)The latin subsripts refer to the �eld omponents, as before, and the Greeksupersripts refer to the two independent solutions of the eigenvalue equation.We now de�ne a set of mode funtions f�i (k; t) for homogeneous bakground5



�eld in the following way:(i) their time evolution is determined by�f�i (k; t) + k2f�i (k; t) +M2ij(t)f�j (k; t) = 0 ; (2.13)(ii) the initial onditions are spei�ed asf�i (k; 0) = f�i0 ; (2.14)_f�i (k; 0) = �i
�0f�i0 ; (2.15)where we have introdued the frequenies
�0(k) =qm2�0 + k2 : (2.16)The funtions f�i (k; t) form a set of linearly independent solutions of thesystem of mode equations.The �elds  i(x; t) are quantum �elds. For a homogeneous bakground wean expand them as i(x; t) =X� Z d3k(2�)32
�0 �a�(k)f�i (k; t) + ay�(�k)f��i (k; t)� eikx : (2.17)The anonial ommutation relations areha�(k); ay�(k0)i = (2�)32
�0(k)Æ��Æ3(k� k0) : (2.18)In the following we will need the two-point funtions at the oinidene limit,the \utuation integrals"Fij(t) = < 0j i(x; t) j(x; t)j0 >= X� Z d3k(2�)32
�0(k)f�i (k; t)f��j (k; t) : (2.19)Here the expetation value is taken in the vauum state of a Fok spae,whose quanta have the initial masses m�(0). This is the \adiabati vauum",de�ned by a�(k)j0 >= 0 8�;k : (2.20)Of ourse this is not the ground state of the system, and the reation andannihilation operators ay�(k) and a�(k) do not reate free partiles with themasses mi. We disuss some aspets of the anonial formalism in AppendixB; in partiular we establish that the utuation integral as de�ned above isreal and symmetri in i and j, though this is not apparent on the right handside of Eq (2.19). 6



3 The initial time singularity of the Green'sfuntion and the modi�ed initial stateThe quantum bakreation of the utuations onto the lassial �elds anbe derived using the losed-time-path formalism [31, 32℄. For the quantum�eld theories that we onsider here, it has been formulated in several seminalpubliations [33, 34, 35, 18, 36℄. We do not repeat this here. If one justonsiders the one-loop quantum bakreation the relevant equations take arather intuitive form. The equations of motion for the lassial �elds beome�'1 +m21'1 + �11'31 + �12'1'22+3�11'1F11 + �12'1F22 + 2�12'2F12 = 0 ; (3.1)and an analogous equation for '2. As will be analyzed below, the utuationintegrals Fij(t) are singular at t = 0, the time where we start the evolution.As t & 0 it behaves as t ln t. Though this represents a mathematial sin-gularity, it is �nite and even zero at t = 0. So it will not prevent us fromstarting a numerial simulation. The singular behavior beomes a problemwhen we ouple the �eld to gravity. The dynamis of the FRW sale fator ais determined by the energy-momentum tensor, whih involves seond timederivatives of the two-point funtion. If one analyzes the energy-momentumtensor, one indeed �nds, near t = 0, a time dependene of the form 1=t inT �� . This then prevents one from starting the dynamial evolution. Of ourse,even in at spae this in�nity is an undesirable and unphysial feature of theenergy-momentum tensor.As the energy-momentum tensor is a rather involved expression, espe-ially after renormalization, we �rst onsider the utuation integral and�nd a way to remove its initial singularity, suh that its �rst and seond timederivatives at t = 0 beome �nite. This requires less algebra and, as we haveseen previously [2℄, this is suÆient for making the energy-momentum tensor�nite near t = 0.The utuation integrals are ultraviolet divergent. The divergenes anbe analyzed [23℄ by expanding with respet to orders in V whih is equivalentto expanding with respet to the ouplings �ij. This allows one to removethe divergent parts and the dynamis is determined by the remaining �niteparts. A loser analysis shows that, on the level of utuation integrals, theontributions of zeroth and �rst order in V are ultraviolet divergent. One7



�nds [23℄, up to �rst order in V,Fij = Z d3k(2�)3 X� 12
�0f�i (t)f��j (t) ' Z d3k(2�)3 (X� 12
�0 f�i0f��j0+X�� 12
�0
�0 f�i0f�j0 �� 1
�0 + 
�0�V��(t)� V��(0) os [(
�0 + 
�0)t℄�+ 1(
�0 + 
�0)2 _V��(0) sin [(
�0 + 
�0)t℄+ 1(
�0 + 
�0)3 ��V��(t)� �V��(0) os [(
�0 + 
�0)t℄�+ 1(
�0 + 
�0)3 Z dt0 :::V�� (t0) os [(
�0 + 
�0)(t� t0)℄�� : (3.2)Several integrations by parts have been performed in order to separate thehigh momentum power behavior. The �rst term in the integrand is quadrati-ally divergent, and the one proportional to V(t) is logarithmially divergent.In the proess of renormalization these terms are removed and inluded in themass and oupling onstant renormalizations. The ontribution proportionalto V(0) vanishes as V(0) = 0 by de�nition, see Eq. (2.10). The terms pro-portional to _V(t) and �V(t) are �nite at all times. The nonanalyti parts arethose proportional to _V(0) and �V(0). Near t = 0 we �nd that the momentumintegrals whih multiply _V(0) and �V(0) behave asZ d3k(2�)3 12
�0
�0(
�0 + 
�0)2 sin[(
�0 + 
�0)t℄ ' � 18�2 t ln[(m� +m�)t℄ ;Z d3k(2�)3 12
�0
�0(
�0 + 
�0)3 os[(
�0 + 
�0)t℄ ' 116�2 t2 ln[(m� +m�)t℄ :So in general the �rst and seond derivatives of the utuation integralswould be in�nite at t = 0.As we have mentioned previously there are two methods for getting ridof this singular behavior: either one introdues surfae ounterterms or onemodi�es the initial state. Our approah is the seond one, and we have for-mulated this modi�ation of the initial state as a Bogoliubov transformation.The singular behavior is obviously related to the large momentum behaviorof the integrand. So the modi�ation of the initial state will onstrain onlyits ultraviolet behavior. We are still free to modify it at �nite momenta, or8



with ontributions that vanish suÆiently fast at large momenta, as e.g. athermal initial state.The Bogoliubov transformation and its onsequenes for the utuationintegral are presented in detail in Appendix A. The general onept im-plies that we replae our naive initial state, the vauum state for quanta ofmasses mi0 by a transformed vauum state, annihilated by a superposition ofannihilation operators a�(k) and reation operators ay�(�k). The essentialformulae are:(i) the de�nition of the transformation~a�(k) =X� s
�0
�0 hC��a�(k)� S��ay�(�k)i ; (3.3)(ii) the de�nition of a new vauum state j~0 > via~a(k)j~0 >=r
0
�0C� "a�(k)�s
�0
�0 ���ay�(�k)# j~0 >= 0 ; (3.4)where � = C�1S is a symmetri matrix;(iii) the de�nition of a matrix M�� whih is introdued via the expetationvalue of a�(k)ay�(k0) in the new vauum:< ~0ja�(k)ay�(k0)j~0 >= (2�)3Æ3(k� k0)2p
�0
�0M��(k) ; (3.5)and(iv) the relation between � and MM � �MT�y = I ; (3.6)whih ensures that the ommutator of ~a�(k) and ~ay�(k0) is anonial. Allmatries whih we have introdued here depend on k = jkj.As derived in Appendix A, the utuation integral, when evaluated inthe Bogoliubov-transformed vauum, takes the form~Fij(t) =< ~0j i(x; t) j(x; t)j~0 >= 12 Z d3k(2�)3 X�;� 12p
�0
�0 hf�i (t)f�j (t)���M��+f�i (t)f��j (t)M��+f��i (t)f�j (t)�������M��+f��i (t)f��j (t)����M��i : (3.7)9



We now have to determine � in suh a way as to anel the initial sin-gularities whih are ontained in the integral over f�i (t)f��j (t). As disussedbelow Eq. (3.2) the dangerous ontributions are those involving_V��(0) sin [(
�0 + 
�0)t℄ and �V��(0) os [
�0 + 
�0)t℄. They have to be an-elled by the terms proportional to � and �2 generated by the Bogoliubovtransformation. If one onsiders Eqs. (3.6) and (3.7) one realizes that thedetermination of � seems to be marred already by the nonlinear relation be-tween M and �. We have to realize, however, that there is no unique hoiefor �, anyway. All we need is a anellation of the dangerous terms at largemomenta. These ontributions are divided, in the integrand, by ombinationsof 
�0 and 
�0 whih asymptotially behave as k�4 and k�5, respetively. Sothese terms beome small asymptotially, and to get the orret asymptotibehavior of the matrix elements of � we an work in the linear approxi-mation. In this approximation we have M�� ' Æ��, ���M�� ' ���, andM��������� ' 0. Furthermore, we an approximate f�i (t) ' f�i0 exp(�i
�0t),whenever it appears multiplied by �. Corretions would be of order � � V; asV is of order � this would be of order �2.When rewriting the utuation integral in the Bogoliubov-transformedvauum ~Fij we use the approximations we have just mentioned. We furtheruse the expansion of f�i (t)f��j (t) as it appears in Eq. (3.2), but we removethe renormalization parts. We then obtain, to �rst order in V and �~Fij ' Z d3k(2�)3 (X�;� 12p
�0
�0 f�i0f�j0 ����e�i(
�0+
�0)t + ����ei(
�0+
�0)t�+X�;� 12
�0
�0 f�i0f�j0 � 1(
�0 + 
�0)2 _V��(0) sin [(
�0 + 
�0)t℄+ 1(
�0 + 
�0)3 ��V��(t)� �V��(0) os [(
�0 + 
�0)t℄�+ 1(
�0 + 
�0)3 Z dt0 :::V�� (t0) os [(
�0 + 
�0)(t� t0)℄�� : (3.8)The anellation of the terms whih would produe a singularity at t = 0then requires Im ��� = 12
�0
�0 1(
�0 + 
�0)2 _V��(0) ; (3.9)Re ��� = 12
�0
�0 1(
�0 + 
�0)3 �V��(0) : (3.10)10



If the �elds were independent V�� would be diagonal and we would obtain(omitting the indies of the diagonal elements)Im �Re � = 2
0 _V(0)�V(0) (3.11)and j�j = 18
30s _V(0)2 + �V(0)24
20 (3.12)for the separate Bogoliubov transformations of the two �elds. This agreesin the approximation of large momenta with the results for the one-�eldase, Eqs. (51) and (52) of Ref. [2℄. There it was possible to remove theontributions proportional to _V(0) and �V(0) for all momenta. Here theseterms are anelled at large momenta only.With Eqs. (3.9) and (3.10) we have obtained a solution to our problem ofinitial singularities. We have to stress that there is an in�nite manifold of suhsolutions, di�ering, e.g., by a di�erent hoie of initial oupation numbers at�nite momenta. They all have to share the same large momentum behavior,however.One we have � we now must determine M , using (3.6), without anyapproximation, beause otherwise our transformation would not be anonial.Though � appears nonlinearly, Eq.(3.6) is simply a system of four linearequations for the matrix elements of M . Finally, the utuation integral(3.7) has to be omputed using the exat numerial solutions f�i (t) in allfour terms of the integrand.For the numerial omputations it is preferable to implement the Bogoli-ubov transformation in a di�erent way, by rede�ning the mode funtions.For this purpose we introdue~f i (k; t) =X� p2
0p2
�0 [f�i (k; t)N� + f��i (k; t)����N�℄ ; (3.13)where the matrix N satis�es N �N =M 3. It an be determined using theeigenvalues and eigenvetors of M . One easily veri�es that~Fij(t) =X� Z d3k(2�)32
0 ~f i (k; t) ~f �j (k; t) (3.14)3N is not uniquely determined, all we need is one partiular matrix that satis�es thisrelation. As M is Hermitian, so is N . 11



is idential to the previous de�nition, Eq. (3.7). As f�i and f��i are solutionsof the same equation of motion, Eq. (2.13), so is ~f i . It is suÆient, therefore,to determine ~f i as a solution to this equation with the initial onditionsimplied by Eqs. (3.13),(2.14) and (2.15).Having presented the tehnial proedure we would like to add some om-ments onerning the interpretation. In order to do so we need to disussthe problem of initial states in a more general way.The adiabati vauum has often been used as an initial state for preheat-ing simulations, maybe on the grounds that after ination one ends up in atemperature zero state, i.e. an \empty" vauum. Indeed if this is the ase,and if the evolution of the lassial �elds is very slow (\adiabati"), this anbe onsidered to be a reasonable guess for an initial state. Another hoiethat may be reasonable, e.g. after thermalization and in a period of adiabatievolution, is a thermal initial state. This is of ourse not a pure state. For athermal state the utuation integral would be replaed byFij(t) =X� Z d3k(2�)32
�0(k)(2N�(k) + 1)f�i (k; t)f��j (k; t) ; (3.15)with N�(k) = [exp(
�(k)=T )� 1℄�1 : (3.16)Here we have used the fat that the mass matrix and therefore the utuationHamiltonian is diagonal in the basis f�i0 at t = 0.If one takes into aount the real evolution of the system before t = 0 thenneither the adiabati vauum nor a thermal initial state will be appropriate.If the system has started, before t = 0, in a pure quantum state, it annothave ended up, at t = 0, in a thermal state or in any other state desribedsimply by partile numbers N�(k). The quantum system an be interpretedas a system of independent free partile only after \deoherene", a oneptthat has been addressed in the present ontext in Refs. [37, 38℄. But even ifthe system has started, at an earlier time, with a mixed state, the intera-tion with the bakground �eld will have reated a oherene in the di�erentomponents of suh a state at t = 0, and a representation in the form (3.15)will not be possible.So, if one takes into aount the evolution of the system prior to t = 0then one would have to know the entire prehistory or at least the prehistoryof a long period in order to desribe the state at t = 0 with its full quantumoherene. This is of ourse not possible unless one knows how to start the12



system at an earlier time, faing then the same problem. The best one anhope for is that after some time the system will not remember muh of itsinitial state. This is presumably the ase if the bakground �elds produelarge quantum utuations at later times.The purpose of the Bogoliubov transformation is di�erent. If we know theevolution of the bakground �elds near t = 0 (and by ontinuity this meansalso shortly before t = 0), to the extent that we know _V(0) and �V(0), or,equivalently, _�(0) and ��(0), then we have a limited information on the initialstate. Constant bakground �elds at t < 0 and the adiabati vauum stateas initial state would produe a singularity of the �rst two derivatives of theGreen's funtion. The Bogoliubov transformation removes this singularity,or, more preisely, it redues it to higher orders in the derivatives. In thisway it takes a minimal aount of the fat that the system is not stati beforet = 0. As we have displayed above the transformation may be onsidered as amodi�ation of the state or of the mode funtions. The new state should notbe onsidered as a vauum state. The adiabati vauum state remains thelowest energy state for a given set of bakground �elds. The analysis of thehigh momentum behavior of the utuation integral simply shows that thesystem will never arrive at this state if the bakground �elds keep hangingwith time. In reality, of ourse, we would rather expet the quantum stateof the utuations to be an exited one, partiularly at low momentum. Oursimple requirement of ontinuity for the Green's funtion does not give usany information on this exited state, exept at high momenta.The state generated by the Bogoliubov transformation applied to the adi-abati vauum is a pure state. Therefore, it annot be desribed by a mixedstate with suitable partile numbers N�(k). If for some physial motivationwe want to start with a thermal state or some other state spei�ed by parti-le numbers we have to ombine two di�erent onepts: a mixed state madeup of di�erent exited Fok-spae states and a pure state that ensures theontinuity of the Green' s funtion. For a thermal state the partile numbersderease exponentially as k ! 1; then the disontinuity of the Green' sfuntion solely arises from the vauum ontribution. Its Bogoliubov trans-formation is well-de�ned and ompulsory at high momenta only. There arethen, among many others, two pragmati ways of de�ning a thermal initialstate: (i) One de�nes the thermal state using for all momenta the modi�edmode funtions ~f�i (k; t). This is not a quite a thermal state, though, as themodi�ed mode funtions are not eigenfuntions of i�=�t. (ii) One uses theintegrand of Eq. (3.15) with the original mode funtions f�i (k; t) for low13



momenta only, and the integrand of Eq. (3.14) at high momenta.4 The energy-momentum tensorThe energy-momentum tensor for the utuations t�� = (T u)�� in a homo-geneous bakground �eld is diagonal and has idential spae-spae ompo-nents. It may be spei�ed by the two independent expetation valuest00 = � = 12 < _ i(x; t) _ i(x; t) (4.1)+~r i(x; t)~r i(x; t) +M2ij(t) i(x; t) j(x; t) >and t�� = �� 3p = < � _ i(x; t) _ i(x; t) (4.2)+~r i(x; t)~r i(x; t) + 2M2ij(t) i(x; t) j(x; t) > :� is the energy density and p the pressure. t00 and t�� an be evaluated in theadiabati vauum and in the Bogoliubov-transformed vauum in the sameway as the utuation integrals. We just present the expetation valuesin the Bogoliubov-transformed vauum, the one in the adiabati vauum isobtained by substituting �! 0 and M ! I. For ~t00 we obtain~t00 = Z d3k(2�)3 X�;� 14
�0 nRe h���M�� � _f�i _f�i + k2f�i f�i +M2ijf�i f�j �i+ �M�� +M���������� � _f�i _f��i + k2f�i f��i +M2ijf�i f��j �o : (4.3)For the trae we �nd~t�� = Z d3k(2�)3 X�;� 14
�0 nRe h���M�� �� _f�i _f�i + k2f�i f�i + 2M2ijf�i f�j �i+ �M�� +M���������� �� _f�i _f��i + k2f�i f��i + 2M2ijf�i f��j �o : (4.4)Both expressions an alternatively be rewritten in terms of the modi�ed modefuntions of Eq. (3.13). 14



Using the equation of motion for the utuations we an write� _f�i _f��i + k2f�i f��i +M2ijf�i f��j = �12 d2dt2f�i f��j ; (4.5)� _f�i _f�i + k2f�i f�i +M2ijf�i f�j = �12 d2dt2f�i f�j : (4.6)Therefore the trae an be expressed in terms of the utuation integrals(3.7) as ~t�� = �12 d2dt2 ~Fii +Mij ~Fij : (4.7)Both the energy density and the trae ontain seond spae and time deriva-tives of the two-point funtion and this an transform the mild singularitiesfound in the utuation integrals Fij into in�nities at t = 0. In Ref. [2℄ it wasfound that the energy density remains �nite even in the adiabati vauum.As the seond derivatives only appear in the kineti terms whih are diag-onal this analysis remains valid for the oupled-hannel ase. However, thetrae of the energy-momentum tensor t�� in the adiabati vauum ontainsthe seond time derivative of the utuation integrals Fii and this behavesas d2(t ln t)=dt2 = 1=t as t& 0. In the transformed utuation integrals ~Fijwe have removed the dangerous terms, and so ~t�� has a �nite value at t = 0.When the �eld is oupled to gravity [39℄ the expressions (4.1) and (4.2)reeive some further ontributions that we do not want to disuss herein detail. They an be written in terms of the utuation integrals andtheir �rst derivatives. The utuation integrals themselves are not in�niteat t = 0. The most singular of the additional terms are proportional to(�i � 1=6)HdFii=dt and appear both in t00 and t��. They behave as ln t ast& 0; in the Bogoliubov-transformed initial state Fii is replaed by ~Fii andthen the energy-momentum tensor remains �nite at t = 0.5 The adiabati partile numberThe adiabati partile number is obtained by representing the utuation�eld at time t in terms of the adiabati Fok spae at time t. The utuation�eld is given by Eq. (2.17). The adiabati Fok spae at time t is de�ned interms of partile exitations whih are eigenstates of the mass matrixM2ij(t).We de�ne the eigenvetors of the mass matrix byM2ij(t)f�jt = m2�tf�it ; (5.1)15



we again hoose them to be real and normalized viaXi f�itf�it = Æ�� (5.2)and de�ne 
�t = pk2 +m2�t. We further expand the �elds with respet tothe new basis as i(x; t) = X� Z d3k(2�)32
�t ha�t(k)f�it + ay�t(�k)f�iti eikx ; (5.3)_ i(x; t) = �iX� Z d3k(2�)32 ha�t(k)f�it � ay�t(�k)f�iti eikx ; (5.4)where we have hosen the initial onditions for the modes f�it(k; t) in analogyto Eqs. (2.14) and (2.15). Using the �eld expansion the new annihilationoperators a�t(k) an be expressed asa�t(k) = Z d3xe�ikx h
�t i(x; t) + i _ i(x; t)i f�it : (5.5)They annihilate the adiabati vauum de�ned at time t. The relation to theoriginal operators a�(k) is obtained by inserting the �eld expansion (2.17)into Eq. (5.5). We �nda�t(k) =X� s
�t
�0 hC��a�(k)� S��ay�(�k)i ; (5.6)with C�� = 12p
�t
�0 h
�tf�i (k; t) + i _f�i (k; t)i f�it ; (5.7)S�� = �12p
�t
�0 h
�tf��i (k; t) + i _f��i (k; t)i f�it : (5.8)Using the relations (B.8), (B.9) and (B.10) of Appendix B it is straightfor-ward to verify that this is a Bogoliubov transform, i.e., that Eqs. (A.23) and(A.26) are satis�ed. In terms of the matries C and S the adiabati partilenumber density is given by 4,n�(k; t) = 12V 
�t < 0jay�t(k)a�t(k)j0 >=X S��S� : (5.9)4No summation over �. For simpliity of presentation we assume the adiabati vauumas initial state. 16



Inserting Eq. (5.8) we obtainn�(k; t) = 12
�t X 12
0 h
2�tf i f �j + _f i _f �j i f�itf�jt : (5.10)This has a simple interpretation: one deomposes the energy density withrespet to the utuations f�it . Then n�(k; t) is obtained by dividing the partorresponding to the utuations f�it by the frequeny 
�t of these utua-tions. This result is analogous to the one-hannel ase.While the de�nition (5.9) is suggestive we would like to add that thispartile number does not imply a representation of the utuation integral inthe form (3.15) in terms of the mode funtions f�it(k; t). Indeed, if one wantsto use the representation (5.3) for alulating the utuation integral one getsnontrivial ontributions from the operators a�t(k)a�t(k0), ay�t(k)ay�t(k0) anday�t(k)ay�t(k0) as well, see Eqs. (A.38), (A.39) and (A.40). These ontributionsto the utuation integral are negligible for large partile numbers only, i.e.,if the matrix elements S� are muh larger than the C� .6 SummaryWe have addressed here two topis of the nonequilibrium dynamis of oupled�elds in a one-loop approximation to quantum bakreation: the problem ofthe initial time singularity in the energy-momentum tensor and the de�nitionof the adiabati partile number for a system of oupled salar �elds. Alongwith these topis we have onsidered Bogoliubov transformations and someaspets of the anonial formalism for suh oupled systems.Our main interest, as evident from the title, were the initial time sin-gularities. We have been able to de�ne a Bogoliubov transformation of theinitial state that removes the initial time singularities in suh a way that theenergy-momentum tensor is �nite in the limit t& 0. This is important if oneonsiders the evolution of suh a system of �elds oupled to gravity. Clearly,this Bogoliubov transformation is onstrained only at large momenta. Somodi�ations that are subleading at high momenta are still aeptable. Wehad to inlude a disussion of the anonial formalism for a oupled-hannelsystem, as some of the results were needed in the onstrution of the initialtime singularities: we had to ensure that the utuation integrals are realand symmetri in the indies, as they should be on aount of their de�nition.17



Both the disussion of the anonial formalism and of Bogoliubov trans-formations for oupled-hannel systems are at the same time the basis forde�ning the adiabati partile number density. So we have derived an ex-pression for this density in terms of the oupled system mode funtions.It is analogous to the de�nition in the single-hannel ase and has a sim-ple intuitive interpretation. Another formulation for the adiabati partilenumber, based in an eikonal formalism and the evolution of Bogoliubov oef-�ients, has been presented reently [24℄. As both formalisms are anonial,the results should be equivalent, though it may be diÆult to verify thisanalytially.AknowledgmentsOne of us (N.K.) thanks the Humboldt Foundation for �nanial support, andthe Deutshe Elektronensynhrotron DESY, Hamburg, for hospitality.A The Bogoliubov transformation for a ou-pled systemWe �rst reall some basi relations for the ase of a single quantum �eld, see,e.g., Ref. [40℄. The Bogoliubov transformation rotates reation into annihila-tion operators and vie versa, suh as to preserve the anonial ommutationrelations [a(k); a(k0)℄ = 0 ;�a(k); ay(k0)� = (2�)32!Æ3(k� k0) ; (A.1)�ay(k); ay(k0)� = 0 :Furthermore the transformation has to be hosen in suh a way that thevauum retains its total momentum zero and remains isotropi. The mostgeneral form of suh a transformation is then indued by the operatorQ = 12 Z d3k(2�)32! �q(k)ay(k)ay(�k)� q�(k)a(k)a(�k)� ; (A.2)via ~a(k) = exp(Q)a(k) exp(Qy) = exp(Q)a(k) exp(�Q) (A.3)18



and j~0 >= exp(Q)j0 > : (A.4)Here q(k) is a general omplex funtion of k = jkj.We have[a(k); Q℄ = q(k)ay(�k) ; (A.5)�ay(�k); Q� = q�(k)a(k) : (A.6)We have in generala(k) exp(�Q) = exp(�Q) 1Xn=1 (�1)nn! [[[[[a(k); Q℄; Q℄:::℄; Q℄n ; (A.7)where the n-th term in the sum ontains n ommutators. The even ommu-tators (n = 2l) yield[[[[[a(k); Q℄; Q℄:::℄; Q℄2l = jq(k)j2la(k) ; (A.8)the odd ones (n = 2l + 1) yield[[[[[a(k); Q℄; Q℄:::℄; Q℄2l+1 = jq(k)j2lq(k)ay(�k) : (A.9)Writing q(k) = (k)eiÆ(k) with real onstants  and Æ we �nda(k) exp(�Q) = exp(�Q) �osh()a(k)� sinh()eiÆay(�k)� = exp(�Q)~a(k) :(A.10)With these preliminaries the generalization is straightforward. We havetwo sets of reation and annihilation operators ay�(k) and a�(k), where � =1; 2 labels the two independent solutions f�i (k). We have the �eld expansion i(x; t) = Z d3k(2�)3 X� 12
�0 �a�(k)f�i (k; t)eikx + ay�(�k)f��i (k; t)e�ikx	(A.11)and the ommutation relationsha�(k); ay�(k0)i = (2�)32
�0Æ��Æ3(k� k0) : (A.12)The operator Q now takes the formQ = 12 Z d3k(2�)3 X�;� 12p
�0
�0 hq��(k)ay�(k)ay�(�k)� q���(k)a�(k)a�(�k)i :(A.13)19



The normalization onvention introdued by writing p
�0
�0 has the ad-vantage of keeping the funtions q��(k) symmetri in the indies. Indeedthis symmetry is the only restrition on these funtions; as they are omplexwe have six free parameters, whih are funtions of k. The symmetry arisesfrom the fat that the produts a�(k)a�(�k) and a�(k)a�(�k) are equiva-lent. On the one hand the operators ommute, and on the other hand thearguments k and �k may be exhanged as the integration is symmetri inthe sign of k and the funtions q�� only depend on jkj. An asymmetri partof these funtions would simply be summed and integrated away. We againhave Qy = �Q and the transformation matrix exp(Q) is unitary.What does not work here, at least not in a general parameterization q��, isthe expliit evaluation of the transformation of the annihilation and reationoperators. The matrix q�q�� whih appears after every seond step in theevaluation of the multiple ommutators, is given byq�q�� = � jq11j2 + jq12j2 q11q12� + q12q22�q11�q12 + q12�q22 jq12j2 + jq22j2 ��� : (A.14)It is Hermitian, in analogy to the reality of jqj2 in the single-hannel ase. Itis diagonal in two ases: (i) q12 = 0 and (ii) q11 = q22 = 0. It is instrutiveto evaluate the transformation of a�(k) in the two ases. In the �rst ase we�nd ~a1(k) = osh(jq11j)a1(k)� sinh(jq11j)ei arg(q11)ay1(�k) ; (A.15)~a2(k) = osh(jq22j)a2(k)� sinh(jq22j)ei arg(q22)ay2(�k) ; (A.16)i.e., a simple Bogoliubov transformation for eah hannel. In the seond asewe have~a1(k) = osh(jq12j)a1(k)� sinh(jq12j)ei arg(q12)r
10
20ay2(�k) ; (A.17)~a2(k) = osh(jq12j)a2(k)� sinh(jq12j)ei arg(q12)r
20
10ay1(�k) ; (A.18)i.e., an annihilation operator in hannel 1 is mixed with a reation operatorin hannel 2.In the general ase the matrix q�q�� is not diagonal. Still we an sumup the series formally, as a series of matrix produts. As the exponential20



series onverges well this an be done even numerially. We write~a�(k) =X� s
�0
�0 hC��a�(k)� S��ay�(�k)i : (A.19)In terms of the matrix q�� we then haveC�� =Xn 1(2n)! [(qq�)n℄�� ; (A.20)where qq� is the matrix produt q�q�� and the power series is a series ofpowers of this matrix. Further, we haveS�� =Xn 1(2n+ 1)! [(qq�)n℄� q� : (A.21)Instead of writing these matries as power series in q�� we an ask for the on-ditions on C and S that follow from the requirement that the ommutationrules should be onserved. From[a�(k); a�(k0)℄ = 0 (A.22)one �nds X �C�S� � S�C�� = 0 ; (A.23)or CST = SCT = �CST�T : (A.24)Multiplying from the left with C�1 and from the right with (CT)�1 one �ndsC�1S = �C�1S�T ; (A.25)i.e., this a symmetri matrix.Considering the nonvanishing ommutator we �ndX �C�C�� � S�S��� = Æ�� ; (A.26)or, in matrix form, CCy � SSy = I ; (A.27)21



the obvious generalization ofosh2()� sinh2() = 1 : (A.28)Instead of having to deal with two matries it may be more onvenient todeal with just one: the ondition that the operators ~a�(k) annihilate thevauum j~0 > reads~a(k)j~0 >=r
0
�0C� "a�(k)�s
�0
�0 ���ay�(�k)# j~0 >= 0 ; (A.29)where we have de�ned the matrix� = C�1S : (A.30)From Eq. (A.25) we see that � is a symmetri matrix. Indeed we had foundpreviously that we have six free parameters for the most general transforma-tion.To begin with we ompute the expetation value of a�(k)ay�(k0) in thenew vauum. As vaua are homogeneous and isotropi we an write< ~0ja�(k)ay�(k0)j~0 >= (2�)3Æ3(k� k0)2p
�0
�0M��(k) : (A.31)This de�nition implies thatM is a Hermitian matrix. Using the ommutationrelations and (A.29) we have< ~0ja�(k)ay�(k0)j~0 > (A.32)= (2�)32
�0Æ3(k� k0)Æ��+ < ~0jay�(k0)a�(k)j~0 >= (2�)32
�0Æ3(k� k0)Æ�� +r
�0
�0
�0
�0 ������� < ~0ja�(�k0)ay�(�k)j~0 > :In terms of the matrix M we �ndM��p
�0
�0 = Æ��
�0 +p
�0
�0�������M�� ; (A.33)or M � �MT�y = I : (A.34)This an be solved expliitly for M . Using the symmetry of � it easy toverify, e.g., using the series expansion in ��y, thatM = (I � ��y)�1 : (A.35)22



Furthermore, using S = C� it is easy to see, using Eq. (A.27), thatCCy = (I � ��y)�1 =M : (A.36)This implies that knowing � the matrix C is not determined uniquely. If oneuses a basis in whih � is diagonal, CCy is diagonal as well, and we have twofree phases in the matrix C. A further useful identity isM� = �MT : (A.37)It an easily be veri�ed using again the expansion of M interms of ��y.We next evaluate the expetation values of the other produts:< ~0ja�(k)a�(k0)j~0 >=r
�0
�0��� < ~0ja�(k)ay�(�k0)j~0 >= (2�)3Æ3(k + k0)2p
�0
�0���M��(k) ; (A.38)< ~0jay�(k)ay�(k0)j~0 >=r
�0
�0 ���� < ~0ja�(�k)ay�(k0)j~0 >= (2�)3Æ3(k+ k0)2p
�0
�0����M��(k) ; (A.39)< ~0jay�(k)a�(k0)j~0 >=r
�0
�0
�0
�0 ������� < ~0ja�(�k)ay�(�k0)j~0 >= (2�)3Æ3(k� k0)2p
�0
�0�������M��(k) : (A.40)In terms of the matries � and M the utuation integral, evaluated inthe Bogoliubov-transformed vauum takes the form~Fij(t) =< ~0j i(x; t) j(x; t)j~0 >= Z d3k(2�)3 X�;� 12p
�0
�0 hf�i (t)f�j (t)���M��+f�i (t)f��j (t)M��+f��i (t)f�j (t)�������M��+f��i (t)f��j (t)����M��i : (A.41)This is the basis for determining �, this is disussed in Se. 3.23



As we have performed a anonial transformation it is to be expeted that~Fij is real and symmetri in i and j, as it holds for Fij. The sum of the �rstand fourth terms in the braket an be shown to be real and symmetri ini and j using the relation (A.37), the symmetry of � and the Hermitiity ofM . The sum of the seond and third terms in the braket an be rewritten,using Eq. (A.34) and the symmetry in the summation over � and �, asM��f�i f��j + ���M������f��i f�j= Æ��f�i f��j + ���M������f�i f��j + ���M������f��i f�j : (A.42)The �rst term on the right hand side is the one that appears in the utuationintegrals Fij. Its sum over � = � with prefator 1=
�0 is real and symmetriin i and j, see Eq. (B.8). The sum of the seond and third terms on theright hand side is obviously symmetri in i and j. It an be shown to be realas well.The analogy of the various matries we have de�ned here with the o-eÆients obtained in the one-hannel ase of Ref. [2℄ is given by C $osh , S $ sinh  exp(iÆ), � $ tanh  exp(iÆ), M $ osh2  , M� $sinh 2 exp(iÆ)=2, and 2M � I $ osh 2.B Canonial formalism at t > 0In Se. 2 we have de�ned the utuation integralFij(t) = <  i(x; t) j(x; t) >= X� Z d3k(2�)32
�0(k) �f�i (k; t)f��j (k; t)� :The expression on the right hand side does not appear to be symmetri inthe indies i and j, and does not appear to be real. On the other hand the�elds  i(x; t) and  j(x; t) should ommute with eah other. Furthermore, theommutator between  i(x; t) and  j(y; t) is given by the same integral withthe only modi�ation that a fator exp[ik(y � x)℄ appears in the integrand.As these �elds ommute as well for arbitrary x and y, the expressionX� 12
�0(k)f�i (k; t)f��j (k; t) (B.1)24



should be real. This is not quite obvious.To begin with we onsider the ommutators in x spae. If we alulatethe time derivative of the equal time ommutator between the �elds we getddt [ i(x; t);  j(y; t)℄ = [ i(x; t); _ j(y; t)℄ + [ _ i(x; t);  j(y; t)℄ ; (B.2)and this is zero if the anonial ommutation relations[ i(x; t); _ j(y; t)℄ = iÆijÆ(x� y) (B.3)hold at time t. If we require that this relation ontinues to hold we get theonditionddt [ i(x; t); _ j(y; t)℄ = [ _ i(x; t); _ j(y; t)℄ + [ i(x; t); � j(y; t)℄ = 0 : (B.4)The seond term an be expressed, using the equation of motion� j �� j +Mjk k = 0 ; (B.5)by the �eld ommutators; the term vanishes if these ommutators take theiranonial form at time t. We have to require that the �rst term vanishes:[ _ i(x; t); _ j(y; t)℄ = 0 (B.6)at time t. If this identity shall ontinue to hold we have to make sure thatddt [ _ i(x; t); _ j(y; t)℄ = [ _ i(x; t); � j(y; t)℄ + [ � i(x; t); _ j(y; t)℄ = 0 : (B.7)Using again the equation of motion and the symmetry ofMij(t) this an beveri�ed, if the nontrivial ommutations (B.3) hold, whereupon the shemeloses.This is of ourse the standard way for proving the time independene ofthe anonial ommutation relations. But this analysis in x spae show ushow to proeed in proving the identityIm X� 1
�0(k)f�i (k; t)f��j (k; t) = 0 (B.8)
25



that guarantees the reality and symmetry of the utuation integrals. Inorder for the identity (B.8) to hold at all times, we have to require in additionthat the identities Im X� 1
�0(k)f�i (k; t) _f��j (k; t) = Æij (B.9)and Im X� 1
�0(k) _f�i (k; t) _f��j (k; t) = 0 (B.10)hold independent of time, and that they hold at t = 0. There is no diretevidene for any of these relations; we just an prove that they ontinue tohold if they hold at one time. In the one-�eld ase one just has to provethat the anonial ommutator is satis�ed at all times and that follows fromthe onservation of the Wronskian. Here the Wronskian of the utuationsis given, with our initial onditions, byW (f�; f�) =Xi �f�i _f��i � _f�i f��i � = 2iÆ��
�0 ; (B.11)where the summation is with respet to the lower indies, while in the om-mutators we need summations over the upper indies, weighted with 1=
�0.The proof that the onditions Eqs. (B.8)-(B.10) hold independent of timegoes through in analogy to the proof in x spae given above, using this timethe equations of motion (2.13). The time derivative (on both sides) of Eq.(B.8) holds, if the relation (B.9) holds. The time derivative of Eq. (B.9) anbe shown to hold by using the equations of motion for the utuations, andassuming that the relations (B.8) and (B.10) hold. Using again the equationsof motion, the time derivative of the relation (B.10) holds if Eq. (B.9) holds.We still have to onsider the initial time t = 0. With the initial onditionsEqs. (2.14) and (2.15) the relations (B.8) and (B.10) hold trivially as we havehosen the f�i (0) = f�i0 to be the real eigenvetors of the mass matrix. Weould still multiply the two eigenvetors with two di�erent phase fatorsexp(iÆ�) without spoiling these onditions. Eq.(B.9) at t = 0 redues toX� f�i0f�j0 = Æij ; (B.12)and this is the orthogonality relation dual toXi f�i0f�i0 = Æ�� : (B.13)26



So at t = 0 all three relations are satis�ed, and then will so for t > 0.Aside from their importane for the formalism developed here the rela-tions (B.8)-(B.10) represent useful heks for numerial simulations, alongwith the time independene of the Wronskian; we have veri�ed this numeri-ally.Referenes[1℄ V. P. Maslov and O. Y. Shvedov, Theor. Math. Phys. 114, 184 (1998),[hep-th/9709151℄.[2℄ J. Baake, K. Heitmann and C. Patzold, Phys. Rev. D57, 6398 (1998),[hep-th/9711144℄.[3℄ P. R. Anderson, W. Eaker, S. Habib, C. Molina-Paris and E. Mottola,Int. J. Theor. Phys. 40, 2217 (2001).[4℄ K. Goldstein and D. A. Lowe, Phys. Rev. D67, 063502 (2003), [hep-th/0208167℄.[5℄ U. H. Danielsson, JHEP 12, 025 (2002), [hep-th/0210058℄.[6℄ C. P. Burgess, J. M. Cline, F. Lemieux and R. Holman, astro-ph/0306236.[7℄ K. Shalm, G. Shiu and J. P. van der Shaar, JHEP 04, 076 (2004),[hep-th/0401164℄.[8℄ P. R. Anderson, C. Molina-Paris and E. Mottola, Phys. Rev. D72,043515 (2005), [hep-th/0504134℄.[9℄ H. Collins and R. Holman, Phys. Rev. D71, 085009 (2005), [hep-th/0501158℄.[10℄ H. Collins and R. Holman, Phys. Rev. D74, 045009 (2006), [hep-th/0605107℄.[11℄ B. R. Greene, K. Shalm, G. Shiu and J. P. van der Shaar, JCAP0502, 001 (2005), [hep-th/0411217℄.[12℄ S. Borsanyi and U. Reinosa, 0809.0496.27
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