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Abstract

We discuss the problem of initial states for a system of coupled scalar
fields out of equilibrium in the one-loop approximation. The fields consist
of classical background fields, taken constant in space, and quantum fluctu-
ations. If the initial state is the adiabatic vacuum, i.e., the ground state of
a Fock space of particle excitations that diagonalize the mass matrix, the
energy-momentum tensor is infinite at ¢ = 0, its most singular part behaves
as 1/t. When the system is coupled to gravity this presents a problem that
we solve by a Bogoliubov transformation of the naive initial state. As a
side result we also discuss the canonical formalism and the adiabatic particle
number for such a system. Most of the formalism is presented for Minkowksi
space. Embedding the system and its dynamics into a flat FRW universe is
straightforward and we briefly address the essential modifications.
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1 Introduction

The question of initial states in nonequilibrium quantum field theory has
found considerable interest recently [TI, 2], 8], [4 B 6] [7, 8 @, 10, 11, 12], on
various grounds. As a very practical aspect it was realized in numerical simu-
lations of quantum fields in cosmology [13} 2, 14], that the energy-momentum
tensor had initial time singularities if the initial state was taken as the naive
Fock-space vacuum. These had to be removed when coupling the field to
gravity, e.g. in a Friedmann universe. A more speculative aspect that has
attracted some interest recently was the question, whether the choice of ini-
tial state can be expected to leave an imprint in the CMB spectrum. In any
case it is a question of principle, to what extent the choice of initial state is
constrained in an interacting theory of particles by consistency requirements.

As a general aspect of quantum field theory, the problem of initial con-
ditions was realized long ago. It ultimately can traced back to the fact that
one switches on the interaction at some time ¢ = 0. In the case of nonequi-
librium dynamics we have to impose initial conditions for the background
fields. In most applications the initial state was taken to be the adiabatic
vacuum, which would be the ground state if all background fields were held
fixed forever. When one starts to evolve the system dynamically at least the
second derivative of the fields will be discontinuous on account of the sec-
ond order differential equation, which for ¢t > 0 determines their evolution.
In cosmology it is already the first derivative of the scale parameter which
for ¢ > 0 is determined by the Friedmann equation. Such singularities have
been noted for the first time by Stiickelberg [15], they are discussed briefly
in the textbook of Bogoliubov and Shirkov [I6]. The phenomenon has been
identified as a kind of ‘Casimir effect’ connected to the initial time surface
by Symanzik [I7]. In the context of quantum field theory out of equilibrium
the presence of such singularities has been noticed by various authors.

The solution proposed by Symanzik is the introduction of surface coun-
terterms in addition to the usual “bulk” counterterms of perturbative quan-
tum field theory. In the context of nonequilibrium quantum field theory this
line has been pursued in Refs. [9] [10].

The introduction of initial time surfaces singles out the particular time
at which one starts the evolution to the extent that the surface counterterms
become part of the field theory for £ > 0. The approach of modifying the
naive initial vacuum state [I8, (2, [8] seems to be more pragmatic; the idea
is to find the minimal requirements on an initial state that could arise from



a previous dynamical evolution. The latter aspect is discussed in [19]. The
technique used for constructing such an initial state consists of finding a
Bogoliubov transformation of the naive adiabatic vacuum. For the single-
channel case and scalar fluctuations this has been done in Ref. [2] and for
fermion fluctuations in Ref. [20]. These results were used in Refs. [21) 14] in
formulating the renormalized equations in a flat FRW universe.

Our approach is based on a mode function formalism that has been in-
troduced, for coupled channels, in Ref. [22]. The formalism ensures the
conservation of energy with one-loop or Hartree quantum backreaction and
has been renormalized along the lines of Ref. [23]. There the initial state
was chosen to be the adiabatic vacuum based on a Fock space of particle
excitations that diagonalize the initial mass matrix. It is this initial state
that we will improve here. In Ref. [22] renormalization is based on a per-
turbative expansion close to standard perturbation theory, in the same way
as in Ref. [23]. The same expansion was used in Ref. [2] for analyzing the
initial time singularity. This analysis can be carried over in a straightforward
way to the case of coupled fields. Most other analyses of the singular early
time behavior were based on the eikonal expansion. An eikonal formalism
for coupled systems has been formulated recently [24]. We are not aware,
however, of an eikonal expansion for coupled-channel systems.

The quantum expansion of the fluctuation fields is formulated in such a
way that the canonical commutation relations hold for ¢ = 0. It was not dis-
cussed in Ref. [22] how they continue to hold for ¢ > 0. Though this is to be
expected it is not entirely obvious, and in fact leads some nontrivial relations
for the fluctuation modes which prove to be useful for our formalism. This
is discussed in Appendix [Bl Another approach to the canonical formalism
for coupled-channel systems was introduced in Ref. [24], and this is another
reason for verifying that the scheme of Ref. [22] works correctly.

Though our main subject here is the choice of the initial state, with hind-
sight of coupling the system to gravity, we take the occasion for discussing
the concept of adiabatic particle number within our formalism. This is sug-
gested by the fact that we have to discuss Bogoliubov transformations for
coupled systems anyway and that particle numbers are usually defined by
the coefficients of these transformations.

The paper is organized as follows: In Sec. 2] we introduce the model we
want to consider, a system of two coupled quantum fields with masses and
a general fourth order potential. We define the decomposition into classical
and fluctuation fields and the evolution of the fluctuations. In Sec. B we



discuss the behavior of the Green’s function at early times and construct a
Bogoliubov transformation in order to reduce the leading singular behavior
such that the leading time derivatives become finite at the intial time. In
Sec. [ we present the expectation value of the energy-momentum tensor in
the Bogoliubov-transformed initial state. In Sec. [b] we discuss the concept
of adiabatic particle number. Some more technical subjects are transferred
to the Appendices: the Bogoliubov transformation for coupled systems in
Appendix [A] and some aspects of the canonical formalism in Appendix Bl

2 The model

We consider a system of two coupled scalar quantum fields with a Lagrangian
density of the form

1 1 Aij
L= |50u0i0" 6 + §mf¢f + f@s?qb? , (2.1)

where the indices 7, 7 take the values 1 and 2. The hybrid model of inflation
[25] 26| 27] with

L= 20,60 + SO+ imte? + 2 (¢ - )+ 58 (22)
is of this form with \;; = 0,A\1s = A\, Aoy = a,m? = m? and m3 = —av?.
Also some models involving supersymmetric flat directions [28, 29] are of this
type. The generalization to a general mass matrix and a general fourth order
potential is possible, but we do not want do overburden the formalism with
a profusion of indices. Also, the limitation to two fields is not essential.

We separate the fields ¢ into classical fields and fluctuations via

¢i =i+ i (2.3)
The classical Lagrangian density then retains the form
1 1 Aij
£ — {5(%%3“% + im?%Q] + I]%?SO? ; (2.4)

while the fluctuation Lagrangian, of second order in the fluctuations, becomes

1 1 Aij
£® = [§3u¢i5“¢i + §mf¢f] + ?] (0795 + 20i050ubs] (2.5)
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This can be written as
E(Z) = _18 8 + _1M2 ) 2.6

with

ML = mi 43007 + Ao
My = 2019, (2.7)
M3, = mi 4 3haegh + Aoyt (2.8)

If the field is coupled to gravity in a flat FRW universe, the fluctuation mass
matrix takes a similar form. After conformal rescaling of fields and momenta
(see, e.g., Refs. [30, 13]) one just has to replace

m? — [m? + (& — é)R] a? . (2.9)

Here a is the scale parameter, R the Ricci scalar, and the & are the conformal
couplings.

In the following we restrict ourselves to homogeneous background fields
©;(t), so the mass matrix depends on time only. In the FRW universe the time
parameter is conformal time, and we have an additional time dependence via
a(t) and R(T).

We separate the fluctuation mass matrix into its initial value and a ”po-
tential” V via

M (1) = ME;(0) + Viy(2) - (2.10)

We diagonalize the initial mass matrix by
M?j(o) 3'06 = mio 0 - (2.11)

The eigenvectors f are chosen to be real, and normalized to unity:

2
Zfz%fz% =57 (2.12)
i=1

The latin subscripts refer to the field components, as before, and the Greek
superscripts refer to the two independent solutions of the eigenvalue equation.
We now define a set of mode functions f*(k,t) for homogeneous background
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field in the following way:
(i) their time evolution is determined by

Fo 2 ra 2 ! -0 -
(ii) the initial conditions are specified as
F0) = £, (2.14)
[k, 0) = —iQau0fs , (2.15)

where we have introduced the frequencies

Qao(k) = /m2y + k2. (2.16)

The functions f(k,t) form a set of linearly independent solutions of the
system of mode equations.

The fields 1;(x, t) are quantum fields. For a homogeneous background we
can expand them as

600 = Y [ S a9 )+ al (R ()] (207

The canonical commutation relations are
[aa(k), al, (k’)] = (27)%2000 (k)00 (k — K') . (2.18)

In the following we will need the two-point functions at the coincidence limit,
the “fluctuation integrals”

Fig(t) = <Olhi(x,t)(x,1)[0 >
= Z/Wﬁ“(hﬂff*(k,ﬂ. (2.19)

Here the expectation value is taken in the vacuum state of a Fock space,
whose quanta have the initial masses m,(0). This is the “adiabatic vacuum”,
defined by

ao(k)[0 >=0 Vo, k. (2.20)

Of course this is not the ground state of the system, and the creation and
annihilation operators af (k) and a,(k) do not create free particles with the
masses m;. We discuss some aspects of the canonical formalism in Appendix
B} in particular we establish that the fluctuation integral as defined above is
real and symmetric in 7 and j, though this is not apparent on the right hand

side of Eq (2.19).



3 The initial time singularity of the Green’s
function and the modified initial state

The quantum backreaction of the fluctuations onto the classical fields can
be derived using the closed-time-path formalism [31], 32]. For the quantum
field theories that we consider here, it has been formulated in several seminal
publications [33 B34, B35, [18, B6]. We do not repeat this here. If one just
considers the one-loop quantum backreaction the relevant equations take a
rather intuitive form. The equations of motion for the classical fields become

@1 +mior + A + Aap1es
+3A1 o1 F11 + Aap1 Faa + 2X1202F12 =0, (3.1)

and an analogous equation for 5. As will be analyzed below, the fluctuation
integrals F;;(t) are singular at ¢ = 0, the time where we start the evolution.
As t 0 it behaves as tInt. Though this represents a mathematical sin-
gularity, it is finite and even zero at t = 0. So it will not prevent us from
starting a numerical simulation. The singular behavior becomes a problem
when we couple the field to gravity. The dynamics of the FRW scale factor a
is determined by the energy-momentum tensor, which involves second time
derivatives of the two-point function. If one analyzes the energy-momentum
tensor, one indeed finds, near ¢ = 0, a time dependence of the form 1/¢ in
7. This then prevents one from starting the dynamical evolution. Of course,
even in flat space this infinity is an undesirable and unphysical feature of the
energy-momentum tensor.

As the energy-momentum tensor is a rather involved expression, espe-
cially after renormalization, we first consider the fluctuation integral and
find a way to remove its initial singularity, such that its first and second time
derivatives at ¢ = 0 become finite. This requires less algebra and, as we have
seen previously [2], this is sufficient for making the energy-momentum tensor
finite near ¢ = 0.

The fluctuation integrals are ultraviolet divergent. The divergences can
be analyzed [23] by expanding with respect to orders in V which is equivalent
to expanding with respect to the couplings \;;. This allows one to remove
the divergent parts and the dynamics is determined by the remaining finite
parts. A closer analysis shows that, on the level of fluctuation integrals, the
contributions of zeroth and first order in V are ultraviolet divergent. One



finds [23], up to first order in V,

d3k aepy o [ Ak 1 o cas
Fij = / QQ 0f (t)fj (1) —/(2ﬂ)3 {; 2010750

+ Z 20) {—m <Va6 (1) — Vap(0) cos [(Qa0 + Qﬁo)t])

aOQﬁO

+m1}a6(0) sin [(Qa0 + Q0)1]
+m <9a5 (£) = Vas(0) cos [(Qa0 + Qﬁo)t])
1 L ,
+m /dt Vas (t ) coS [(an + Qﬁo)(t —t )]:| } . (32)

Several integrations by parts have been performed in order to separate the
high momentum power behavior. The first term in the integrand is quadrati-
cally divergent, and the one proportional to V(t) is logarithmically divergent.
In the process of renormalization these terms are removed and included in the
mass and coupling constant renormalizations. The contribution proportional
to V(0) vanishes as V(0) = 0 by definition, see Eq. (ZI0). The terms pro-
portional to V() and V(t) are finite at all times. The nonanalytic parts are
those proportional to V(0 ) and V(0 ). Near ¢t = 0 we find that the momentum
integrals which multiply V(0) and V(0) behave as

d*k 1 ' 1
/ 2777 2000000 (o & (g2 L Ska0 + Qo)) = =gt Inl(ma +my)t]
d*k 1 1
/ (2m)? 2QonQﬁU(Qoéo + 950)3 cos{($2ao + Qﬁo) t] = 1672 In[(mq + mﬂ)t] .

So in general the first and second derivatives of the fluctuation integrals
would be infinite at ¢t = 0.

As we have mentioned previously there are two methods for getting rid
of this singular behavior: either one introduces surface counterterms or one
modifies the initial state. Our approach is the second one, and we have for-
mulated this modification of the initial state as a Bogoliubov transformation.
The singular behavior is obviously related to the large momentum behavior
of the integrand. So the modification of the initial state will constrain only
its ultraviolet behavior. We are still free to modify it at finite momenta, or
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with contributions that vanish sufficiently fast at large momenta, as e.g. a
thermal initial state.

The Bogoliubov transformation and its consequences for the fluctuation
integral are presented in detail in Appendix [Al The general concept im-
plies that we replace our naive initial state, the vacuum state for quanta of
masses m;g by a transformed vacuum state, annihilated by a superposition of
annihilation operators a, (k) and creation operators al,(—k). The essential
formulae are:

(i) the definition of the transformation

inl1) = 37 [ [y h) = 527l (-1 (3.9

(i) the definition of a new vacuum state |0 > via

Q Qoo ~
aa(k) - ,/Q—ﬂopaﬁag(—m] 0>=0,  (34)

iy (k)[0 >= (/220
Q
where p = C71S is a symmetric matrix;

a0
(iii) the definition of a matrix M,s which is introduced via the expectation

value of aa(k)ag (k') in the new vacuum:

< 0laa(k)al(K)|0 >= (27)%6° (k — k')2/Qa0 Qa0 Mas (k) ; (3.5)
and
(iv) the relation between p and M
M—pMTpl =1, (3.6)

which ensures that the commutator of a,(k) and dg(k’) is canonical. All
matrices which we have introduced here depend on k = |k]|.

As derived in Appendix [A], the fluctuation integral, when evaluated in
the Bogoliubov-transformed vacuum, takes the form

Fij(t) =< Olhi(x, 1) (x, 1)[0 >

— 1 d3k 1 a B Sk
a 2/ (2m)3 az,/; 2/Qa0 280 [fz (t)fj ()P Moy

+ (8 ] (6) Mag
+ I () 7 ()" pP M
L) £ () Hg] : (3.7)
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We now have to determine p in such a way as to cancel the initial sin-
gularities which are contained in the integral over f&(t) ff *(t). As discussed
below Eq. (B.2]) the dangerous contributions are those involving
Vs (0) sin [(Qa0 + Qgo)t] and Vas(0) cos [0 + Qs0)t]. They have to be can-
celled by the terms proportional to p and p? generated by the Bogoliubov
transformation. If one considers Eqs. (B.6) and (87) one realizes that the
determination of p seems to be marred already by the nonlinear relation be-
tween M and p. We have to realize, however, that there is no unique choice
for p, anyway. All we need is a cancellation of the dangerous terms at large
momenta. These contributions are divided, in the integrand, by combinations
of Q40 and Qg which asymptotically behave as k™" and k>, respectively. So
these terms become small asymptotically, and to get the correct asymptotic
behavior of the matrix elements of p we can work in the linear approxi-
mation. In this approximation we have M,z =~ d,4, 0% M., ~ pP*, and
M\p®** pP* ~ 0. Furthermore, we can approximate f2(t) ~ & exp(—iQaot),
whenever it appears multiplied by p. Corrections would be of order p* V; as
Y is of order p this would be of order p?.

When rewriting the fluctuation integral in the Bogoliubov-transformed
vacuum .7-"i]- we use the approximations we have just mentioned. We further
use the expansion of f(t)f{*(t) as it appears in Eq. (3.2)), but we remove
the renormalization parts. We then obtain, to first order in V' and p

- A3k 1 _ _
f‘i. ~ / e 6 a6672(9a0+9ﬂ0)t + aﬁ*el(Qa0+QﬂO)t
j (27)? {; 2/ o0 zofjo [P P ]

Z 1 1 .
" 7 28a0lls o/io {(Qawmo)?v“ﬁ(o) sin [(Qao + 2g0)t]

1 . -

o0 + 20)? (Vaﬁ () = Vap(0) cos [(Qa0 + Qﬂo)t])

+m / dt' Vag (') cos[(ﬂao+ﬂﬁ0)(t—t')]]} . (3.8)

The cancellation of the terms which would produce a singularity at ¢ = 0
then requires

1 1 :
I " - VOé 0 ) 39
mp Zanggg (an + Qﬁo)Q ( ) ( )

1 1 )
Rep® = Vas (0) 3.10
ep 0050 o 1 )7 00 (3.10)
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If the fields were independent V,z would be diagonal and we would obtain
(omitting the indices of the diagonal elements)

Imp _ QQOY(O) (3.11)
Rep V(0)
and
1 /. V(0)2
- 2 12
|| 893\/1?(0) + 102 (3.12)

for the separate Bogoliubov transformations of the two fields. This agrees
in the approximation of large momenta with the results for the one-field
case, Eqs. (51) and (52) of Ref. [2]. There it was possible to remove the
contributions proportional to V(0) and V(0) for all momenta. Here these
terms are cancelled at large momenta only.

With Egs. (8.9) and (B.I0) we have obtained a solution to our problem of
initial singularities. We have to stress that there is an infinite manifold of such
solutions, differing, e.g., by a different choice of initial occupation numbers at
finite momenta. They all have to share the same large momentum behavior,
however.

Once we have p we now must determine M, using (B.6]), without any
approximation, because otherwise our transformation would not be canonical.
Though p appears nonlinearly, Eq.(B.6]) is simply a system of four linear
equations for the matrix elements of M. Finally, the fluctuation integral
(B1) has to be computed using the exact numerical solutions f*(¢) in all
four terms of the integrand.

For the numerical computations it is preferable to implement the Bogoli-
ubov transformation in a different way, by redefining the mode functions.
For this purpose we introduce

V2Q40

where the matrix N satisfies N x N = M B. Tt can be determined using the
eigenvalues and eigenvectors of M. One easily verifies that

7o) =3 | Gy 607 020 (3.14)

- 7/ 2€)
F e t) =3 Y2 [f2 (k) Naw + f25(k, 1) 02 Ny (3.13)

3N is not uniquely determined, all we need is one particular matrix that satisfies this
relation. As M is Hermitian, so is V.
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is identical to the previous definition, Eq. (87). As f* and f** are solutions
of the same equation of motion, Eq. ([ZI3)), so is f]. It is sufficient, therefore,
to determine f; as a solution to this equation with the initial conditions
implied by Eqs. (3.13),214) and 2I5).

Having presented the technical procedure we would like to add some com-
ments concerning the interpretation. In order to do so we need to discuss
the problem of initial states in a more general way.

The adiabatic vacuum has often been used as an initial state for preheat-
ing simulations, maybe on the grounds that after inflation one ends up in a
temperature zero state, i.e. an “empty” vacuum. Indeed if this is the case,
and if the evolution of the classical fields is very slow (“adiabatic”), this can
be considered to be a reasonable guess for an initial state. Another choice
that may be reasonable, e.g. after thermalization and in a period of adiabatic
evolution, is a thermal initial state. This is of course not a pure state. For a
thermal state the fluctuation integral would be replaced by

Fij(t) = @k 2N, (k) + 1) ff(k, t) f (k, t 3.15
ZJ()_;/W( o(k) + 1) 7 (k, ) 77 (K, 1) (3.15)

with
No(k) = [exp(Qa(k)/T) — 1]_1 ) (3.16)

Here we have used the fact that the mass matrix and therefore the fluctuation
Hamiltonian is diagonal in the basis f{ at ¢ = 0.

If one takes into account the real evolution of the system before ¢ = 0 then
neither the adiabatic vacuum nor a thermal initial state will be appropriate.
If the system has started, before ¢ = 0, in a pure quantum state, it cannot
have ended up, at ¢t = 0, in a thermal state or in any other state described
simply by particle numbers N, (k). The quantum system can be interpreted
as a system of independent free particle only after “decoherence”, a concept
that has been addressed in the present context in Refs. [37, 38]. But even if
the system has started, at an earlier time, with a mixed state, the interac-
tion with the background field will have created a coherence in the different
components of such a state at t = 0, and a representation in the form (313
will not be possible.

So, if one takes into account the evolution of the system prior to t = 0
then one would have to know the entire prehistory or at least the prehistory
of a long period in order to describe the state at ¢t = 0 with its full quantum
coherence. This is of course not possible unless one knows how to start the
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system at an earlier time, facing then the same problem. The best one can
hope for is that after some time the system will not remember much of its
initial state. This is presumably the case if the background fields produce
large quantum fluctuations at later times.

The purpose of the Bogoliubov transformation is different. If we know the
evolution of the background fields near ¢ = 0 (and by continuity this means
also shortly before t = 0), to the extent that we know V(0) and V(0), or,
equivalently, ¢(0) and ¢(0), then we have a limited information on the initial
state. Constant background fields at t < 0 and the adiabatic vacuum state
as initial state would produce a singularity of the first two derivatives of the
Green’s function. The Bogoliubov transformation removes this singularity,
or, more precisely, it reduces it to higher orders in the derivatives. In this
way it takes a minimal account of the fact that the system is not static before
t = 0. As we have displayed above the transformation may be considered as a
modification of the state or of the mode functions. The new state should not
be considered as a vacuum state. The adiabatic vacuum state remains the
lowest energy state for a given set of background fields. The analysis of the
high momentum behavior of the fluctuation integral simply shows that the
system will never arrive at this state if the background fields keep changing
with time. In reality, of course, we would rather expect the quantum state
of the fluctuations to be an excited one, particularly at low momentum. Our
simple requirement of continuity for the Green’s function does not give us
any information on this excited state, except at high momenta.

The state generated by the Bogoliubov transformation applied to the adi-
abatic vacuum is a pure state. Therefore, it cannot be described by a mixed
state with suitable particle numbers N, (k). If for some physical motivation
we want to start with a thermal state or some other state specified by parti-
cle numbers we have to combine two different concepts: a mixed state made
up of different excited Fock-space states and a pure state that ensures the
continuity of the Green’ s function. For a thermal state the particle numbers
decrease exponentially as k& — oo; then the discontinuity of the Green’ s
function solely arises from the vacuum contribution. Its Bogoliubov trans-
formation is well-defined and compulsory at high momenta only. There are
then, among many others, two pragmatic ways of defining a thermal initial
state: (i) One defines the thermal state using for all momenta the modified
mode functions fio‘(k, t). This is not a quite a thermal state, though, as the
modified mode functions are not eigenfunctions of id/0t. (ii) One uses the
integrand of Eq. (BI53) with the original mode functions f&(k,t) for low
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momenta only, and the integrand of Eq. (B:I4) at high momenta.

4 The energy-momentum tensor

The energy-momentum tensor for the fluctuations ¢, = (71),, in a homo-
geneous background field is diagonal and has identical space-space compo-
nents. It may be specified by the two independent expectation values

fp = € — % < ds(x, )i, 1) (4.1)

+V(x, )V (x, 1) + ME (8)i(x, £ (x, ) >

and

th=e—3p = <—t(x,t)(x,1) (4.2)
HVi (x, ) Vi (x, t) + 2MZ ()i (x, )5 (x, 1) >

€ is the energy density and p the pressure. ¢y and ¢} can be evaluated in the
adiabatic vacuum and in the Bogoliubov-transformed vacuum in the same
way as the fluctuation integrals. We just present the expectation values
in the Bogoliubov-transformed vacuum, the one in the adiabatic vacuum is
obtained by substituting p — 0 and M — I. For ty, we obtain

o= éﬂ’;gﬁj o {Re [ (Fed7 + 125217 4 M2 1217

+ [Myp + Moy p™ ] (ff“ff SRR M ST ) } . (4.3)

For the trace we find

o[ e (s

+ [Myg + Mo pr p™] (—fi“ff* R 2 M fr fT ) } L (44)

Both expressions can alternatively be rewritten in terms of the modified mode
functions of Eq. (313).
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Using the equation of motion for the fluctuations we can write

o £B* o % a * 1 d2 %
_fiafiﬁ +k2fi fzﬂ +Mz2jfz' fjﬁ = _5@ sz ) (4-5)
- 1 d?
—[ET AR A MG = =5 s (4.6)

Therefore the trace can be expressed in terms of the fluctuation integrals
B.1) as
1 d?
2 dt?
Both the energy density and the trace contain second space and time deriva-
tives of the two-point function and this can transform the mild singularities
found in the fluctuation integrals F;; into infinities at ¢ = 0. In Ref. [2] it was
found that the energy density remains finite even in the adiabatic vacuum.
As the second derivatives only appear in the kinetic terms which are diag-
onal this analysis remains valid for the coupled-channel case. However, the
trace of the energy-momentum tensor ¢} in the adiabatic vacuum contains
the second time derivative of the fluctuation integrals F;; and this behaves
as d?(tInt)/dt? = 1/t as t \, 0. In the transformed fluctuation integrals F;;
we have removed the dangerous terms, and so fﬁ has a finite value at t = 0.
When the field is coupled to gravity [39] the expressions (£1]) and (4.2])
receive some further contributions that we do not want to discuss here
in detail. They can be written in terms of the fluctuation integrals and
their first derivatives. The fluctuation integrals themselves are not infinite
at t = 0. The most singular of the additional terms are proportional to
(& — 1/6)HdF;;/dt and appear both in to and #4. They behave as Int as

£\, 0; in the Bogoliubov-transformed initial state F;; is replaced by F;; and
then the energy-momentum tensor remains finite at ¢ = 0.

o
by, =

]'N—ii + Mij]:—z'j . (4.7)

5 The adiabatic particle number

The adiabatic particle number is obtained by representing the fluctuation
field at time ¢ in terms of the adiabatic Fock space at time ¢. The fluctuation
field is given by Eq. (2I7). The adiabatic Fock space at time ¢ is defined in
terms of particle excitations which are eigenstates of the mass matrix MZ;(t).
We define the eigenvectors of the mass matrix by

M) [ = ma,fiy (5.1)

at
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we again choose them to be real and normalized via
> fifa=0"7 (5-2)

and define Q, = /k? +m?2,. We further expand the fields with respect to
the new basis as

6t = X [ e a9 a0 s R (53)

Gt = =Y [ e a0 — (0] e (5

where we have chosen the initial conditions for the modes f3(k,t) in analogy
to Eqs. (ZI4) and (2I5). Using the field expansion the new annihilation
operators an (k) can be expressed as

ton (k) = / e [Qupt(3,1) + it 1)] 1 (5.5)

They annihilate the adiabatic vacuum defined at time ¢. The relation to the
original operators a, (k) is obtained by inserting the field expansion (2.1I7)
into Eq. (B.5]). We find

Qat
aar(k) =Y 4| =2 |C¥Pag(k) — S%af(-k)| | (5.6)
with

1 .
% = — | QufP k) +ifP (k)] £ 5.7
s (el (B0 + i (kD) £ (5.7)

-1 .
S = Qu Sk ) + i (k)] S 5.8
T (el ) i (1) S (58)

Using the relations (B.8]), (B.9) and (B.I0) of Appendix [Blit is straightfor-
ward to verify that this is a Bogoliubov transform, i.e., that Eqs. (A.23]) and
(A.26)) are satisfied. In terms of the matrices C' and S the adiabatic particle
number density is given by H,

ng(k,t) = < 0al;(K)an (k)0 >= ) 557 . (5.9)

v

2V Q0

4No summation over «.. For simplicity of presentation we assume the adiabatic vacuum
as initial state.
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Inserting Eq. (5.8) we obtain

_ 1 1 2 pv pyx Y £ | para
na(k,t) = 50, Z,: m [Qatfi i+ LT i (5.10)

This has a simple interpretation: one decomposes the energy density with
respect to the fluctuations f. Then n,(k,t) is obtained by dividing the part
corresponding to the fluctuations fj by the frequency €2,; of these fluctua-
tions. This result is analogous to the one-channel case.

While the definition (5.9) is suggestive we would like to add that this
particle number does not imply a representation of the fluctuation integral in
the form (B.I5) in terms of the mode functions f§(k,t). Indeed, if one wants
to use the representation (5.3)) for calculating the fluctuation integral one gets

nontrivial contributions from the operators aq(k)aa (k') al,(k)al, (k') and

al,(K)al, (k') as well, see Eqgs. (A38), (A39) and (AA0). These contributions

to the fluctuation integral are negligible for large particle numbers only, i.e.,
if the matrix elements S*? are much larger than the C'*7.

6 Summary

We have addressed here two topics of the nonequilibrium dynamics of coupled
fields in a one-loop approximation to quantum backreaction: the problem of
the initial time singularity in the energy-momentum tensor and the definition
of the adiabatic particle number for a system of coupled scalar fields. Along
with these topics we have considered Bogoliubov transformations and some
aspects of the canonical formalism for such coupled systems.

Our main interest, as evident from the title, were the initial time sin-
gularities. We have been able to define a Bogoliubov transformation of the
initial state that removes the initial time singularities in such a way that the
energy-momentum tensor is finite in the limit ¢ ~\, 0. This is important if one
considers the evolution of such a system of fields coupled to gravity. Clearly,
this Bogoliubov transformation is constrained only at large momenta. So
modifications that are subleading at high momenta are still acceptable. We
had to include a discussion of the canonical formalism for a coupled-channel
system, as some of the results were needed in the construction of the initial
time singularities: we had to ensure that the fluctuation integrals are real
and symmetric in the indices, as they should be on account of their definition.
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Both the discussion of the canonical formalism and of Bogoliubov trans-
formations for coupled-channel systems are at the same time the basis for
defining the adiabatic particle number density. So we have derived an ex-
pression for this density in terms of the coupled system mode functions.
It is analogous to the definition in the single-channel case and has a sim-
ple intuitive interpretation. Another formulation for the adiabatic particle
number, based in an eikonal formalism and the evolution of Bogoliubov coef-
ficients, has been presented recently [24]. As both formalisms are canonical,
the results should be equivalent, though it may be difficult to verify this
analytically.
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A The Bogoliubov transformation for a cou-
pled system

We first recall some basic relations for the case of a single quantum field, see,
e.g., Ref. [40]. The Bogoliubov transformation rotates creation into annihila-
tion operators and vice versa, such as to preserve the canonical commutation
relations

[a(k),a(k)] = 0,
[a(k),a' (k)] = (2m)*2wd’*(k —K), (A.1)
[a'(k),a’ (k)] = 0.
Furthermore the transformation has to be chosen in such a way that the

vacuum retains its total momentum zero and remains isotropic. The most
general form of such a transformation is then induced by the operator

Q=3 [ oo [0 (901 ¢ (B0 . (42)

27)32w

via

i(k) = exp(Q)a(k) exp(Q') = exp(Q)a(k) exp(—Q) (A.3)
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and

10 >=exp(Q)[0 > . (A.4)

Here ¢(k) is a general complex function of £ = |k|.We have
[a(k), Q] = q(k)a'(-k), (A-5)
[a'(=k),Q] = ¢"(k)a(k). (A.6)

We have in general

(_nl!)n““[“(k)’Q]aQ]---],Q]n LA

a(k) exp(—Q) = exp(—Q) > _

where the n-th term in the sum contains n commutators. The even commu-
tators (n = 2[) yield

[[[[a(k), Q], Q)...], Qlar = la(k)[*a(k) , (A-8)
the odd ones (n = 2 + 1) yield
[[l[a(k), Q], Q)-..], Qlarr1 = la(k)[*q(k)a’ (k) . (A.9)

Writing q(k) = v(k)e?*®) with real constants v and § we find

a(k) exp(—Q) = exp(—Q) [cosh(y)a(k) — sinh(y)e”a’(~k)] = exp(—Q)a(k) .
(A.10)

With these preliminaries the generalization is straightforward. We have
two sets of creation and annihilation operators a! (k) and a,(k), where a =
1,2 labels the two independent solutions f(k). We have the field expansion

%(X’t):/(dgk Zzé — {aa(l) 2 (k)™ + al (k) £ (k, )™}

27)3
(A.11)
and the commutation relations
[aa k), a;(k')] = (271)20000050° (k — K . (A.12)

The operator () now takes the form

_1 Bk
/ 322

[ (R)af (k) al (k) — 4°7* (k) (K)as ()

0950
(A.13)
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The normalization convention introduced by writing /€,0{250 has the ad-
vantage of keeping the functions ¢®’(k) symmetric in the indices. Indeed
this symmetry is the only restriction on these functions; as they are complex
we have six free parameters, which are functions of k. The symmetry arises
from the fact that the products a®(k)a’(—k) and a”(k)a®(—k) are equiva-
lent. On the one hand the operators commute, and on the other hand the
arguments k and —k may be exchanged as the integration is symmetric in
the sign of k and the functions ¢®® only depend on |k|. An asymmetric part
of these functions would simply be summed and integrated away. We again
have Qf = —@Q and the transformation matrix exp(Q) is unitary.

What does not work here, at least not in a general parameterization ¢®%, is
the explicit evaluation of the transformation of the annihilation and creation
operators. The matrix ¢®7¢”?* which appears after every second step in the
evaluation of the multiple commutators, is given by

2 2 o

g = ( LU N A e o ) _ (A.14)
2 4 22 (g2 4 g2

It is Hermitian, in analogy to the reality of |g|? in the single-channel case. It

is diagonal in two cases: (i) ¢'? = 0 and (ii) ¢"' = ¢** = 0. Tt is instructive

to evaluate the transformation of a, (k) in the two cases. In the first case we
find

ai(k) = cosh(g"])a(k) — sinh(|g' )8 @ gl (~k) ,  (A.15)

Ly f
=
ds(k) = cosh(|¢®|)as(k) — sinh(|¢®2])e’ 8@ )al(—Kk) ,  (A.16)

i.e., a simple Bogoliubov transformation for each channel. In the second case
we have

. Q
ir(k) = cosh(jg"*[)ai (k) — sinh(jg"*)e" 500 [ R al(—k) | (A.17)
20
. 0
az(k) = cosh(|g™)az(k) — sinh(|g"* )¢ [ < al(—k) , (A.18)
10

i.e., an annihilation operator in channel 1 is mixed with a creation operator
in channel 2.

In the general case the matrix ¢®7¢”%* is not diagonal. Still we can sum
up the series formally, as a series of matrix products. As the exponential
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series converges well this can be done even numerically. We write

dak) = g—;’ [oaﬂaﬂ(k)—saﬁa;(—k) . (A.19)
B

In terms of the matrix ¢®® we then have

€ = 3 o a1 (A.20)

where gg* is the matrix product ¢*¢”?* and the power series is a series of
powers of this matrix. Further, we have

5 =3 Gy a1 (A21)

Instead of writing these matrices as power series in ¢®# we can ask for the con-
ditions on C' and S that follow from the requirement that the commutation
rules should be conserved. From

[a(k), ag(k')] = 0 (A.22)
one finds
Y (Cr8Pr —sviCT) =0, (A.23)
Y
or
ST =8CT = (csT)" . (A.24)

Multiplying from the left with C ! and from the right with (CT)~! one finds
c7's = (c7's)" (A.25)

i.e., this a symmetric matrix.
Considering the nonvanishing commutator we find

D (CCHTT — SIS*) =6, (A.26)
0
or, in matrix form,

ot —SSt =T, (A.27)
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the obvious generalization of
cosh?(y) — sinh*(y) =1 . (A.28)

Instead of having to deal with two matrices it may be more convenient to
deal with just one: the condition that the operators a,(k) annihilate the

vacuum |0 > reads
QCMO aﬂ 'i' ~ _
ao(k) — [ 5—p"ag(=k)| [0>=0, (A.29)
Qs0

where we have defined the matrix

p=C"'S. (A.30)

~ Q
a,(k)|0 >= Q—VZCW

From Eq. (A.25)) we see that p is a symmetric matrix. Indeed we had found
previously that we have six free parameters for the most general transforma-
tion.

To begin with we compute the expectation value of a,(k)af (k') in the
new vacuum. As vacua are homogeneous and isotropic we can write

< 0laa(k)al, (k)]0 >= (27)%6° (k — kK')2/Qa0Qs0 Mas (k) - (A.31)

This definition implies that M is a Hermitian matrix. Using the commutation
relations and (A.29) we have

< 0laq(k)al(k)|0 > (A.32)
= (27)*2Q000%(k — K)dap+ < 0laf(K')aq(k)|0 >

Qa2 - -
= (27)%2Q406% (k — k') S0p + \/ﬁgfzpa“pﬂ’\* < 0lax(—K)al (=k)|0 > .

In terms of the matrix M we find

Maﬁ\/angﬁo = 50469(10 + angﬁopanpﬁ)\*M/\K 5 (A33)

or
M—pMTpt =1, (A.34)

This can be solved explicitly for M. Using the symmetry of p it easy to
verify, e.g., using the series expansion in pp', that

M= (I—pph)". (A.35)
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Furthermore, using S = C)p it is easy to see, using Eq. (A27), that
CCt=(I—pp")y ' =M. (A.36)

This implies that knowing p the matrix C' is not determined uniquely. If one
uses a basis in which p is diagonal, CC' is diagonal as well, and we have two
free phases in the matrix C'. A further useful identity is

Mp=pM" . (A.37)

It can easily be verified using again the expansion of M interms of pp!.
We next evaluate the expectation values of the other products:

- - Q - -
< Olaq(k)ag(K')[0 >= \/Q—“pﬁ“ < 0laq (k)al(~k')[0 >
k0
= (2m)%0%(k + K')2/Q00Qp00"F Mo (k) (A.38)

. . Q, . .
< 0lal,(k)af (k)0 >= |/ =™ < Olan(~k)a}(k)[0 >
K0

= (27)38% (k + K')2/QuoQp0p™* M5 (k) | (A.39)
AT NIA QOZOQﬁU arx B I T NIA
< 0lal, (K)as (K]0 >= |/ 2222 p P < O]a, (—k)al (—K')[0 >
Q)\UQKO
= (21)%0%(k — K')2/Qa0Qs0p™* pP* M1 () . (A.40)

In terms of the matrices p and M the fluctuation integral, evaluated in
the Bogoliubov-transformed vacuum takes the form

Fij (1) =< 0[i(x, £);(x, )]0 >
_ A3k 5 Br
/5 322 [0 0
+ff“*(t)ff (t)p““*p“Mm
I (8™ nﬂ] : (A.41)

This is the basis for determining p, this is discussed in Sec. B
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As we have performed a canonical transformation it is to be expected that
]:"Z-j is real and symmetric in ¢ and j, as it holds for F;;. The sum of the first
and fourth terms in the bracket can be shown to be real and symmetric in
i and j using the relation (A.37), the symmetry of p and the Hermiticity of
M. The sum of the second and third terms in the bracket can be rewritten,
using Eq. ([(A.34) and the symmetry in the summation over v and (3, as

Mg f2 7% + p™ Moy £ 0
= Oag fof] + P XM g™ FEFT + p Mo g™ £ £ (A42
aﬁfl f] +p kAP fz f] +p kAP fz f] . ( . )

The first term on the right hand side is the one that appears in the fluctuation
integrals F;;. Its sum over o = § with prefactor 1/, is real and symmetric
in ¢ and j, see Eq. (B.8). The sum of the second and third terms on the
right hand side is obviously symmetric in ¢ and j. It can be shown to be real
as well.

The analogy of the various matrices we have defined here with the co-
efficients obtained in the one-channel case of Ref. [2] is given by C <«
coshy, S <+ sinhyexp(id), p <+ tanhyexp(id), M < cosh’y , Mp <
sinh 27 exp(id)/2, and 2M — I < cosh 2.

B Canonical formalism at ¢t > 0
In Sec. 2l we have defined the fluctuation integral

Fij(t) = <il(x,0)(x,1) >
_ Z/ 5 3%‘“ £ (e, ) £ (k)]

The expression on the right hand side does not appear to be symmetric in
the indices 7+ and j, and does not appear to be real. On the other hand the
fields v (x,t) and 1),(x, t) should commute with each other. Furthermore, the
commutator between 1;(x, t) and v;(y,t) is given by the same integral with
the only modification that a factor exp[ik(y — x)] appears in the integrand.
As these fields commute as well for arbitrary x and y, the expression

> mff(k,wfﬁ*(k,t) (B.1)
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should be real. This is not quite obvious.
To begin with we consider the commutators in x space. If we calculate
the time derivative of the equal time commutator between the fields we get

d . .
and this is zero if the canonical commutation relations

[Wi(x,1), i (v, )] = 650 (x — y) (B.3)

hold at time ¢. If we require that this relation continues to hold we get the
condition

%w}i(xv t)a @Z}j(y; t)] = w}i(xv t)? ¢j(y7 t)] + [wi(xa t)? 7Lj(th)] =0. (B4)

The second term can be expressed, using the equation of motion

) — Ay + Mjpahy, =0, (B.5)

by the field commutators; the term vanishes if these commutators take their
canonical form at time ¢. We have to require that the first term vanishes:

[Wi(x,1), (v, )] = 0 (B.6)

at time t. If this identity shall continue to hold we have to make sure that

%w}i(xv t)a @Z}j(y; t)] = w}i(xv t)? ,(Lj(ya t)] + [wl(xa t)? ¢j(th)] =0. (B7)

Using again the equation of motion and the symmetry of M;;(¢) this can be
verified, if the nontrivial commutations (B.3]) hold, whereupon the scheme
closes.

This is of course the standard way for proving the time independence of
the canonical commutation relations. But this analysis in x space show us
how to proceed in proving the identity

Im 20; Qaj(k) F ks £) £ (k) = 0 (B.8)
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that guarantees the reality and symmetry of the fluctuation integrals. In
order for the identity (B.8)) to hold at all times, we have to require in addition
that the identities
Im
2 o

(k, ) 2% (k, £) = 635 (B.9)

and

ImzQ

hold independent of time, and that they hold at t = 0. There is no direct
evidence for any of these relations; we just can prove that they continue to
hold if they hold at one time. In the one-field case one just has to prove
that the canonical commutator is satisfied at all times and that follows from
the conservation of the Wronskian. Here the Wronskian of the fluctuations
is given, with our initial conditions, by

W(fe, %) = Z (fiafiﬁ* B fio‘ff*) = 200050 (B.11)

(k, ) 2 (k, £) = 0 (B.10)

where the summation is with respect to the lower indices, while in the com-
mutators we need summations over the upper indices, weighted with 1/Q.
The proof that the conditions Eqs. (B.8)-(B.10) hold independent of time
goes through in analogy to the proof in x space given above, using this time
the equations of motion (ZI3). The time derivative (on both sides) of Eq.
(B.8)) holds, if the relation (B.9)) holds. The time derivative of Eq. (B.9) can
be shown to hold by using the equations of motion for the fluctuations, and
assuming that the relations (B.8)) and (B.I0) hold. Using again the equations
of motion, the time derivative of the relation (B.10) holds if Eq. (B.9) holds.
We still have to consider the initial time ¢ = 0. With the initial conditions
Eqs. (ZI4) and (2.15) the relations (B.8)) and (B.I0) hold trivially as we have
chosen the f*(0) = f$ to be the real eigenvectors of the mass matrix. We
could still multiply the two eigenvectors with two different phase factors
exp(id,) without spoiling these conditions. Eq.(B.9) at ¢ = 0 reduces to

Zfz% 0 = 0ij , (B.12)

and this is the orthogonality relation dual to

> Jisfio = das (B.13)
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So at t = 0 all three relations are satisfied, and then will so for ¢ > 0.

Aside from their importance for the formalism developed here the rela-
tions (B.8)-(B.I0) represent useful checks for numerical simulations, along
with the time independence of the Wronskian; we have verified this numeri-
cally.
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