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Abstract

A proposal by Lüscher enables one to compute the scattering phases of elastic two-body systems

from the energy levels of the lattice Hamiltonian in a finite volume. In this work we generalize

the formalism to S-, P - and D-wave meson and baryon resonances, and general total momenta.

Employing nonvanishing momenta has several advantages, among them making a wider range of

energy levels accessible on a single lattice volume and shifting the level crossing to smaller values

of mπL.

PACS numbers: 12.38.Gc
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I. INTRODUCTION

Most hadrons are resonances. Lattice simulations of QCD have reached the point now

where the masses of up and down quarks are small enough so that the low-lying hadron

resonances, such as the ρ(770) and ∆(1232), can decay via the strong interactions.

Extracting masses and widths of unstable particles from the lattice is made difficult by

the fact that resonances cannot be identified directly with a single energy level of the lattice

Hamiltonian. Rather, the eigenstates of the lattice Hamiltonian correspond to states that

are characteristic of the respective volume. In a series of papers [1] Lüscher has derived the

scattering phase shift in the infinite volume from the volume dependence of the energy levels

of the lattice Hamiltonian.

The original derivation was given for systems of two identical particles with vanishing

total momentum. To compute the scattering phases for a sufficiently large set of energies

on a rest-frame lattice, one would have to repeat the calculation on several volumes, which

is computationally expensive.

If the total momentum of the resonance is nonzero, however, a wide variety of energy

levels are becoming accessible on a single lattice volume, as has been realized by Gottlieb

FIG. 1: The ground state CM energy levels of the ρ resonance at the physical point for various

momenta P = (2π/L)d, together with the energy levels of the noninteracting ππ system. The

horizontal dashed line indicates the physical mρ/mπ ratio.
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FIG. 2: The expected five lowest CM energy levels of the Σ∗(1385) resonance at a pion mass of

mπ = 230MeV [3] for zero total momentum (left) and P = 2π/L e3 (right). The dashed line

indicates the anticipated mΣ∗/mπ ratio.

and Rummukainen [2]. This is illustrated in Fig. 1, where we show the expected ground state

energy level of the ρ resonance for several momenta at the physical pion mass, assuming

an effective range approximation for the scattering phase with gρππ = 6.0. At a lattice

volume of mπL = 2 . . . 2.5 the ground state energy levels of the four lowest momenta are

found to cover the resonance region already sufficiently well. Figure 1 tells us, furthermore,

that the energy levels of the interacting system rapidly approach the free particle energy

spectrum as mπL increases. For zero total momentum this limits the region of practical use

to mπL . 2.5, while for nonvanishing total momenta it extends to much larger values of

mπL.

Of particular interest to us are baryon resonances, which so far have not been explored at

all. The low-lying baryon resonances have a much smaller phase space than, for example, the

ρ meson, which makes P -wave resonances, such as the ∆ and Σ∗, especially hard to tackle.

For zero total momentum and O(200)MeV pion masses one would need volumes of L ≈ 6 fm

for the phase shift to cover the region δ ≈ π/2. The reason is that the pion mass is so much

smaller than the mass of the nucleon and the Λ. Not so for nonzero total momenta though,

which allows the pion to have zero momentum. In this case the avoided level crossing of the

energy levels is shifted towards much smaller values of mπL. This is illustrated in Fig. 2,

where we compare the expected five lowest energy levels of the Σ∗ resonance, that decays to

Λπ, for zero and nonzero total momentum, assuming again an effective range approximation
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for the scattering phase with gΣ∗Λπ = 9.2.

Considering the difficulty of computing the properties of resonances on the lattice, how

was ist possible that the mass spectrum of the pseudoscalar and vector meson octet and

the baryon decuplet computed in [3, 4], using standard techniques, agreed so well with

experiment? The answer is given in Fig. 2. In smaller, favorable volumes the ground state

energy may agree well with the resonance mass over a wide range of mπL. In larger volumes

the ground state energy will approach the energy level of two free particles though.

Gottlieb and Rummukainen have extended Lüscher’s work on meson resonances to non-

vanishing total momentum P = (2π/L) e3. Their work was generalized further to two-body

systems of arbitrary mass by Davoudi and Savage [5] and Fu [6]. Recently, Feng et al. [7]

have derived finite size formulae for the next higher momentum P = (2π/L) (e1+e2), which

has been generalized again to particles of arbitrary masses by Leskovec and Prelovsek [8].

In the case of unequal masses and nonvanishing momenta the extraction of phase shifts

from the energy levels of the lattice Hamiltonian proves difficult, because the partial waves

of the individual scattering channels will mix in general. Strategies of how to overcome

this problem have been discussed by Döring et al. [9] in the framework of unitarized chiral

perturbation theory, which is equivalent to Lüscher’s approach in the large-L limit. In this

work we shall derive phase shift formulae for meson and baryon resonances for total mo-

menta proportional to P = (2π/L) e3, P = (2π/L) (e1+e2) and P = (2π/L) (e1+e2+e3),

including rotations of P . Our formulae will cover all two-body S-, P - and D-wave meson

and baryon resonances.

Knowing the scattering phase shifts for general total momenta, among others, we will

be able to extract a great variety of other hadronic observables, including elastic and tran-

sition form factors of unstable particles, such as the ρ form factor and the ∆ to nucleon

electromagnetic transition form factors.

The paper is organized as follows. Section II deals with the kinematics of two-particle

states on the periodic lattice. In Sec. III we discuss the solutions of the Helmholtz equation

for noninteracting and interacting particles. The Lorentz boost from the laboratory frame to

the center of mass frame deforms the cubic lattice, and only some subgroups (little groups)

of the original cubic point symmetry group remain. In Sec. IV we discuss the symmetry

properties of the various center of mass frames, including the representations of the little

groups. This is followed by the reduction of the phase shift formulae according to spin,
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angular momentum and representation in Sec. V. In Sec. VI we give explicit expressions

for the phase shifts of the ρ, ∆ and N⋆(1440) (Roper) resonances, and in Sec. VII we give

a sample of operators that transform according to some of the prominent representations.

Finally, in Sec. VIII we conclude.
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II. TWO-PARTICLE KINEMATICS ON A MOVING-FRAME LATTICE

In this section we discuss the kinematical properties of two noninteracting particles of

mass m1 and m2 in a cubic box of length L with periodic boundary conditions. Twisted

boundary conditions will be discussed elsewhere.

Let us first consider the lattice or laboratory (L) frame. We denote the 3-momenta of

the individual particles by p1,p2. The total momentum is denoted by P = p1 + p2. The

energy of two free particles is given by

W =
√

p2
1 +m2

1 +
√

p2
2 +m2

2 . (1)

The lattice momenta pi are quantized to

pi =
2π

L
ni , ni ∈ Z

3 , (2)

and, similarly,

P =
2π

L
d , d ∈ Z

3 . (3)

Next, we consider the center-of-mass (CM) frame, which is moving with velocity

v =
P

W
, v = |v| (4)

in the laboratory frame. We denote the CM (relative) momentum by k and the energy by

E. Momentum and energy are obtained by a standard Lorentz transformation,

k = γ

(

p1 − v

√

p2
1 +m2

1

)

= −γ

(

p2 − v

√

p2
2 +m2

2

)

, (5)

where

γp = γp‖ + p⊥ , γ =
1√

1− v2
=
W

E
(6)

and

p‖ = v
vp

v2
, p⊥ = p− p‖ . (7)

Laboratory and CM frame energies are related by

W =
√

P 2 + E2 , (8)

where

E = E1 + E2 =

√

k2 +m2
1 +

√

k2 +m2
2 , k2 =

(E2 − (m2
1 +m2

2))
2 − 4m2

1m
2
2

4E2
. (9)
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Defining

p =
1

2
(p1 − p2) = p1 −

1

2
P = −p2 +

1

2
P , (10)

and expressing the laboratory frame energies in (5) by their CM counterparts, the CM

momentum k can be rewritten as

k = γ−1p− γ−1 m
2
1 −m2

2

E2

1

2
P , γ−1p = γ−1p‖ + p⊥ . (11)

This results in the quantization condition

k ∈ Γ∆ (12)

with

Γ∆ =

{

k

∣

∣

∣
k =

2π

L
γ−1

(

n− 1

2
∆

)

, n ∈ Z
3

}

, ∆ = d

(

1 +
m2

1 −m2
2

E2

)

. (13)

III. SOLUTIONS OF THE HELMHOLTZ EQUATION

To compute the scattering phases of the interacting two-particle system, we need to

discuss the solutions of the Helmholtz equation [10] in the CM frame first.

In the laboratory frame the two-particle state is described by the wave function ψL(x1; x2),

where x1 = (x01,x1), x2 = (x02,x2) are the space-time coordinates in Minkowski space. For

the moment we restrict ourselves to particles of spin zero. The wave function can then be

written

ψL(x1; x2) = e−i(Wt−PX) φL(x0,x) (14)

with

X =
m1x1 +m2x2

m1 +m2
, x = x1 − x2 ,

t =
m1x

0
1 +m2x

0
2

m1 +m2

, x0 = x01 − x02 .

(15)

We are interested in the case where both particles have equal time coordinates, x01 = x02 = t.

We denote the space-time separation in the CM frame by r = (r0, r). The transformation

from the laboratory frame to the CM is given by





r0

r



 =





γ γ v

γv γ









0

x



 (16)
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with

φL(0,x) = φCM(r0, r) . (17)

In the case of unequal masses, m1 6= m2, the (relative) time coordinate r0 is no longer zero,

even though x0 is.

A. Noninteracting particles

For noninteracting particles the CM frame wave function obeys the equation of motion
(

−∇2
r0 +∇∇∇2

r +
(

E2 − (m1 +m2)
2
) m1m2

(m1 +m2)2

)

φCM(r0, r) = 0 (18)

with
(

−i∇r0 −
E1m2 −E2m1

m1 +m2

)

φCM(r0, r) = 0 . (19)

Equations (18) and (19) follow directly from the Klein-Gordon equations of the individual

particles. Writing

φCM(r0, r) = e
i
E1m2−E2m1

m1+m2
r0
φCM(0, r) , (20)

the time dependence can be factored out, and we obtain the Helmholtz equation

(

∇∇∇2
r + k2

)

φCM(r) = 0 (21)

with φCM(r) = φCM(0, r), and k given by (13).

The laboratory frame wave function is periodic under spatial translations

ψL(x
0
1,x1; x

0
2,x2) = ψL(x

0
1,x1 + n1L; x

0
2,x2 + n2L) , n1,2 ∈ Z

3. (22)

Equations (14), (17) and (20) together give

ψL(0,x1; 0,x2) = e
i
(

PX+
E1m2−E2m1
E(m1+m2)

Px
)

φCM(r) , (23)

where we have inserted r0 = γ vx = Px/E. This leads to the periodicity relation for the

CM wave function

φCM(r) = e−i πn∆ φCM(r + γnL) (24)

with n = n1−n2. While for equal masses φCM(r) is either periodic (n even) or antiperiodic

(n odd) with period γL, this is no longer so for m1 6= m2. In this case the CM wave function

picks up a complex phase factor e−i πn∆ when crossing the spatial boundary. We call this

attribute ∆-periodic.
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B. Interacting particles

Let us now turn to the interacting case. We assume that the two-body interaction has

finite range and vanishes outside the region |r| > R with L ≫ 2R. In the exterior region

φCM(r) satisfies the Helmholtz equation

(

∇∇∇2
r + k2

)

φCM(r) = 0 (25)

with

k2 =
(E2 − (m2

1 +m2
2))

2 − 4m2
1m

2
2

4E2
≡ k2 , (26)

where E now are the energy levels of the interacting system.

We are now looking for solutions of the Helmholtz equation (25). The (singular) case

k ∈ Γ∆ requires a separate discussion, which we shall omit here. The Green function

G∆(r, k2) = γ−1L−3
∑

p∈Γ∆

e ipr

p2 − k2
(27)

is such a solution. An appropriate basis of solutions of the Helmholtz equation is obtained

from (27) by

G∆
lm(r, k

2) = Ylm(∇∇∇)G∆(r, k2) , (28)

where

Ylm(r) = |r|l Ylm(r̂) , r̂ =
r

|r| . (29)

Obviously, G∆(r, k2) and G∆
lm(r, k

2) are ∆-periodic. The CM wave function can then be

expanded as

φCM(r) =
∑

l,m

clmG
∆
lm(r, k

2) , (30)

which may be interpreted as a partial wave expansion. The functions G∆
lm can be expanded

in spherical harmonics Ylm(θ, ϕ) and spherical Bessel functions [11] nl(kr), jl(kr)

G∆
lm(r, k

2) =
(−1)l kl+1

4π

[

nl(kr) Ylm(θ, ϕ) +

∞
∑

l′=0

l′
∑

m′=−l′

M∆
lm,l′m′ jl′(kr) Yl′m′(θ, ϕ)

]

(31)

with

M∆
lm,l′m′ =

(−1)l γ−1

π3/2

l+l′
∑

j=|l−l′|

j
∑

s=−j

ij

qj+1
Z∆

js (1, q
2)∗Clm,js,l′m′ , q =

kL

2π
, (32)
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where r = |r|, θ and ϕ are the polar coordinates of r. The generalized zeta function Z∆
js (1, q

2)

is obtained from

Z∆
js (δ, q

2) =
∑

z∈P∆

Yjs(z)

(z2 − q2)δ
(33)

with

P∆ =

{

z

∣

∣

∣
z = γ−1

(

n− 1

2
∆

)

, n ∈ Z
3

}

(34)

by analytic continuation δ → 1. The coefficient Clm,js,l′m′ can be expressed in terms of

Wigner 3j-symbols

Clm,js,l′m′ = (−1)m
′

il−j+l′
√

(2l + 1)(2j + 1)(2l′ + 1)





l j l′

m s −m′









l j l′

0 0 0



 . (35)

In Appendix A we give Z∆
js (1, q

2) for arbitrary values of j and s.

It is easily seen that
{

z
∣

∣

∣
z = γ−1

(

n− 1

2
∆(m1, m2)

)

, n ∈ Z
3

}

=

{

−z
∣

∣

∣
z = γ−1

(

n− 1

2
∆(m2, m1)

)

, n ∈ Z
3

}

.

(36)

This results in

Z
∆(m1,m2)
js (δ, q2) = (−1)j Z

∆(m2,m1)
js (δ, q2) (37)

and

M
∆(m1,m2)
lm,l′m′ = (−1)l+l′ M

∆(m2,m1)
lm,l′m′ , (38)

as l + j + l′ = even. Both M
∆(m1,m2)
lm,l′m′ and M

∆(m2,m1)
lm,l′m′ have the same determinant and lead

to the same results, so that the order of m1 and m2 does not matter.

In the literature one often finds the expression [2, 8]

M∆
lm,l′m′ =

(−1)l γ−1

π3/2

l+l′
∑

j=|l−l′|

j
∑

s=−j

ij

qj+1
Z∆

js (1, q
2)Clm,js,l′m′ . (39)

Though not quite correct in general, it leads to the same results for the phase shifts as the

matrix (32). Indeed, if we denote (39) by M̃ , we find M̃lm,l′m′ = (−1)l+l′ M∗
lm,l′m′ , which has

the same determinant as M (see the equations for the phase shifts given in (54) and (55)

below). In the following we shall use the short-hand notation

wlm =
1

π3/2
√
2l + 1

γ−1q−l−1Z∆
lm(1, q

2) . (40)

11



So far we have considered spinless particles only. Let us now assume that one of the

particles carries spin S. In the outer region |r| > R, which we are concerned with here,

the spin operator Ŝ commutes with the Hamiltonian. The spin-dependent part of the wave

function can thus be factored out. As we are mainly interested in meson-baryon resonances,

we consider S = 1/2. In this case we have

φCM(r) =
∑

J,µ
l,m,σ

〈lm, 1
2
σ|Jµ〉 clmG∆

lm(r, q
2)χ

1
2
σ , (41)

where χ
1
2
σ is the two-component baryon spinor. This amounts to an expansion of the CM

wave function in terms of spin sperical harmonics

YJlµ =
∑

m,σ

〈lm, 1
2
σ|Jµ〉 Ylm χ

1
2
σ . (42)

In this basis the matrix M∆ reads

M∆
Jlµ,J ′l′µ′ =

∑

m,σ
m′,σ′

〈lm, 1
2
σ|Jµ〉 〈l′m′,

1

2
σ′|J ′µ′〉M∆

lm,l′m′ . (43)

IV. SYMMETRY PROPERTIES

The Lorentz boost deforms the cubic box to a parellelepiped, in which the length scale

parallel to the direction of the boost vector is multiplied by γ, whereas the perpendicular

length scale is left unchanged.

A. Boost vectors

We will consider boost vectors

d = (d1, d2, d3) , di = 0,±1 (44)

and integer multiples nd, n ∈ Z thereof. For that purpose it is sufficient to consider

d = (0, 0, 0) ≡ 0 , d = (0, 0, 1) ≡ e3 ,

d = (1, 1, 0) ≡ e1 + e2 , d = (1, 1, 1) ≡ e1 + e2 + e3 .
(45)

The boost vectors (44) can be transformed into one of the boost vectors (45) by a global

rotation, which will leave our final results unchanged. Results for multiples of (45) are

12



0
1

2e1

1
2e2

1

2

e3

0
1

2e1

1
2e2

1

2

e3

FIG. 3: A cubic box of unit length deformed to a parallelepiped with d = (e1 + e2) (left panel)

and d = (e1 + e2 + e3) (right panel) for γ = 2.

obtained by simply replacing d by nd in the formulae to follow. In Fig. 3 we show two

examples of the deformation of the cubic box.

B. Properties of the functions wlm

In the following we shall use the shorthand notation

wl = (wl l, wl l−1, · · ·wl−l+1, wl−l) . (46)

As a result of (37), wlm is no longer zero for odd values of l in the case of unequal masses.

In general we have

Z∆
l−m(1; q

2) = (−1)mZ∆
lm(1; q

2)∗ . (47)

1. The case d = (0, 0, 1)

In this case the system is symmetric under rotations around e3 by π/2, which leads to

Z∆
lm(1; q

2) = 0 , for m 6= 0 mod 4 . (48)
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Furthermore, the system is symmetric under the interchange of axes 1 ↔ 2, as well as

reflections e1,2 → −e1,2. This leaves us with the following elements

l wl

0 (w00)

1 (0, w10, 0)

2 (0, 0, w20, 0, 0)

3 (0, 0, 0, w30, 0, 0, 0)

4 (w44, 0, 0, 0, w40, 0, 0, 0, w44)

2. The case d = (1, 1, 0)

In this case the system is symmetric under the interchange of the axes 1 ↔ 2. Further-

more, the system is symmetric under reflections e3 → −e3. This leaves us with the following

elements

l wl

0 (w00)

1
√
2Rew11

(

eiπ/4, 0,−e−iπ/4
)

2 (w22, 0, w20, 0,−w22)

3
√
2
(

e−iπ/4Rew33, 0, e
iπ/4Rew31, 0,−e−iπ/4Rew31, 0,−eiπ/4Rew33

)

4 (w44, 0, w42, 0, w40, 0,−w42, 0, w44)

3. The case d = (1, 1, 1)

In this case the only symmetry that is left is the symmetry under cyclic permutation

1 → 2 → 3 → 1. This leaves us with the following elements

l wl

0 (w00)

1 w10

(

−eiπ/4, 1, e−iπ/4
)

2 w22

(

1,−
√
2e−iπ/4, 0,−

√
2eiπ/4,−1

)

3
(

−
√
10
4
e−iπ/4w30, w32,

√
6
4
eiπ/4 w30, w30,−

√
6
4
e−iπ/4w30,−w32,

√
10
4
eiπ/4w30

)

4
(√

70
14

w40,−
√
7
2
eiπ/4w42, w42,

1
2
e−iπ/4w42, w40,

1
2
eiπ/4w42,−w42,−

√
7
2
e−iπ/4w42,

√
70
14
w40

)

14



C. Irreducible representations of the little groups

In the CM frame, the symmetry group of the cubic lattice is the cubic groupO for particles

with integer spin, and its double cover group 2O for particles with half-integer spin. The

group O consists of 24 elements Ri, i.e. rotation matrices, which are characterized by the

axis n(i) and angle ωi of rotation (with i = 1, · · · , 24). The rotation matrices are given by

(Ri)αβ = cosωi δαβ + (1− cosωi)n
(i)
α n

(i)
β − sinωi ǫαβγ n

(i)
γ , α, β, γ = 1, 2, 3 . (49)

The 24 elements of O fall into five different conjugacy classes. They are listed in Table I.

The group 2O has 48 elements Ri. As for O, they are characterized by the axis n(i) and

angle ωi (with i = 1, · · · , 48 now). The 48 elements of 2O fall into eight different conjugacy

classes. They are listed in Table II.

The full symmetry group includes space inversions I, which commute with the elements

of O and 2O. Choosing T (I) = −1,1 where T (I) denotes an element of any matrix rep-

resentation of I, the elements of O and 2O combined with I form the product groups

Oh = O⊗{1,−1} and 2Oh = 2O⊗{1,−1}, respectively. Irreducible matrix representations

of Oh and 2Oh have been given, for example, in [12].

In the CM frame moving with velocity v = P /W , P = (2π/L)d in the laboratory

frame, the symmetry group reduces to certain subgroups of Oh and 2Oh, hereafter referred

to as the little groups. In the case of unequal masses, the little group consists of elements

Si = {Ri, IRi} ∈ Oh and 2Oh, respectively, which obey

Si d = d . (50)

In the case of equal masses, the system is symmetric under d → −d, and the little group

consists of elements Si, which obey

Si d = ±d . (51)

In Table III we list the elements Ri ∈ O and 2O that satisfy the condition Ri d = d and

Ri d = −d for our three choices of d, together with the corresponding little groups. With

Id = −d, the action of the group elements Si on d is now fully defined.

1 Alternatively, we could have chosen T (I) = 1. Both choices are consistent with I2 = 1.
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Class i n(i) ωi

I 1 any 0

8C3

2 (1, 1, 1)/
√
3 −2π/3

3 (1, 1, 1)/
√
3 2π/3

4 (−1, 1, 1)/
√
3 −2π/3

5 (−1, 1, 1)/
√
3 2π/3

6 (−1,−1, 1)/
√
3 −2π/3

7 (−1,−1, 1)/
√
3 2π/3

8 (1,−1, 1)/
√
3 −2π/3

9 (1,−1, 1)/
√
3 2π/3

6C4

10 (1, 0, 0) −π/2

11 (1, 0, 0) π/2

12 (0, 1, 0) −π/2

13 (0, 1, 0) π/2

14 (0, 0, 1) −π/2

15 (0, 0, 1) π/2

6C ′
2

16 (0, 1, 1)/
√
2 −π

17 (0,−1, 1)/
√
2 −π

18 (1, 1, 0)/
√
2 −π

19 (1,−1, 0)/
√
2 −π

20 (1, 0, 1)/
√
2 −π

21 (−1, 0, 1)/
√
2 −π

3C2

22 (1, 0, 0) −π

23 (0, 1, 0) −π

24 (0, 0, 1) −π

TABLE I: The elements of the cubic group, parameterized by the rotation axis n(i) and rotation

angle ωi, divided into the different conjugacy classes.
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Class i n(i) ωi Class i n(i) ωi

I 1 any 0

8C3

28 (1, 1, 1)/
√
3 4π/3

6C4

2 (1, 0, 0) π 29 (−1, 1, 1)/
√
3 4π/3

3 (0, 1, 0) π 30 (−1,−1, 1)/
√
3 4π/3

4 (0, 0, 1) π 31 (1,−1, 1)/
√
3 4π/3

5 (1, 0, 0) −π 32 (1, 1, 1)/
√
3 −4π/3

6 (0, 1, 0) −π 33 (−1, 1, 1)/
√
3 −4π/3

7 (0, 0, 1) −π 34 (−1,−1, 1)/
√
3 −4π/3

6C ′
8

8 (1, 0, 0) π/2 35 (1,−1, 1)/
√
3 −4π/3

9 (0, 1, 0) π/2

12C ′
4

36 (0, 1, 1)/
√
2 π

10 (0, 0, 1) π/2 37 (0,−1, 1)/
√
2 π

11 (1, 0, 0) −π/2 38 (1, 1, 0)/
√
2 π

12 (0, 1, 0) −π/2 39 (1,−1, 0)/
√
2 π

13 (0, 0, 1) −π/2 40 (1, 0, 1)/
√
2 π

6C8

14 (1, 0, 0) 3π/2 41 (−1, 0, 1)/
√
2 π

15 (0, 1, 0) 3π/2 42 (0, 1, 1)/
√
2 −π

16 (0, 0, 1) 3π/2 43 (0,−1, 1)/
√
2 −π

17 (1, 0, 0) −3π/2 44 (1, 1, 0)/
√
2 −π

18 (0, 1, 0) −3π/2 45 (1,−1, 0)/
√
2 −π

19 (0, 0, 1) −3π/2 46 (1, 0, 1)/
√
2 −π

8C6

20 (1, 1, 1)/
√
3 2π/3 47 (−1, 0, 1)/

√
2 −π

21 (−1, 1, 1)/
√
3 2π/3 J 48 any 2π

22 (−1,−1, 1)/
√
3 2π/3

23 (1,−1, 1)/
√
3 2π/3

24 (1, 1, 1)/
√
3 −2π/3

25 (−1, 1, 1)/
√
3 −2π/3

26 (−1,−1, 1)/
√
3 −2π/3

27 (1,−1, 1)/
√
3 −2π/3

TABLE II: The elements of the double cover group of the cubic group, parameterized by the

rotation axis n(i) and rotation angle ωi, divided into the different conjugacy classes.
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Group d Little Group Ri d = d Ri d = −d

Oh

(0, 0, 1) C4v {Ri|i = 1, 14, 15, 24} {Ri|i = 18, 19, 22, 23}

(1, 1, 0) C2v {Ri|i = 1, 18} {Ri|i = 19, 24}

(1, 1, 1) C3v {Ri|i = 1, 2, 3} {Ri|i = 17, 19, 21}

2Oh

(0, 0, 1) 2C4v {Ri|i = 1, 4, 7, 10, 13, 16, 19, 48} {Ri|i = 2, 3, 5, 6, 38, 39, 44, 45}

(1, 1, 0) 2C2v {Ri|i = 1, 38, 44, 48} {Ri|i = 4, 7, 39, 45}

(1, 1, 1) 2C3v {Ri|i = 1, 20, 24, 28, 32, 48} {Ri|i = 37, 39, 41, 43, 45, 47}

TABLE III: Rotations Ri that obey the condition Ri d = ±d.

As we shall see, several of the irreducible representations of the little groups C4v,
2C4v,

2C2v, C3v and
2C3v in Table III, namely E, G1 andG2, are two-dimensional. Two-dimensional

representations G1 and G2 can be built from the matrices

(Yi)αβ =
(

e−
i

2
n(i)σ ωi

)

αβ
= δαβ cos

ωi

2
− i

(

n(i)σ
)

αβ
sin

ωi

2
, α, β = 1, 2 (52)

with i = 1, · · · , 48.
For the two-dimensional representation E in the bosonic case, it is convenient to introduce

the matrices

X1 = 1 , X2 = −1

2
1+ i

√
3

2
σ2 , X3 = −1

2
1− i

√
3

2
σ2 , X4 = −1

2
σ3 −

√
3

2
σ1 ,

X5 = σ3 , X6 = −1

2
σ3 +

√
3

2
σ1 , X7 = i

1√
2
(σ1 + σ2) , X8 =

1√
2
(σ1 − σ2) .

(53)

In Tables IV, V, VI, VII, VIII, IX, we list the elements {Si} of the little groups C4v,
2C4v,

2C2v, C3v and
2C3v, broken into the various conjugacy classes, the irreducible representations

Γ and characters χ(Γ ) of the little groups. Note that the rotation matrices Ri are specified

by the rotation axes n(i) and angles ωi given in Tables I and II for the bosonic and fermionic

case, respectively. In the case of the two-dimensional representations, we additionally list

the matrices Xi, Yi corresponding to the respective group elements. It is straightforward

to check that these matrices obey the group multiplication laws. Later on we will need

the whole information communicated in the tables for the construction of basis vectors and

operators that transform according to the individual irreducible representations.

The results hold for the general case of unequal masses. For equal masses (integer spin)

the representations are merely ‘doubled’. Let us explain this by giving a specific example.
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{Si} R1 {R14, R15} {IR18, IR19} {IR22, IR23} R24

❅
❅
❅
❅❅

Γ

Class
I 2C4 2IC ′

2 2IC2 C2

A1 1 1 1 1 1

A2 1 1 -1 -1 1

B1 1 -1 -1 1 1

B2 1 -1 1 -1 1

E 2 0 0 0 -2

E X1 {−X7,X7} {X5,−X5} {X8,−X8} −X1

TABLE IV: Character table of the little group C4v for integer spin. The top row shows the elements

of C4v divided into conjugacy classes. The bottom row shows the corresponding matrices for the

two-dimensional irreducible representation E. The rows in between list the characters of the various

irreducible representations Γ of C4v.

{Si} R1 {R4, R7} {R10, R13} {R16, R19} {IR2, IR3, IR5, IR6} {IR38, IR39, IR44, IR45} R48

❅
❅
❅
❅❅

Γ

Class
I 2C4 2C′

8
2C8 4IC4 4IC′

4
J

A1 1 1 1 1 1 1 1

A2 1 1 1 1 -1 -1 1

B1 1 1 -1 -1 1 -1 1

B2 1 1 -1 -1 -1 1 1

E 2 -2 0 0 0 0 2

G1 2 0
√
2 −

√
2 0 0 -2

G2 2 0 −
√
2

√
2 0 0 -2

E 1 {−1,−1} {iσ3,−iσ3} {−iσ3, iσ3} {σ1,−σ1, σ1,−σ1} {−σ2, σ2,−σ2, σ2} 1

G1 Y1 {Y4, Y7} {Y10, Y13} {Y16, Y19} {−Y2,−Y3,−Y5,−Y6} {−Y38,−Y39,−Y44,−Y45} Y48

G2 Y1 {Y4, Y7} {−Y10,−Y13} {−Y16,−Y19} {Y2, Y3, Y5, Y6} {−Y38,−Y39,−Y44,−Y45} Y48

TABLE V: The same as Table IV for the little group 2C4v and half-integer spin, together with the

matrices of the two-dimensional irreducible representations E, G1 and G2.
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Si R1 R18 IR19 IR24

❅
❅
❅
❅❅

Γ

Class
I C ′

2 IC ′
2 IC2

A1 1 1 1 1

A2 1 1 -1 -1

B1 1 -1 1 -1

B2 1 -1 -1 1

TABLE VI: The same as Table IV for the little group C2v and integer spin.

{Si} R1 {R38, R44} {IR4, IR7} {IR39, IR45} R48

❅
❅
❅
❅❅

Γ

Class
I 2C ′

4 4IC4 4IC ′
4 J

A1 1 1 1 1 1

A2 1 1 -1 -1 1

B1 1 -1 -1 1 1

B2 1 -1 1 -1 1

G1 2 0 0 0 -2

G1 Y1 {Y38, Y44} {−Y4,−Y7} {−Y39,−Y45} Y48

TABLE VII: The same as Table IV for the little group 2C2v and half-integer spin, together with

the matrices of the two-dimensional irreducible representation G1.

{Si} R1 {R2, R3} {IR17, IR19, IR21}
❅
❅
❅
❅❅

Γ

Class
I 2C3 3IC ′

2

A1 1 1 1

A2 1 1 -1

E 2 -1 0

E X1 {X2,X3} {−X4,−X5,−X6}

TABLE VIII: The same as Table IV for the little group C3v and integer spin, together with the

matrices of the two-dimensional irreducible representation E.
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{Si} R1 {R20, R24} {R28, R32} {IR37, IR45, IR47} {IR39, IR41, IR43} R48

❅
❅
❅
❅❅

Γ

Class
I 2C6 2C3 3IC4 3IC ′

4 J

A1 1 1 1 1 1 1

A2 1 1 1 -1 -1 1

K1 1 -1 1 i −i -1

K2 1 -1 1 −i i -1

E 2 -1 -1 0 0 2

G1 2 1 -1 0 0 -2

E X1 {X3,X2} {X2,X3} {−X4,−X5,−X6} {−X5,−X6,−X4} X1

G1 Y1 {Y20, Y24} {Y28, Y32} {−Y37,−Y45,−Y47} {−Y39,−Y41,−Y43} Y48

TABLE IX: The same as Table IV for the little group 2C3v and half-integer spin, together with

the matrices of the two-dimensional irreducible representation E and G1.

Consider the representation A1 in Table IV. For equal masses two representations emerge:

A+
1 corresponding to T (S) = 1 for S = R1, R14, R15, R24, R18, R19, R22, R23, IR1, IR14,

IR15, IR24, IR18, IR19, IR22, IR23, and A−
1 corresponding to T (S) = 1 for S = R1, R14,

R15, R24, IR18, IR19, IR22, IR23 and T (S) = −1 for S = IR1, IR14, IR15, IR24, R18, R19,

R22, R23. All other representations are ‘doubled’ in a similar manner.
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V. PHASE SHIFTS

From now on we shall drop the superscript ∆ from the matrix M . Following [12], the

scattering phase shifts δ are obtained from the determinant equation

det (Mlm,l′m′ − δll′δmm′ cot δl) = 0 (54)

for meson resonances and

det (MJlµ,J ′l′µ′ − δJJ ′δll′δµµ′ cot δJl) = 0 (55)

for baryon resonances. Equations (54) and (55) relate the phases δ in the infinite volume to

the energy levels of the lattice Hamiltonian in a finite cubic box.

A. Reduction of the phase shift formulae

In the infinite volume, the basis vectors of an irreducible representation Dl of the rotation

group of total angular momentum l are given by |lm〉 with Mlm,l′m′ = 〈lm|M̂ |l′m′〉 . In case

of half-integer spin, the basis vectors are given by

|Jlµ〉 =
∑

m,σ

|lm, 1
2
σ〉〈lm, 1

2
σ|Jµ〉 (56)

with

MJlµ,J ′l′µ′ = 〈Jlµ|M̂ |J ′l′µ′〉 , (57)

where µ = −J, . . . ,+J and l = J ± 1
2
. The vectors |lm〉 and |Jlµ〉 are parity eigenstates

with parity (−1)l.

In the case of the moving frame the basis vectors of an irreducible representation Γ can

be written as

|Γαln〉 =
∑

m

cΓαn
lm |lm〉 (58)

for integer spin and

|ΓαJln〉 =
∑

µ

cΓαn
Jlµ |Jlµ〉 (59)

for half-integer spin, where α runs from 1 to the dimension of Γ , and n runs from 1 to

N(Γ, l), the number of occurrences of the irreducible representation Γ in Dl. The basis

vectors of the various frames and representations are given in Tables X, XI, XII, XIII, XIV,
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Γ l α Basis vectors

A1 0 |0, 0〉

A1 1 |1, 0〉

E 1
1 1

2(1− i)|1,−1〉 − 1
2(1 + i)|1, 1〉

2 − 1√
2
i|1,−1〉 + 1√

2
|1, 1〉

A1 2 |2, 0〉

B1 2 1√
2
(|2,−2〉 + |2, 2〉)

B2 2 1√
2
(|2,−2〉 − |2, 2〉)

E 2
1 1√

2
|2,−1〉 − 1√

2
i|2, 1〉

2 1
2(1− i)|2,−1〉 + 1

2(1 + i)|2, 1〉

TABLE X: The basis vectors of the irreducible representations Γ of the little group C4v and integer

spin. α labels the components of the basis vectors of the two-dimensional representation E.

Γ J l α Basis vectors

G1
1
2 0

1 |12 , 12〉

2 −|12 ,−1
2 〉

G1
1
2 1

1 |12 , 12〉

2 |12 ,−1
2〉

G1
3
2 1

1 |32 , 12〉

2 −|32 ,−1
2 〉

G2
3
2 1

1 |32 ,−3
2〉

2 |32 , 32〉

G1
3
2 2

1 |32 , 12〉

2 |32 ,−1
2〉

G2
3
2 2

1 |32 ,−3
2〉

2 −|32 , 32〉

TABLE XI: The basis vectors of the irreducible representations Γ of the little group 2C4v and half-

integer spin. α labels the components of the basis vectors of the two-dimensional representations

G1 and G2.
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Γ l Basis vectors

A1 0 |0, 0〉

A1 1 1√
2
(−i|1,−1〉 + |1, 1〉)

B1 1 |1, 0〉

B2 1 1√
2
(i|1,−1〉 + |1, 1〉)

A1 2 |2, 0〉

A1 2 1√
2
(|2,−2〉 − |2, 2〉)

A2 2 1√
2
(|2,−1〉 − i|2, 1〉)

B1 2 1√
2
(|2,−1〉 + i|2, 1〉)

B2 2 1√
2
(|2,−2〉 + |2, 2〉)

TABLE XII: The basis vectors of the irreducible representations Γ of the little group C2v and

integer spin.

Γ J l α Basis vectors

G1
1
2 0

1 |12 ,−1
2〉

2 −i|12 , 12〉

G1
1
2 1

1 |12 , 12〉

2 |12 ,−1
2〉

G1
3
2 1

1 |32 ,−3
2〉

2 |32 , 32〉

G1
3
2 1

1 −|32 , 12〉

2 |32 ,−1
2〉

G1
3
2 2

1 i|32 , 32 〉

2 |32 ,−3
2〉

G1
3
2 2

1 |32 ,−1
2〉

2 i|32 , 12 〉

TABLE XIII: The basis vectors of the irreducible representations Γ of the little group 2C2v and

half-integer spin. α labels the components of the basis vectors of the two-dimensional representation

G1.
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Γ l α Basis vectors

A1 0 |0, 0〉

A1 1 − 1√
3
i|1,−1〉 − 1√

6
(1 + i)|1, 0〉 + 1√

3
|1, 1〉

E 1
1 1√

2
i|1,−1〉 + 1√

2
|1, 1〉

2 − 1√
6
|1,−1〉+ 1√

3
(1− i)|1, 0〉 − 1√

6
i|1, 1〉

A1 2 1√
6
|2,−2〉+ 1√

6
(1− i)|2,−1〉 + 1√

6
(1 + i)|2, 1〉 − 1√

6
|2, 2〉

E 2
1 1√

2
|2,−2〉+ 1√

2
|2, 2〉

2 −|2, 0〉

E 2
1 1√

2
|2,−1〉 − 1√

2
i|2, 1〉

2 − 1√
6
(1− i)|2,−2〉 − 1√

6
i|2,−1〉 + 1√

6
|2, 1〉 + 1√

6
(1− i)|2, 2〉

TABLE XIV: The basis vectors of the irreducible representations Γ of the little group C3v and

integer spin. α labels the components of the basis vectors of the two-dimensional representation

E.

Γ J l α Basis vectors

G1
1
2 0

1
√
6
3 |12 ,−1

2 〉+ 1√
6
(1− i)|12 , 12〉

2 − 1√
6
(1− i)|12 ,−1

2〉 −
√
6
3 i|12 , 12〉

G1
1
2 1

1 |12 , 12〉

2 |12 ,−1
2〉

G1
3
2 1

1 1√
6
(1 + i)|32 ,−3

2〉+ 1√
2
|32 ,−1

2〉+ 1√
6
i|32 , 32〉

2 − 1√
6
|32 ,−3

2〉 − 1√
2
i|32 , 12〉+ 1√

6
(1 + i)|32 , 32〉

K1
3
2 1 −(

√
3
6 (1 + i) +

√
6

12 (1− i))|32 ,−3
2 〉+ 1

2 |32 ,−1
2〉+

√
2
4 (1 + i)|32 , 12〉+ (

√
6
6 −

√
3
6 i)|32 , 32〉

K2
3
2 1 −(

√
3
6 (1 + i)−

√
6

12 (1− i))|32 ,−3
2 〉+ 1

2 |32 ,−1
2〉 −

√
2
4 (1 + i)|32 , 12〉 − (

√
6
6 +

√
3
6 i)|32 , 32〉

G1
3
2 2

1 1√
6
|32 ,−1

2〉+ 1√
6
(1− i)|32 , 12〉+ 1√

2
i|32 , 32〉

2 1√
2
|32 ,−3

2〉+ 1√
6
(1− i)|32 ,−1

2〉+ 1√
6
i|32 , 12〉

K1
3
2 2 −(

√
3
6 (1 + i)−

√
6

12 (1− i))|32 ,−3
2 〉+ 1

2 |32 ,−1
2〉 −

√
2
4 (1 + i)|32 , 12〉 − (

√
6
6 +

√
3
6 i)|32 , 32〉

K2
3
2 2 −(

√
3
6 (1 + i) +

√
6

12 (1− i))|32 ,−3
2 〉+ 1

2 |32 ,−1
2〉+

√
2
4 (1 + i)|32 , 12〉+ (

√
6
6 −

√
3
6 i)|32 , 32〉

TABLE XV: The basis vectors of the irreducible representations Γ of the little group 2C3v and half-

integer spin. α labels the components of the basis vectors of the two-dimensional representation

G1.
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XV for l = 0, 1 and 2. The coefficients cΓαn
lm and cΓαn

Jlµ can be directly read off from these

tables.

The matrix elements of M̂ in the new basis are given by

〈Γαln|M̂ |Γ ′α′l′n′〉 =
∑

mm′

cΓαn ∗
lm cΓ

′α′n′

l′m′ Mlm,l′m′ (60)

for meson resonances and

〈ΓαJln|M̂ |Γ ′α′J ′l′n′〉 =
∑

µµ′

cΓαn ∗
Jlµ cΓ

′α′n′

J ′l′µ′ MJlµ,J ′l′µ′ (61)

for baryon resonances.

According to Schur’s lemma, M̂ is partially diagonalized in the new basis,

〈Γαln|M̂ |Γ ′α′l′n′〉 = δΓΓ ′δαα′MΓ
ln,l′n′ ,

〈ΓαJln|M̂ |Γ ′α′J ′l′n′〉 = δΓΓ ′δαα′MΓ
Jln,J ′l′n′ .

(62)

The phase shift formulae (54) and (55) then reduce to

det
(

MΓ
ln,l′n′ − δll′δnn′ cot δl

)

= 0 ,

det
(

MΓ
Jln,J ′l′n′ − δJJ ′δll′δnn′ cot δJl

)

= 0 .

(63)

The partially diagonalized matrices MΓ
ln,l′n′ and MΓ

Jln,J ′l′n′ are given below for l ≤ 2 and

J = 1/2 and 3/2.

B. Reduced matrices MΓ

1. d = (0, 0, 1) – integer spin

In this case N(Γ, l) = 1 for all representations, so that we may drop the subscripts n, n′

from MΓ
ln,l′n′ . The matrices MΓ have the following entries

(

MΓ
l,l′

)

=











M0,0 M0,1 M0,2

M1,0 M1,1 M1,2

M2,0 M2,1 M2,2











(64)

with

MA1 =











w00

√
3iw10 −

√
5w20

−
√
3iw10 w00 + 2w20 i2

√
15
5
w10 + i3

√
15
5
w30

−
√
5w20 −i2

√
15
5
w10 − i3

√
15
5
w30 w00 +

10
7
w20 +

18
7
w40











, (65)
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MB1 =











0 0 0

0 0 0

0 0 w00 − 10
7
w20 +

3
7
w40 +

3
√
70
7
w44











, (66)

MB2 =











0 0 0

0 0 0

0 0 w00 − 10
7
w20 +

3
7
w40 − 3

√
70
7
w44











, (67)

ME =











0 0 0

0 w00 − w20 −3
√
10

10
(1− i)(w10 − w30)

0 −3
√
10

10
(1 + i)(w10 − w30) w00 +

5
7
w20 − 12

7
w40











. (68)

2. d = (0, 0, 1) – half-integer spin

In this case N(Γ, l) = 1 for all representations, so that we may drop the subscripts n, n′

again. The matrices MΓ have the following entries

(

MΓ
Jl,J ′l′

)

=















M 1
2
0, 1

2
0 M 1

2
0, 1

2
1 M 1

2
0, 3

2
1 M 1

2
0, 3

2
2

M 1
2
1, 1

2
0 M 1

2
1, 1

2
1 M 1

2
1, 3

2
1 M 1

2
1, 3

2
2

M 3
2
1, 1

2
0 M 3

2
1, 1

2
1 M 3

2
1, 3

2
1 M 3

2
1, 3

2
2

M 3
2
2, 1

2
0 M 3

2
2, 1

2
1 M 3

2
2, 3

2
1 M 3

2
2, 3

2
2















(69)

with

MG1 =















w00 iw10 i
√
2w10 −

√
2w20

−iw10 w00

√
2w20 i

√
2w10

−i
√
2w10

√
2w20 w00 + w20

i
5
w10 +

9i
5
w30

−
√
2w20 −i

√
2w10 − i

5
w10 − 9i

5
w30 w00 + w20















, (70)

MG2 =















0 0 0 0

0 0 0 0

0 0 w00 − w20 i3
5
(w10 − w30)

0 0 −i3
5
(w10 − w30) w00 − w20















. (71)
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3. d = (1, 1, 0) – integer spin

The representation A1 occurs twice in Dl for l = 2, N(A1, 2) = 2. In all other cases

N(Γ, l) = 1. The matrices MΓ have the following entries

(

MΓ
l[n],l′[n′]

)

=















M0,0 M0,1 M0,21 M0,22

M1,0 M1,1 M1,21 M1,22

M21,0 M21,1 M21,21 M21,22

M22,0 M22,1 M22,21 M22,22















(72)

with

MA1 =















w00 −
√
6(1− i)r11

√
10w22 −

√
5w20

−
√
6(1 + i)r11 A22 A−

23 A+
24

−
√
10w22 A+

23 A33 A34

−
√
5w20 A−

24 −A34 A44















, (73)

where rjs = Rewjs and

A±
23 =

3
√
10

5
(1± i)r11 −

√
15

5
(1± i)r31 − 3(1± i)r33 ,

A±
24 = −

√
30

5
(1± i)r11 +

6
√
5

5
(1± i)r31 ,

A22 = w00 − w20 −
√
6iw22 ,

A33 = w00 −
10

7
w20 +

3

7
w40 −

3
√
70

7
w44 ,

A34 = −10
√
2

7
w22 +

3
√
30

7
w42 ,

A44 = w00 +
10

7
w20 +

18

7
w40 .

(74)

For the remaining representations we drop the subscripts n, n′ and obtain

MA2 =











0 0 0

0 0 0

0 0 w00 +
5
7
w20 − 12

7
w40 +

5
√
6

7
iw22 +

6
√
10
7
iw42











, (75)

MB1 =











0 0 0

0 w00 + 2w20 −3
√
10
5

(1 + i)r11 − 4
√
15
5

(1 + i)r31

0 −3
√
10
5

(1− i)r11 − 4
√
15
5

(1− i)r31 B33











, (76)
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MB2 =











0 0 0

0 w00 − w20 +
√
6iw22 B̃−

23

0 B̃+
23 w00 − 10

7
w20 +

3
7
w40 +

3
√
70
4
w44











, (77)

where

B33 = w00 +
5

7
w20 −

12

7
w40 −

5
√
6

7
iw22 −

6
√
10

7
iw42 ,

B̃±
23 = −3

√
10

5
(1± i)r11 +

√
15

5
(1± i)r31 − 3(1± i)r33 .

(78)

4. d = (1, 1, 0) – half-integer spin

In this case we are concerned with the representation G1 only. We have N(G1, l) = 2 for

J = 3
2
and l = 1, 2 and N(G1, l) = 1 else. The matrix MG1 has the following entries

(

MG1

Jl[n],J ′l′[n′]

)

=



























M 1
2
0, 1

2
0 M 1

2
0, 1

2
1 M 1

2
0, 3

2
11 M 1

2
0, 3

2
12 M 1

2
0, 3

2
21 M 1

2
0, 3

2
22

M 1
2
1, 1

2
0 M 1

2
1, 1

2
1 M 1

2
1, 3

2
11 M 1

2
1, 3

2
12 M 1

2
1, 3

2
21 M 1

2
1, 3

2
22

M 3
2
11, 1

2
0 M 3

2
11, 1

2
1 M 3

2
11, 3

2
11 M 3

2
11, 3

2
12 M 3

2
11, 3

2
21 M 3

2
11, 3

2
22

M 3
2
12, 1

2
0 M 3

2
12, 1

2
1 M 3

2
12, 3

2
11 M 3

2
12, 3

2
12 M 3

2
12, 3

2
21 M 3

2
12, 3

2
22

M 3
2
21, 1

2
0 M 3

2
21, 1

2
1 M 3

2
21, 3

2
11 M 3

2
21, 3

2
12 M 3

2
21, 3

2
21 M 3

2
21, 3

2
22

M 3
2
22, 1

2
0 M 3

2
22, 1

2
1 M 3

2
22, 3

2
11 M 3

2
22, 3

2
12 M 3

2
22, 3

2
21 M 3

2
22, 3

2
22



























(79)

with

MG1 =



























w00 −
√
2G−

14 −
√
3G+

14 G−
14 −2iw22 −

√
2w20

−
√
2G+

14 w00 2w22

√
2w20 −

√
3G+

14 −G+
14

−
√
3G−

14 −2w22 w00 − w20

√
2w22 G−

35 G−
36

G+
14

√
2w20 −

√
2w22 w00 + w20 −G+

36 G+
46

−2iw22 −
√
3G−

14 G+
35 −G−

36 w00 − w20 −
√
2iw22

−
√
2w20 −G−

14 G+
36 G−

46 −
√
2iw22 w00 + w20



























, (80)
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where

G±
14 = (1± i)r11 ,

G±
35 =

6
√
5

5
(1± i)r33 ,

G±
36 = −

√
6

5
(1± i)(r11 −

√
6r31) ,

G±
46 = −2

√
2

5
(1± i)r11 −

6
√
3

5
(1± i)r31 .

(81)

5. d = (1, 1, 1) – integer spin

In this case we are concerned with two representations, A1 and E. The representation

A1 occurs only once in Dl, and we find

MA1 =
(

MA1

l,l′

)

=











M0,0 M0,1 M0,2

M1,0 M1,1 M1,2

M2,0 M2,1 M2,2











=











w00
3
√
2

2
(1− i)w10

√
30w22

3
√
2

2
(1 + i)w10 w00 − 2

√
6iw22 Ã−

23

−
√
30w22 Ã+

23 w00 − 12
7
w40 − 12

√
10

7
iw42 − 10

√
6

7
iw22











,

(82)

where

Ã±
23 = −3

√
10

5
(1± i)w10 +

3
√
10

5
(1± i)w30 ∓

√
3(1∓ i)w32 . (83)

The representation E occurs twice in Dl for l = 2, N(E, 2) = 2, and we obtain

ME =
(

ME
l[n],l′[n′]

)

=















M0,0 M0,1 M0,21 M0,22

M1,0 M1,1 M1,21 M1,22

M21,0 M21,1 M21,21 M21,22

M22,0 M22,1 M22,21 M22,22















=















0 0 0 0

0 w00 + i
√
6w22 E−

23 E24

0 E+
23 w00 +

18
7
w40 E−

34

0 E24 −E+
34 w00 − 12

7
w40 +

6
√
10
7
iw42 +

5
√
6

7
iw22















,

(84)
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where

E±
23 =

3
√
5

5
(1± i)w10 +

9
√
5

10
(1± i)w30 ,

E24 =
3
√
5

5
(w10 − w30) +

√
6iw32 ,

E±
34 =

5
√
6

7
(1± i)w22 −

9
√
10

14
(1± i)w42 .

(85)

6. d = (1, 1, 1) – half-integer spin

In this case N(Γ, l) = 1 for all representations. The matrices MΓ have the following

entries

(

MΓ
Jl,J ′l′

)

=















M 1
2
0, 1

2
0 M 1

2
0, 1

2
1 M 1

2
0, 3

2
1 M 1

2
0, 3

2
2

M 1
2
1, 1

2
0 M 1

2
1, 1

2
1 M 1

2
1, 3

2
1 M 1

2
1, 3

2
2

M 3
2
1, 1

2
0 M 3

2
1, 1

2
1 M 3

2
1, 3

2
1 M 3

2
1, 3

2
2

M 3
2
2, 1

2
0 M 3

2
2, 1

2
1 M 3

2
2, 3

2
1 M 3

2
2, 3

2
2















(86)

with

MK1 =















0 0 0 0

0 0 0 0

0 0 w00 +
√
6iw22 B̄+

34

0 0 B̄−
34 w00 +

√
6iw22















, (87)

where

B̄±
34 =

(

−3
√
2

5
± 3

5
i

)

w10 +

(

3
√
2

5
± 12

5
i

)

w30 +

(

±
√
30

5
− 2

√
15

5
i

)

w32 , (88)

and

MK2 =















0 0 0 0

0 0 0 0

0 0 w00 +
√
6iw22 B̂+

34

0 0 B̂−
34 w00 +

√
6iw22















, (89)

where

B̂±
34 =

(

3
√
2

5
± 3

5
i

)

w10 +

(

−3
√
2

5
± 12

5
i

)

w30 +

(

±
√
30

5
+

2
√
15

5
i

)

w32 , (90)
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and finally

MG1 =















w00

√
6
2
(1− i)w10

√
6iw10 −2

√
3iw22

√
6
2
(1 + i)w10 w00

√
6(1 + i)w22

√
3(1 + i)w10

−
√
6iw10 −

√
6(1− i)w22 w00 − i

√
6w22 G̃34

−2
√
3iw22

√
3(1− i)w10 −G̃34 w00 − i

√
6w22















, (91)

where

G̃34 =
6
√
3

5
iw30 −

√
3

5
iw10 −

3
√
10

5
w32 . (92)

VI. THREE EXAMPLES

Let us now apply the formulae derived above to a few concrete cases. A general feature

of unequal mass particles is that spin and angular momentum mix under the Lorentz boost,

which complicates the extraction of phase shifts significantly. In the case of baryon reso-

nances, nonvanishing momenta prove most advantageous for the evaluation of P -wave phase

shifts, as we have seen in the Introduction. For S-wave baryon resonances nonvanishing

momenta are of no big advantage as far as moving the level crossing to smaller values of

mπL is concerned.

Of primary interest are the ρ and the ∆ resonance. The calculation of the mass and the

width of the ρ meson provides a benchmark test, which has to be passed successfully before

we can address more complex systems. The ∆ resonance is interesting for two reasons. First

d Little Group Γ cot δ1

(0, 0, 1) C4v

A±
1 w00 + 2w20

E± w00 − w20

(1, 1, 0) C2v

A±
1 w00 − w20 − i

√
6w22

B±
1 w00 + 2w20

B±
2 w00 − w20 + i

√
6w22

(1, 1, 1) C3v

A±
1 w00 − i2

√
6w22

E± w00 + i
√
6w22

TABLE XVI: The phase shifts of the ρ resonance for the various boost vectors and representations.
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of all, it is one of the very few elastic two-body baryon resonances, and as such qualifies for

a first extension of Lüscher’s method to particles carrying spin. Secondly, being a P33 wave,

its phase δ 3
2
1 can be computed directly from representations G2 and B1, B2. Finally, we

consider the N⋆(1440) Roper resonance. Being a P11 wave and carrying spin 1/2, it couples

to the representation G1 only, which mixes spin 1/2 with spin 3/2 and angular momentum

l = 0 with angular momentum l = 1.

A. The ρ resonance

In the case of equal masses and integer spin the situation simplifies significantly. All

matrices MΓ turn out to be diagonal, and the phase shifts can be directly read off from

their eigenvalues. The phase shifts δ1 of the ρ resonance are given in Table XVI.

B. The ∆() resonance

Neglecting mixing with D waves (and higher), it is straightforward to compute δ 3
2
1 for

boost vector d = (0, 0, 1) from the representation G1 and for boost vector d = (1, 1, 1) from

representations B1 and B2, giving

d Γ cot δ 3
2
1

(0, 0, 1) G2 w00 − w20

(1, 1, 1) B1, B2 w00 + i
√
6w22

(93)

In all other cases δ 3
2
1 mixes with lower spin and lower partial waves.

The same formulae apply to the Σ∗(1385) resonance (whose energy levels we have shown

in Fig. 2), which is a P13 wave.

C. The N⋆() Roper resonance

Let us consider the boost vector d = (0, 0, 1) and representation G1. Alternatively we

could consider the boost vectors d = (1, 1, 0) and d = (1, 1, 1). Neglecting mixing with

J = 3
2
states for the moment, we need to solve

∣

∣

∣

∣

∣

∣

w00 − cot δ 1
2
0 i w10

−i w10 w00 − cot δ 1
2
1

∣

∣

∣

∣

∣

∣

= 0 , (94)
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which leads to

cot δ 1
2
1 cot δ 1

2
0 −

(

cot δ 1
2
1 − cot δ 1

2
0

)

w00 + w2
00 − w2

10 = 0 . (95)

The phase shift that interests us here is δ 1
2
1. To compute δ 1

2
1 from (95) we need to know

δ 1
2
0, which is most easily obtained from eigenstates of zero total momentum, d = (0, 0, 0).

It is not excluded that the spin-1/2 states mix with the P -wave spin-3/2 state, though no

resonance of that kind has been reported by the Particle Data Group [13]. In this case we

would have
∣

∣

∣

∣

∣

∣

∣

∣

∣

w00 − cot δ 1
2
0 i w10 i

√
2w10

−i w10 w00 − cot δ 1
2
1

√
2w20

−i
√
2w10

√
2w20 w00 + w20 − cot δ 3

2
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 . (96)

To find out, and to solve (96), the phase δ 3
2
1 can be directly computed from representation

G2. It has to be extrapolated to the appropriate value of q2 though.

VII. OPERATORS

Recently, several authors [8, 14–16] have started to construct operators projecting onto

selected irreducible representations of the little groups. In this Section we extend the work

to higher representations and/or particles with spin.

We start from (generally nonlocal) operators Oα(x1,x2, t). Under space rotations R̂ they

transform like

(R̂ O)α(x1,x2, t) = Sαβ(R)Oβ(R
−1x1, R

−1x2, t) , (97)

where R−1x denotes the rotated vector x, and the matrices Sαβ(R) form a linear represen-

tation of the group SO(3) in case of integer spin and SU(2) in case of half-integer spin.

The explicit form of Sαβ(R) is well known for scalar, vector and spinor fields. Under space

inversions Î the operators transform as

(Î O)α(x1,x2, t) = Iαβ Oβ(−x1,−x2, t) (98)

with I2 = 1. An operator OΓ
α (x1,x2, t), which transforms according to the irreducible

representation Γ of the little group, is given by (see, for example, [17])

OΓ
α (x1,x2, t) =

∑

i

χ∗
Γ (Si) (ŜiO)α(x1,x2, t) , (99)
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where the sum runs over all elements Si of the little group, which are either pure rotations

Ri, or rotations combined with space inversion I Ri. The quantities χΓ (Si) denote the

characters in the representation Γ . The operators can be trivially Fourier transformed to

momentum space.

Below we will give a few examples of single-particle and two-particle operators, which

demonstrate the procedure to be followed in the general case.

A. Single-particle operators

Let us start with the simple case of quark-antiquark and three-quark operators, and

discuss this case in detail.

1. The case d = (0, 0, 1) – scalar mesons

Consider the operator

O(p, t) =
∑

x

eipx q̄(x, t)q(x, t) . (100)

Under rotations and space inversions the operator transforms as

R̂ (q̄(x, t)q(x, t)) = q̄(R−1x, t)q(R−1x, t) , Î (q̄(x, t)q(x, t)) = q̄(−x, t)q(−x, t) . (101)

The projected operator takes the form

OΓ (p, t) =
∑

i

χ∗
Γ (Si)

∑

x

eipx q̄(S−1
i x, t)q(S−1

i x, t) . (102)

Note that the sites R−1
i x and −x belong to the lattice if x does. In the case of unequal

masses, the momentum p is left invariant by the elements of the little group, Si p = p, so

that we have

OΓ (p, t) =
∑

i

χ∗
Γ (Si)

∑

x

eipx q̄(x, t)q(x, t) =

(

∑

i

χ∗
Γ (Si)

)

O(p, t) . (103)

Consequently, the operator O(p, t) transforms according to the trivial representation A1, for

which
∑

i χ
∗
Γ (Si) 6= 0.

In the case of equal masses, the number of irreducible representations is doubled, Γ → Γ±,

and the momentum p is left invariant by the elements of the little group up to a sign,
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Si p = ±p. Accordingly, the operators OΓ should be symmetrized, or antisymmetrized,

with respect to p ↔ −p. However, we may still work with the same operators as for

unequal masses. The advantage of these operators is that they have definite momentum

p. The additional symmetry present in the case of equal masses has solely the effect that

even angular momenta do not mix with odd angular momenta in the spectrum of the lattice

Hamiltonian.

2. The case d = (0, 0, 1) – vector mesons

Starting from the operator

V (p, t) =











V1(p, t)

V2(p, t)

V3(p, t)











Vi(p, t) =
∑

x

eipx q̄(x, t) γi q(x, t) , (104)

it can easily be checked that in the case of unequal masses the operator

V E(p, t) =
∑

x

eipx











V1(x, t)

V2(x, t)

0











(105)

transforms according to the irreducible representation E. In fact, one may use any linear

combination of V1 and V2 to project onto E. In contrast, the third component, V3, transforms

according to the irreducible representation A1,

V A1(p, t) =
∑

x

eipx V3(x, t) . (106)

3. The case d = (1, 1, 1) – vector mesons

We start again from the operator (104). Instead of (105), we now get

V E(p, t) =
∑

x

eipx











2V1(x, t)− V2(x, t)− V3(x, t)

2V2(x, t)− V3(x, t)− V1(x, t)

2V3(x, t)− V1(x, t)− V2(x, t)











. (107)

The components of V E are cyclic permutations, {i, j, k} = {1, 2, 3}, of the operator 2Vi −
Vj − Vk. Note that only two of the components of V E are independent, in accord with the

representation E being two-dimensional.
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The operator projected onto the prepresentation A1 is given by

V A1(p, t) =
∑

x

eipx (V1(x, t) + V2(x, t) + V3(x, t)) . (108)

4. The case d = (0, 0, 1) – ∆ resonance

We start from the interpolating operator of the ∆+ resonance,

∆+
α (p, t) =











∆+
1α(p, t)

∆+
2α(p, t)

∆+
3α(p, t)











(109)

with, for example,

∆+
iα(p, t) =

∑

x

eipx
{

2(uT (x, t)Cγid(x, t)uα(x, t) + (uT (x, t)Cγiu(x, t)dα(x, t)
}

=
∑

x

eipx∆+
iα(x, t) .

(110)

Under space rotations the operator ∆+
iα(p, t) transforms as

(R̂∆)+iα(x, t) = Sαβ(R)Aij(R)∆
+
jβ(R

−1x, t) , S(R) =





Š(R) 0

0 Š(R)



 , (111)

where A(R) and Š(R) are 3 × 3 and 2 × 2 irreducible matrix representations of SU(2),

respectively. Under space inversions the operator transforms as

(Î∆)+iα(x, t) = (γ0)αβ∆
+
iβ(−x, t) . (112)

Applying (99), the operators projected onto the irreducible representations G1 and G2 turn

out to be

∆+G1
α =

∑

x

eipx











∆+
1α(x, t) + i(Σ3)αβ∆

+
2β(x, t)

∆+
2α(x, t)− i(Σ3)αβ∆

+
1β(x, t)

2∆+
3α(x, t)











(113)

and

∆+G2
α =

∑

x

eipx











∆+
1α(x, t)− i(Σ3)αβ∆

+
2β(x, t)

∆+
2α(x, t) + i(Σ3)αβ∆

+
1β(x, t)

0











, (114)
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respectively, where

Σ3 =





σ3 0

0 σ3



 . (115)

B. Two-particle operators

1. The case d = (0, 0, 1) – product of two (pseudo-)scalar fields

We start from the operator

O(p, q, t) =
∑

x,y

ei(px+q(x−y))φ1(x, t)φ2(y, t) . (116)

In the case of unequal masses the operator that transforms according to the irreducible

representation Γ is given by

OΓ (p, q, t) =

8
∑

i=1

χ∗
Γ (Si)

∑

x,y

ei(px+(Siq)(x−y))φ1(x, t)φ2(y, t) , (117)

where

i Siq

1 (q1, q2, q3)

2 (q2,−q1, q3)
3 (−q2, q1, q3)
4 (−q1,−q2, q3)
5 (−q2,−q1, q3)
6 (q2, q1, q3)

7 (−q1, q2, q3)
8 (q1,−q2, q3)

(118)

From this expression one readily obtains, for example, the operator that transforms according

to the representation E,

OE(p, q, t) =
∑

x,y

eipx
(

eiq⊥(x−y)⊥ − e−iq⊥(x−y)⊥
)

eiq‖(x−y)‖ φ1(x, t)φ2(y, t) , (119)

where q‖ = (0, 0, q3) and q⊥ = (q1, q2, 0), and similarly for x, y.
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2. The case d = (1, 1, 0) – product of pion and nucleon fields

This case is trivial, as only the irreducible representation G1 contributes. Any operator,

for example

O(p, q, t) =
∑

x,y

ei(px+q(x−y)) π(x, t)N(y, t) , (120)

will transform according to G1.

Having the characters χ(Γ ) of the irreducible representations Γ of the little groups at

hand, it should be no problem to construct operators that transform according to any other

representation. Examples of meson-baryon operators projected onto representations G2 in

the case of d = (0, 0, 1) and B1, B2 in the case of d = (1, 1, 1) will be given in a separate

publication [18], together with numerical results.

VIII. CONCLUSIONS

In this work we have extended previous work by Lüscher [1] and others [2, 6–8] on

determining the scattering phases from the energy levels of the (lattice) Hamiltonian in

a finite volume to meson and baryon resonances of arbitrary masses and arbitrary total

momenta P = (2πn/L) (d1, d2, d3) with di = 0,±1, n ∈ Z. Explicit formulae for the phase

shifts have been given for meson resonances with angular momentum l ≤ 2 and for baryon

resonances with spin J ≤ 3/2 and orbital angular momentum l ≤ 2. That covers essentially

all elastic two-body resonances. There are several advantages to performing simulations

with nonvanishing total momenta. This includes making the avoided level crossing in P -

wave decays occur at a smaller volume, in the case the scattering particles have different

mass, and making a wider set of energy levels available on a single lattice volume.

The drawback is that the individual partial waves will mix in general. Neglecting D

waves, this is the case for all S-wave meson resonances and all S- and P -wave spin-1/2

baryon resonances. To compute the P -wave phase shift δ 1
2
1, for example, one will need

input from δ 1
2
0. One might be lucky though and find the latter to be small, because no

low-lying positive parity S-wave spin-1/2 pion-nucleon resonance has been reported [13].

This is one of the mysteries of baryon spectroscopy.

The success of the method depends on our ability to construct operators that will trans-

form according to the desired representation of the little group. We have outlined the
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general procedure of how to construct such operators from the character tables, and given

a few explicit examples of single-particle and two-particle operators.
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Appendix A: Zeta functions

A valid representation of the zeta function for δ = 1 is given by [10]

Z∆
lm(1, q

2) =
∑

z∈P∆

|z|<λ

Ylm(z)

z2 − q2
+ (2π)3

∫ ∞

0

dt

[

etq
2

K∆λ
lm (t, 0)− γ δl0 δm0

(4π)2t3/2

]

, (A1)

where

K∆λ
lm (t, r) = K∆

lm(t, r)−
1

(2π)3

∑

z∈P∆

|z|<λ

Ylm(z) e
izr−tz2

(A2)

and K∆
lm(t, r) is the heat kernel of the Laplace operator on the ∆-periodic lattice,

K∆
lm(t, r) =

1

(2π)3

∑

z∈P∆

Ylm(z) e
izr−tz2

. (A3)

This leads to

Z∆
lm(1, q

2) =
∑

z∈P∆

|z|<λ

Ylm(z)

z2 − q2
e−(z2−q2) +

∫ ∞

1

dt
∑

z∈P∆

|z|>λ

Ylm(z) e
−t(z2−q2)

+

∫ 1

0

dt

[

∑

z∈P∆

Ylm(z) e
−t(z2−q2) − γ

π

2
δl0 δm0

1

t3/2

]

− γ
π

4
δl0 δm0

(A4)

with both integrals being well defined for a suitable choice of λ. Indeed, using the relation

∑

z∈P∆

Ylm(z) e
−tz2

= γ
(π

t

)3/2
(

i

2t

)l
∑

n∈Z3

e−iπn∆Ylm(2πγn) e
−(2πγn)2/4t , (A5)

the sum over z ∈ P∆ in the second integral can be expressed in terms of a sum over n ∈ Z
3,

which finally gives

Z∆
lm(1, q

2) =
∑

z∈P∆

Ylm(z)

z2 − q2
e−(z2−q2) + γ

π

2
δl0 δm0 F (q)

+ γπ3/2

∫ 1

0

dt
etq

2

t3/2

(

i

2t

)l
∑

n∈Z3

n 6=0

e−iπn∆ Ylm(2πγn) e
−(πγn)2/t ,

(A6)

where

F (q) =

∫ 1

0

dt
etq

2 − 1

t3/2
− 2 =

∞
∑

n=0

q2n

(n− 1/2)n!
. (A7)
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ter, J.M. Zanotti [QCDSF Collaboration], Phys. Rev. D 84, 054509 (2011) [arXiv:1102.5300

[hep-lat]].
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