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DESY 09{144 ISSN 0418{9833September 2009Complete next-to-leading-order orretions to J= photoprodution in nonrelativistiquantum hromodynamisMathias Butensh�on and Bernd A. KniehlII. Institut f�ur Theoretishe Physik, Universit�at Hamburg,Luruper Chaussee 149, 22761 Hamburg, Germany(Dated: February 2, 2010)We alulate the ross setion of inlusive diret J= photoprodution at next-to-leading orderwithin the fatorization formalism of nonrelativisti quantum hromodynamis, for the �rst timeinluding the full relativisti orretions due to the intermediate 1S[8℄0 , 3S[8℄1 , and 3P [8℄J olor-otetstates. A omparison of our results to reent H1 data suggests that the olor otet mehanism isindeed realized in J= photoprodution, although the preditivity of our results still su�ers fromunertainties in the olor-otet long-distane matrix elements.PACS numbers: 12.38.Bx, 13.60.Hb, 13.60.Le, 14.40.PqThe fatorization formalism of nonrelativisti quan-tum hromodynamis (NRQCD) [1℄ provides a onsis-tent theoretial framework for the desription of heavy-quarkonium prodution and deay, whih is known tohold through two loops [2℄. This implies a separationof proess-dependent short-distane oeÆients, to bealulated perturbatively as expansions in the strong-oupling onstant �s, from supposedly universal long-distane matrix elements (LDMEs), to be extrated fromexperiment. The relative importane of the latter anbe estimated by means of veloity saling rules; i.e., theLDMEs are predited to sale with a de�nite power of theheavy-quark (Q) veloity v in the limit v � 1. In thisway, the theoretial preditions are organized as doubleexpansions in �s and v. A ruial feature of this formal-ism is that it takes into aount the omplete strutureof the QQ Fok spae, whih is spanned by the statesn = 2S+1L[a℄J with de�nite spin S, orbital angular mo-mentum L, total angular momentum J , and olor multi-pliity a = 1; 8. In partiular, this formalism predits theexistene of olor-otet (CO) proesses in nature. Thismeans that QQ pairs are produed at short distanes inCO states and subsequently evolve into physial, olor-singlet (CS) quarkonia by the nonperturbative emissionof soft gluons. In the limit v ! 0, the traditional CSmodel (CSM) is reovered in the ase of S-wave quarko-nia. In the ase of J= prodution, the CSM preditionis based just on the 3S[1℄1 CS state, while the leading rel-ativisti orretions, of relative order O(v4), are built upby the 1S[8℄0 , 3S[8℄1 , and 3P [8℄J (J = 0; 1; 2) CO states.Fifteen years after the introdution of the NRQCD fa-torization formalism [1℄, the existene of CO proessesand the universality of the LDMEs are still at issue andfar from proven, despite an impressive series of exper-imental and theoretial endeavors. The greatest su-ess of NRQCD was that it was able to explain the J= hadroprodution yield at the Fermilab Tevatron [3℄, whilethe CSM predition lies orders of magnitudes below thedata, even if the latter is evaluated at next-to-leadingorder (NLO) or beyond [4, 5℄. Also in the ase of J= photoprodution at DESY HERA, the CSM ross setion

signi�antly falls short of the data, as demonstrated bya reent NLO analysis [6℄ using up-to-date input param-eters and standard sale hoies, leaving room for COontributions [7℄. Similarly, the J= yields measured ineletroprodution at HERA and in two-photon ollisionsat CERN LEP2 were shown [8, 9℄ to favor the presene ofCO proesses. As for J= polarization in hadroprodu-tion, neither the leading-order (LO) NRQCD predition[10℄, nor the NLO CSM one [5℄ leads to an adequatedesription of the Tevaton data. The situation is quitesimilar for the polarization in photoprodution at HERA[6℄.In order to onviningly establish the CO mehanismand the LDME universality, it is an urgent task to om-plete the NLO desription of J= hadro- [4, 5, 11℄ andphotoprodution [6, 12℄, regarding both J= yield [4, 12℄and polarization [5, 6, 11℄, by inluding the full CO on-tributions at NLO. While the NLO ontributions due tothe 1S[8℄0 and 3S[8℄1 CO states may be obtained [11℄ usingstandard tehniques, familiar from earliest NLO CSMalulations [12℄, the NLO treatment of 3P [8℄J states in2 ! 2 proesses requires a more advaned tehnology,whih has been laking so far. In fat, the 3P [8℄J ontri-butions represent the missing links in all those previousNLO analyses [4{6, 11, 12℄, and there is no reason atall to expet them to be insigni�ant. Spei�ally, theiralulation is far more intriate beause the appliationof the 3P [8℄J projetion operators to the short-distanesattering amplitudes produe partiularly lengthy ex-pressions involving ompliated tensor loop integrals andexhibiting an entangled pattern of infrared (IR) singu-larities. This tehnial bottlenek, whih has preventedessential progress in the global test of NRQCD fator-ization for the past �fteen years, is overome here forthe �rst time. So far, only two omplete NLO analysesof heavy-quarkonium prodution in high-energy ollisionsinvolving CO states have been performed: the total rosssetion of hadroprodution [13℄ and the inlusive rosssetion at �nite transverse momentum pT in two-photonollisions [14℄. However, the former ase orresponds toa 2 ! 1 proess, whih enormously simpli�es the alu-
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qFIG. 1: Sample diagrams ontributing at LO (a and d) andto the virtual (b and e) and real ( and f) NLO orretions.
FIG. 2: Overview of the IR singularity struture.lation, and the latter ase does not involve virtual or-retions in P -wave hannels.In diret photoprodution, a quasi-real photon  thatis radiated o� the inoming eletron e interats with aparton i stemming from the inoming proton p. Invokingthe Weizs�aker-Williams approximation and the fator-ization theorems of the QCD parton model and NRQCD[1℄, the inlusive J= photoprodution ross setion isevaluated fromd�(ep! J= +X) = Xi;n Z dxdy f=e(x)fi=p(y) (1)� hOJ= [n℄id�(i! [n℄ +X);where f=e(x) is the photon ux funtion, fi=p(y) arethe parton distribution funtions (PDFs) of the proton,hOJ= [n℄i are the LDMEs, and d�(i ! [n℄ +X) arethe partoni ross setions. Working in the �xed-avor-number sheme, i runs over the gluon g and the lightquarks q = u; d; s and anti-quarks q.The Feynman amplitudes of i ! [n℄ + X are al-ulated by the appliation of appropriate spin and olorprojetors onto the usual Feynman amplitudes for open prodution [13℄. Example Feynman diagrams forpartoni LO subproesses as well as virtual- and real-orretion diagrams are shown in Fig. 1. Important prop-erties of these projetions are that the relative momen-tum q between the  and  quarks has to be set to zero,in the ase of P -wave states after taking the derivativewith respet to q.We heked analytially that all appearing singulari-ties anel. As for the ultraviolet singularities, we renor-malize the harm-quark mass and the wave funtions ofthe external partiles aording to the on-shell sheme,and the strong-oupling onstant aording to the mod-
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FIG. 3: Separate and joint dependenes of d�(ep ! J= +X)=dp2T at p2T = 20 GeV2 in full NRQCD at LO and NLO on�r and �f .i�ed minimal-subtration sheme. Figure 2 displays anoverview of the IR singularity struture. In the ase ofthe 3S[1℄1 , 1S[8℄0 , and 3S[8℄1 states, the soft and ollinearsingularities of the real orretions are aneled as usualby omplementary ontributions stemming from the vir-tual orretions and by the absorption of universal partsinto the proton and photon PDFs, the latter entering viaresolved photoprodution. In ase of the 3P [8℄J states, thesoft singularity struture is more omplex. The reason isthe following: In the soft limit, the real-orretion ampli-tudes fatorize into LO amplitudes and so-alled eikonalfators. Taking the derivative with respet to q andsquaring the amplitudes then leads to additional soft #2and soft #3 terms beause the derivative has to be takenof the eikonal fators as well. The soft #3 terms are pro-portional to a linear ombination of the short-distaneross setions to produe the 3S[1℄1 and 3S[8℄1 states. Theyare aneled against IR singularities stemming from ra-diative orretions to the hOJ= (3S[1℄1 )i and hOJ= (3S[8℄1 )iLDMEs. The soft #2 terms do not fatorize to LO rosssetions. They also anel against virtual-orretion on-tributions as the usual soft #1 terms.Apart from the analytial anellation of all our-ring singularities, our alulation passes a number of fur-ther nontrivial heks. We implemented two indepen-dent methods for the redution of the tensor loop inte-grals, whih yielded idential results. As for the real or-retions, the numerial evaluation of our expressions forthe squared matrix elements agree with numerial out-put generated using the program pakage MadOnia [15℄,well within the numerial unertainty of the latter. Weveri�ed that our results are stable w.r.t. variations of thephase spae sliing parameters introdued as a demara-tion between the soft and/or ollinear regions from therest of the three-partile phase spae. [? ℄. Finally, weould niely reprodue the NLO CSM results of Ref. [12℄after adopting the inputs hosen therein. For spae lim-itation, we refrain from presenting here more tehnialdetails, but refer the interested reader to a forthomingpubliation.



3We now desribe our theoretial input and the kine-mati onditions for our numerial analysis. We setm = mJ= =2, adopt the values of mJ= , me, and� from Ref. [16℄, and use the one-loop (two-loop) for-mula for �(nf )s (�), with nf = 3 ative quark avors,at LO (NLO). As for the proton PDFs, we use setCTEQ6L1 (CTEQ6M) [17℄ at LO (NLO), whih omeswith an asymptoti sale parameter of �(4)QCD = 215 MeV(326 MeV), so that �(3)QCD = 249 MeV (389 MeV).We evaluate the photon ux funtion using Eq. (5) ofRef. [18℄ with the ut-o� Q2max = 2 GeV2 [19, 20℄ on thephoton virtuality. Our default hoies for the renormal-ization, fatorization, and NRQCD sales are �r = �f =mT and �� = m, respetively, where mT =pp2T + 4m2is the J= transverse mass. We adopt the LDMEs fromRef. [21℄, whih were �tted to Tevatron I data usingthe CTEQ4 PDFs, beause, besides the usual LO set,they also omprise a higher-order-improved set deter-mined by approximately taking into aount dominanthigher-order e�ets due to multiple-gluon radiation in in-lusive J= hadroprodution, whih had been found tobe substantial by a Monte Carlo study [22℄. This obser-vation is in line with the sizable NLO orretions reentlyfound in Refs. [4, 5, 11℄, still exluding the 3P [8℄J hannelsat NLO. Of ourse, LDME �ts to more reent Tevatrondata are available, but their goodness is learly limited bythe present theoretial unertainties in the short-distaneross setions, preventing the inrease in experimentalpreision gained sine the analysis of Ref. [21℄ from atu-ally being bene�ial. Apart from that, the entral valuesof the J= LDMEs have only moderately hanged, asmay be seen by omparing the LO results of Ref. [21℄with those reently obtained [23℄ by �tting Tevatron IIdata using the CTEQ6L1 PDFs [17℄. Beause the pTdistributions of the 1S[8℄0 and 3P [8℄J ontributions to J= hadroprodution exhibit very similar shapes, �ts usuallyonly onstrain the linear ombinationMJ= r = hOJ= (1S[8℄0 )i+ rm2 hOJ= (3P [8℄0 )i; (2)with an r value of about 3.5 [21, 23℄. As inRef. [14℄, we take the demorati hoie hOJ= (1S[8℄0 )i =(r=m2)hOJ= (3P [8℄0 )i =MJ= r =2 as our default.Reently, the H1 Collaboration presented preliminarydata on inlusive J= photoprodution taken in olli-sions of 27.6 GeV eletrons or positrons on 920 GeV pro-tons in the HERA II laboratory frame [20℄. They nielyagree with their previous measurement at HERA I [19℄.These data ome as singly di�erential ross setions inp2T , W = p(p + pp)2, and z = (pJ= � pp)=(p � pp), ineah ase with ertain aeptane uts on the other twovariables. Here, p , pp, and pJ= are the photon, proton,and J= four-momenta, respetively. In the omparisonsbelow, we impose the same kinemati onditions on ourtheoretial preditions.We start our numerial analysis by estimating the theo-retial unertainties. The dependenes on the unphysial

sales �r and �f are investigated in full NRQCD at LOand NLO for the typial ase of d�(ep! J= +X)=dp2Tat p2T = 20 GeV2 in Fig. 3. Contrary to na��ve expe-tations, the sale dependene is not redued when pass-ing from LO to NLO. Detailed investigation reveals thatthis behavior may be asribed to the fat that the newoeÆient of �3s(�r) is greatly dominated by the partthat does not arry logarithmi dependene on �r or�f , mainly arising from the gluon-indued 1S[8℄0 and 3P [8℄0hannels, while the omplementary part still formallywarrants renormalization group invariane up to termsbeyond NLO. As for the dependene on m, a redutionof m from mJ= =2 � 1:55 GeV to 1.4 GeV typiallyentails a rise in ross setion by about 50%. The free-dom in sharing MJ= r of Eq. (2) between hOJ= (1S[8℄0 )iand (r=m2)hOJ= (3P [8℄0 )i typially reates an unertaintyof about 10%. The bulk of the theoretial unertaintyis atually due to the lak of knowledge of the om-plete NLO orretions to the ross setion of inlusiveJ= hadroprodution, whih is instrumental for a reli-able NLO �t of the CO LDMEs to the Tevatron data.As explained above, these orretions are expeted to bedominated by positive and sizable ontributions from realQCD bremsstrahlung [4, 5, 11, 22℄, leading to a signi�-ant redution of the CO LDMEs [21℄. At present, thetheoretial unertainty in inlusive J= photoprodutionfrom this soure may be onservatively estimated by om-paring the full NRQCD evaluations using the LO andhigher-order-improved LDME sets of Ref. [21℄, with theunderstanding that the former is bound to overshoot afuture evaluation with a genuine NLO set. This kindof unertainty is indiated in the remaining �gures byshaded (yellow) bands, whose upper margins (solid lines)refer to the LO set.The H1 measurements [19, 20℄ of the p2T , W , and zdistributions of inlusive J= photoprodution are om-pared with our new NLO preditions in full NRQCD inFig. 4(a){(), respetively. For omparison, also the de-fault preditions at LO (dashed lines) as well as thoseof the CSM at NLO (dot-dashed lines) and LO (dottedlines) are shown. Notie that the experimental data areontaminated by the feed-down from heavier harmonia,mainly due to  0 ! J= +X , whih yields an estimatedenhanement by about 15% [12℄. Furthermore, our pre-ditions do not inlude resolved photoprodution, whihontributes appreiably only at z . 0:3 [21℄, and di�ra-tive prodution, whih is on�ned to the quasi-elasti do-main at z � 1 and pT � 0. These ontributions are eÆ-iently suppressed by the ut 0:3 < z < 0:9 in Figs. 4(a)and (b), so that our omparisons are indeed meaning-ful. We observe that the NLO orretions enhane theNRQCD ross setion, by up to 115%, in the kinematirange onsidered, exept for z . 0:45, where they arenegative. As may be seen from Fig. 4(), the familiargrowth of the LO NRQCD predition in the upper end-point region, leading to a breakdown at z = 1, is furtherenhaned at NLO. The solution to this problem learlylies beyond the �xed-order treatment and may be found
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