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Twist expansion of the nuleon struture funtions, F2 and FL,in the DGLAP improved saturation modelJohen Bartels(a), Krzysztof Gole-Biernat(b;) and Leszek Motyka(a;d)aII Institute for Theoretial Physis, Hamburg University,Luruper Chaussee 149, 22761 Hamburg, GermanybInstitute of Physis, University of Rzesz�ow,Al. Rejtana 16 A, 35-959 Rzesz�ow, PolandInstitute of Nulear Physis Polish Aademy of Sienes,Radzikowskiego 152, 31-342 Krak�ow, PolanddInstitute of Physis, Jagiellonian University,Reymonta 4, 30-059 Krak�ow, Poland(Dated: November 10th, 2009)Higher twist e�ets in the deeply inelasti sattering are studied. We start with a short review ofthe theoretial results on higher twists in QCD. Within the saturation model we perform a twistanalysis of the nuleon struture funtions FT and FL at small value of the Bjorken variable x.The parameters of the model are �tted to the HERA F2 data, and we derive a predition for thelongitudinal struture funtion FL. We onlude that for FL the higher twist orretions are sizablewhereas for F2 = FT + FL there is a nearly omplete anellation of twist-4 orretions in FT andFL. We disuss a few onsequenes for future LHC measurements.
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I. INTRODUCTIONA deeper understanding of the transition region at low Q2 and small x in deep inelasti eletron proton satteringhas been one of the entral tasks of HERA physis. Approahing the transition region from the perturbative sideone expets to see the onset of orretions to the suessful DGLAP desription | in partiular those whih belongto higher twist operators in QCD. The twist expansion de�nes a systemati approah and, therefore, provides anattrative framework of investigating the region of validity of the leading twist DGLAP evolution equations.The essentials of the theory of higher twist operators and their Q2 evolution have been laid down several years ago,[1, 2, 3℄. First, a hoie has to be made of a omplete operator basis [2, 3℄, and for their evolution [1℄ one needs toompute evolution kernels whih, for partoni operators in leading order, redue to 2 ! 2 sattering kernels. Theproblem of mixing between di�erent operators has also been addressed �rst in [1℄. In the small-x region at HERAone expets the gluoni operators to be the most dominant ones; so far, a theoretial study of the evolution of twist-4gluon operators is available only in the double logarithmi approximation [4, 5, 6, 7℄. An extensive reent theoretialstudy of QCD evolution of the higher twist operators an be found in [8℄.Numerial studies of the size of potential higher twist orretions [9, 10℄ indiate that twist-4 orretions to F2are small down to Q2 � 1 GeV2, x � 10�4. A �rst theoretial analysis [11℄ applied to HERA data, however, hasshown that the situation is more subtle, and from the smallness of twist-4 orretions to F2 one annot onlude thatontributions of twist-4 operators are small. The simplest QCD diagrams ontributing to the twist four gluon operatorare shown in Fig. 1: a quark loop ouples, via the exhange of four t-hannel gluons, to the proton target. Calulatingthe ontribution of these diagrams to the �p ross setion at small x, and isolating the twist-4 ontribution onearrives at the onlusion that the ontributions to longitudinal polarized photon has the opposite sign ompared tothe transversely polarized photon. This implies the possibility that, in F2 = FL+FT whih sums over transverse andlongitudinal photons, there is a (partial) anellation of twist four orretions, whereas the twist-4 orretions to FLor FT are larger than the orresponding orretions to F2.In order to deide whether the HERA data support this possibility, in [11℄ the saturation model of Gole-Biernatand W�ustho� [12, 13℄ whih suessfully desribes the HERA data has been used to obtain a quantitative estimateof twist-4 and even higher twist orretions. This mathematially fairly simple model has four parameters whihare �xed by adjusting the model to desribe well the HERA F2 data. The model leads to the total ross setionsthat exhibit the geometri saling [14℄. The ross setions obtained in the model may be expanded in powers ofQ20Q2 � 1x��. It was natural to identify the �rst two terms of this expansion as `leading twist-2' and `twist-4 orretion',
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2respetively. Despite its simpliity this model is lose enough to the lowest order QCD alulations and supportsthe sign struture of the twist-4 orretion to the transverse and longitudinal ross setions mentioned before. On aquantitative level, the twist-4 orretions to FL and FT were found to be sizable, whereas in F2 they almost anel.The overall smallness to the 1=Q2 orretions to F2 is onsistent with the estimate of [9, 10℄: the analysis in [11℄therefore provides a natural explanation of the suppression of twist-4 orretions to F2, without demanding that thehigher twist ontribution is small for FL or FT .This original version of the GBW model did not inlude any QCD evolution. Therefore, the onnetion of thismodel with evolution of twist four operators in QCD is not possible, and, in partiular, the identi�ation of the �rstand the seond term in the 1=Q2 expansion as the `leading' and the `next-to-leading' twist seems somewhat rude.A more reent version [15℄ of the GBW model inludes QCD evolution and its desription of HERA data is slightlybetter than that of the original model. It is therefore natural to investigate to what extent this improved modelexhibits the struture expeted for higher twist operators, and then to perform a numerial analysis similar to [11℄.This is the goal the present paper.Our numerial analysis shows an interesting pattern of the higher twist e�ets in the struture funtions. Theorretions are sizable in FL, for the kinemati range relevant for HERA data at low Q2, 1:8 GeV2 < 10 GeV2and small x, the twist-4 orretions are found to redue the leading twist result by about 20 { 50%. We omparethe obtained preditions for FL to reent HERA data [16℄, both for the omplete saturation model and its leadingtwist omponent. For F2 the higher twist e�ets are found to be surprisingly small, at a few perent level down toQ2 = 1 GeV2.The paper is organized as follows. The �rst, longer part in Ses. II{VI is devoted to disussion of theoretialissues, and the seond part, in Ses. VII{IX , to the phenomenologial appliations. In setion II we review simpleQCD alulations of higher twist orretions in momentum spae, restriting ourselves to the double logarithmiapproximation, and in setion III we reformulate these results in the QCD dipole piture. Next we turn to thesaturation model: after a brief review of the simple GBW model in setion IV, we perform a theoretial twist analysisof the QCD improved dipole model in setion V{VI. The seond part (setion VII{IX) ontains our numerial analysisand disussions of the results and possible onsequenes for physis at the LHC. Conlusions are given in setion X.II. THE DOUBLE LEADING-LOG APPROXIMATION IN QCDIn this setion we give a brief overview of higher twist orretions in small-x QCD. We onsider the satteringof a virtual photon with transverse or longitudinal polarization on a quark, and we restrit ourselves to the leadingbehavior at large Q2 and small x (double logarithmi approximation, DLA). In this limit, we an either start from theleading-log Q2 limit and then take the small-x limit or, alternatively, start from the small-x limit and then investigatethe large-Q2 approximation. We begin with the latter one, i.e. we restrit ourselves to those diagrams whih have themaximal number of logarithms in 1=x. A. Twist 4 orretionsIn the small-x limit, the sattering of a virtual photon on a quark is desribed by the exhange of 2 or more gluonsbetween a losed quark loop and the target quark. For two t-hannel gluons, the oupling to the virtual photonis desribed by the well-known photon impat fator, D(2;0);T;L(Q;k; q � k), where the subsripts T; L refer to thepolarizations of the virtual photon, and k and q � k are the transverse momenta of the two t-hannel gluons. In thedeep inelasti limit: q2 = 0, k2 � Q2 we have [17, 18℄:D(2;0);T (Q;k;�k) = A0 ( 43 k2Q2 log Q2k2 + 149 k2Q2 + 25 ( k2Q2 )2 +O(( k2Q2 )3)�D(2;0);L(Q;k;�k) = A0 ( + 23 k2Q2 � 415 ( k2Q2 )2 log Q2k2 � 94225 ( k2Q2 )2 +O(( k2Q2 )3)� (1)where A0 = P e2f�sp82� . The leading power, �k2=Q2�, belongs to leading twist, the terms proportional to �k2=Q2�2to twist four et. These results, obtained diretly from Feynman diagrams in the momentum spae, lead to estimatesof twist ontributions to FT and FL onsistent with estimates of the saturation model, disussed later, in Se. IIIand Se. IV, obtained in the Mellin representation. Important features of D(2;0);T;L are the logarithms and signsof the �k2=Q2�2 orretions: whereas for transverse polarization there is no logarithmi enhanement and the powerorretion is positive, for longitudinal polarization we have a logarithmi enhanement, and ompared to the transverse



3
FIG. 1: Two diagrams with four t-hannel gluons.ase is has the opposite sign. These simple observations open the possibility that, in FL, the higher twist orretionsare large and that, in the struture funtion F2 whih sums over transverse and longitudinal polarizations of thephoton: F2 = FT + FL; (2)the total twist-four orretions may be small due to anellations. Within the model to be disussed in this paper wewill �nd that, for the HERA data, this is indeed the ase.The simplest diagram for orretions due to the exhange four gluons (order O(g8)) is illustrated in Fig. 1, left. Inaddition to this exhange diagrams, there are diagrams involving the triple gluon vertex, like e.g. the diagram shownin Fig. 1, right.An eÆient method of alulating the sum of all these ontributions in the high energy or small-x limit is thee�etive ation, de�ned in [19℄ and further studied in [20℄. As a result we have, for all diagrams up to order g8, twolasses of ontributions:(a) the BFKL ladders [21, 22, 23, 24℄, expanded up to order g8. This inludes NLO orretions to the gluon trajetoryas well as NLO orretions to the BFKL kernel whih, in the leading log approximation, will not be onsidered; (b)the exhange of four t-hannel gluons, where the eikonal ouplings to the quark loop at the top and to the quark lineat the bottom are fully symmetrized, both in olor and in their momentum struture. The oupling to the quarkloop, Dsym(4;0);T;L(k1;k2;k3;k4), an be expressed in terms of D2:D(4;0);T;La1a2a3a4sym (k1;k2;k3;k4) = �g2da1a2a3a4 sym� �D(2;0);T;L(k1 + k2 + k3;k4) +D(2;0);T;L(k2 + k3 + k4;k1)+D(2;0);T;L(k3 + k4 + k1;k2) +D(2;0);T;L(k4 + k1 + k2;k3)�D(2;0);T;L(k1 + k2;+k3 + k4)�D(2;0);T;L(k1 + k3;k2 + k4)�D(2;0);T;L(k1 + k4;k2 + k3)� ; (3)where ai and ki, i = 1; : : : ; 4 are the olor indexes and transverse momenta of the gluons. The olor fator has theform: da1a2a3a4 sym = htr (ta1 ta2ta3 ta4) + tr (ta4 ta3ta2 ta1) isym; (4)where the subsript `sym' indiates that the olor labels are ompletely symmetrized.Next let us onsider higher order orretions to (a) whih, in the leading logarithmi approximation, sum up tothe BFKL ladders. Using a Mellin representation for the impat fators D(2;0);T;L(Q; k;�k) and a double Mellinrepresentation for the BFKL Green's funtion we write the sattering amplitude in the form:D2;T;L(x;Q2=Q20) = Z d!2�i Z d�2�i � 1x�! �Q2Q20�� D(2;0);T;L(�) 1! � ���(�; 0) (5)where the integration ontours run along the imaginary axis, �� = N�s� , the BFKL harateristi funtion has theform �(�; 0) = 2 (1)�  (1 + �)�  (��); (6)and Q20 denotes the momentum sale at the target end of the BFKL ladder. The sattering amplitude D2 an beexpanded in powers of Q2=Q20: the terms in this expansion are due to the poles of �(�) at negative integer values:
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FIG. 2: (a) Pairwise interations between four reggeized gluons; (b) two noninterating olor singlet ladders.� = �1;�2; :::, and the residues of the poles lead to anomalous dimensions. In partiular, the pole near � = �1 leadsto the leading twist behavior �Q2=Q20�(!) ; (!) = N�s�! ; (7)the pole near � = �2 to the twist four orretion�Q2=Q20��1+(!) ; (!) = N�s�! : (8)The exponents are the anomalous dimension of the higher twist operators ontained in the BFKL amplitude [25℄.In the notation of [1℄, they belong to the lass of non-quasipartoni operators. When oupled to the impat fatorsD(2;0);T;L(Q;�k), we see from the expansion in (1) that, for the leading-twist terms, the transverse polarization hasa logarithmi enhanement ompared to the longitudinal polarization. For the twist four orretion, the situation isreversed. As to the sign struture, the twist four orretions to transverse and longitudinal polarizations have oppositesigns.Next we turn to higher orretions to lass (b). Following the analysis of [1℄ we onsider those orretions whih areobtained by inserting all possible pairwise interations between the reggeized t-hannel gluons (Fig. 2a). The large-Q2behavior omes from the region where the transverse momenta of the exhanged gluons are ordered and muh smallerthan the virtuality of the external photon. The leading (in 1=Q2) behavior of the four gluon state has been disussedin [5, 6, 7℄, and we briey summarize. In the omplex �-plane, the leading singularity is a pole atpole = 4N�s(1 + Æ)�! (9)where Æ is a orretion of the order 1=N4 (Æ = 0:778=N4 , and for N = 3, Æ = 0:0096). In the large-N limit the fourgluon state redues to two noninterating olor singlet gluon ladders, leading to a ut in the �-plane with the branhpoint loated at ut = 4N�s�! (10)The pole in (9) at �nite N an be viewed as `bound state' formed by the two olor singlet ladders, whereas the ut(10) represents the `threshold' of two free ladders. The large-Q2 behavior of this four gluon state is desribed theevolution equations of the twist four gluon operator in the small-x limit, as disussed in [1℄. In the large-N limit,the evolution equations redue to two independent DGLAP ladders.In order to apply this disussion to the diagrams of lass (b) we notie that the twist four ontribution of thefermion loop, D(4;0)T;L is easily obtained from (3) and (1). For example, the twist four orretion of the transversepolarization is found to be proportional to4g2A0 25 k1 � k3 k2 � k4 + k1 � k2 k3 � k4 + k1 � k4 k2 � k3(Q2)2 ; (11)and analogous results are found for the longitudinal polarization. In this way, the four gluon state orretions totransverse and longitudinal polarizations follow the same pattern as the twist four piee inside the BFKL ladder:



5ompared to transverse polarization, the longitudinal polarization has a logarithmi enhanement and omes with theopposite sign.Compared to the BFKL-singularity in (8), both in (9) and in (10) the oeÆients of the pole at ! = 0 are largerby a fator 4: at small x, this twist-4 orretion will therefore dominate. This suggests to onsider, within a twistexpansion in the small-x region, as a �rst set of higher twist orretions these four gluon states, disregarding thehigher twist ontributions of non-quasipartoni operators. It is not diÆult to generalize this seletion to six, eightet gluon states. If, in addition, one invokes the large-N expansion where the 2n-gluon state is approximated by nnoninterating olor singlet ladders, one arrives at the eikonal piture of multi-Pomeron exhange, whih underliesthe saturation model to be disussed further below. We shall see that this model embodies many of the features ofthese n-ladder exhanges, in partiular the orret Q2-evolution.B. Higher twists in the Balitsky-Kovhegov equationSo far we have disussed a seleted sublass of QCD diagrams giving rise to twist-4 orretions to the protonstruture funtions. It should, however, be kept in mind that this seletion of higher twist orretions is not in agree-ment with what one obtains from summing all leading-log 1=x ontributions from the BFKL Pomeron fan diagrams.This summation may be performed using the Balitsky-Kovhegov (BK) equation [26, 27, 28℄. To illustrate this, wesummarize the results of the omplete small-x analysis whih an be found in [4, 29, 30℄. The sum of all diagramsontributing to the leading logarithmi 1=x approximation an be organized in two lasses.(i) BFKL ladders onsisting of reggeized gluons. At the lower end, reggeized gluons an split into two or three ele-mentary gluons. In the former ase, the olor struture of the splitting is desribed by a struture onstant fa1a2 , inthe latter ase by the produt of two struture onstants, e.g. fa1dfda2a3 .(ii) BFKL-like ladders where, instead of the reggeized gluons whih belong to the adjoint olor representation, wehave Reggeons in the symmetri otet and singlet olor representations. In both ases, the trajetory funtions arethe same as for the reggeized gluon. The orresponding olor tensors are listed in [29℄. The sum of these diagramsis symmetri under the exhange of momenta and olor indexes.(iii) Diagrams with a four gluon t-hannel state. This state is symmetri under the exhange of t-hannel gluons(momenta and olor indexes). There is no diret oupling of this state to the quark loop at the top. Instead, throughthe 2! 4 reggeized gluon vertex it ouples to a BFKL ladder whih then onnets with the quark loop (Fig. 3). Class(i) and (ii) represent the all-order generalizations of (a) and (b), respetively, whereas (iii) starts at the order g10. In[29℄, (i) and (ii) are denoted by DR4 , lass (iii) by DI4 .As we have already stated, in (iii) the four gluon state that we have disussed before does not ouple diretlyto the quark loop: the oupling goes through a BFKL ladder and a 2 ! 4 transition vertex. Making use of thelarge-Q2 results disussed before, we interpret this as a mixing between the non-quasipartoni twist four piee insidethe BFKL ladder and the twist four gluon operator. A detailed analysis [30℄, however, shows that, at the leadinglogarithmi logQ2, approximation, this transition kernel between the two twist-4 operators, in the large-N limit,vanishes. This also holds for the transition of the twist-6 piee inside the BFKL ladder to the twist-6 piee in the fourgluon state. Generalizing this to more than four t-hannel gluons, one arrives at the onlusion that, in the doubleleading logarithmi approximation, the ontribution of higher twists given by the BK fan diagrams vanishes, and onlypropagation of two interating t-hannel gluons ontributes to the amplitudes. Note however that this result is onlyvalid in the large-N limit.Therefore, from a theoretial point of view, the twist expansion derived from the seletion of diagrams with 2nt-hannel gluons in the large-N limit should be viewed as being di�erent from desriptions based upon the BKequation. III. COLOR DIPOLE PICTUREIt is important to emphasize that, in the small-x limit, for the lass of QCD diagrams whih we have disussed, thesattering amplitude for the elasti sattering of a virtual photon on a quark an be ast into the dipole form [31℄:��pT;L(x;Q2) = Xf Z d2r Z 10 dz j	fT;L(z; r;Q2)j2 �(x; r) (12)
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FIG. 3: A fan diagram.where T and L denote the virtual photon polarization: transverse and longitudinal, respetively. The light-onephoton wave funtion, 	fT;L, is modeled by the lowest order �g ! q�q sattering amplitudes whih givej	fT (z; r;Q2)j2 = 2N�eme2f4�2 ��z2 + (1� z)2� �2K21 (�r) +m2f K20 (�r)	 (13)j	fL(z; r;Q2)j2 = 8N�eme2f4�2 Q2z2(1� z)2K20 (�r) (14)where K0;1 are the Bessel{MDonald funtions, �2 = z(1� z)Q2 +m2f and r = jrj. The measured struture funtionsare related to ��pT;L(x;Q2) by the standard formulaFT;L = Q24�2�em (15)In (12), all details desribing the interation of the quark-antiquark pair with the target quark are ontained in thedipole ross setion, �(x; r). In partiular, the exhange of two non-interating olor singlet gluon ladders provides aontribution proportional to the produt of two gluon struture funtions, (xg(x;C=r2))2.Important harateristis of the twist expansion follow from the struture of the photon wave funtions and do notdepend upon the details of �(x; r). This is most easily seen by taking the Mellin transform of (12). In general, theMellin transform of a funtion f(r2) is de�ned as~f(s) �Mr2�f(r2)�(s) = Z 10 dr2 (r2)s�1 f(r2) (16)while the inverse relation reads f(r2) = ZC ds2�i (r2)�s ~f(s) (17)where the integration ontour C lays in the fundamental strip of the Mellin transform to be disussed below.Let us write Eq. (12) in the following form��pT;L(x;Q2) = Z 10 dr2r2 HT;L(r;Q2)�(x; r) (18)where HT;L(r;Q2) � �r2 Xf Z 10 dz j	fT;L(z; r;Q2)j2 : (19)Substituting the inverse Mellin transform of the dipole ross setion,�(x; r) = ZC ds2�i (r2Q20)�s ~�(x; s) (20)



7we �nd the Mellin representation of the �p ross setions, given by the Parseval formula��pT;L(x;Q2) = ZCs ds2�i ~�(x; s) ~HT;L(�s;Q2=Q20) (21)where ~HT;L(�s;Q2) is the Mellin transform of HT;L(r;Q2). The integration ontour Cs in the omplex s-plane isplaed in the fundamental strip in whih the integrals de�ning ~�(x; s) and ~HT;L(�s;Q2) are onvergent. The strip isdetermined from the following leading behaviour of both funtions at small and large values of r (up to logarithms ofr): HT;L(r;Q2) = � onst for r ! 0;1=r2n for r !1 (22)with n = 1 for transverse and n = 2 for longitudinal polarization. For the dipole ross setion we take, as an example,�(x; r) = � r2 for r ! 0;onst for r !1 (23)In this ase the fundamental strip of ~�(x; s) is de�ned by the ondition �1 < Re s < 0 while the fundamental stripof ~HT;L(s;Q2) is given by 0 < Re s < n. Taking into aount the minus sign in ~HT;L(�s;Q2), we �nd that theintegration ontour Cs in Eq. (21) lays in the strip:� 1 < Re s < 0 : (24)It an be hosen parallel to the imaginary axis, for example, s = �1=2 + i� with real �.For the Mellin transform of HT;L(r;Q2) we restrit ourselves to massless quarks, mf = 0. In this ase, HT;L arefuntions of only one ombined variable, r̂ = r Q:HT (r̂) = A0 Z 10 dz [z2 + (1� z)2℄ z(1� z) r̂2K21(pz(1� z) r̂) (25)HL(r̂) = 4A0 Z 10 dz z2(1� z)2 r̂2K20(pz(1� z) r̂) : (26)where we introdued A0 = N�em
e2�=(2�) and 
e2� = Pf e2f . In Appendix A we found the Mellin transforms ofthese funtions in the form ~HT;L(s;Q2) = �Q24 ��s ~HT;L(s) (27)with ~HT;L(s) given by Eqs. (A9) and (A10):~HT (s) = A0�8 �(2 + s) �(1 + s) �(s) �(1� s) �(3� s)�(3=2 + s) �(2� s) �(5=2� s) : (28)and ~HL(s) = A0�4 (�(1 + s))3 �(2� s)�(3=2 + s) �(5=2� s) : (29)Both funtions have simple or multiple poles for negative and positive real values of s.Substituting these results into Eq. (21) we obtain��pL;T (x;Q2) = ZCs ds2�i �Q20Q2��s ~�(x; s) ~HT;L(�s) (30)with the ontour Cs in the fundamental strip (24). The twist expansion is obtained by losing the s-ontour to theleft. The funtions ~HT;L(s) have single poles to the right of C at positive integers, exept for the regular points



8at s = 2 for transverse and s = 1 for longitudinal polarizations. Thus, both funtions have the following Laurentexpansion around eah singular point s = n:~HT;L(s) = a(n)T;Ls� n + b(n)T;L + O (s� n) (31)with a(1)T = �23A0;a(2)T = 0; b(2)T = �45A0 (32)and a(1)L = 0; b(1)L = 23A0a(2)L = �1615A0: (33)Assuming, for simpliity, that to the left of Cs, ~�(x; s) has only poles at s = �1; 2; ::: (the more realisti ase where~� has uts in the omplex s-plane will be disussed further below), we lose the ontour to the left and arrive at thetwist expansion: ��pL;T (x;Q2) = 1Xn=1�(�=2n)T;L (x;Q2) : (34)where �(�=2n) � 1=Q2n (modulo powers of logQ2). With (28) and (29) we obtain:�(�=2n)T;L = ZCn ds2�i �Q20Q2��s ~�(x; s)(�a(n)T;Ls+ n + b(n)T;L + : : :) (35)where the dots stand for terms regular at s = �n. In partiular, for the twist-4 orretions we re-disover the previousresult from (1):(i) due to the vanishing of a(2)T , the longitudinal struture funtion is enhaned,(ii) the leading terms in FT and FL ome with opposite signs.For ompleteness, we also onsider the omplex half s-plane to the right of the ontour C. It is well known thatthe Bessel-MDonald funtions K�(x) have a onvergent expansion around x = 0, whereas for large arguments theexpansion in powers of 1=x is asymptoti. Therefore, writing the funtions HT;L(r̂) in the formHT (r̂) = A0�8 ZC ds2�i � r̂24 ��s �(2 + s) �(1 + s) �(s) �(1� s) �(3� s)�(3=2 + s) �(2� s) �(5=2� s) (36)HL(r̂) = A0�4 ZC ds2�i � r̂24 ��s (�(1 + s))3 �(2� s)�(3=2 + s) �(5=2� s) ; (37)we onlude that the expansion in powers of r̂ | whih is obtained by losing the ontour to the left | is onvergent.In ontrast, the expansion in powers of 1=r̂ | whih orresponds to losing the ontour to the right and omputingresidues of the poles at positive integers | leads to a divergent result whih form an asymptoti series for HT;L(r̂)when r̂2 !1: HT;L(r̂) � h(1)T;Lr̂2 + h(2)T;Lr̂4 + h(3)T;Lr̂6 + : : : ; (38)where the oeÆients h(n)T;L � a(n)T;L are equal to:h(1)T = 83A0 ; h(2)T = 0 ; h(3)T = 307235 A0 (39)h(1)L = 0 ; h(2)L = 25615 A0 ; h(3)L = 921635 A0 : (40)



9This asymptoti expansion justi�es the large-r behaviour of HT;L(r;Q2) used in the determination of the fundamentalstrip (24). Moreover, returning to (21) we onlude that, beause of the negative sign of the argument of ~HT;L, thetwist expansion is an asymptoti expansion.In onlusion, the opposite sign struture as well as the relative enhanement of the twist-4 orretions to FL aregeneral features of the small-x limit in QCD, and they provide the possibility that the total twist-4 orretion to F2may beome small. In the following we hoose, for a quantitative estimate, a partiular model, the QCD improveddipole model. IV. THE MODELWe aim for the onstrution of the twist expansion of the proton struture funtions FT and FL at small values ofthe Bjorken variable x. The starting point for our following analysis is the GBW saturation model [12℄ and its QCDimproved version whih inorporates the leading logarithmi DGLAP evolution [15℄.The standard formula de�ning the total ross setion for the sattering of a virtual photon �T;L(Q2) on a proton pat small value of the Bjorken variable x has already been written down in (12). The funtion �(x; r) in Eq. (12) is theolor dipole ross setion, desribing the interation of the qq pair with the proton. In the original GBW formulation[12℄ it depends on the dipole size r and the Bjorken variable x, and takes the following form�(x; r) = �0 �1� exp ��r2Q2sat(x)=4�	 (41)where Q2sat is a saturation sale whih depends on x. After inorporating the DGLAP evolution for small dipole sizesthe dipole ross setion is modeled in [15℄ as�(x; r) = �0 �1� exp ��
(x; r2)�	 (42)where the opaity 
(x; r2) = �2r2 �s(�2) g(x; �2)3�0 ; (43)and g(x; �2) � xG(x; �2) is the gluon distribution (multiplied by x) whih obeys the DGLAP evolution equation (B1)from Appendix B. The evolution sale �2 was originally assumed to depend on the dipole size in the following way:�2 = C=r2 + �20 : (44)Both models of the dipole ross setion are eikonal and follow the Glauber-Mueller formulae. For the remainder ofthis setion, we restrit ourselves to the original GBW model.Following our disussion of the previous setion, we need the Mellin transform of the dipole ross setion. In thease of the GBW parameterization (41), we �nd~�(x; s) = �0 Z 10 dr2 (r2)s�1 �1� exp ��r2Q2sat(x)=4�	= ��0�Q2sat4 ��s �(s) : (45)Substituting this result, together with relation (27), into Eq. (21), we obtain��pL;T (x;Q2) = �0 ZCs ds2�i �Q2satQ2 ��s f��(s)g ~HT;L(�s) (46)with the ontour Cs in the fundamental strip (24). We see that the poles to the left of Cs at negative integers leadto the twist expansion: ��pL;T (x;Q2) = 1Xn=1�(�=2n)T;L (x;Q2) : (47)



10where �(�=2n) � 1=Q2n. Singularities ome from the single poles of the Euler gamma funtion �(s) and from thepoles in ~HT;L(�s). In partiular, enirling the pole at s = �n by a small ounter-lokwise oriented ontour Cn,and expanding both funtions around this point, we obtain�(�=2n)T;L = �0 ZCn ds2�i �Q2satQ2 ��s( (n)1s+ n + (n)0 + : : :)(�a(n)T;Ls+ n + b(n)T;L + : : :) (48)where the dots denote terms regular at s = �n. The result of the integration is indeed proportional to 1=Q2n withthe logarithmi enhanement oming from the double poles�(�=2n)T;L = �0 Q2nsatQ2n n�(n)1 a(n)T;L log(Q2=Q2sat) + �(n)1 b(n)T;L � (n)0 a(n)T;L�o : (49)In partiular, we �nd [11℄ { for twist-2:�(�=2)T = �em�0� 
e2� Q2satQ2 �log(Q2=Q2sat) + E + 1=6	 (50)�(�=2)L = �em�0� 
e2� Q2satQ2 (51)and for twist-4: �(�=4)T = 35 �em�0� 
e2� Q4satQ4 (52)�(�=4)L = �45 �em�0� 
e2� Q4satQ4 �log(Q2=Q2sat) + E + 1=15	 : (53)Notie the negative sign of �(�=4)L and the lak of logarithm in �(�=2)L and �(�=4)T due to the singularity struture (31)with a(1)L = 0 and a(2)T = 0.V. SINGULARITY STRUCTURE OF THE DGLAP IMPROVED MODELIn the DGLAP improved saturation model, the r-dependene of the dipole ross setion, given by Eq. (42), is ratherinvolved and its exat Mellin transform is not known. However, it is still possible to extrat the information about theMellin transform neessary to arry out the twist analysis. For this purpose it is onvenient to use a slightly modi�edde�nition of the sale �2 in Eq. (42): �2 = � C=r2 for r2 < C=�20;�20 for r2 � C=�20 : (54)Suh a modi�ation preserves all the desired features of the original model and allows to separate the r2-integrationrange of the Mellin transform of the dipole ross setion ~�(x; s) into two regions: the perturbative one, de�ned by theondition r2 < C=�20, in whih the gluon density and strong oupling onstant are given by one-loop expressions withthe sale �2 = C=r2, and the soft region, de�ned by the ondition r2 � C=�20, where the sale is frozen at �2 = �20:Thus ~�(x; s) = ~�pert(x; s) + ~�soft(x; s) : (55)In the soft region the dipole ross setion takes the form of the GBW saturation model (41) with the saturationsale Q2sat(x) = 4�2�s(�20) g(x; �20)3�0 : (56)
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FIG. 4: The singularity struture of ~�(x; s) ~HT (�s) in the omplex s-plane to the left of the Mellin integration ontour Cs inthe fundamental strip shown as the gray band. The zigzag lines indiate the uts oming from powers of the Mellin transformof �s(�2)g(x;�2) while the full irles are the poles of ~HT (�s) that oinide with branh points of ~�(x; s). The rossed irleat s = �2 is the branh point that is not aompanied by the pole of ~HT (�s).The ontribution from this region to the Mellin transform is given by~�soft(x; s) = Z 1C=�20 dr2 (r2)s�1 �1� exp ��r2Q2sat(x)=4�	= ��0�Q2sat4 ��s�ass + �(s; a)� (57)where a = CQ2sat=(4�20) and �(s; a) is the inomplete gamma funtion whih has no singularities in the omplexs-plane. The soft part has only a single pole at s = 0 whih does not ontribute to the twist expansion.The ontribution from the perturbative region may be omputed term by term from the expansion�pert(x; r) = 1Xn=1�(n)pert(x; r)= 1Xn=1�0 (�1)n+1n! 
npert(x; r2) (58)and the perturbative part of the opaity reads
pert(x; r2) = �23�0 r2�s(C=r2) g(x;C=r2)� �C=r2 � �20� : (59)The Mellin transform ~�pert(x; s) exists due to the theta distribution and is given by the sum of the Mellin transformsof the subsequent terms in the expansion (58)~�(n)pert(x; s) = �0 (�1)n+1n! f
npert(x; s) (60)Eah term ontributes a ut singularity in the s-plane extending to the left from the branh point at negative integers,see Fig. 4. The positions of the branh points are determined by the orresponding power of r2 sine the powers of�s(�2)g(x; �2) do not introdue any additional shift.For example, we ompute �rst the Mellin transformMr2��s(C=r2)g(x;C=r2)��C=r2 � �20�� (s) = � C�2�s g�sg(x; s) (61)where g�sg denotes the Mellin transform with respet to the sale �2, de�ned asg�sg(x; s) = Z 1�20 d�2�2 ��2�2��s �s(�2)g(x; �2) : (62)



12In suh a ase the inverse relation reads�s(�2)g(x; �2) = ZC ds2�i ��2�2�s g�sg(x; s) : (63)where the integration ontour lays to the right of the right-most singularity. Using the property of the Mellin transform:Mt[tnf(t)℄(s) = Mt[f(t)℄(s+ n), we �ndMr2 [
pert(x; r2)℄(s) = �23�0 � C�2�s+1 g�sg(x; s+ 1) (64)and after substituting solution (B16), we obtain~
pert(x; s) = �23�0 � C�2�s+1 Z d!2�i x�! 2� ~g0(!)~Pgg(!) (s+ 1)� b02� ~Pgg(!) : (65)The logarithmi ut singularity along the negative real axis with the branh point at s = �1 is obvious from thissolution. The Mellin transform of 
2pert(x; r2) is given byMr2 [
2pert(x; r2)℄(s) = � �23�0�2 � C�2�s+2 (̂�sg)2(x; s+ 2) (66)= � �23�0�2 � C�2�s+2 Z ds02�i g�sg(x; s0) g�sg(x; s+ 2� s0) : (67)where (̂�sg)2 is the Mellin transform (62) of the produt [�s(�2)g(x; �2)℄2, and the Mellin onvolution theorem wasused in the last equality. It an be shown expliitly that expression (66) has a ut singularity along the real axis for�1 < s < �2 with the branh point at s = �2.In general, we have Mr2 [
npert(x; r2)℄(s) = � �23�0�n � C�2�s+n (̂�sg)n(x; s+ n) (68)with the logarithmi ut along the negative real axis starting at the branh point at s = �n, see Fig. 4. In summary, thesingularity struture of the Mellin transform (55), relevant for the twist expansion, is determined by the perturbativepart only. VI. TWIST DECOMPOSITION IN THE DGLAP IMPROVED MODELAt eah twist the saturation model inorporates a few distint ontributions that have a lear interpretationwithin perturbative QCD. The ontributions may be lassi�ed using the singularity struture of the produt~�(x; s) ~HT;L(�s;Q2) in the Mellin plane. A. Twist-2 ontributionsStarting from the twist-2 analysis, we lose the ontour Cs of the Mellin integration in Eq. (21) with two largequarter-irles Q1 and Q2 and a ontour Ds enveloping the omplex ut of ~�(x; s) with the branh point at s = �1,see Fig. 5. Then, we deompose ~�(x; s) into a part whih singular at s = �1, given by ~�(1)pert(x; s) = �0 ~
pert(x; s),and a part whih is regular at this point, ~�(s=�1)reg (x; s). The latter part onsists both the soft ontribution (57) andthe ontributions from multiple exhanges with uts starting from s = �2. Thus, using expansion (31) for ~HT;L(�s)with n = 1, we obtain the twist-2 part in the form�(�=2)T;L = Z�Ds ds2�i �Q24 �s n�0 ~
pert(x; s) + ~�(s=�1)reg (x; s)on�a(1)T;Ls+ 1 + b(1)T;L + O(s+ 1)o (69)



13
T

s

[H *σ ](s)

2

s

1

1

FIG. 5: The disontinuity struture of ~�(1)pert(x; s) ~HT (�s) and the integration ontours in the omplex s-plane with the piees:Q1; Q2 and Ds. The meaning of all symbols is as in Fig. 4where the integration ontour is reversed with respet to the ontour Ds shown in Fig. 5, and the Laurent expansionoeÆients a(1)T = � 23A0 ; a(1)L = 0 ; b(1)T = � 43E � 59�A0 ; b(1)L = 23A0 : (70)with A0 = N�em
e2�=(2�).Let us ompute the twist-2 ontribution for transverse photons oming from the most singular part of the Mellinintegrand: �a�(�=2)T = �0 Z�Ds ds2�i �Q24 �s ~
pert(x; s)n�a(1)Ts+ 1 o : (71)The analogous longitudinal ontribution vanishes sine a(1)L = 0. Using relation (64), we �nd�a�(�=2)T = �4�2a(1)T3Q2 Z�Ds ds2�i �CQ24�2 �s+1 g�sg(x; s+ 1)s+ 1 : (72)The ontour integration an be omputed diretly after substituting Eq. (65) or, alternatively, one an realize thatthe integral in (72) is the inverse Mellin transform (63) at the sale �2 = CQ2=4 of the following funtionS(2)T (x; �2) = Z �2�20 d�02�02 �s(�02)g(x; �02) + S(2)T (x; �20) ; (73)where the reminder S(2)T (x; �20) depends only on the gluon distribution at an initial sale �20. It an be omputed usingthe DGLAP equation (B13) S(2)T (x; �20) = ZC! d!2�i x�! 2� ~g(!; �20)~Pgg(!) : (74)Thus, we �nally obtain�a�(�=2)T = �4�2a(1)T3Q2 (Z CQ2=4�20 d�02�02 �s(�02) g(x; �02) + S(2)T (x; �20)) : (75)The leading logarithmi term in Eq. (75) oinides with the standard DGLAP expression for ��pT obtained assumingthat the see quarks ome from the gluon splitting in the last step of the evolution.The higher orders in the Laurent expansion of ~HT;L(�s) in Eq. (69), beyond the singular term, orrespond to higherorder terms in the perturbative expansion of the twist-2 ontribution. The next-to-leading order (NLO) ontribution



14originate from the onstant term b(1)T;L. The obtained expression is of the form (72) without (s+1) in the denominator.Thus, we immediately obtain �b �(�=2)T;L ���NLO = 4�2b(1)T;L3Q2 �s(CQ2=4) g(x;CQ2=4) ; (76)whih for the transverse polarization arries one power of the large logarithm logQ2 less than the leading term in�a�(�=2)T . Notie that, as expeted, for the longitudinal polarization the �rst non-vanishing twist-2 ontributionenters at the NLO level. A similar proedure ould also be applied to higher terms of the Laurent series, givingontributions with suessively dereasing power of logQ2. Obviously, these higher order terms do not exhaust all thehigher order QCD e�ets. They are parts of the QCD orretions to the twist-2 amplitude whih ome from inlusionof the quark transverse momentum in the quark box beyond the ollinear limitSo far we have dealt with the singular part of ~�(x; s) at s = �1, generated by the �rst term in the perturbativepart of the Glauber-Mueller series (58) proportional to the gluon distribution g(x; �2). The remaining terms of thisseries as well as the soft part ~�soft(x; s) are regular at s = �1. However, they ontribute to twist-2 through the poleof HT (�s) at this point, giving ��(�=2)T = �4a(1)TQ2 ~�(s=�1)reg (x; s = �1) : (77)The funtion on the r.h.s is a sum of two piees: the soft part, ~�soft(x; s = �1), and the Mellin transform of theregular part of the perturbative omponent, �pert(x; r) � �(1)pert(x; r), omputed for s = �1. Thus~�(s=�1)reg (x; s = �1) = Z C=�200 dr2r4 n�(x; r) � �(1)pert(x; r)o + ~�soft(x; s = �1) : (78)We summarize by displaying the most leading twist-2 ontribution to the �p ross setions, obtained in the DGLAPimproved saturation model (with C = 4):�(�=2)T = 8�2A09 1Q2 Z Q2�20 d�02�02 �s(�02) g(x; �02) (79)�(�=2)L = 8�2A09 1Q2 �s(Q2) g(x;Q2) : (80)Notie the similarity onerning leading logarithms between the twist-2 ontributions in the original GBW model,Eqs. (50) and (51), and the above formulae.B. Twist-4 ontributionsThe formula for twist-4 is determined by the Mellin transform ~�(2)pert(x; s) of the seond term in Eq. (58) and theLaurent expansion of ~HT;S(�s) around s = �2:�(�=4)T;L = Z�D(1)s ds2�i �Q24 �s n��02 f
2pert(x; s) + ~�(s=�2)reg (x; s)on�a(2)T;Ls+ 2 + b(2)T;L + O(s + 2)o (81)where the integration ontour envelopes the ut singularity with the branh point at s = �2 in whih the funtion~�(s=�2)reg (x; s) is regular, see Fig. 6. The Laurent expansion oeÆient are now given bya(2)T = 0 ; a(2)L = � 1615A0 ; b(2)T = � 45A0 ; b(2)L = � 3215E � 344225�A0 : (82)The vanishing a(2)T means that the leading logarithmi twist-4 ontribution�a��=4)T = �0 a(2)T2 Z�D(1)s ds2�i �Q24 �s ℄
2pert(x; s)s+ 2 ; (83)
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FIG. 6: The singularity struture in Mellin plane relevant for twist-4 transverse and longitudinal ontributions together withthe integration ontours. The meaning of all symbols is as in Fig. 4, but the original ontour, Cs, is replaed by the shiftedC(1)s . The fundamental strip is also shifted.vanishes for transverse photons. For the longitudinal polarization it an be found in a similar way as for twist-2, withthe following result�a�(�=4)L = 8�0a(2)LQ4 � �23�0�2(Z CQ2=4�20 d�02�02 ��s(�02) g(x; �02)�2 + S(4)L (x; �20)) (84)where the reminder is of non-perturbative origin and does not depend on Q2,S(4)L (x; �20) = b20log��20�2 � Z d!2�i x�! Z d!02�i ~g0(!0) ~g0(! � !0)b02� ~Pgg(!0) + b02� ~Pgg(! � !0)� 1 : (85)The NLO orretion to twist-4 omes from the onstant term, b(2)T;L, in the Laurent expansion of ~HT;L(�s) arounds = �2. It is straightforward to obtain�b �(�=4)T;L ���NLO = �8�0b(2)T;LQ4 � �23�0�2 ��s(CQ2=4) g(x;CQ2=4)�2 ; (86)whih in the longitudinal ase has one logarithm of Q2 less then the leading ontribution (84). As for twist-2, thehigher terms in the Laurent expansion of ~HT;L(�s) give rise to yet higher order perturbative orretions.Multiple sattering e�ets (with n � 3) and the soft ontribution are important only for the longitudinal twist-4,�(�=4)L (x;Q2). They are olleted in��(�=4)L = �16a(2)LQ4 h~�(s=�2)reg (x; s = �2) + ~�soft(x; s = �2)i (87)where ~�(s=�2)reg (x; s = �2) = Z C=�200 dr2r6 h�(x; r) � �(1)(x; r) � �(2)(x; r)i : (88)In summary, the following leading logarithmi struture is found for twist-4 (with C = 4)�(�=4)T = 32�4A045�0 1Q4 ��s(Q2) g(x;Q2)�2 (89)�(�=4)L = �128�4A0135�0 1Q4 Z Q2�20 d�02�02 ��s(�02) g(x; �02)�2 ; (90)whih should be ompared to the results obtained in the original GBW saturation model, Eqs. (52) and (53). Notiethe similarity in the sign and the leading logarithmi struture.



16C. DisussionThe results (79),(80) and (89),(90) on the leading logarithmi behaviour of the twist-2 and twist-4 ontributionsare quite general. For the nuleon struture funtions FT and FL they imply that the relative twist-4 orretion toFT is strongly suppressed w.r.t. the twist-2 ontribution sine the subleading twist-4 term in FT appears only at theNLO. On the ontrary, for FL the leading twist term enters only at the NLO and the the twist-4 orretion entersat the leading order. So, the relative twist-4 e�ets in FL are expeted to be enhaned. Note that both in the aseof FT and FL, the twist-4 e�ets are enhaned w.r.t. the twist-2 ontribution by an additional power of the gluondensity g(x;Q2). At suÆiently small x, when the gluon density is large, this enhanement may ompensate thetwist-4 suppression w.r.t. the leading twist-2 ontribution.For the struture funtion F2 = FT +FL we expet small relative orretions from the higher twists beause of theopposite sign of the terms proportional to a(2)L and b(2)T;L. In fat, both a(2)L and b(2)T;L are negative. Thus it follows from(89) and (90) that the resulting LO twist-4 ontribution to F2 oming from FL is positive and both the dominant(though NLO) term in FT and the NLO orretion to FL are negative. This leads to partial anellation between thetwist-4 LO and NLO ontributions to F2 at moderate Q2, whih an be also viewed as a partial anellation betweenthe twist-4 orretions to FL and FT .These onlusions about the importane of the higher twist orretions are expeted to be quite general beausethey follow diretly from the twist struture of the quark box and do not depend on the detailed form of the twist-4gluon distribution. In fat, for a generi twist-4 gluon density G4(x;Q2) (not neessarily proportional to [g(x;Q2)℄2),the qualitative pattern of the omputed twist-4 orretions emerges. This happens beause independently of thedetailed form of gluon density, the perturbative olor dipole sattering ross setion at twist-4 is proportional tor4 �s(C=r2)G4(x;C=r2). Using a generally valid relation: R (ds=2�i)x�s ~f(s)=s = R x dx0f(x0), one �nds�(�=4)T � b(2)TQ4 �2s(Q2)G4(x;Q2) ; (91)and �(�=4)L � �a(2)LQ4 Z Q2 d�02�02 �2s(�02)G4(x; �02) + b(2)LQ4 �2s(Q2)G4(x;Q2) : (92)This on�rms that for twist-4 the pattern of anellations in F2 between FL and FT (or between LO and NLO terms)is indeed universal. VII. TWIST DECOMPOSITION IN THE COORDINATE SPACEThe preeding analysis was arried out in the Mellin spae. This representation is useful to understand the keyfeatures of the twist deomposition and math the DGLAP improved saturation model with QCD. However, in theexpliit alulations of the twist omposition of the �p ross setions we �nd it more onvenient to use the oordinaterepresentation. The main reason is that the multiple sattering ontributions are represented as multiple onvolutionsin the Mellin spae and as simple powers of r2�s(�2)g(x; �2) in the oordinate spae. Thus, we shall onstrut anexpliit presription that failitates the twist deomposition in the oordinate spae. The obtained formula (99) isequivalent to its ounterpart in the Mellin moment representation and it will be used to provide numerial estimatesof the twist deomposition of the nuleon struture funtions.The singularity struture of the produt ~�(x; s) ~HT;L(�s;Q2) is similar to the struture of ~�(x; s) exept of thebranh points of ~�(x; s) whih are strengthened by the poles of ~HT;L(�s;Q2). In what follows, we shall isolate theontributions of the singularities emerging at s = �1;�2; : : : and link them with the twist ontributions � = 2; 4; : : :,respetively Let us de�ne two sets of funtions,�(n)(x; r) = �(x; r) � �0 nXk=1 (�1)kk! 
k(x; r2) (93)and after introduing r̂ = rQ H(n)T;L(r̂) = HT;L(r̂) � nXk=1 h(k)T;L(r̂)2k (94)
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2FIG. 7: The singularity struture of ~�(0)(x; s) ~HT (�s;Q2) and ~�(1)(x; s) ~HT (�s;Q2), and the integration ontours in theomplex s-plane. The meaning of all symbols is as in Fig. 4 { additionally, piees of the losed integration ontour are shown:C(1)s ; D(0)s ; D(1)s , et.where h(k)T;L are the oeÆients of the asymptoti expansion of HT;L(r̂), see Eq. (39). Additionally, �(0) = � andH(0)T;L = HT;L. We see that �(n) desribes the ontribution to the dipole ross setion of (n+ 1) and more satteringsand H(n)T;L gives the ontribution to the photon wave funtion from the poles of twist � = 2(n + 1) and higher. Thenew funtions have the following asymptotis at small and large values of r (modulo logarithms):�(n)(x; r) � � (r2)n+1 for r ! 0(r2)n for r !1 (95)and H(n)T;L(r̂) � � 1=r̂2n for r ! 01=r̂2(n+1) for r !1 : (96)Now, it is easy to prove that �(n)(x; r) and H(n)T;L(r̂) have Mellin transforms, ~�(n)(x; s) and ~H(n)T;L(�s;Q2), with thefundamental strip: � (n+ 1) < Re s < �n : (97)It is moved to the left by n units with respet to the fundamental strip given by Eq. (24).The singularities of the Mellin transform ~�(n)(x; s) emerging at the branh point to the left of its fundamental stripare the same as the orresponding singularities of the funtions: ~�(0)(x; s); ~�(1)(x; s); : : : ; ~�(n�1)(x; s). The funtionsH(n)T;L(r̂) are shifted with respet to HT;L(r̂) by a �nite power series in 1=r̂2, so their Mellin transforms are identialand equal to the Mellin transform ~HT;L(s;Q2) for all n. The series subtration results only in the already disussedshift in the position of the fundamental Mellin strip. Therefore, the di�erene�(n)[�HT;L℄(x;Q2) = ZC(n�1)s ds2�i ~�(n�1)(x; s) ~H(n�1)T;L (�s;Q2) � ZC(n)s ds2�i ~�(n)(x; s) ~H(n)T;L(�s;Q2) (98)de�nes the ontribution of the n-th singularity (i.e. the ut disontinuity with the branh point at s = �n) to theintegral in Eq. (21), see Fig. 7 for illustration. In our analysis we identify this ontribution with the � = 2n twistomponent of ��pT;L.The Mellin integrals in Eq. (98) may be expressed in the oordinate spae to give a formula that failitates a diretdetermination of all twists in the oordinate representation:�(2n)T;L (x;Q2) = Z 10 dr2r2 n�(n�1)(x; r)H(n�1)T;L (rQ) � �(n)(x; r)H(n)T;L(rQ)o : (99)Clearly, the twist deomposition would be omplete and1Xn=1�(�=2n)T;L = ��pT;L (100)



18provided that the in�nite summation of �(n)[�HT;L℄(x;Q2) is onvergent1.The presription given by Eq. (99) may be also applied to the original GBW dipole ross setion whih Mellintransform has a series of isolated poles at s = �n instead of the series of ut singularities. In this ase, in Eq. (93) apolynomial is subtrated and the Mellin transform of �(n)(x; r) is idential to ~�(x; s) given by Eq. (45). Therefore,formulae (98) and (99) may also be applied to extrat the ontribution from all singularities of ~�(x; s)HT;L(�s;Q2)to give the twist expansion in the ase of the GBW dipole ross setion. An expliit numerial hek showed that theexpansion obtained using presription (99) agrees with the analyti results in [11℄.VIII. HEAVY QUARKSSo far we studied the massless quark ontribution. Within the kT -fatorization approah it is straightforward tostudy also the ase with a non-zero quark mass. In partiular, the Mellin transforms of the photon wave funtionssquared with mf 6= 0, whih generalize expressions (A9) and (A10), are known [12℄. We shall denote them by~HT;L(s;Q2;m2f ). The ontribution of a heavy quark to the �p ross setion may be obtained using the Parsevalformula (21) in whih the replaement ~HT;L(�s;Q2) ! ~HT;L(�s;Q2;m2f ) is made. For Re s > 0, the funtions~HT;L(s;Q2;m2f ) are regular in s. Therefore, the s-singularity struture of the integrand ~�(x; s) ~HT;L(�s;Q2;m2f ) in(21) is determined by the singularity struture of ~�(x; s). Hene, for heavy quarks the twist-� omponent is determinedby the n-fold sattering omponent of the dipole ross-setion,�(�=2n)T;L (x;Q2;mf ) = Z 10 dr2r2 HT;L(r2; Q2;m2f )�n(x; r2) (101)where �n(x; r2) = �0(�1)n+1 
n(x; r2)=n!. Note that for heavy quarks with m2f � �20, the integration in (101) doesnot lead to any infra-red divergenes sine the photon wave funtion provides an exponential ut-o� proportional toexp(�rmf ) for the r2 integration. This was not the ase for the light quarks, when m2f � �20, for whih formula (101)annot be applied. IX. PHENOMENOLOGICAL RESULTS AND CONSEQUENCESIn this setion the obtained estimates are presented for the higher twist e�ets in FT , FL and F2, and also, separately,for the harm quark omponents of FT , FL and F2. Additionally, we disuss the phenomenologial onsequenes of our�ndings for the measurements at the LHC. We performed an expliit numerial evaluation of higher twist omponentsof the proton struture funtions in the DGLAP improved saturation model, de�ned by Eqs. (42){(43) with theevolution sale given by Eq. (54): �2 = � C=r2 for r2 < C=�20�20 for r2 � C=�20 :Furthermore, we ompared the results to those obtained in [11℄ within the GBW model [12℄ without the DGLAPevolution.The parameters of the DGLAP improved saturation model were �tted to desribe all HERA data on F2 at x < 0:01.In the model we took into aount three massless quark avors and the massive harmed quark with m = 1:3 GeV.The gluon density at the input sale Q20 = 1 GeV2 was assumed to take the formxg(x;Q20) = Ag x�� (1� x)5:6 : (102)The parameters obtained from the best �t with �2 = 0:94=d:o:f are the following:C = 0:55 ; �20 = 1:62 ; Ag = 1:07 ; � = 0:14 ; �0 = 22 mb : (103)1 In fat the series in not onvergent; the expression was obtained assuming the validity of the asymptoti HT;L(rQ) expansion for largerQ down to rQ = 0. Therefore, the obtained series is asymptoti.
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Twist ratios: tw-4/tw-2
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Twist ratios: tw-2/exact
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21FT and FL. Indeed, at Q2 = 1 GeV2, the relative twist-4 orretions to FT and FL are 30% and 50% orrespondingly,that is they do not di�er very muh. B. Charm ontributionThe DIS ross-setion at small-x and a moderate Q2 reeives signi�ant ontribution from the harmed quark. Theontribution of the bottom quark may be safely negleted due to its small harge eb = 1=3 and its large mass. For theregion of interest, Q2 � 10 GeV2, the mass, m, of the harmed quark annot be negleted, as Q2 � 4m2 . Therefore,our extration of the higher twist e�ets in harm struture funtions F T and F L is based on the results of Se. VIII.The results for higher twist e�ets in the harm struture funtions F T and F L are shown in Fig. 10. Displayed arethe twist-2 and twist-4 omponents and the all-twist result. In ontrast with the ase of the light quarks, the highertwist e�ets introdue negative orretions both in F T and in F L, and the magnitude of the ratio of twist-4 to twist-2ontributions is similar in both ases and reahes a few perent. Consequently, the e�et of higher twists in F 2 issimilar. C. Comparison with FL dataReently, new measurements were performed of the proton FL struture funtion in a wide kinemati range [16℄. Themeasurements probe FL for orrelated (x;Q2) pairs down to x = 5:9�10�5 and Q2 = 1:8 GeV2, see Fig. 11. The data inthe lowest range of x are partiularly interesting, as in this region, the leading twist, �xed order DGLAP alulationsfae intrinsi problems [32, 33℄. Spei�ally, in that region, the onvergene of the subsequent FL approximationswithin perturbative expansions is rather poor, up to the next-to-next-leading order (NNLO) approximation [33℄. Inaddition, at very small x and low Q2, the estimated FL beomes negative, violating the fundamental ondition ofpositivity [33℄. This indiates that the DGLAP treatment in this region has to be improved. In what follows, we shallpresent the omparison of the new FL data with the dipole model results, and we shall shortly ompare our approahwith another suessful approah to F2 and FL, based on the leading twist DGLAP sheme, improved by a small xresummation [32℄.In Fig. 11 we show the omparison of our results with the preliminary data on FL from the H1 ollaboration. Inthe top of the plot, the values of x are indiated for eah data point. Note that the experimental data points showstrong orrelation between the values of Q2 and x. Thus, small Q2 values are measured for smaller values of x. Thesolid urve represents the all twist result from the DGLAP improved saturation model applied in this paper, whilethe dashed line shows the twist-2 ontribution within this model. The di�erene between the two urves omes fromthe negative higher twist terms, with a dominant ontribution of twist-4. The desription of the data provided by themodel is good, both for the twist-2 approximation and the all-twist result. We stress, that all the model parametersare �xed by the �t to F2 data and no new parameters are introdued in the desription of FL.Clearly, the low Q2 region of the plot, where x is also small, is highly sensitive to higher twist e�ets. In partiular,for the lowest measured values of (x;Q2), the twist-2 ontribution is already about two times larger then the exatresult. Unfortunately, the urrent experimental errors are sizable and no evidene for higher twist e�ets an be drawnfrom the measurements, yet. We stress, however, that FL at small x and Q2 should be an exellent observable to �ndsuh e�ets, provided that the experimental errors may be further redued.The defets of the �xed order DGLAP desription of FL at small x and Q2 were shown to be partially uredby inluding into the DGLAP framework a resummation of small x orretions, enhaned by powers of logx. Theresummation, proposed by Thorne and White (TW) [32℄, absorbs the NLL BFKL e�ets at the leading twist into theNLO DGLAP evolution. In the urrently relevant kinemati range, the desription of FL based on the TW approahis remarkably similar [33℄ to the one obtained within a saturation model with the impat parameter dependene (the,so alled, b-Sat model) [34℄. In addition, the b-Sat model results for FL agree well with the results of this paper.The TW sheme provides a good desription of the existing FL data. The FL at small x and Q2 following from thesaturation models is signi�antly lower than the orresponding TW result, but the di�erenes are not pronounedenough to permit a disrimination between the approahes with the present data. Let us, however, stress, that theasymptoti x! 0 (or Q2 ! 0) behaviour of the struture funtions should be di�erent in approahes onsistent withunitarity onstraints, (as e.g. the saturation models), and the leading twist approah. In the former ase, FL shouldvanish in the limit, while in the latter ase it should remain non-zero. Thus, one expets, that the leading twistapproah should be insuÆient at a very low x and �xed Q2, and that the inlusion of higher twist e�ets should beneessary in that limit.
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Charm contribution
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Comparison with H1 data

Q2/GeV2

F
L

0.
00

00
59

0.
00

00
87

0.
00

01
3

0.
00

01
7

0.
00

02
1

0.
00

02
9

0.
00

04
0

0.
00

05
2

0.
00

06
7

0.
00

09
0

0.
00

11
0

0.
00

15
0

0.
00

23
0

0.
00

27
0

0.
00

37
0

0.
00

54
0

0.
00

69
0

0.
00

93
0

0.
01

26

0.
02

18

0.
02

86
0.

03
53

solid  - exact

dashed - twist-2

BGK dipole model

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

1 10 10
2FIG. 11: Comparison of the DGLAP improved saturation model with the preliminary H1 on FL [16℄. The solid line is theall-twist result while the dashed line shows the twist-2 ontribution. The value of x is indiated for eah data point.e�ets of higher twists at the LHC should be larger than they are in F2. As an example, let us give the ase of theforward Drell-Yan proess, that an be e�etively desribed using the dipole formulation [35℄. At LHC-b, the Drell-Yan proess may be probed at moderate Q2 � 10 GeV2 and x � 10�6, what should provide a gold-plated probe ofthe gluon density at small x. However, the higher twists e�ets may be quite strong there. In partiular, let us invokean example of the Lam{Tung relation [36℄ that holds for angular distribution of Drell-Yan lepton pairs. Aording tothis relation, the twist-2 ontribution to one of the angular omponents of the dilepton distribution vanishes in theleading logarithmi approximation. Therefore, higher twist e�ets in this omponent should be enhaned, in analogyto the ase FL [36, 37℄. Thus, given the low values of x and Q2, that an be reahed in the measurements in LHC-b,the violations of Lam-Tung relation should provide a sensitive probe of the higher twist gluoni operators at small x.On the other hand, the higher twist e�et may be also large in the total ross-setion of the forward Drell-Yan proess.In that ase, a determination of gluon density at small x, based on the leading twist ontribution alone would beinaurate, and the higher twist ontributions should be taken into aount. Besides that, the higher twist e�etsmay be larger in proesses with gluons, like e.g. the forward gluoni jet produtions, where the multiple sattering ofthe gluon is enhaned by its olor harge, as ompared to the quark resattering in the DIS ase. In suh proesses,we do not expet that any anellations of resattering e�ets should our, of the type found in F2.X. CONCLUSIONSIn this paper the leading higher twist ontributions to proton struture funtions, F2, FT and FL, at small Bjorken xand moderate Q2 were analyzed. The problem was analyzed theoretially onfronting two di�erent approahes. Inthe �st approah, we foused on a subset of QCD diagrams desribing ontributions of quasipartoni gluon operators,that should dominate the higher twist e�ets in the deeply inelasti sattering at small x. We demonstrated, that thissublass of the diagrams, at the leading logarithmi approximations and in the large N leads to a piture onsistentwith the DGLAP improved saturation model. In ontrast, we onsidered also the problem of higher twists in theBalitsky-Kovhegov framework, in whih, the BFKL Pomeron fan diagram are resummed. In this approah, highertwist ontributions oming from the fan diagrams vanish in the leading logQ2 approximation.The pattern of the most important twist-2 and twist-4 ontributions to F2, FT and FL is determined by the properties



24of the quark loop through whih the virtual photon interats with the gluoni �eld of the proton. Therefore, it isuniversal and its key features should not depend on the model details. Those features are: (i) the twist-4 orretionto FT enters only at the NLO, and so, the twist-4 orretion to FT is suppressed; (ii) the twist-2 ontribution to FLenters at NLO, and the LO twist-4 term in FL is relatively enhaned and more important; (iii) the relative sign oftwist-4 orretions to FT and FL is opposite, and the higher twist e�ets partially anel in F2 = FT + FL. Thesegeneral onlusions were then on�rmed by a quantitative phenomenologial analysis.We performed a numerial twist analysis of the DIS ross-setions at small-x within the DGLAP improved saturationmodel. In order to arry out a quantitative estimate of the higher twist e�ets in the struture funtions, we proposeda method allowing for a diret, numerial twist deomposition of the saturation model ross setions. The methodwas then applied to the DGLAP improved saturation model, �tted to the HERA F2 data. Contributions of twist-2,twist-4 and all twists to F2, FT and FL were then extrated. We found a strikingly good anellation of the highertwist e�ets in F2, for whih, at x = 3 � 10�4, the relative orretion from higher twists is found to be at a fewperent level down to Q2 = 1 GeV2. The higher twist orretions to FT were found to be moderate, below 10% forQ2 > 3 GeV2 at x = 3 � 10�4. On the other hand, the twist-4 orretion in FL was found to be large, about 50%, atQ2 = 1 GeV2, and still sizeable, about 20%, at Q2 = 10 GeV2. Therefore, whereas the leading twist analyses of F2are fully justi�ed, one should inlude the higher twist e�ets in analyses of the FL data at small x and moderate Q2.We also found that the saturation model desription of the reent FL measurements at small x and low Q2 is good.Unfortunately, the data are not preise enough to prove that the inlusion of higher twist orretions improves thedesription of the data.Finally, some impliations were disussed of the results for analyzes of the LHC data. In partiular, we stresseda strong proess-dependene of the higher twist ontributions, exempli�ed before by the striking di�erenes betweenF2 and FL. It follows from our analysis, that F2 is proteted by anellations from the higher twist e�ets, andsuh anellations are not expeted to be generi. Therefore, the higher twist e�ets in some LHC observables maybe muh stronger that they are in F2. Thus, it is ruial to estimate higher twist e�ets when attempting a preisedetermination of parton densities in LHC measurements at small x and moderate Q2, like e.g. in the forward Drell-Yanproess at low Q2, or in the forward jet prodution.AknowledgementsLM aknowledges the support of the DFG grant SFB 676. This work is partially supported by the grant MNiSWno. N202 249235. APPENDIX A: MELLIN TRANSFORMS OF HT;LLet us ompute the Mellin transform of HT (rQ) given by Eq. (25)~HT (s;Q2) = Z 10 dr2 (r2)s�1HT (rQ) : (A1)Substituting Eq. (25) we obtain ~HT (s;Q2) = �Q24 ��s ~HT (s) (A2)where ~HT (s) = 4�sA0 Z 10 dz [z2 + (1� z)2℄ z(1� z) Z 10 dr̂2 (r̂2)sK21(pz(1� z) r̂) : (A3)with r̂ = rQ. Changing the variable, y2 = z(1� z)r̂2, we �nd~HT (s) = 4�sA0 Z 10 dz z2 + (1� z)2zs(1� z)s Z 10 dy2 (y2)sK21 (y) : (A4)The integral over z equalsIz � Z 10 dz z2 + (1� z)2zs(1� z)s = 2 Z 10 dz z2�s(1� z)�s = 2 �(3� s)�(1� s)�(4� 2s) (A5)



25where we used the de�nition of the Euler beta funtion. The gamma funtion in the denominator an be written as�(2(2� s)) = 22(2�s)�1p� �(2� s)�(2� s+ 1=2) (A6)and from this we have Iz = p�41�s �(1� s)�(3� s)�(2� s)�(5=2� s) : (A7)The integral over y2 in Eq. (A4) equalsZ 10 dy2 (y2)sK21 (y) = 2 Z 10 dy y2s+1K21 (y) = 2 p�4 �(2 + s)�(1 + s)�(s)�(3=2 + s) : (A8)Thus, we �nally �nd ~HT (s) = A0�8 �(2 + s) �(1 + s) �(s) �(1� s) �(3� s)�(3=2 + s) �(2� s) �(5=2� s) : (A9)A similar alulation allows to ompute the Mellin transform~HL(s) = A0�4 (�(1 + s))3 �(2� s)�(3=2 + s) �(5=2� s) (A10)APPENDIX B: EVOLUTION OF THE GLUON DENSITYThe gluon density used in our analysis, g(x; �2) � xG(x; �2), obeys the following leading logarithmi DGLAPevolution equation: �2 �g(x; �2)��2 = �s(�2)2� Z 1x dz Pgg(z) g �xz ; �2� (B1)where the ontribution from quarks is negleted and the gluon splitting funtion Pgg takes the form,Pgg(z) = 6 �1� zz + z(1� z) + z(1� z)+ + 1112Æ(1� z)�� nf3 Æ(1� z) (B2)and the one loop strong oupling is given by �s(�2) = b0log(�2=�2) (B3)with b0 = 12�=(33� 2nf ). This equation may be solved in the double Mellin moment spae,g(x; �2) = Z d!2�i x�!Z d2�i ~g(!; )��2�2� (B4)where ~g(!; ) obeys the following equation� �� f~g(!; )g = b02� ~Pgg(!) ~g(!; ) (B5)and the splitting kernel in the Mellin representation, ~Pgg(!), is given by~Pgg(!) = Z 10 dz z!Pgg(z) = 6 � 1! � 1! + 1 + 1! + 2 � 1! + 3 � E �  (! + 2)�+ 33� 2nf6 : (B6)The general solution to Eq. (B5) reads ~g(!; ) = ~g0(!) �1� b02� ~Pgg(!) (B7)



26where ~g0(!) is an arbitrary funtion whih may be �xed using an initial ondition. Thus, the solution expressed interms of the original variables (x; �2) is given byg(x; �2) = Z d!2�i x�! ~g0(!)Z d2�i �1� b02� ~Pgg(!)��2�2� : (B8)The ontour integral over  may be performed for all �2 > �2 after the integration ontour is deformed to envelopethe ut along the negative real half-axis. We �ndg(x; �2) = Z d!2�i x�! ~g(!; �2) (B9)where ~g(!; �2) = ~g0(!)��1 + b02� ~Pgg(!)� �log��2�2�� b02� ~Pgg(!) : (B10)The initial ondition for the DGLAP equation at some sale �20 � �2 is given by its Mellin transform ~g(!; �20). Thus,writing (B10) for �2 = �20, we obtain~g0(!) = ~g(!; �20) ��1 + b02� ~Pgg(!)� �log��20�2��� b02� ~Pgg(!) ; (B11)whih in turn, after the substitution to (B9), leads to the well known formg(x; �2) = Z d!2�i x�! ~g(!; �20) � log(�2=�2)log(�20=�2)� b02� ~Pgg(!) : (B12)We also need the double Mellin representation of the produt �s(�2)g(x; �2). In the mixed (!; �2) representationthe DGLAP equation (B1) reads �2 �~g(!; �2)��2 = ~Pgg(!)2� �s(�2) ~g(!; �2) : (B13)Taking the Mellin moment (62) of both sides (with s = ), we obtain ~g(!; ) = ~Pgg(!)2� g�sg(!; ) : (B14)Thus, after inserting relation (B7) we �ndg�sg(!; ) = 2�~g0(!)~Pgg(!) � b02� ~Pgg(!) (B15)whih after oming bak to the x variable readsg�sg(x; ) = Z d!2�i x�! 2�~g0(!)~Pgg(!) � b02� ~Pgg(!) : (B16)Both funtions have logarithmi ut singularity in the omplex -plane with the branh point at  = 0.[1℄ A. P. Bukhvostov, G. V. Frolov, L. N. Lipatov and E. A. Kuraev, Nul. Phys. B 258 (1985) 601.[2℄ R. K. Ellis, W. Furmanski and R. Petronzio, Nul. Phys. B 207 (1982) 1.[3℄ R. K. Ellis, W. Furmanski and R. Petronzio, Nul. Phys. B 212 (1983) 29.[4℄ J. Bartels, Phys. Lett. B 298 (1993) 204.[5℄ J. Bartels, Z. Phys. C 60 (1993) 471.
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