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Abstract

Using an SU(3) flavour symmetry breaking expansion in the quark
mass, we determine the QCD component of the nucleon, Sigma and Xi
mass splittings of the baryon octet due to up-down (and strange) quark
mass differences in terms of the kaon mass splitting. Provided the average
quark mass is kept constant, the expansion coefficients in our procedure can
be determined from computationally cheaper simulations with mass degen-
erate sea quarks and partially quenched valence quarks. Both the linear
and quadratic terms in the SU(3) flavour symmetry breaking expansion
are considered; it is found that the quadratic terms only change the result
by a few percent, indicating that the expansion is highly convergent.
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1 Introduction

The masses of the baryon octet are now very accurately known, with results given
in the Particle Data Group [1] as

M exp
n = 0.939565346(23)GeV , M exp

p = 0.938272013(23)GeV ,
M exp

Σ− = 1.197449(30)GeV , M exp

Σ+ = 1.18937(7)GeV ,
M exp

Ξ− = 1.32171(7)GeV , M exp

Ξ0 = 1.31486(20)GeV ,
(1)

around the outer ring of the octet and

M exp

Σ0 = 1.192642(24)GeV , M exp
Λ = 1.115683(6)GeV , (2)

at the centre. Isospin breaking effects (i.e. u – d quark mass differences and
electromagnetic effects) are responsible for the nucleon, n – p, Sigma, Σ− – Σ+,
and Xi, Ξ− – Ξ0, mass splittings

(Mn −Mp)
exp = 1.293333(33)MeV ,

(MΣ− −MΣ+)exp = 8.079(76)MeV , (3)

(MΞ− −MΞ0)exp = 6.85(21)MeV .

These are very small differences (particularly for the n – pmass splitting), ranging
from about 0.15% to 0.7% of the baryon mass. (We shall not be considering the
Σ0 – Λ mass splitting here as these particles have the same quantum numbers and
mix if isospin is violated.) In this article we shall be only looking at the hadronic
or QCD contribution to these mass splittings, i.e. we are not going to consider
electromagnetic effects. Both effects are small perturbations and can simply be
added together. In the case of the n− p splitting we can argue that the hadronic
effect is larger because the electromagnetic effect would tend to make the proton
heavier than the neutron (as u quarks repel more than d quarks) which is not the
case in the real world. There have been several previous lattice determinations
of the QCD contribution to these mass splittings, e.g. [2, 3, 4], and also several
lattice computations of the electromagnetic contribution, e.g. [3, 5, 6, 7, 8, 9, 10].
Non-lattice determinations include [11].

In Fig. 1 we sketch the lowest octet for the spin 1
2
baryons plotted in the I3–Y

plane. The particles on the outer ring, namely the n(ddu), p(uud), Σ+(dds),
Σ−(uus) and Ξ−(ssd), Ξ0(ssu) all consist of combinations of aab quarks (where
we shall use the notation of denoting a quark, q, by a, b, . . . which can be the up u,
down d or strange s quark). In this notation a are the flavour doubly represented
quarks, while b is the flavour singly represented quark. At the centre of the octet
we have two states, Λ(uds) and Σ0(uds), with the same quark content – u, d and
s, but different wavefunctions.

In [12, 13] we described a method for extrapolating from the SU(3) flavour
symmetric point (where we have three mass-degenerate quarks) to the physical
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Figure 1: The lowest octet for the spin 1
2
baryons plotted in the I3–Y plane.

point, keeping the average of the quark masses constant. The form of the SU(3)
flavour symmetry breaking expansion was developed both for non-degenerate u, d
quark masses and for degenerate u, d quark masses. In [13] numerical simulations
were performed for 2 + 1 flavours, i.e. with two degenerate light quark masses.
Thus, effectively the mass ‘average’ of the n, p baryon, and the Σ+, Σ− and
Ξ−, Ξ0 baryons were considered. However, as the coefficients of the quark mass
flavour symmetry are just functions of the average quark mass, the expansion
coefficients do not change from using non-degenerate to 2 or 3 mass degenerate
quarks provided that the average quark mass is kept constant [13]. This gives us
the opportunity to investigate isospin splittings, i.e. when the u quark mass is
different to the d quark mass, using only results from 2+1 or 3 flavour simulations.

As the baryon mass differences (e.g. n – p) depend on the u – d mass difference
and are thus small, we find that it is sufficient to consider the SU(3) flavour
symmetry breaking expansion in the quark mass including both linear terms
(leading order, LO) and quadratic terms (next to leading order, NLO). These LO
and NLO terms were given in [13].

We saw little curvature in hadron masses in the quark mass range considered
in [13] (see also section 6), namely, from the three degenerate flavour pion mass
at ∼ 411MeV to the physical pion mass ∼ 140MeV, so we conclude that a much
larger quark mass range is needed to reliably determine curvature. We achieve
this larger range by extending the numerical results to ‘partially quenched’ or PQ
quark masses (where the valence quark masses do not have to be the same as the
sea or dynamical quark masses) with a spread of quark masses from about one
third of the strange quark mass up to the charmed quark mass. We also consider
part of the next to next to leading order (NNLO) (cubic terms) in the SU(3)
flavour symmetry expansion. (The NNLO terms were also indicated in [13]; we
have now completed this computation, [14].) Thus we can consider a large quark
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mass range to be able to determine the NLO or quadratic terms more accurately,
using the NNLO terms as a ‘control’.

Chiral perturbation theory looks at the breaking of the chiral SU(3) group
by the quark masses - its expansion parameter is the quark mass itself, or equiv-
alently, the masses of the pseudoscalar mesons. We are following an older strand,
going back to Gell-Mann and Okubo [15, 16] of looking at the breaking of the
non-chiral SU(3) symmetry, by quark mass differences. In chiral perturbation
theory the expansion is about the point where all three quarks are massless; here
we expand about a point where the three quarks have equal (non-zero) masses
each about a third of the physical strange quark mass.

As well as the baryon SU(3) octet flavour expansion, we will also need the
values of the quark mass corresponding to the physical point. We can achieve
this by considering the equivalent SU(3) flavour expansion, but now for the pseu-
doscalar meson octet. The same procedure as for the baryon octet is required:
first the SU(3) flavour expansion coefficients must be determined and then the
experimental values of the masses of the K0, K+ and π+ mesons can be used
to determine the required physical quark mass point. These can then be used,
together with the SU(3) baryon octet flavour expansion, to determine the mass
splittings for the baryon octet.

We shall find that the LO term is dominant (both for the baryon and pseu-
doscalar octets) and so the NLO (and NNLO corrections) may be taken as an
indication that our SU(3) flavour symmetry breaking expansion appears to be a
highly convergent series. (This point is further discussed in Appendix A.)

2 Octet Baryons

Before discussing partial quenching, we first consider the case where the valence
quark masses are the same as the sea quark masses, the so-called ‘unitary line’.
The SU(3) flavour symmetry breaking expansion, [13], for all of the outer ring
octet baryons consisting of a pair of identical flavour quarks and a third, different
quark can be compactly written up to NLO as

M2(aab) = M2
0 + A1(2δma + δmb) + A2(δmb − δma)

+B0
1
6
(δm2

u + δm2
d + δm2

s) (4)

+B1(2δm
2
a + δm2

b) +B2(δm
2
b − δm2

a) +B3(δmb − δma)
2 ,

with quarks q = a, b, . . . from (u, d, s), where

δmq = mq −m, m = 1
3
(mu +md +ms) . (5)

We shall consider the SU(3) flavour symmetry breaking expansion of M2(aab)
[17], rather than M(aab). Of course from the viewpoint of the SU(3) flavour
symmetry breaking expansion any function f(M) could be considered. For fitting
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over a small quark mass range, a linear function is sufficient; for the large quark
mass range considered in section 3.2 a better fit to the numerical data was found
using M2(aab) rather than M(aab).

Note that M2
0 , A1, A2, B0, . . . , B3 all depend on the average quark mass m,

which will be held constant in the following simulations. Keeping m constant
reduces the number of coefficients that must be determined (and indeed makes
the computation tractable).

From Fig. 1 we see that as there are six different masses on the baryon outer
ring but just two linear parameters in LO, the fits are highly constrained. At
the next order, NLO, in eq. (4) we are allowed four coefficients for the quadratic
terms.

We have in addition the trivial constraint

δmu + δmd + δms = 0 , (6)

so we can eliminate one of these quantities if we wish to.
Thus, to determine the octet baryon masses, we first have to determine the

expansion coefficients and second we need to know the physical quark masses.
In the following we shall denote the physical point by a star ∗. We thus have
two distinct computations. As we shall see, the determination of the coefficients
is helped by PQ simulations, while δm∗

q can be found by considering equivalent
expansions for the pseudoscalar meson octet.

A further problem is that the scale must be determined. As discussed in [13],
flavour blind (or gluonic) quantities are suitable. We denote these generically by
X . One useful type of flavour blind quantity can be considered as the ‘centre of
mass’ of the multiplet. Thus for the baryon octet, one possibility is1

X2
N = 1

6
(M2

p +M2
n +M2

Σ+ +M2
Σ− +M2

Ξ0 +M2
Ξ−) . (7)

At the physical point, from eq. (1), this gives

Xexp
N = 1.1610GeV . (8)

In general for the SU(3) flavour breaking symmetry expansion we have from
eq. (4),

X2
N = M2

0 + (1
6
B0 +B1 +B3)(δm

2
u + δm2

d + δm2
s)

= M2
0 +O(δm2

q) . (9)

Upon adding the masses the A2 and B2 terms vanish; while the A1 term vanishes
upon using the constraint equation, eq (6), and thus this leads to the vanishing
of the linear term in the quark mass. (This is indeed true for all flavour blind
quantities.)

1Another independent possibility would be X2
Λ = 1

2
(M2

Λ +M2
Σ0).
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Scale independent quantities can now be constructed by considering the ratio
M2(aab)/X2

N . Expanding to NLO order in the quark mass, eq. (4) retains the
same pattern and becomes

M̃2(aab) = 1 + Ã1(2δma + δmb) + Ã2(δmb − δma)

− (B̃1 + B̃3)(δm
2
u + δm2

d + δm2
s) (10)

+ B̃1(2δm
2
a + δm2

b) + B̃2(δm
2
b − δm2

a) + B̃3(δmb − δma)
2 ,

where a ˜ on a hadron mass means that it has been divided byXN , so M̃ = M/XN

while a ˜ on the expansion coefficients means that they have been divided by M2
0 ,

for example Ã1 ≡ A1/M
2
0 . From eq. (9) we see that we have effectively replaced

the 1
6
B̃0 term by −(B̃1 + B̃3). (However, this will not be important in the case

discussed here; as for mass differences, these terms cancel again.)
Alternatively we can re-write eq. (10) as

M̃(aab) = 1 + Ã′

1(2δma + δmb) + Ã′

2(δmb − δma)

−1
2
(B̃1 + B̃3)(δm

2
u + δm2

d + δm2
s) (11)

+B̃′

1(2δm
2
a + δm2

b) + B̃′

2(δm
2
b − δm2

a) + B̃′

3(δmb − δma)
2 ,

(essentially the equivalent SU(3) flavour symmetry breaking expansion for M
rather than M2) with

Ã′

1 = 1
2
Ã1 ,

Ã′

2 = 1
2
Ã2 ,

B̃′

1 = 1
2
(B̃1 −

3
4
Ã2

1) ,

B̃′

2 = 1
2
(B̃2 −

3
4
Ã1Ã2) ,

B̃′

3 = 1
2
(B̃3 +

1
4
(2Ã1 − Ã2)(Ã1 + Ã2)) . (12)

Although eq. (11) looks complicated, we shall only be interested in mass
differences, which simplify the expressions. Writing the flavour expansions as a
Taylor series in δmd ± δmu we find to NLO

M̃n − M̃p = M̃(ddu)− M̃(uud) (13)

= (δmd − δmu)
[

Ã′

1 − 2Ã′

2 + (B̃′

1 − 2B̃′

2)(δmd + δmu)
]

,

together with

M̃Σ− − M̃Σ+ = M̃(dds)− M̃(uus) (14)

= (δmd − δmu)
[

2Ã′

1 − Ã′

2 + (2B̃′

1 − B̃′

2 + 3B̃′

3)(δmd + δmu)
]

,

and

M̃Ξ− − M̃Ξ0 = M̃(ssd)− M̃(ssu) (15)

= (δmd − δmu)
[

Ã′

1 + Ã′

2 + (B̃′

1 + B̃′

2 + 3B̃′

3)(δmd + δmu)
]

,
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where the constraint in eq. (6) has been used to eliminate δms. These equations
represent the different types of isospin differences possible for the baryon octet
and are valid over a range of quark masses. We shall consider them from the
flavour symmetric point down to the physical point, determined by δm∗

d−δm∗
u and

δm∗
d+ δm∗

u = −δm∗
s, δm

∗
q being the physical point (which has to be determined).

We have a check of these formulas, since the Coleman-Glashow relation [18]
should hold at this order,

(M̃n − M̃p)− (M̃Σ− − M̃Σ+) + (M̃Ξ− − M̃Ξ0) = O(δm3
q) , (16)

which is indeed satisfied by eqs. (13)–(15).
We can find relations between isospin violation caused by md−mu and to the

SU(3) violation caused by ms −mu, ms −md if we make any S3 transformation
that changes the strange quark into a light quark and vice versa (for example
u → s → d or d ↔ s); see Fig. 2. (S3 is the symmetry group of the equilateral

Figure 2: Permutation group transformations link the isospin violation caused by
md−mu to the SU(3) violation caused by ms−mu, ms−md. The neutron-proton mass
difference, Mn−Mp, dashed line, is mapped toMΞ0−MΣ+ ; the Σ splitting, MΣ−−MΣ+ ,
maps to MΞ− −Mp dot-dashed line; and MΞ− −MΞ0 is related to MΣ− −Mn, full line.

triangle and a subgroup of SU(3).) Applying the transformation d ↔ s on both
sides of eqs. (13)–(15) we find to NLO

M̃Ξ0 − M̃Σ+ = (δms − δmu)
[

Ã′

1 − 2Ã′

2 + (B̃′

1 − 2B̃′

2)(δms + δmu)
]

, (17)

M̃Ξ− − M̃p = (δms − δmu)
[

2Ã′

1 − Ã′

2 + (2B̃′

1 − B̃′

2 + 3B̃′

3)(δms + δmu)
]

,

M̃Σ− − M̃n = (δms − δmu)
[

Ã′

1 + Ã′

2 + (B̃′

1 + B̃′

2 + 3B̃′

3)(δms + δmu)
]

.

3 Determining the expansion coefficients

We now first find the Ã1, Ã2 and B̃1, . . ., B̃3 coefficients.
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3.1 Partially quenched octet baryons

Let us now generalise the previous results to the case when the valence quarks
do not have to have the same mass as the sea quarks (i.e. we leave the unitary
line). We have also generalised eq. (65) of [13] from NLO to NNLO [14]. We find

M2(aab) = M2
0 + A1(2δµa + δµb) + A2(δµb − δµa)

+ 1
6
B0(δm

2
u + δm2

d + δm2
s)

+B1(2δµ
2
a + δµ2

b) +B2(δµ
2
b − δµ2

a) +B3(δµb − δµa)
2

+ C0δmuδmdδms

+ [C1(2δµa + δµb) + C2(δµb − δµa)] (δm
2
u + δm2

d + δm2
s)

+ C3(δµa + δµb)
3 + C4(δµa + δµb)

2(δµa − δµb)

+ C5(δµa + δµb)(δµa − δµb)
2 + C6(δµa − δµb)

3 , (18)

where a, b, . . . now denote three valence quarks of arbitrary mass, and we have
defined

δµq = µq −m q ∈ {a, b, . . .} , (19)

where µq is the valence quark mass. In distinction to the sea quarks, there is
no restriction of the form of eq. (6) on the values of valence quark masses. The
numerical values of the M2

0 , A1, A2, B0, B1, . . ., B3 and C0, . . ., C6 coefficients
are the same for PQ as for the unitary case.

While we see that this is a relatively straightforward generalisation of eq. (4),
we note that the term proportional to B0 remains unchanged. In addition the
C0 term also depends entirely on sea terms, while the C1 and C2 terms are a
mixture of sea and valence terms. Thus if we wish to determine these coefficients
we must vary the sea quark masses; to determine the other coefficients it is
sufficient to vary the valence quark masses alone, while keeping the sea quark
masses constant. So this gives the possibility of extending the (computationally
expensive) sea quark mass simulations with (computationally cheaper) valence
quark mass simulations to determine most of the coefficients. If we work on a
single sea background, then the C0 term can be absorbed into the M2

0 term, while
the C1 and C2 terms can be absorbed into the A1 and A2 terms. If we vary the
sea quark masses this allows a determination of these coefficients. However due
to the constraint m = const., or equivalently eq. (6), δmq cannot vary much and
we know from [13] that in this range the LO dominates, so these coefficients are
difficult to determine and contribute just noise. So practically we shall ignore
these terms in fits. (Alternatively, the constraint m = const. could be relaxed,
but then we have additional expansion coefficients, which we wish to avoid.) Thus
in this article we regard the NNLO terms as ‘control’ on the LO and NLO terms.

As discussed in section 2, we can consider scale independent quantities. Thus
in analogy to eq. (11) we have

M̃2(aab) = 1 + Ã1(2δµa + δµb) + Ã2(δµb − δµa)

8



− (B̃1 + B̃3)(δm
2
u + δm2

d + δm2
s)

+ B̃1(2δµ
2
a + δµ2

b) + B̃2(δµ
2
b − δµ2

a) + B̃3(δµb − δµa)
2

+ (C̃3 − 3C̃5)δmuδmdδms

+
[

C̃1(2δµa + δµb) + C̃2(δµb − δµa)
]

(δm2
u + δm2

d + δm2
s)

+ C̃3(δµa + δµb)
3 + C̃4(δµa + δµb)

2(δµa − δµb)

+ C̃5(δµa + δµb)(δµa − δµb)
2 + C̃6(δµa − δµb)

3 , (20)

(where XN always depends just on the sea quarks and is given by the NNLO
extension of eq. (9)).

Furthermore, these equations remain valid if two of the sea quarks are degen-
erate in mass, i.e. mu = md ≡ ml, the crucial point being that m must remain
constant (as all the coefficients are functions ofm). This means that from dynam-
ical 2+1 flavour simulations we can determine the u–d mass splittings. The only
change to eq. (20) when mu = md is that some terms become slightly simpler,

δm2
u + δm2

d + δm2
s → 6δm2

l , δmuδmdδms → −2δm3
l , (21)

where we have used the constraint equation, (6), which now becomes

δms = −2δml . (22)

This gives

M̃2(aab) = 1 + Ã1(2δµa + δµb) + Ã2(δµb − δµa)

− 6(B̃1 + B̃3)δm
2
l

+ B̃1(2δµ
2
a + δµ2

b) + B̃2(δµ
2
b − δµ2

a) + B̃3(δµb − δµa)
2

− 2(C̃3 − 3C̃5)δm
3
l

+ 6
[

C̃1(2δµa + δµb) + C̃2(δµb − δµa)
]

δm2
l

+ C̃3(δµa + δµb)
3 + C̃4(δµa + δµb)

2(δµa − δµb)

+ C̃5(δµa + δµb)(δµa − δµb)
2 + C̃6(δµa − δµb)

3 , (23)

with

X2
N = 1

3
(M2(lll) +M2(lls) +M2(ssl)) . (24)

(For a quark mass-degenerate 3 flavour simulation eq. (23) simplifies further as
δml = 0 = δms.) In other words, using eq. (23) gives us all the information we
need to find the quark mass contribution relevant for the 1 + 1 + 1 case.

3.2 Numerical results

Simulations have been performed using Nf = 2+1 O(a) improved clover fermions
[19] at β = 5.50 and on 323 × 64 lattice sizes, as described in more detail in
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[13]. Errors given here are statistical (using ∼ O(1500) configurations); possible
systematic errors are discussed in Appendix A and incorporated into the final
results in section 7.

A particular starting value for the degenerate sea quark mass, m0, is chosen
on the SU(3) flavour symmetric line, and the subsequent sea quark mass points
ml, ms have then been arranged in the various simulations to have constant m
(= m0). This ensures that the expansion coefficients do not change. It was found
in [13] that a linear fit provides a good description of the numerical data over
the relatively short distance from the symmetric point down to the physical pion
mass. This helped us in choosing the initial point on the SU(3) flavour symmetric
line to give a path that hits (or is very close to) the physical point.

In a little more detail, the bare quark masses in lattice units are defined as

mq =
1

2

(

1

κq

−
1

κ0;c

)

with q ∈ {l, s, 0} , (25)

(together with eq. (5) for δmq) with the index q = 0 denoting the common mass
degenerate quarks along the SU(3) flavour symmetric line, and where vanishing
of the quark mass along this line determines κ0;c. Keeping m = constant ≡ m0

gives

κs =
1

3
κ0

− 2
κl

. (26)

So once we decide on a κl this then determines κs. Note that κ0;c drops out of
eq. (26), so we do not need its explicit value. The initial SU(3) flavour symmetric
κ0 value chosen here, namely κ0 = 0.12090, [13] is very close to a point on the
path that leads to the physical point. The constancy of flavour singlet quantities
over the range from the SU(3) flavour symmetric line down to the physical point
[13], leads directly from Xπ to an estimate for the pion mass of ∼ 411MeV (i.e.
eq. (47)) and similarly from XN a value of the lattice spacing of a ∼ 0.079 fm.

While, as discussed earlier, simulations between the SU(3) flavour symmetric
point and the physical point are in principle enough to determine the linear and
quadratic expansion coefficients, in practice the range is not sufficiently large
to reliably determine the quadratic terms. In order to determine the quadratic
coefficients more precisely, additional PQ simulations have been performed on the
set of gauge configurations that have all three sea quark masses equal, i.e. at the
SU(3) flavour symmetric point κ0 = 0.12090. For these particular simulations
δml = 0 = δms automatically. µq is defined identically to mq, eq (25), by
replacing mq → µq with q ∈ {a, b, . . . , } together with eq. (19) for δµq so that

δµq = µq −m, µq =
1

2

(

1

κq

−
1

κ0;c

)

. (27)

We have chosen a wide range of PQ masses starting from a slightly heavier mass
than m0 (to avoid any possibility of so-called ‘exceptional configurations’) and
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reaching up to masses ∼ mcharm. The values are given in Appendix B in Table 4.
A direct fit is made to these PQ masses, the unitary masses of [13], which all
have the same fixed m, and additionally three PQ masses, which we call MNs

≡
M(sss) again with the same fixed m. (This is analogous to the pseudoscalar ηs
considered later.) These values are also given in Appendix B in Table 5. Using
the fit function of eq. (20) and ignoring the C̃1 and C̃2 terms as discussed in
section 3.1 gives the results in Table 1, together with the NNLO coefficient values

Ã1 Ã2 B̃1 B̃2 B̃3

10.15(12) 1.828(157) 13.51(126) -10.29(139) -14.90(144)

Table 1: Results for the baryon octet expansion coefficients.

of C̃3 = −4.60(115), C̃4 = −17.5(26), C̃5 = −1.88(310) and C̃6 = −3.65(184).
We note that in comparison to the NLO coefficients, the NNLO coefficients are
poorly determined. The bootstrap (MINUIT) fit used gave χ2/dof ∼ 0.4.

We now compare these results to a plot for illustration. The simplest to
consider is setting δµa = δµb, i.e. degenerate valence quark masses. For simplicity,
but slightly inaccurately, we shall in the following simply say b = a. (Of course
we still need two different quark flavours.) With δml = 0, eq. (23) then becomes

M̃2(aaa)− 1

3δµa

= Ã1 + B̃1δµa +
8
3
C̃3δµ

2
a . (28)

In Fig. 3 we plot (M̃2(aaa) − 1)/(3δµa) against δµa for the PQ data (together
with the cubic fit coefficients from Table 1) which due to the denominator is a
sensitive plot. There is good agreement. (We postpone the comparison to the
unitary data, ‘fan’ plots, until section 6.)

4 Octet pseudoscalar mesons

Determining the octet pseudoscalar mass splittings (or more accurately the split-
tings of the quadratic masses) will give δm∗

u, δm
∗
d and δm∗

s (the quark masses
at the physical point). This closely follows the baryon octet procedure, we must
again consider the analogous flavour symmetry expansion for the pseudoscalar
meson octet together with the known experimental masses of the pions and kaons.

In Fig. 4 we sketch the lowest pseudoscalar octet in the I3–Y plane. We

have K0(ds), K+(us), π+(ud) together with K
0
(sd), K−(su) and π−(du) in the

(outer) ring of the octet. From charge conjugation or C invariance we further
have M

K
0 = MK0, MK− = MK+, and Mπ− = Mπ+ (which is in distinction to the

baryon octet which does not have this constraint).
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Figure 3: (M̃2(aaa)− 1)/(3δµa) against δµa, together with eq. (28) using the Ã1, B̃1

fit values from Table 1 and C̃3 (given in the text).

4.1 PQ pseudoscalar meson flavour expansions

The corresponding formulas for the octet pseudoscalar mesons are simpler than
for the octet baryon, due to the constraints imposed by C invariance. The follow-
ing SU(3) flavour breaking expansion formula is always valid for quarks q = a,
b, . . . , in (u, d, s, . . . , )

M2(ab) = M2
0π + α(δma + δmb) (29)

+ β0
1
6
(δm2

u + δm2
d + δm2

s) + β1(δm
2
a + δm2

b) + β2(δma − δmb)
2 ,

in quark masses up to the NLO as discussed in [13]. (Note that M(ab) = M(ba).)
Again combinations of masses can be chosen, so that due to eq. (6) the linear

term in eq. (29) vanishes, which is equivalent to averaging the outer ring of
particles and finding the ‘centre of mass’ of the octet. In particular if we set

X2
π = 1

6
(M2

K+ +M2
K0 +M2

π+ +M2
π− +M2

K
0 +M2

K−)

= 1
3
(M2

K+ +M2
K0 +M2

π+) , (30)

this gives

X2
π = M2

0π +
(

1
6
β0 +

2
3
β1 + β2

)

(δm2
u + δm2

d + δm2
s)

= M2
0π +O(δm2

q) . (31)

In the partially quenched case, the above SU(3) flavour expansion can be
generalised to

M2(ab) = M2
0π + α(δµa + δµb)

12



π+

+0

−
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Figure 4: The lowest octet for the spin 0 pseudoscalar mesons plotted in the I3–Y
plane.

+ β0
1
6
(δm2

u + δm2
d + δm2

s) + β1(δµ
2
a + δµ2

b) + β2(δµa − δµb)
2

+ γ0δmuδmdδms + γ1(δµa + δµb)(δm
2
u + δm2

d + δm2
s)

+ γ2(δµa + δµb)
3 + γ3(δµa + δµb)(δµa − δµb)

2 , (32)

where the NLO was also discussed in [13] and again we have extended the formula
to the NNLO case [14]. This is again a general formula valid for possibly differing
masses of the sea, mq, and valence quarks, µq. The same notation has been
used as in sections 2 and 3. (In particular remember that δµq is unconstrained
in distinction to the sea quarks, eq. (6). The unitary line is recovered when
µq → mq.) Again as with the PQ octet baryon case, eq. (18), we see that at the
NNLO there is a term, the γ1 term, which mixes the sea and valence quarks; as
discussed in section 3.1 this again makes the numerical determination of these
coefficients difficult (we cannot vary the sea quark masses over a large enough
range). So in the same spirit as section 3.1 we ignore this term and regard the
NNLO terms as ‘control’ terms.

If we wish to consider ‘physical ratios’ then the masses can again be conve-
niently normalised using X2

π. Expanding to NNLO, we find

M̃2(ab) = 1 + α̃(δµa + δµb)

− (2
3
β̃1 + β̃2)(δm

2
u + δm2

d + δm2
s) + β̃1(δµ

2
a + δµ2

b) + β̃2(δµa − δµb)
2

+ 2(γ̃2 − 3γ̃3)δmuδmdδms + γ̃1(δµa + δµb)(δm
2
u + δm2

d + δm2
s)

+ γ̃2(δµa + δµb)
3 + γ̃3(δµa + δµb)(δµa − δµb)

2 , (33)

where again a ˜ on a hadron mass squared means that it has been divided by
X2

π (which only depends on the sea quarks) while on an expansion coefficient it
means that the coefficient has been divided by M2

0π for example α̃ = α/M2
0π.

13



Again for a 2 + 1 flavour simulation (the case that will be considered here)
eq. (33) slightly simplifies to become

M̃2(ab) = 1 + α̃(δµa + δµb)

− 2(2β̃1 + 3β̃2)δm
2
l + β̃1(δµ

2
a + δµ2

b) + β̃2(δµa − δµb)
2

− 4(γ̃2 − 3γ̃3)δm
3
l + 6γ̃1(δµa + δµb)δm

2
l

+ γ̃2(δµa + δµb)
3 + γ̃3(δµa + δµb)(δµa − δµb)

2 , (34)

with the same coefficients, provided of course that m remains constant and where

X2
π = 1

3
(2M2(ls) +M2(ll)) . (35)

4.2 Determination of the coefficients

As in section 3 we need to consider PQ masses at the SU(3) flavour symmetric
point for the sea quark masses (see Table 6) jointly with the 323 × 64 lattice size
unitary results from Table 20 of [13] all with the same m constant value. From
eq. (34) we need to determine the constants α̃, β̃1, β̃2 and γ̃2, γ̃3.

A 5-parameter fit to the PQ and unitary data then yields the results of Table 2
together with the NNLO coefficient values of γ̃2 = −16.4(12) and γ̃3 = −20.3(39).

α̃ β̃1 β̃2

41.17(8) 76.50(148) -45.81(189)

Table 2: Results for the pseudoscalar octet expansion coefficients.

The bootstrap (MINUIT) fit used gave χ2/dof ∼ 1.7.
As in section 3.2, it is useful to compare these fit results in a plot. In parallel

to eq. (28) let us again consider the simple case of degenerate quark mass, i.e.
where quark and antiquark have the same mass, but different flavours, so they
cannot annihilate. We set b = a and δml = 0 in eq. (34) and so consider

M̃2(aa)− 1

2δµa

= α̃ + β̃1δµa + 4γ̃2δµ
2
a . (36)

In Fig. 5 we plot (M̃2(aa) − 1)/(2δµa) against δµa using the PQ data. This is
compared with the cubic fit from eq. (36) and Table 2. There is good agreement.

4.3 Pseudoscalar meson isospin splittings

Having determined α̃, β̃1, β̃2 we can now find δmu, δmd, δms given the masses
around the outer ring of the pseudoscalar octet. We postpone a discussion of
the numerical values until the next section and here just derive the relevant

14
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Figure 5: (M̃2(aa)− 1)/(2δµa) against δµa. The full line is eq. (36), using the α̃, β̃1
fit values from Table 2 and γ̃2 (given in the text).

formulas. As they are trivially valid over a range of quark masses (and not just
at the physical point) we give these more general expressions here.

From eqs. (13)–(15) we see that we need δmd−δmu ≡ δm− and δmd+ δmu ≡
δm+. So as in section 2 we consider the mass difference

M̃2
K0 − M̃2

K+ = (δmd − δmu)[α̃ + (β̃1 + 3β̃2)(δmd + δmu)]

= δm−[α̃ + (β̃1 + 3β̃2)δm+] . (37)

Alternatively we can consider

M̃2
K+ − M̃2

π+ = (δms − δmd)[α̃ + (β̃1 + 3β̃2)(δms + δmd)]

= −1
2
(δm− + 3δm+)[α̃ + 1

2
(β̃1 + 3β̃2)(δm− − δm+)] , (38)

and

M̃2
K0 − M̃2

π+ = (δms − δmu)[α̃ + (β̃1 + 3β̃2)(δms + δmu)]

= 1
2
(δm− − 3δm+)[α̃− 1

2
(β̃1 + 3β̃2)(δm− + δm+)] , (39)

where we have used the constraint, eq. (6), to eliminate δms in the second line
of eqs. (38) and (39) to re-write the equations in terms of δm−, δm+.

Of course only two of the equations (37)–(39) are independent. Choosing
eqs. (37) and (38), these quadratic equations can be solved iteratively to give
δm∓. We start the iteration from the linear term alone or LO in the quark mass.
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From eq. (37) we see that is sufficient to determine δm+ to LO (and δm− to
NLO). Thus we find

δmd − δmu =
M̃2

K0 − M̃2
K+

α̃

(

1 +
2(β̃1 + 3β̃2)

3α̃2
(1
2
(M̃2

K0 + M̃2
K+)− M̃2

π+)

)

,

δmd + δmu = −
2

3α̃

(

1
2
(M̃2

K0 + M̃2
K+)− M̃2

π+

)

[1 + ǫNLO] . (40)

As 2(β̃1+3β̃2)/3α̃
2 ∼ −0.02 then as, in particular, at the physical point 1

2
(M̃∗ 2

K0+

M̃∗ 2
K+) − M̃∗ 2

π+ is ∼ 1, we expect that the NLO term for δm− is small,2 i.e ∼ 3%
and tends to reduce the value of δm− slightly. (See next section for the numerical
values.)

5 Physical values of the quark masses

To proceed further we now need to substitute eqs. (40) into eqs. (13)–(15) to
give the pure QCD contribution to baryon octet mass splittings in terms of the
pseudoscalar octet masses.

Before considering this however (see section 7.1), we shall first discuss electro-
magnetic effects and determine the physical values of the quark masses δm∗

u and
δm∗

d given the experimental values of the pseudoscalar masses. This will enable
us to investigate the convergence of the SU(3) flavour breaking expansion. The
experimental masses are, [1],

M exp

π+ = 0.13957018(35)GeV ,

M exp

K0 = 0.497672(31)GeV ,

M exp

K+ = 0.493677(16)GeV , (41)

(with as already mentioned M
K

0 = MK0 , MK− = MK+ and Mπ− = Mπ+), on the
outer octet ring, and at the centre

M exp

π0 = 0.1349766(6)GeV . (42)

We now need to consider electromagnetic effects (which may now be compa-
rable to the u – d quark mass difference which is also small). Electromagnetic
effects tend to increase the mass of charged particles (due to the photon cloud).

2This is also true for δm+. The NLO term is

ǫNLO = −
β̃1 + 3β̃2

3α̃2

(

1
2
(M̃2

K0 + M̃2
K+)− M̃2

π+ + 2(M̃2
K0 − M̃2

K+)−
3(M̃2

K0 − M̃2
K+)2

1
2
(M̃2

K0 + M̃2
K+)− M̃2

π+

)

.

Again together with (β̃1 +3β̃2)/3α̃
2 ∼ −0.01 and 1

2
(M̃∗ 2

K0 + M̃∗ 2
K+)− M̃∗ 2

π+ ∼ 1, this means that
the correction NLO term for δm+ is also small.
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As a help to estimate these unknown effects, we use Dashen’s theorem, [20], which
states that if electromagnetic effects are the only source of breaking of isospin
symmetry (i.e. mu = md), the leading electromagnetic energy contribution to the
neutral pseudoscalar particles, i.e. the π0, K0, vanishes, while that due to the
charged particles, i.e. the π+, K+ is equal. As the mass difference in π0 and π+

due to the u – d quark mass difference is negligible, O(0.1MeV), e.g. [17], we can
thus write (e.g. [21, 22])

M exp 2

π+ = M∗ 2
π+ + µγ , M exp 2

π0 = M∗ 2
π0 ≡ M∗ 2

π+ ,

M exp 2

K+ = M∗ 2
K+ + µγ , M exp 2

K0 = M∗ 2
K0 . (43)

(The ∗ denotes values at the physical point for the pure QCD case.) Dashen’s the-
orem has corrections of O(αQEDmq) from higher order terms. Sometimes possible
violations of the theorem are parametrised by [4, 23]

M∗ 2
K0 −M∗ 2

K+ =
(

M2
K0 −M2

K+

)exp
+ (1 + ǫγ)

(

M2
π+ −M2

π0

)exp
, (44)

where ǫγ = 0 corresponds to Dashen’s theorem. For example a positive value for
ǫγ would thus tend to increase slightly the value of M∗ 2

K0 −M∗ 2
K+. From the first

equation in eq. (40) this would only affect the leading term in our expansion, so
our main result in section 7.2 will be given in terms of the kaon mass splitting,
M∗ 2

K0 −M∗ 2
K+ and where we shall consider ǫγ as an additional error.

Inverting the relations in eq. (43) gives [1]

M∗ 2
π+ = M exp 2

π0 , M∗ 2
K+ = M exp 2

K+ − (M exp 2

π+ −M exp 2

π0 ) , M∗ 2
K0 = M exp 2

K0 , (45)

or

M∗

π+ = 0.13498GeV , M∗

K+ = 0.49240GeV , M∗

K0 = 0.49767GeV , (46)

which we shall use as the pure QCD values due to differences in the quark masses
with the electromagnetic effects subtracted away (assuming Dashen’s theorem).
This gives from eq. (30)3,

X∗

π = 0.4116GeV , (47)

(of course this is very close to the experimental value of Xexp
π = 0.4126GeV).

In Table 3 using the masses given in eq. (46) we give our results, first giving the
LO results for the quark masses, then the next line, NLOa, gives the results from
eq. (40), which we will be using here. As a check, the third line compares this NLO
result to the NLO result using the Newton–Raphson method to iterate eqs. (37)
and (38). We find the Newton–Raphson procedure converges very quickly (after

3In [13] we used the average kaon and pion masses as we were strictly in the 2 + 1 flavour
case. Here we need to take into account the differences between charged and neutral mesons.

17



δm∗
d − δm∗

u δm∗
d + δm∗

u δm∗
u δm∗

d δm∗
s

LO 0.0007485(14) -0.02168(4) -0.01121(2) -0.01047(2) 0.02168(4)
NLOa 0.0007245(27) -0.02204(6) -0.01138(3) -0.01066(3) 0.02204(6)
NLOb 0.0007249 -0.02204 -0.01138 -0.01066 0.02204

Table 3: Results for the bare quark mass in lattice units at the physical point using
eq. (46) as input. The first line is the LO result. The next line, NLOa, uses the result
of eq. (40), while as a check the last line in italics, NLOb, iterates eqs. (37) and (38).

one or two iterations) and find good agreement between the two results (well
within the error bars of NLOa in Table 3) and so we can be confident that
eq. (40) is a good approximation for the inversion of eqs. (37) and (38).

We also note that the differences between the LO and NLO are small of the
order of a few percent, indicating that the SU(3) flavour expansion about the
flavour symmetric point appears to be highly convergent. (We shall discuss this
a little further in section 6).)

6 Comparison with ‘fan’ plots

We now compare the fit results with the mass values from previous ‘fan’ plots,
[13], which describe the evolution of the pseudoscalar and baryon octet masses
along a path from the SU(3) symmetric point down to the physical point. In
[13] the isospin degenerate limit, i.e. mu = md ≡ ml, was considered. So for this
comparison we take the physical quark mass, in lattice units, as

δm∗

l ≡
1
2
(δm∗

u + δm∗

d) = −0.01102(3) . (48)

In Fig. 6 we show numerical results between the SU(3) flavour symmetric
point and the ‘physical point’ for the numerical pseudoscalar octet on the unitary
line (keeping m = const.) from [13]. These masses are compared to the quadratic
fit using eq. (34) (i.e. together with just the results of Table 2) for the 2+1 flavour
case, i.e. mu = md = ml. The NNLO terms in the SU(3) flavour symmetric
expansion can be safely ignored in the small δml range. Compare the scale of the
x-axis of Fig. 3 with that of Fig. 6. We consider Mπ(ll), MK(ls) and the fictitious
PQ particle ηs, with mass M(ss). The comparison is satisfactory. We also show
results from [13] on smaller 243 × 48 sized lattices. This shows that finite size
effects for these ratios are rather small. Of course, the value of δm∗

l just serves
to define pseudoscalar meson mass ratios at the ‘physical point’ in a Nf = 2 + 1
flavour world. For completeness we give these numbers here: M̃∗ 2

π = 0.1077(26),
M̃∗ 2

K = 1.446(1) and M̃∗ 2
ηs

= 2.884(4).
In Fig. 7 we show the comparable baryon octet results. As well as considering

the nucleon mass, MN (lll), we also showMΣ(lls), MΞ(lls) and also a fictitious PQ
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Figure 6: The pseudoscalar meson octet ‘fan’ plot, M2
πO

/X2
π (πO = π, K, ηs) versus

δml. The numerical mass values are taken from [13] where filled up triangles, left
triangles, down triangles are π(ll), K(ls), ηs(ss) results respectively using 323×64 sized
lattices. The common symmetric point is the filled circle. The opaque up triangles,
left triangles, down triangles are from 243 × 48 sized lattices (and not used in the fits
here). The quadratic fits are taken from eq. (34), together with Table 2. The vertical
line from eq. (48) is the pure Nf = 2+ 1 QCD physical point, while the opaque circles
are the pure QCD hadron mass ratios for 2 + 1 quark flavours.

particle – MNs
(sss). Again the comparison of the NLO (quadratic) fit, using the

expansion coefficient values given in Table 1, to the numerical data is satisfactory.
For completeness we give here the values at the 2+1 QCD physical point (opaque
circles) of M̃∗ 2

N = 0.6704(46), M̃∗ 2
Σ = 1.051(6), M̃∗ 2

Ξ = 1.278(8) and M̃∗ 2
Ns

=
1.692(9). For a comparison to these values, the stars in Fig. 7 represent the
average of the squared masses of the appropriate particle, as defined in the figure
caption.

7 Results and discussion

We are now in a position to numerically determine the baryon octet mass split-
tings due to pure QCD u – d quark mass differences (see section 7.1, our main
result), and then in section 7.2 estimate physical values for the splittings.
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Figure 7: The baryon octet ‘fan’ plot, M2
NO

/X2
N (NO = N , Σ, Ξ, Ns) versus δml.

The numerical mass values are taken from [13] where filled up-triangles, left-triangles,
right-triangles, down-triangles are N(lll), Σ(lls), Ξ(ssl), Ns(sss) results respectively
using 323 × 64 sized lattices. The common symmetric point is the filled circle. The
opaque up-triangles, left-triangles, right-triangles, down-triangles are from 243 × 48
sized lattices (and not used in the fits here). The quadratic fits are from eq. (23),
together with Table 1. The vertical line from eq. (48) is the Nf = 2 + 1 pure QCD
physical point, with the opaque circles being the determined pure QCD hadron mass
ratios for 2 + 1 quark flavours. For comparison, the stars represent the average of
the squared masses of the appropriate particle on the outer ring of the baryon octet,
Fig. 1, i.e. M∗ 2

N (lll) = (M exp 2
n (ddu) + M exp 2

p (uud))/2, M∗ 2
Σ (lls) = (M exp 2

Σ−
(dds) +

M exp 2

Σ+ (uus))/2, M∗ 2
Ξ (ssl) = (M exp 2

Ξ−
(ssd) +M exp 2

Ξ0 (ssu))/2.

7.1 Baryon octet mass splittings

After re-writing quark masses in terms of the pseudoscalar octet masses, sec-
tion 4.3, and finding that the expansion is highly convergent in the relevant
quark mass range, e.g. Table 3, we now insert the expansion of eq. (40) into
eqs. (13)–(15) which gives the reasonably compact results

M̃N − M̃N ′ = ÃN−N ′

[

1 + B̃N−N ′

(

1
2
(M̃2

K0 + M̃2
K+)− M̃2

π+

)] (

M̃2
K0 − M̃2

K+

)

,(49)

for the pairs (N,N ′) = (n, p), (Σ−,Σ+) and (Ξ−,Ξ0), where

Ãn−p =
Ã′

1 − 2Ã′
2

α̃
, B̃n−p =

2

3α̃

(

β̃1 + 3β̃2

α̃
−

B̃′
1 − 2B̃′

2

Ã′
1 − 2Ã′

2

)

, (50)
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together with

ÃΣ−−Σ+ =
2Ã′

1 − Ã′
2

α̃
, B̃Σ−−Σ+ =

2

3α̃

(

β̃1 + 3β̃2

α̃
−

2B̃′
1 − B̃′

2 + 3B̃′
3

2Ã′
1 − Ã′

2

)

, (51)

and

ÃΞ−−Ξ0 =
Ã′

1 + Ã′
2

α̃
, B̃Ξ−−Ξ0 =

2

3α̃

(

β̃1 + 3β̃2

α̃
−

B̃′
1 + B̃′

2 + 3B̃′
3

Ã′
1 + Ã′

2

)

. (52)

As discussed before, as we have unknown electromagnetic effects, then we
shall first present our results in a general form with (known) coefficients between
the baryon and pseudoscalar meson splittings, within a pure QCD context. We
now insert the numerically determined values from Tables 1 and 2 into eq. (49),
together with eqs. (50)–(52), to give

M̃n − M̃p = 0.0789(41)(8)(8)(32)
(

M̃2
K0 − M̃2

K+

)

×
[

1 + 0.0817(92)
(

1
2
(M̃2

K0 + M̃2
K+)− M̃2

π+

)]

, (53)

together with

M̃Σ− − M̃Σ+ = 0.2243(35)(22)(2)(90)
(

M̃2
K0 − M̃2

K+

)

×
[

1 + 0.0077(30)
(

1
2
(M̃2

K0 + M̃2
K+)− M̃2

π+

)]

, (54)

and

M̃Ξ− − M̃Ξ0 = 0.1455(24)(13)(6)(58)
(

M̃2
K0 − M̃2

K+

)

×
[

1− 0.0324(50)
(

1
2
(M̃2

K0 + M̃2
K+)− M̃2

π+

)]

, (55)

as our main numerical result. This is a pure QCD result: the isospin breaking
is just due to the different masses of the u, d and s quarks. (To recapitulate, ∗

means at the physical point and for the baryon octet M̃n = Mn/XN , etc. and for
the pseudoscalar octet M̃K0 = MK0/Xπ, etc. where X2 is the ‘average’ hadron
(mass)2 of the ‘outer’ ring of the octet, given numerically in eqs. (8) and (47).)
Even with the long lever arm of PQ some of the NLO terms, i.e. for Σ− −Σ+ are
only marginally determined.

The first error is statistical; the other errors are systematic as discussed in
Appendix A. The second error bar is due to possible finite size effects, the third
error estimates a possible error due to convergence of the SU(3) flavour breaking
expansion, while the last error is due to the choice of path to the physical point.

The above results are valid for a range of quark masses; we shall now specialise
to the physical point, as discussed in section 5.
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7.2 Physical values of the mass splittings

We first note that the NLO term is always small of the order of a few percent,
and only slowly decreases for increasing number of strange quarks in the baryon.
Using for the NLO term the mass values given in eq. (46) for the pure QCD case
we have 1

2
(M̃∗ 2

K0 + M̃∗ 2
K+)−M̃∗ 2

π+ = 1.339 (using the experimental rather than pure
QCD masses would introduce negligible additional errors into the NLO term). In
addition, using X∗ 2

N and X∗ 2
π from eqs. (8) and (47), this gives

M∗

n −M∗

p = 0.599(32)(34) (M∗2
K0 −M∗ 2

K+) ,

M∗

Σ− −M∗

Σ+ = 1.553(25)(63) (M∗2
K0 −M∗ 2

K+) ,

M∗

Ξ− −M∗

Ξ0 = 0.954(18)(41) (M∗2
K0 −M∗ 2

K+) , (56)

where all masses in these equations are now in GeV, as our final result in terms
of the pseudoscalar kaon masses. The first error is statistical, while the second is
the total systematic error.

Using again the kaon values from eq. (46) and regarding possible violations
of Dashen’s theorem, eq. (44), as a further systematic error, our isospin breaking
effects due to pure QCD alone (in MeV) are

M∗

n −M∗

p = 3.13(15)(16)(76|ǫγ|)MeV ,

M∗

Σ− −M∗

Σ+ = 8.10(14)(33)(193|ǫγ|)MeV ,

M∗

Ξ− −M∗

Ξ0 = 4.98(10)(21)(120|ǫγ|)MeV . (57)

In general, comparing eq. (57) with eq. (3) would indicate that electromagnetic
effects for n− p are negative, for Σ−−Σ+ are small and for Ξ−−Ξ0 are positive.

The uncertainty due to ǫγ is the dominant error once we convert to MeV
(i.e. unknown EM effects are the largest source of error). As an example, tak-
ing ǫγ = 0.7, [4, 23] gives M∗

n − M∗
p = 3.13(15)(16)(53)MeV, M∗

Σ− − M∗

Σ+ =
8.10(14)(33)(135)MeV and M∗

Ξ− −M∗

Ξ0 = 4.98(10)(21)(84)MeV.
In [11], a determination of the n − p isospin breaking effects due to electro-

magnetic effects was given, with a result of −1.30(47)MeV. Adding this to the
result of eq. (57) gives

(Mn −Mp)
∗+QED = 1.83(52)(76|ǫγ|)MeV . (58)

This is to be compared with the experimental result given in eq. (3) of 1.29MeV.
Thus we find consistency (within errors even with |ǫγ | ≈ 0). Thus this result also
indicates that violations of Dashen’s theorem seem to be small.

In Fig. 8 we compare this n – p mass difference including QED, (Mn −
Mp)

∗+QED, eq. (58) with ǫγ = 0.7, together the results of [2, 3, 4]. The filled
circles use the QED determination of [11], while the filled square includes the
full determination from that reference. Despite the fact that QED effects are
treated slightly differently in each work, good agreement amongst the various
determinations and with the experimental result is found.
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Figure 8: Comparison of the n – p mass difference of the present result (QCDSF-
UKQCD or lowest plotted number) with NPLQCD, Blum et al., and RM123 [2, 3, 4],
respectively (top to bottom plotted numbers). The filled circles use the QED determi-
nation of [11], while the filled square gives the full QCD and QED determination from
Blum et al. . The vertical dashed line is the experimental result given in eq. (3).

7.3 Conclusions

In this article we have introduced a method to determine the isospin breaking
effects due to QCD for octet baryons. Using an SU(3) flavour symmetry breaking
expansion in the quark masses, the pseudoscalar meson octet expansion coeffi-
cients can be determined, which leads to an estimate at the physical quark mass
point. This can then be used together with the equivalent SU(3) flavour sym-
metry breaking expansion for the baryon octet to determine the baryon mass
splittings. The expansion coefficients depend only on the average quark mass m.
Thus we can use degenerate sea quark masses (either with mass degenerate u and
d quarks or with mass degenerate u, d and s quarks, i.e. at the flavour symmetric
point) provided that m remains unchanged. These are computationally cheaper
simulations than those with mass non-degenerate u, d and s quarks.

A further advantage of our procedure is that the mass expansion formulas
are easily generalised to the case of differing valence quark masses to sea quark
masses (i.e. partially quenched valence quarks). This allows an extension of the
quark mass range to heavier quark masses, so that both LO and NLO coefficients
(i.e. linear terms and quadratic terms in quark masses) can be determined. Our
final results are given in eq. (57). As the NLO turns out to be only a small
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correction to the LO this gives us confidence that the SU(3) flavour symmetry
expansion appears to be a highly convergent series.
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Appendix

A Systematic errors

We now consider in this Appendix possible sources of systematic errors: finite
lattice volume, convergence of the SU(3) flavour breaking expansion, the path to
the physical point and finite lattice spacing.

Finite lattice volume

Comparing the available 243×48 with the 323×64 lattice data in Fig. 7 indicates
that for these mass ratios finite size effects are small. (Finite volume effects
were also discussed in [13] in section 8.3.1.) We now use these unitary results
to estimate possible finite size effects. For the lightest 243 × 48 point, namely,
(κl, κs) = (0.121040, 0.120620), MπL ∼ 3.4 (where L is the spatial lattice size,
here 24a), and the mass ratio M̃ has finite size error ∼ 1%, from comparing the
243×48 lattice result with the 323×64 lattice result. (Either using the results of
[13] directly or equivalently taking the square root of the results in Fig. 7.) On the
lightest 323 × 64 lattice point, namely (0.121145, 0.120413) we have MπL ∼ 3.1,
so we expect the finite size errors in the mass ratio M̃N will be approximately
the same, i.e. also ∼ 1%. We use this in section 7 to estimate systematic errors
arising from finite volume effects.

SU(3) flavour breaking expansion

We first note that in Fig. 7 in the range |δml| ∼< 0.01 (and |δms| ∼< 0.02), there is
little curvature. This is in agreement with the SU(3) flavour breaking expansion,
eq. (10), where each order is multiplied by a further δmq. From Table 1 for the
Ãi and B̃i coefficients (and for the NNLO order the C̃i coefficients) we see there
that they remain approximately all of the same order, so we expect that every
increase in the order leads to a decrease by about an order of magnitude in the
series. This is confirmed in the present case as we have compared the NNLO
determination of MN , MΣ and MΞ with the NLO results (removing the heavier
quark mass points until the χ2/dof is approximately the same). The change in
MN was less than half a percent and for MΣ, MΞ less, which is equivalent to
using ∼ 10% of the NLO term to estimate systematic errors.

A further example to illustrate this convergence is given by eq. (42) of [13].
Here we can form sums and differences of the decuplet masses which are of order
δm0

l , δm
1
l , δm

2
l and δm3

l . We see that each time we add a factor of δml the
quantity decreases by an order of magnitude (in fact usually by a factor of ∼ 20),
and the O(δm3

l ) quantity is about 2000 times smaller than the leading order
quantity. So we believe that convergence is very good for hyperons. Such an
expansion is very good compared to most approaches available to QCD.
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Path to physical point

As also discussed in [13], the chosen trajectory in the ms - ml plane (keeping
m constant), appears to not quite go through the physical point. Using Xπ (see
eq. (35)) and XN then from Table 15 of [13], we see that (aXπ/aXN)×(XN/Xπ)

∗

deviates from 1 by ∼ 4%. We use this as an estimate in section 7 of systematic
errors due to this effect.

Finite lattice spacing

Non-perturbative O(a) improved clover fermions are employed in order to min-
imise finite lattice spacing effects in the mass ratios determined here. Any effects
are difficult to estimate if only one β (or a value) is available, so as a check
we have performed some additional simulations at β = 5.80 (with an estimated
a ∼ 0.06 fm). The results are along the SU(3) flavour symmetric line (as three
light quarks might show effects sooner than two light and one heavier quark).
Again we have located (as described in [13]) the starting point on this line, m0 for
a path in the ms–ml plane leading to the physical point and then considered com-
parable mass ratios for the nucleon, X2

N(m)/X2
N(m0) (against X

2
π(m)/X2

π(m0)),
where we denote here a general point on the SU(3) symmetric line by m. In
Fig. 9 we show these results. Both β values lie on a common line and show no

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Xπ

2
( m)/Xπ

2
(m0)

0.5

1.0

1.5

2.0

X
N

2 (
m

)/
X

N

2 (m
0)

β=5.50 
β=5.80

Figure 9: X2
N (m)/X2

N (m0) against X
2
π(m)/X2

π(m0) along the symmetric line. Square
symbols are the β = 5.50 results and are given in [13] and [24], while diamonds are
the β = 5.80 results [14]. (All results are on 323 × 64 sized lattices.) The point where
m0 = m (κ0 = 0.12090 for β = 5.50 and κ0 = 0.12281 for β = 5.80) is denoted by a
circle.
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systematic lattice spacing dependence and so lie close to the continuum limit
(certainly within the precision achievable here).

B Tables

We now give in Tables 4 – 6 the baryon and pseudoscalar PQ mass results used
in the analysis. Additional 323 × 64 results along the line m = const. also used
here are given in Tables 22 and 20 of [13] for the baryon and pseudoscalar meson
particles, respectively.

κa κb M(aab)
0.110000 0.110000 1.969(3)
0.110000 0.115000 1.780(3)
0.110000 0.120000 1.555(3)
0.110000 0.120512 1.530(3)
0.110000 0.120900 1.511(3)
0.114000 0.114000 1.520(3)
0.114000 0.116000 1.436(3)
0.114000 0.118000 1.345(3)
0.114000 0.120000 1.245(3)
0.114000 0.120900 1.199(3)
0.115000 0.110000 1.592(3)
0.115000 0.115000 1.397(3)
0.115000 0.120000 1.161(2)
0.115000 0.120512 1.133(2)
0.115000 0.120900 1.113(3)
0.116000 0.114000 1.354(3)
0.116000 0.116000 1.268(3)
0.116000 0.118000 1.175(3)
0.116000 0.120000 1.072(3)
0.116000 0.120900 1.023(2)
0.118000 0.114000 1.173(3)
0.118000 0.116000 1.085(3)
0.118000 0.118000 0.9887(25)
0.118000 0.120000 0.8800(23)
0.118000 0.120900 0.8267(23)

Table 4: Results for the PQ baryon masses, M(aab) in lattice units at β = 5.50 from
a 323 × 64 lattice with sea quark masses at the symmetric point, i.e. κl = κs = 0.12090
and valence quarks κa, κb.
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κa κb M(aab)
0.120000 0.110000 1.134(3)
0.120000 0.114000 0.9726(26)
0.120000 0.115000 0.9279(24)
0.120000 0.116000 0.8812(24)
0.120000 0.118000 0.7789(23)
0.120000 0.120000 0.6588(23)
0.120000 0.120512 0.6232(24)
0.120000 0.120900 0.5945(26)
0.120512 0.110000 1.081(3)
0.120512 0.115000 0.8722(25)
0.120512 0.120000 0.5945(25)
0.120512 0.120512 0.5564(27)
0.120512 0.120900 0.5247(30)
0.120900 0.110000 1.041(4)
0.120900 0.114000 0.8755(36)
0.120900 0.115000 0.8295(32)
0.120900 0.116000 0.7811(34)
0.120900 0.118000 0.6739(33)
0.120900 0.120000 0.5435(32)
0.120900 0.120512 0.5031(35)
0.120900 0.120900 0.4673(27)

Table 4 continued.

κl κs M(sss)
0.121040 0.120620 0.5265(16)
0.121095 0.120512 0.5446(16)
0.121145 0.120413 0.5682(13)

Table 5: Additional results to Table 22 of [13] for the PQ baryon masses, MNs ≡
M(sss) in lattice units from a 323 × 64 lattice along the line m = const. .
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κa κb M(ab)
0.110000 0.110000 1.2485(3)
0.110000 0.115000 1.0583(3)
0.110000 0.120000 0.8351(4)
0.110000 0.120900 0.7909(10)
0.110000 0.120512 0.8100(6)
0.114000 0.114000 0.9436(3)
0.114000 0.116000 0.8583(3)
0.114000 0.118000 0.7664(3)
0.114000 0.120000 0.6669(4)
0.114000 0.120900 0.6200(7)
0.115000 0.115000 0.8593(3)
0.115000 0.120000 0.6202(4)
0.115000 0.120900 0.5720(6)
0.115000 0.120512 0.5929(5)
0.116000 0.116000 0.7706(3)
0.116000 0.118000 0.6754(3)
0.116000 0.120000 0.5710(4)
0.116000 0.120900 0.5213(6)
0.118000 0.118000 0.5752(3)
0.118000 0.120000 0.4628(4)
0.118000 0.120900 0.4077(5)
0.120000 0.120000 0.3342(4)
0.120000 0.120900 0.2646(5)
0.120000 0.120512 0.2958(4)
0.120512 0.120900 0.2174(5)
0.120512 0.120512 0.2534(4)
0.120900 0.120900 0.1747(5)

Table 6: Results for the PQ pseudoscalar masses, M(ab) in lattice units at β = 5.50
from a 323 × 64 lattice with sea quark masses at the symmetric point, i.e. κl = κs =
0.12090 and valence quarks κa, κb.
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