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I. INTRODUCTIONPositronium (Ps), the eletron-positron bound state, was disovered experimentallyin 1951 [1℄. Sine that time a lot of attention has been paid to the determination ofits properties, inluding lifetime, deay modes, and spetrosopy. The experimental andtheoretial auraies ahieved by now being quite high, there is little doubt that quantumeletrodynamis (QED) is the only interation in this system. In fat, thanks to thesmallness of the eletron mass m relative to typial hadroni mass sales, its theoretialdesription is not plagued by strong-interation unertainties and its properties, suh asdeay widths and energy levels, an be alulated perturbatively in non-relativisti QED(NRQED) [2℄, as expansions in Sommerfeld's �ne-struture onstant �, with very highpreision.Ps omes in two ground states, 1S0 parapositronium (p-Ps) and 3S1 orthopositronium(o-Ps), whih deay to two and three photons, respetively. Here we are onerned withthe lifetime of o-Ps, whih has been the subjet of a vast number of experimental andtheoretial investigations. Its �rst measurement [3℄ was performed later in the year 1951and agreed well with its lowest-order (LO) predition of 1949 [4℄. Its �rst preisionmeasurement [5℄, of 1968, had to wait 9 years for the �rst orret one-loop alulation [6℄,whih ame two deades after the analogous alulation for p-Ps [7℄ being onsiderablysimpler owing to the two-body �nal state. In the year 1987, the Ann Arbor group [8℄published a measurement that exeeded the best theoretial predition available thenby more than 8 experimental standard deviations. This so-alled o-Ps lifetime puzzletriggered an avalanhe of both experimental and theoretial ativities, whih eventuallyresulted in what now appears to be the resolution of this puzzle. In fat, the 2003measurements at Ann Arbor [9℄ and Tokyo [10℄,�(Ann Arbor) = 7:0404(10 stat.)(8 syst.) �s�1;�(Tokyo) = 7:0396(12 stat.)(11 syst.) �s�1; (1)agree mutually and with the present theoretial predition,�(theory) = 7:039979(11) �s�1: (2)The latter is evaluated from�(theory) = �0 �1 + A�� + �23 ln� +B ����2 � 3�32� ln2 �+ C�3� ln�� ; (3)where [4℄ �0 = 29(�2 � 9)m�6� (4)2



is the LO result. The leading logarithmially enhaned O(�2 ln�) and O(�3 ln2 �)terms were found in Refs. [11, 12℄ and Ref. [13℄, respetively. The oeÆients A =�10:286606(10) [6, 11, 14, 15, 16℄, B = 45:06(26) [15℄, and C = �5:51702455(23) [17℄were evaluated numerially in a series of papers. Comprehensive reviews of the experi-mental and theoretial status of Ps may be found in Refs. [18, 19℄.We note in passing that high-preision tests make Ps also a useful probe of new physisbeyond he standard model. At present, there is strong interest in models with extradimensions [20℄, whih may provide a solution of the gauge hierarhy problem [21℄ (seeRef. [22℄ for a review). Some time ago, a peuliar feature of matter in brane worldwas observed in Ref. [23℄, where it was shown that massive partiles initially loated onour brane may leave the brane and disappear into extra dimensions. The experimentalsignature of this e�et is the disappearane of a partile from our world, i.e. its invisibledeay. The ase of the eletromagneti �eld propagating in the Randall{Sundrum type ofmetri in the presene of extra ompat dimensions [24, 25℄ was onsidered in Ref. [25℄,where it was shown that the transition rate of a virtual photon into extra dimensions isnon-zero. This e�et ould result in the disappearane of a neutral system. In the aseof o-Ps, suh estimations for the invisible deay branhing fration B(o-Ps ! invisible)[19, 26℄ range just one order of magnitude below the presently best experimental upperbound of 4:3� 10�7 at 90% on�dene level established by Badertsher et al. [27℄. Thus,this deay is of great interest for the possible observation of e�ets due to extra dimensions.In order to redue the theoretial unertainty in the o-Ps total deay width �(theory),it is indispensable to inrease the preision in the oeÆients A, B, and C in Eq. (3). Thisis most eÆiently done by avoiding numerial integrations altogether, i.e. by establishingthe analyti forms of these oeÆients. The ase of B is beyond the sope of presentlyavailable tehnology, sine it involves two-loop �ve-point funtions to be integrated overthe three-partile phase spae. In the following, we thus onentrate on A and C. Thequest for an analyti expression for A has a long history. About 25 years ago, some ofthe simpler ontributions to A, due to self-energy and outer and inner vertex orretions,were obtained analytially [28℄, but further progress then soon ame to a grinding halt.In our reent Letter [29℄, this task was ompleted for A as a whole. The purpose of thepresent paper is to explain the most important tehnial details of this alulation and toollet mathematial identities that may be useful for similar alulations.An analyti expression for C is then simply obtained from that for A through therelationship [17℄ C = A3 � 22930 + 8 ln 2; (5)whih may be understood qualitatively by observing that the O(�3 ln�) orretion inEq. (3) reeives a ontribution from the interferene of the relativisti O(�) term from3



the hard sale with non-relativisti O(�2 ln�) terms from softer sales.The struture of this paper is as follows. Setion II ontains the well-known integralrepresentation of the o-Ps total deay width as given in Ref. [16℄. In Se. III, we showhow to transform the ontributing integrals to forms appropriate for analyti evaluation,whih is arried out for the most ompliated integrals, whih are plagued by singularities,in Se. IV. More examples are studied in Se. V. The �nal results for the oeÆients Aand C are presented in Se. VI. Setion VII ontains a summary. In Appendix A, wepresent the analyti results for all parts of the integral representation given in Se. II.Appendix B ontains useful representations of the  funtion and the expansion of the �funtion about half-integer-valued arguments. In Appendix C, transformation formulasfor generalized polylogarithms of weight four with di�erent arguments are olleted.II. DEFINITIONS AND NOTATIONS

FIG. 1: Feynman diagrams ontributing to the total deay width of o-Ps at O(�). Self-energydiagrams are not shown. Dashed and solid lines represent photons and eletrons, respetively.The O(�) ontribution in Eq. (3), �1 = �0A�=�, is due to the Feynman diagramswhere a virtual photon is attahed in all possible ways to the tree-level diagrams, withthree real photons linked to an open eletron line, and the eletron box diagrams with ane+e� annihilation vertex onneted to one of the photons being virtual (see Fig. 1). Takingthe interferene with the tree-level diagrams, imposing e+e� threshold kinematis, andperforming the loop and angular integrations, one obtains the two-dimensional integral
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representation [16℄�1 = m�736�2 1Z0 dx1x1 dx2x2 dx3x3 Æ(2� x1 � x2 � x3)[F (x1; x3) + perm:℄; (6)where xi, with 0 � xi � 1, is the energy of photon i in the o-Ps rest frame normalized toits maximum value, the delta funtion ensures energy onservation, and "perm." standsfor the other �ve permutations of x1; x2; x3. The funtion F (x1; x3) is given byF (x1; x3) = g0(x1; x3) + 5Xi=1 gi(x1; x3)hi(x1) + 7Xi=6 gi(x1; x3)hi(x1; x3); (7)where gi(x1; x3) are ratios of polynomials, whih are listed in Eqs. (A5a){(A5h) of Ref. [16℄,and h1(x1) = ln(2x1); h2(x1) =rx1x1 �1; h3(x1) = 12x1 [�(2)� Li2(1� 2x1)℄;h4(x1) = 14x1 [3�(2)� 2�21℄; h5(x1) = 12x1 �21; (8)h6(x1; x3) = 1px1x1x3x3 �Li2 �r+A ; �1�� Li2 �r�A ; �1�� ; (9)h7(x1; x3) = 12px1x1x3x3 �2 Li2(r+B ; �1)� 2 Li2(r�B ; �1)� Li2(r+C ; 0) + Li2(r�C ; 0)� ; (10)where xi = 1� xi and�1 = artanrx1x1 ; �1 = artanrx1x1 ; pA =rx1x3x1x3 ; pB =rx1x3x1x3 ;r�A =px1 (1� pA); r�B = px1 (1� pB); r�C = r�Bpx1 : (11)Here, �(2) = �2=6 and Li2(r; �) = �12 1Z0 dtt ln(1� 2rt os � + r2t2) (12)is the real part of the dilogarithm [see line below Eq. (32)℄ of omplex argument z = rei�[30℄. Sine we are dealing here with a single-sale problem, Eq. (6) yields just a number.Although Bose symmetry is manifest in Eq. (6), its evaluation is ompliated by the fatthat, for a given order of integration, individual permutations yield divergent integrals,whih have to anel in their ombination. In order to avoid suh a proliferation of terms,5



we introdue an in�nitesimal regularization parameter Æ in suh a way that the symmetryunder xi $ xj for any pair i 6= j is retained. In this way, Eq. (6) ollapses to�1 = m�76�2 1�ÆZ2Æ dx1 1�ÆZ1�x1+Æ dx2x1x2x3F (x1; x3); (13)where x3 = 2� x1� x2. Note that we may now exploit the freedom to hoose any pair ofvariables xi and xj (i 6= j) as the arguments of F and as the integration variables.III. INTEGRAL REPRESENTATIONS OF DILOGARITHMIC FUNCTIONSObviously, the funtions h6(x1; x3) and h7(x1; x3) in Eqs. (9) and (10), respetively,give the most ompliated ontributions to �1. In order to perform integrations involvingthese terms, it is useful to apply the integral representation of Eq. (12) to Li2(r�A; �1),Li2(r�B; �1), and Li2(r�C ; 0). Let us �rst onsider Li2(r+B ; �1). We see from Eq. (11) thatos �1 = px1 and thusLi2(r+B; �1) = �12 1+pBZ0 dt1t1 ln[1� x1t1(2� t1)℄; (14)where t1 = (1 + pB)t. Then, the term D1 = Li2(r+B; �1) � Li2(r�B ; �1) on the r.h.s. ofEq. (10), after the hange t2 = t1 � 1, an be rewritten asD1 = �12 pBZ�pB dt21 + t2 ln[1� x1(1� t22)℄: (15)Finally, substituting t2 = pBpt, we obtainD1 = �12px1x1x3x3 1Z0 dtpt(x1x3 � x1x3t) [lnx1 � lnx3 + ln(x3 + x3t)℄: (16)The residual term on the r.h.s. of Eq. (10), D2 = Li2(r+C ; 0)�Li2(r�C ; 0), an be transformedin the same way yieldingD2 = �12px1x1x3x3 1Z0 dtpt(x1x3 � x1x3t) [ln(x1x3)� ln(x1x3) + ln t℄: (17)
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We thus obtain the following integral representation for h7(x1; x3) [48℄:h7(x1; x3) = �14 1Z0 dtpt (x1x3 � x1x3t) �ln x1x1x3x3 + 2 ln(x3 + x3t)� ln t� : (18)Exploiting the x1 $ x3 symmetry of the oeÆient g7(x1; x3) multiplying h7(x1; x3),Eq. (18) an be e�etively replaed by~h7(x1; x3) = �14 1Z0 dtpt (x1x3 � x1x3t) [2 ln(x3 + x3t)� ln t℄: (19)Next, this expression, multiplied by g7(x1; x3), is to be integrated over x1, x3, and t.Observing that the logarithmi terms in Eq. (19) are independent of x1, we �rst integrateover x1 (for a similar approah, see Ref. [31℄). In order to avoid the appearane ofompliated funtions in the intermediate results, the integration over t in Eq. (19) isperformed last.Using the same tehnique, we obtain the following representation for the funtionh6(x1; x3): ~h6(x1; x3) = �12 1Z0 dtpt(x1x3 � x1x3t) [lnx1 � lnx3 + ln(x3 + x3t)℄; (20)in whih the part proportional to lnx1 and the omplementary one are �rst integratedover x3 and x1, respetively. The t integration is again performed last.In Ses. IV and V, we disuss in more details how these integrations an be performed.IV. EVALUATION OF CONTRIBUTIONS WITH h6 AND h7We now disuss the evaluation of the most ompliated integrals, namely those in-volving the funtions h6(x1; x3) and h7(x1; x3). We denote the orresponding integratedexpressions as I6 and I7, respetively. They are both singular for Æ ! 0, so that theregularization of Eq. (13) is indispensable.Let us �rst onsider the ontribution of the oeÆient g7(x1; x3) without the funtionh7(x1; x3). It an be deomposed into two parts, as~g7(x1; x3) = g7(x1; x3)x1x3(2� x1 � x3) = ~gsing7 (x1; x3) + ~greg7 (x1; x3); (21)where ~gsing7 (x1; x3) = 3x3(1� x3)2� x1 � x3 (22)7



gives rise to the singularity upon integration over x1 and x3, while~greg7 (x1; x3) = 18x3 � 3 + 9x3 + � 2x3 � 10�x1 + � 42� x3 � 8x3 + 10 + 2x3� 1x1+ �� 522� x3 � 12x3 + 66� 44x3 + 11x23� 12� x1 � x3 (23)remains �nite, so that the limit Æ ! 0 an be taken. A similar deomposition an be madealso for g6(x1; x3). Spei�ally, performing the integrations over x1 and x3 and taking thelimit Æ ! 0, we have6 1�ÆZ2Æ dx1 1�ÆZ1�x1+Æ dx3 ~gsing7 (x1; x3) = 3 ln Æ + 52 +O(Æ);6 1�ÆZ2Æ dx1 1�ÆZ1�x1+Æ dx3 ~greg7 (x1; x3) = 12403 � 264�(2) +O(Æ): (24)Observing that the presene of the funtions h6(x1; x3) and h7(x1; x3) does not hangethe singularity struture of the integrals over the variables x3, x1, and t in this order, thedeomposition of Eq. (21) leads toIi = Isingi + Iregi ; Ising; regi = 6 1�ÆZ2Æ dx3 1�ÆZ1�x3+Æ dx1 ~gsing; regi (x1; x3)hi(x1; x3); (25)with i = 6; 7.Our evaluation yieldsIsing6 = 9 ln Æ + 45 + 92�2 � 632 �3 +O(Æ); (26)Ireg6 =�4223 + �2�18773 � 1590l2 � 288l22�+ 27192 �3 � 24l42 + 767716 �4� 576 Li4�12�+ 35p2G3 +O(Æ); (27)Ising7 =�9 ln Æ � 36� 272 �2 + 632 �3 +O(Æ); (28)Ireg7 = 297 + �2�� 222 + 486l2�� 5672 �3 + 31516 �4 + 24p2G3 +O(Æ); (29)where [49℄ G3 = 12�2l2 � l32 � 39�2lR � 3l22lR + l3R � 214 �3 + 48Li3� 1p2�+ 3Re"Li3 1�p22 !� Li3 1 +p22 !# : (30)8



As an be seen from Eqs. (26) and (28), ln Æ anels in the sum I6 + I7. Here and in thefollowing, we use the short-hand notationsl2 = ln 2; l3 = ln 3; lR = ln�1 +p2� : (31)Furthermore, Sn;p(x) = (�1)n+p�1(n� 1)!p! 1Z0 dtt lnp(1� tx) lnn�1 t (32)is the generalized Nielsen polylogarithm, Lin(x) = Sn�1;1(x) the polylogarithm of ordern, and �n = �(n) = Lin(1), with �(x) being Riemann's zeta funtion [30, 32℄.The result of Eq. (30), whih is the most ompliated part arising from the terms withi = 6 and 7 in Eq. (7), assumes a rather simple form when written as an in�nite series,p23 G3 = 14�3 � 24�2l2 � 12 1Xn=1 �2(n)�(2n)4n � 0�n+ 22 ��  0�n + 12 �� ; (33)where  (m)(n) is the (m + 1)-th logarithmi derivative of the � funtion, �(x) =R10 dt e�ttx�1. We an now apply the well-known relations for � and  funtions,�2(n)2�(2n) = 1�2nn � 1n; (34) 0�n+ 22 ��  0�n+ 12 � = (�1)n4 ��12�2 � S�2(n)� ; (35)where S�m(n) = nXj=1 (�1)jjm (36)is the harmoni sum. Using Eqs. (34) and (35), the onstant G3 is rewritten in terms ofso-alled inverse entral binomial sums, i.e. sums of the form1Xn=1 zn�2nn ��(n); (37)where �(n) is some ombination of harmoni sums and fators like 1=n, and z is somenumber. Sums of suh type were studied in great detail in Refs. [33, 34, 35, 36℄.It is known that, for the series in Eq. (37), there exists a nonlinear transformation,y = pz � 4�pzpz � 4 +pz ; (38)9



whih leads to great simpli�ations in many ases. The series in the new variable ydoes not have a binomial oeÆient and an be summed, yielding expressions involvinggeneralized polylogarithms Sn;p(y).Now we an explain the appearane of the prefator 1=p2 in front of G3 in Eqs. (27)and (29). Suh a prefator has not appeared in single-sale alulations so far. The pointis that all inverse binomial series involving produts of the fator 1=n and some funtionf(n) that is a ombination of the  funtion and its derivatives have the form (see, forexample, Ref. [36℄) 1Xn=1 �2(n)�(2n)znf(n) = 2 1Xn=1 1�2nn � znn f(n) = 1� y1 + yF (y); (39)where F (y) is some ombination of generalized polylogarithms and y is de�ned by Eq. (38).Note that Eq. (35) ontains the binomial sum S�2(n), whih is related to the basi one,S�2(n� 1), via S�2(n) = S�2(n� 1) + (�1)nn2 : (40)Thus, the last term on the r.h.s. of Eq. (40) leads to z = 4 in Eq. (33), whih translatesto y = �1 via Eq. (38). This term then anels the term 14�3 � 24�2l2 on the r.h.s. ofEq. (33). For the term ��2=2� S�2(n � 1) on the r.h.s. of Eq. (35), we have z = �4 sothat the variable y from Eq. (38) assumes the valuer = p2� 1p2 + 1 : (41)This explains the appearane of the fator 1=p2 in Eqs. (27) and (29), sine (1� y)=(1+y) = 1=p2.Finally, we an rewrite Eq. (30) asG3 = 21�2lr � 112 l3r � 5lr Li2(r) + 5Li3(r)� 50 S1;2(r) + 4 S1;2(r2) + 34�3; (42)where lr = ln r.V. EVALUATING INTEGRALS FROM SERIESLet us now onsider several typial integrals that arise upon the �rst integration [50℄.Our �rst example of the remaining two-fold integrals readsI� = 1Z0 dtt 1Z0 dxx ln[1� 4t(1� t)(1� x)℄ ln(1� x): (43)10



Diret integration over t or x would lead to rather ompliated funtions in the remainingvariable. Instead, we Taylor expand the �rst logarithm using ln(1� q) = �P1n=1 qn=n toobtain I� = � 1Xn=1 (�4)nn 1Z0 dtt [t(1� t)℄n 1Z0 dxx (1� x)n ln(1� x): (44)Now, the two integrals are separated and an be solved in terms of Euler's � funtion.Using 1Z0 dxx (1� x)n ln(1� x) = � 0(n+ 1); (45)we �nally haveI� = 1Xn=1 �2(n)�(2n) (�4)n2n  0(n+ 1) = 1Xn=1 1�2nn � (�4)nn2 [�2 � S2(n)℄ : (46)Clearly, in the ases of I+ and I�, the argument z in Eq. (37) is equal to 4 and �4,respetively.The ase of I+ is simpler and leads to a smaller number of onstants. Indeed, we anuse the results of Refs. [35, 36℄ to obtain1Xn=1 1�2nn � 4nn2 = 3�2; 1Xn=1 1�2nn � 4nn2S2(n� 1) = 154 �4;1Xn=1 1�2nn � 4nn4 = 4�2l22 + l423 + 8Li4�12�� 194 �4; (47)and so on. Aording to Ref. [36℄, after transformation to the variable y of Eq. (38),we arrive at polylogarithms of argument �1, whih are expressed in terms of alternatingand non-alternating Euler{Zagier sums, suh as �(�a) = P1n=1(�1)n=na, �(�a;�b) =P1m=1P1n=m+1(�1)n(�1)m=(namb), et.Let us now turn to the ase of I� in Eq. (46). The argument z = �4 gives y = r andleads to a new type of onstants. Again using formulas from Ref. [36℄, we have1Xn=1 1�2nn � (�4)nn2 = �12 l2r ; 1Xn=1 1�2nn � (�4)nn2 S2(n� 1) = 124 l4r ;1Xn=1 1�2nn � (�4)nn4 = �23 l3r � 18 l4r + 4S2;2(r)� 4 Li4(r) + 4l2[Li3(r)� �3℄+ 4lr[Li3(r)� S1;2(r)� l2 Li2(r)℄� l2r [2 Li2(r) + l22℄: (48)11



With the help of the relations listed in Appendix C, I� an be alternatively expressed asI+ =�4�2l22 � l423 + 172 �4 � 8 Li4�12� ; (49)I� = �4 � 13 l42 + 2l22�2 + 5l22l2R � 192 l2R�2 � 53 l4R� 4lRRe"Li3 1�p22 !� Li3 1 +p22 !#
� 4Re"Li4 1�p22 !+ Li4 1 +p22 !# : (50)It has been observed empirially that, at weight four, the terms that are not expressedthrough the usual Riemann zeta funtion �(a) often ome in the ombination b4 = l22(l22=3�2�2) + 8Li4(1=2) introdued by Broadhurst in Ref. [38℄. Examples inlude the three-loopQCD orretion to the eletroweak � parameter [39℄, the eletron anomalous magnetimoment at three loops [40℄, ritial exponents in high orders of perturbation theory [41℄,the heavy-quark ontribution to the vauum polarization funtion at four loops in QCD[42℄, and the mathing onditions for the strong-oupling onstant at �ve loops [43℄. Ourresult for I+ in Eq. (49) exhibits a violation of this empirial observation. In fat, thenon-zeta terms form some di�erent ombination there.Another lass of typial integrals yields sums involving  funtions of half-integerarguments (see Appendix B), e.g.J� = 1Z0 dtt 1Z0 dx ln[1� 4t(1� t)(1� x)℄ ln(1� x)x� 2= 1Xn=1 (�4)n8n �2(n)�(2n) � 0�n+ 22 ��  0�n + 12 ��= 1Xn=1 1�2nn � (�4)nn2 ��12�2 � S�2(n� 1)� (�1)nn2 � : (51)Following a similar strategy as above and using formulas from Se. IV, we may express

12



J� in terms of known irrational onstants, asJ+ =�52�2l22 + 1748 l42 + 214 �4 � 9�2l2lR + 192 �2l2R + 512 l4R� 9Re"Li4 1�p22 !+ Li4 1 +p22 !#+ 4"Li4 2�p24 !+ Li4 2 +p24 !#=�52�2l22 + 1748 l42 + 214 �4 �G4;J� = 12�2l22 � 4948 l42 � �4 + 6Li4�12�+ l2R �3l22 � 112 �2�� 74 l4R+ lR(13 l32 + 5�2l2 + 74�3 � 16 Li3� 1p2�� 5Re"Li3 1�p22 !� Li3 1 +p22 !#)
+ 5Re"Li4 1�p22 !+ Li4 1 +p22 !#� 4"Li4 2�p24 !+ Li4 2 +p24 !# ;(52)where G4, expressed with the help of the variable r de�ned in Eq. (41), is given in Eq. (A3).These results again ontain various ontributions of polylogarithms with argumenty = �1, arising from terms of the form (�1)n=n2 on the r.h.s. of Eq. (51) for J+ andterms of the form ��2=2� S2(n� 1) on the r.h.s. of Eq. (51) for J�, and with argumenty = r, arising from the residual terms.Unfortunately, not all integrals an be omputed so straightforwardly. In more ompli-ated ases, the integrations are not separated after expansion to in�nite series. We thenrely on the PSLQ algorithm [44℄, whih allows one to reonstrut the representation of anumerial result known to very high preision in terms of a linear ombination of a setof irrational onstants with rational oeÆients, if that set is known beforehand. The ex-periene gained with the expliit solution of the simpler integrals helps us to exhaust therelevant sets. In order for the PSLQ algorithm to work in our appliations, the numerialvalues of the integrals must be known up to typially 150 deimal �gures. However, forsome integrals more aurate determinations are required. The suess of the appliationof the PSLQ algorithm also relies on the fat that only ertain ombinations of polyloga-rithms, like G3 in Eqs. (30) and (42), G4 in Eq. (A3), and ~G4 in Eq. (A2) are inorporatedas independent strutures.VI. RESULTSFinally, to get rid of omplex polylogarithms, suh as Li4[(1 + p2)=2℄, in the aboveformulas, we transform all polylogarithms to arguments of value below unity. To this end,13



we need transformation formulas through weight four. Some of these formulas are listedin Appendix C. After a laborious alulation, we obtain the �nal result for the one-looporretion29(�2 � 9)A = 5627 + 196 l2 + �2��901216 � 2701108 l2 + 25324 l22� + 11449432 �3+ 59576 l42 � 12983192 �4 + 2516 Li4�12�+ ~G4 + 74G4 + 76p2G3; (53)where the onstants G3, G4, and ~G4 are spei�ed in Eqs. (42), (A3), and (A2), respe-tively. Transforming the polylogarithmi funtions by means of the formulas given inAppendix C, we arrive at the form of Ref. [29℄,29(�2 � 9)A = 5627 + 196 l2 � 901216�2 � 2701108 �2l2 + 11449432 �3 + 25324 �2l22 + 91364 �2l23 + 251144 l42+ 83256 l43 � 916 �3l2 � 11303192 �4� 214 �2l2lr � 4916�2l2r + 716 l2l3r + 35384 l4r � 358 �3lr + 58116 �2 Li2�13�� 212 l2 Li3(�r)� 72 lr Li3(�r) + 634 l2 Li3(r) + 638 lr Li3(r)� 24932 Li4��13� + 24916 Li4�13�+ 2516 Li4�12� + 7Li4(�r)� 7 S2;2(�r)� 634 Li4(r) + 634 S2;2(r) + 7p2 �72�2lr � 172 l3r � 56 lr Li2(r)+ 56 Li3(r)� 253 S1;2(r) + 23 S1;2(r2) + 173 �3� ; (54)where r is given in Eq. (41).From Eqs. (54) and (5), A and C an be numerially evaluated with arbitrary preision,A = �10:286 614 808 628 262 240 150 169 210 991 253 179 644 007 490 228 232 410 : : : ;C = 5:517 027 491 729 858 271 378 866 098 665 005 181 944 001 421 860 702 103 921 : : : :(55)These numbers agree with the best existing numerial evaluations [16, 17℄ within thequoted errors.VII. CONCLUSIONWe presented the details of our evaluation of the O(�) and O(�3 ln�) orretions to thetotal deay width of o-Ps, i.e. of the oeÆients A and C in Eq. (3), respetively, whih14



had been presented in our previous Letter [29℄ in losed analyti form. We disussed thenature and the origin of new irrational onstants that appear in the �nal results. Theywere shown to be some partiular ases of inverse entral binomial sums and orrespondinggeneralized polylogarithms. These onstants enlarge the lass of the known onstants insingle-sale problems.The O(�2) orretion B in Eq. (3) still remains analytially unknown.AknowledgmentsWe are grateful to G.S. Adkins for providing us with the omputer ode employed forthe numerial analysis in Ref. [16℄. The work of B.A.K. was supported in part by the Ger-man Federal Ministry for Eduation and Researh BMBF through Grant No. 05H09GUE.The work of A.V.K. was supported in part by the German Researh Foundation DFGthrough Grant No. INST 152/465{1, by the Heisenberg-Landau Program through GrantNo. 5, and by the Russian Foundation for Basi Researh through Grant No. 07{02{01046{a. The work of O.L.V. was supported in part by the Helmholtz Assoiation HGFthrough Grant No. HA 101.
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APPENDIX A: DETAILED RESULTSIn this appendix, we present separate results for the integrals Ii of Eq. (25) withi = 0; : : : ; 7. Note, that not all of them a �nite in the limit Æ ! 0. We have:I0 = 204� 142�2;I1 = 51 + 90l2 � 228�2 + 3623 �2l2 + 127312 �3;I2 = �40� 3465 �2 � 72�2l2 + 42�3 � 17p2G3;I3 = 144�2 ln Æ � 59 + 24l2 + �2��2192 + 371l2 � 294l22�+ 52�3 � 17l42 � 1712116 �4� 408 Li4�12�+ 36 ~G4;I4 = �3803 + �2�32815 � 252l2 + 7832 l22�+ 35�3 + 27916 l42 � 18634 �4+ 1026 Li4�12�+ 27G4;I5 = �144�2 ln Æ � 120 + 6�2 ��3 + 6l2 + 95l22�� 357�3 + 1094 l42 � 1398�4+ 1464 Li4�12�+ 36G4;I6 = 9 ln Æ � 2873 + �2�37816 � 1590l2 � 288l22� + 1328�3 � 24l42 + 25592 �4� 576 Li4�12�+ 35p2G3;I7 = �9 ln Æ + 261 + �2��4712 + 486l2�� 252�3 + 31516 �4 + 24p2G3; (A1)where G3 is given in Eqs. (30) and (42), and~G4 = 91364 �2l23 + 58116 �2 Li2�13�+ 24932 �2 Li4�13�� Li4��13��+ 83256 l43� 11912 �3l2; (A2)G4 = 1516 l42 + 14 l2l3r + 596 l4r + 5�4 + �2��3l2lr � 74 l2r�+ �3��3l2 � 52 lr�+ �9l2 + 92 lr�Li3(r) + (�6l2 � 2lr) Li3(�r)� 9 [Li4(r)� S2;2(r)℄+ 4 [Li4(�r)� S2;2(�r)℄ : (A3)From Eqs. (A1) it is lear that ln Æ anels in the sum P7j=0 Ij.16



APPENDIX B: EXPANSIONS OF � AND  FUNCTIONS ABOUT HALF-INTEGER ARGUMENTSIn this appendix, we present some useful relations between derivatives of the  fun-tion with half-integer arguments and the  and � funtions with integer arguments, andonsider the expansion of the � funtion in the viinity of half-integer arguments.Starting from the well-known relations between the  and � funtions, (2z) = 12 � �z + 12� +  (z)�+ l2;�(2z) = 12 � �z + 12��  (z)� ; (B1)and di�erentiating them m (m > 0) times, we have2m+1 (m)(2z) =  (m) �z + 12� +  (m)(z);2m+1�(m)(2z) =  (m) �z + 12��  (m)(z); (B2)where  (m)(z) denotes the m-th derivative of  (z) et. We an ombine Eqs. (B1) and(B2) as  (m)(z) = 2m � (m)(2z)� �(m)(2z)�� Æ0ml2; (m) �z + 12� = 2m � (m)(2z) + �(m)(2z)�� Æ0ml2; (B3)where Æmn is the Kroneker symbol.Using the series representations of the  and � funtions [45℄, (z) =  (1) + (z � 1) 1Xk=0 1(k + 1)(k + z) ;�(z) = 1Xk=0 (�1)kk + z ; (B4)we obtain the following relations: (n+ 1) =  (1) + S1(n); (m)(n+ 1) = (�1)mm![Sm+1(n)� �m+1℄;�(n+ 1) = (�1)n[l2 + S�1(n)℄;�(m)(n+ 1) = (�1)m+nm![S�(m+1)(n)� S�(m+1)(1)℄; (B5)17



where Sm(n) is de�ned in Eq. (36).Thus, Eqs. (B3) and (B5) lead to the following results for the \sums" Sm with half-integer arguments [51℄:S1 �n2� = S1(n) + (�1)nS�1(n)� [1� (�1)n℄l2;Sm �n2� = 2m�1[Sm(n) + (�1)nS�m(n)℄ + [1� (�1)n℄(1� 2m�1)�m (m � 2): (B6)These equations are useful for expansions of the � funtion in the viinities of half-integerarguments. Indeed, using a well-known formula for the expansions of the � funtion aboutinteger values, whih was used, e.g., in Ref. [46℄,�(n+ 1 + Æ)n!�(1 + Æ) = exp "� 1Xk=1 1kSk(n)(�Æ)k# ; (B7)where E is Euler's onstant, we �nd the orresponding expansions about half-integervalues to be �(n=2 + 1 + Æ)�(n=2 + 1)�(1 + Æ) = exp "� 1Xk=1 1kSk �n2� (�Æ)k# ; (B8)where Sm(n=2) is given by Eq. (B6). Suh expansions are useful in many appliations,inluding those in Ref. [47℄ and referenes ited therein.APPENDIX C: TRANSFORMATIONS OF POLYLOGARITHMS OFWEIGHT FOURIn this appendix, we present relations between the generalized polylogarithms Sa;b ofweight four (a+b = 4) with di�erent arguments. Transformations at lower weights an befound in the literature [32℄. Although the derivation of these formulas is straightforward,we present them here for the onveniene of interested readers. At weight four, there arethree independent Nielsen polylogarithms, whih we hoose to be Li4, S1;3, and S2;2.1. Relations for the funtions with arguments 1� y and y:Li4(1� y) = �4 � S1;3(y) + ln(1� y)[�3 � S1;2(y)℄ + 12 ln2(1� y)[�2 � Li2(y)℄� 16 ln3(1� y) ln y;S2;2(1� y) = 14�4 � S2;2(y) + ln y S1;2(y) + ln(1� y)[�3 � Li3(y) + ln y Li2(y)℄+ 14 ln2(1� y) ln2 y;S1;3(1� y) = �4 � Li4(y) + ln y Li3(y)� 12 ln2 y Li2(y)� 16 ln3 y ln(1� y): (C1)18



2. Relations for the funtions with arguments �1=y and �y:Li4��1y� = �Li4(�y)� 74�4 � 12�2 ln2 y � 124 ln4 y;S2;2��1y� = S2;2(�y)� 2 Li4(�y)� 74�4 � ln y[�3 � Li3(�y)℄ + 124 ln4 y;S1;3��1y� = � S1;3(�y) + S2;2(�y)� Li4(�y)� �4 � ln y[S1;2(�y)� Li3(�y)℄� 12 ln2 y Li2(�y)� 124 ln4 y: (C2)3. Relations for the funtions with arguments (y � 1)=y and y:Li4�y � 1y � = Li4(y) + S1;3(y)� S2;2(y)� 74�4 + ln(1� y)[S1;2(y)� Li3(y)℄+ 12 ln2(1� y) Li2(y)� 12�2 ln2 1� yy + 124 ln4(1� y)� 124 ln4 1� yy ;S2;2�y � 1y � = 2Li4(y)� S2;2(y)� 74�4 + ln y S1;2(y) + ln 1� yy �3 � ln[(1� y)y℄ Li3(y)+ ln y ln(1� y) Li2(y) + 14 ln2 y ln2(1� y)� 16 ln3 y ln(1� y)+ 124 ln4 y;S1;3�y � 1y � = Li4(y)� �4 � ln y Li3(y) + 12 ln2 y Li2(y) + 16 ln3 y ln(1� y)� 124 ln4 y: (C3)4. Relations for the funtions with arguments y=(y � 1) and y:Li4� yy � 1� = S2;2(y)� Li4(y)� S1;3(y) + ln(1� y)[Li3(y)� S1;2(y)℄� 12 ln2(1� y) Li2(y)� 124 ln4(1� y);S2;2� yy � 1� = S2;2(�y)� 2 S1;3(y)� ln(1� y) S1;2(y) + 124 ln4(1� y);S1;3� yy � 1� = � S1;3(y)� 124 ln4(1� y): (C4)
19



5. Relations for the funtions with arguments 1=(1 + y) and �y:Li4� 11 + y� = S1;3(�y) + �4 + ln(1 + y)[S1;2(�y)� �3℄ + 12 ln2(1 + y)[Li2(�y) + �2℄+ 16 ln3(1 + y) ln y � 124 ln4(1 + y);S2;2� 11 + y� = 2S1;3(�y)� S2;2(�y) + 14�4 ++ ln[y(1 + y)℄ S1;2(�y)� ln(1 + y)[Li3(�y) + �3℄ + ln(1 + y) lny Li2(�y) + 14 ln2(1 + y) ln2 y� 16 ln3(1 + y) lny + 124 ln4(1 + y);S1;3� 11 + y� = S1;3(�y)� S2;2(�y) + Li4(�y) + �4 + ln y[S1;2(�y)� Li3(�y)℄+ 12 ln2 y Li2(�y) + 124 ln4 y � 124 ln4 1 + yy : (C5)Equations (C1) and (C2) were diretly obtained from Ref. [32℄, where they are presentedfor the generalized polylogarithms Sa;b with arbitrary values of a and b, but in someompliated form less onvenient for appliations. Equations (C3){(C5) were found byiterated appliation of Eqs. (C1) and (C2) and equations from Ref. [32℄. They are sim-ple and useful for appliations together with equations for Sa;b from Ref. [32℄, with theonstraints a+ b = 2 or a+ b = 3.
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