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Twist expansion of the nu
leon stru
ture fun
tions, F2 and FL,in the DGLAP improved saturation modelJo
hen Bartels(a), Krzysztof Gole
-Biernat(b;
) and Leszek Motyka(a;d)aII Institute for Theoreti
al Physi
s, Hamburg University,Luruper Chaussee 149, 22761 Hamburg, GermanybInstitute of Physi
s, University of Rzesz�ow,Al. Rejtana 16 A, 35-959 Rzesz�ow, Poland
Institute of Nu
lear Physi
s Polish A
ademy of S
ien
es,Radzikowskiego 152, 31-342 Krak�ow, PolanddInstitute of Physi
s, Jagiellonian University,Reymonta 4, 30-059 Krak�ow, Poland(Dated: November 10th, 2009)Higher twist e�e
ts in the deeply inelasti
 s
attering are studied. We start with a short review ofthe theoreti
al results on higher twists in QCD. Within the saturation model we perform a twistanalysis of the nu
leon stru
ture fun
tions FT and FL at small value of the Bjorken variable x.The parameters of the model are �tted to the HERA F2 data, and we derive a predi
tion for thelongitudinal stru
ture fun
tion FL. We 
on
lude that for FL the higher twist 
orre
tions are sizablewhereas for F2 = FT + FL there is a nearly 
omplete 
an
ellation of twist-4 
orre
tions in FT andFL. We dis
uss a few 
onsequen
es for future LHC measurements.
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I. INTRODUCTIONA deeper understanding of the transition region at low Q2 and small x in deep inelasti
 ele
tron proton s
atteringhas been one of the 
entral tasks of HERA physi
s. Approa
hing the transition region from the perturbative sideone expe
ts to see the onset of 
orre
tions to the su

essful DGLAP des
ription | in parti
ular those whi
h belongto higher twist operators in QCD. The twist expansion de�nes a systemati
 approa
h and, therefore, provides anattra
tive framework of investigating the region of validity of the leading twist DGLAP evolution equations.The essentials of the theory of higher twist operators and their Q2 evolution have been laid down several years ago,[1, 2, 3℄. First, a 
hoi
e has to be made of a 
omplete operator basis [2, 3℄, and for their evolution [1℄ one needs to
ompute evolution kernels whi
h, for partoni
 operators in leading order, redu
e to 2 ! 2 s
attering kernels. Theproblem of mixing between di�erent operators has also been addressed �rst in [1℄. In the small-x region at HERAone expe
ts the gluoni
 operators to be the most dominant ones; so far, a theoreti
al study of the evolution of twist-4gluon operators is available only in the double logarithmi
 approximation [4, 5, 6, 7℄. An extensive re
ent theoreti
alstudy of QCD evolution of the higher twist operators 
an be found in [8℄.Numeri
al studies of the size of potential higher twist 
orre
tions [9, 10℄ indi
ate that twist-4 
orre
tions to F2are small down to Q2 � 1 GeV2, x � 10�4. A �rst theoreti
al analysis [11℄ applied to HERA data, however, hasshown that the situation is more subtle, and from the smallness of twist-4 
orre
tions to F2 one 
annot 
on
lude that
ontributions of twist-4 operators are small. The simplest QCD diagrams 
ontributing to the twist four gluon operatorare shown in Fig. 1: a quark loop 
ouples, via the ex
hange of four t-
hannel gluons, to the proton target. Cal
ulatingthe 
ontribution of these diagrams to the 
�p 
ross se
tion at small x, and isolating the twist-4 
ontribution onearrives at the 
on
lusion that the 
ontributions to longitudinal polarized photon has the opposite sign 
ompared tothe transversely polarized photon. This implies the possibility that, in F2 = FL+FT whi
h sums over transverse andlongitudinal photons, there is a (partial) 
an
ellation of twist four 
orre
tions, whereas the twist-4 
orre
tions to FLor FT are larger than the 
orresponding 
orre
tions to F2.In order to de
ide whether the HERA data support this possibility, in [11℄ the saturation model of Gole
-Biernatand W�ustho� [12, 13℄ whi
h su

essfully des
ribes the HERA data has been used to obtain a quantitative estimateof twist-4 and even higher twist 
orre
tions. This mathemati
ally fairly simple model has four parameters whi
hare �xed by adjusting the model to des
ribe well the HERA F2 data. The model leads to the total 
ross se
tionsthat exhibit the geometri
 s
aling [14℄. The 
ross se
tions obtained in the model may be expanded in powers ofQ20Q2 � 1x��. It was natural to identify the �rst two terms of this expansion as `leading twist-2' and `twist-4 
orre
tion',
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2respe
tively. Despite its simpli
ity this model is 
lose enough to the lowest order QCD 
al
ulations and supportsthe sign stru
ture of the twist-4 
orre
tion to the transverse and longitudinal 
ross se
tions mentioned before. On aquantitative level, the twist-4 
orre
tions to FL and FT were found to be sizable, whereas in F2 they almost 
an
el.The overall smallness to the 1=Q2 
orre
tions to F2 is 
onsistent with the estimate of [9, 10℄: the analysis in [11℄therefore provides a natural explanation of the suppression of twist-4 
orre
tions to F2, without demanding that thehigher twist 
ontribution is small for FL or FT .This original version of the GBW model did not in
lude any QCD evolution. Therefore, the 
onne
tion of thismodel with evolution of twist four operators in QCD is not possible, and, in parti
ular, the identi�
ation of the �rstand the se
ond term in the 1=Q2 expansion as the `leading' and the `next-to-leading' twist seems somewhat 
rude.A more re
ent version [15℄ of the GBW model in
ludes QCD evolution and its des
ription of HERA data is slightlybetter than that of the original model. It is therefore natural to investigate to what extent this improved modelexhibits the stru
ture expe
ted for higher twist operators, and then to perform a numeri
al analysis similar to [11℄.This is the goal the present paper.Our numeri
al analysis shows an interesting pattern of the higher twist e�e
ts in the stru
ture fun
tions. The
orre
tions are sizable in FL, for the kinemati
 range relevant for HERA data at low Q2, 1:8 GeV2 < 10 GeV2and small x, the twist-4 
orre
tions are found to redu
e the leading twist result by about 20 { 50%. We 
omparethe obtained predi
tions for FL to re
ent HERA data [16℄, both for the 
omplete saturation model and its leadingtwist 
omponent. For F2 the higher twist e�e
ts are found to be surprisingly small, at a few per
ent level down toQ2 = 1 GeV2.The paper is organized as follows. The �rst, longer part in Se
s. II{VI is devoted to dis
ussion of theoreti
alissues, and the se
ond part, in Se
s. VII{IX , to the phenomenologi
al appli
ations. In se
tion II we review simpleQCD 
al
ulations of higher twist 
orre
tions in momentum spa
e, restri
ting ourselves to the double logarithmi
approximation, and in se
tion III we reformulate these results in the QCD dipole pi
ture. Next we turn to thesaturation model: after a brief review of the simple GBW model in se
tion IV, we perform a theoreti
al twist analysisof the QCD improved dipole model in se
tion V{VI. The se
ond part (se
tion VII{IX) 
ontains our numeri
al analysisand dis
ussions of the results and possible 
onsequen
es for physi
s at the LHC. Con
lusions are given in se
tion X.II. THE DOUBLE LEADING-LOG APPROXIMATION IN QCDIn this se
tion we give a brief overview of higher twist 
orre
tions in small-x QCD. We 
onsider the s
atteringof a virtual photon with transverse or longitudinal polarization on a quark, and we restri
t ourselves to the leadingbehavior at large Q2 and small x (double logarithmi
 approximation, DLA). In this limit, we 
an either start from theleading-log Q2 limit and then take the small-x limit or, alternatively, start from the small-x limit and then investigatethe large-Q2 approximation. We begin with the latter one, i.e. we restri
t ourselves to those diagrams whi
h have themaximal number of logarithms in 1=x. A. Twist 4 
orre
tionsIn the small-x limit, the s
attering of a virtual photon on a quark is des
ribed by the ex
hange of 2 or more gluonsbetween a 
losed quark loop and the target quark. For two t-
hannel gluons, the 
oupling to the virtual photonis des
ribed by the well-known photon impa
t fa
tor, D(2;0);T;L(Q;k; q � k), where the subs
ripts T; L refer to thepolarizations of the virtual photon, and k and q � k are the transverse momenta of the two t-
hannel gluons. In thedeep inelasti
 limit: q2 = 0, k2 � Q2 we have [17, 18℄:D(2;0);T (Q;k;�k) = A0 ( 43 k2Q2 log Q2k2 + 149 k2Q2 + 25 ( k2Q2 )2 +O(( k2Q2 )3)�D(2;0);L(Q;k;�k) = A0 ( + 23 k2Q2 � 415 ( k2Q2 )2 log Q2k2 � 94225 ( k2Q2 )2 +O(( k2Q2 )3)� (1)where A0 = P e2f�sp82� . The leading power, �k2=Q2�, belongs to leading twist, the terms proportional to �k2=Q2�2to twist four et
. These results, obtained dire
tly from Feynman diagrams in the momentum spa
e, lead to estimatesof twist 
ontributions to FT and FL 
onsistent with estimates of the saturation model, dis
ussed later, in Se
. IIIand Se
. IV, obtained in the Mellin representation. Important features of D(2;0);T;L are the logarithms and signsof the �k2=Q2�2 
orre
tions: whereas for transverse polarization there is no logarithmi
 enhan
ement and the power
orre
tion is positive, for longitudinal polarization we have a logarithmi
 enhan
ement, and 
ompared to the transverse
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FIG. 1: Two diagrams with four t-
hannel gluons.
ase is has the opposite sign. These simple observations open the possibility that, in FL, the higher twist 
orre
tionsare large and that, in the stru
ture fun
tion F2 whi
h sums over transverse and longitudinal polarizations of thephoton: F2 = FT + FL; (2)the total twist-four 
orre
tions may be small due to 
an
ellations. Within the model to be dis
ussed in this paper wewill �nd that, for the HERA data, this is indeed the 
ase.The simplest diagram for 
orre
tions due to the ex
hange four gluons (order O(g8)) is illustrated in Fig. 1, left. Inaddition to this ex
hange diagrams, there are diagrams involving the triple gluon vertex, like e.g. the diagram shownin Fig. 1, right.An eÆ
ient method of 
al
ulating the sum of all these 
ontributions in the high energy or small-x limit is thee�e
tive a
tion, de�ned in [19℄ and further studied in [20℄. As a result we have, for all diagrams up to order g8, two
lasses of 
ontributions:(a) the BFKL ladders [21, 22, 23, 24℄, expanded up to order g8. This in
ludes NLO 
orre
tions to the gluon traje
toryas well as NLO 
orre
tions to the BFKL kernel whi
h, in the leading log approximation, will not be 
onsidered; (b)the ex
hange of four t-
hannel gluons, where the eikonal 
ouplings to the quark loop at the top and to the quark lineat the bottom are fully symmetrized, both in 
olor and in their momentum stru
ture. The 
oupling to the quarkloop, Dsym(4;0);T;L(k1;k2;k3;k4), 
an be expressed in terms of D2:D(4;0);T;La1a2a3a4sym (k1;k2;k3;k4) = �g2da1a2a3a4 sym� �D(2;0);T;L(k1 + k2 + k3;k4) +D(2;0);T;L(k2 + k3 + k4;k1)+D(2;0);T;L(k3 + k4 + k1;k2) +D(2;0);T;L(k4 + k1 + k2;k3)�D(2;0);T;L(k1 + k2;+k3 + k4)�D(2;0);T;L(k1 + k3;k2 + k4)�D(2;0);T;L(k1 + k4;k2 + k3)� ; (3)where ai and ki, i = 1; : : : ; 4 are the 
olor indexes and transverse momenta of the gluons. The 
olor fa
tor has theform: da1a2a3a4 sym = htr (ta1 ta2ta3 ta4) + tr (ta4 ta3ta2 ta1) isym; (4)where the subs
ript `sym' indi
ates that the 
olor labels are 
ompletely symmetrized.Next let us 
onsider higher order 
orre
tions to (a) whi
h, in the leading logarithmi
 approximation, sum up tothe BFKL ladders. Using a Mellin representation for the impa
t fa
tors D(2;0);T;L(Q; k;�k) and a double Mellinrepresentation for the BFKL Green's fun
tion we write the s
attering amplitude in the form:D2;T;L(x;Q2=Q20) = Z d!2�i Z d�2�i � 1x�! �Q2Q20�� D(2;0);T;L(�) 1! � ���(�; 0) (5)where the integration 
ontours run along the imaginary axis, �� = N
�s� , the BFKL 
hara
teristi
 fun
tion has theform �(�; 0) = 2 (1)�  (1 + �)�  (��); (6)and Q20 denotes the momentum s
ale at the target end of the BFKL ladder. The s
attering amplitude D2 
an beexpanded in powers of Q2=Q20: the terms in this expansion are due to the poles of �(�) at negative integer values:
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FIG. 2: (a) Pairwise intera
tions between four reggeized gluons; (b) two nonintera
ting 
olor singlet ladders.� = �1;�2; :::, and the residues of the poles lead to anomalous dimensions. In parti
ular, the pole near � = �1 leadsto the leading twist behavior �Q2=Q20�
(!) ; 
(!) = N
�s�! ; (7)the pole near � = �2 to the twist four 
orre
tion�Q2=Q20��1+
(!) ; 
(!) = N
�s�! : (8)The exponents are the anomalous dimension of the higher twist operators 
ontained in the BFKL amplitude [25℄.In the notation of [1℄, they belong to the 
lass of non-quasipartoni
 operators. When 
oupled to the impa
t fa
torsD(2;0);T;L(Q;�k), we see from the expansion in (1) that, for the leading-twist terms, the transverse polarization hasa logarithmi
 enhan
ement 
ompared to the longitudinal polarization. For the twist four 
orre
tion, the situation isreversed. As to the sign stru
ture, the twist four 
orre
tions to transverse and longitudinal polarizations have oppositesigns.Next we turn to higher 
orre
tions to 
lass (b). Following the analysis of [1℄ we 
onsider those 
orre
tions whi
h areobtained by inserting all possible pairwise intera
tions between the reggeized t-
hannel gluons (Fig. 2a). The large-Q2behavior 
omes from the region where the transverse momenta of the ex
hanged gluons are ordered and mu
h smallerthan the virtuality of the external photon. The leading (in 1=Q2) behavior of the four gluon state has been dis
ussedin [5, 6, 7℄, and we brie
y summarize. In the 
omplex �-plane, the leading singularity is a pole at
pole = 4N
�s(1 + Æ)�! (9)where Æ is a 
orre
tion of the order 1=N4
 (Æ = 0:778=N4
 , and for N
 = 3, Æ = 0:0096). In the large-N
 limit the fourgluon state redu
es to two nonintera
ting 
olor singlet gluon ladders, leading to a 
ut in the �-plane with the bran
hpoint lo
ated at 

ut = 4N
�s�! (10)The pole in (9) at �nite N
 
an be viewed as `bound state' formed by the two 
olor singlet ladders, whereas the 
ut(10) represents the `threshold' of two free ladders. The large-Q2 behavior of this four gluon state is des
ribed theevolution equations of the twist four gluon operator in the small-x limit, as dis
ussed in [1℄. In the large-N
 limit,the evolution equations redu
e to two independent DGLAP ladders.In order to apply this dis
ussion to the diagrams of 
lass (b) we noti
e that the twist four 
ontribution of thefermion loop, D(4;0)T;L is easily obtained from (3) and (1). For example, the twist four 
orre
tion of the transversepolarization is found to be proportional to4g2A0 25 k1 � k3 k2 � k4 + k1 � k2 k3 � k4 + k1 � k4 k2 � k3(Q2)2 ; (11)and analogous results are found for the longitudinal polarization. In this way, the four gluon state 
orre
tions totransverse and longitudinal polarizations follow the same pattern as the twist four pie
e inside the BFKL ladder:
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ompared to transverse polarization, the longitudinal polarization has a logarithmi
 enhan
ement and 
omes with theopposite sign.Compared to the BFKL-singularity in (8), both in (9) and in (10) the 
oeÆ
ients of the pole at ! = 0 are largerby a fa
tor 4: at small x, this twist-4 
orre
tion will therefore dominate. This suggests to 
onsider, within a twistexpansion in the small-x region, as a �rst set of higher twist 
orre
tions these four gluon states, disregarding thehigher twist 
ontributions of non-quasipartoni
 operators. It is not diÆ
ult to generalize this sele
tion to six, eightet
 gluon states. If, in addition, one invokes the large-N
 expansion where the 2n-gluon state is approximated by nnonintera
ting 
olor singlet ladders, one arrives at the eikonal pi
ture of multi-Pomeron ex
hange, whi
h underliesthe saturation model to be dis
ussed further below. We shall see that this model embodies many of the features ofthese n-ladder ex
hanges, in parti
ular the 
orre
t Q2-evolution.B. Higher twists in the Balitsky-Kov
hegov equationSo far we have dis
ussed a sele
ted sub
lass of QCD diagrams giving rise to twist-4 
orre
tions to the protonstru
ture fun
tions. It should, however, be kept in mind that this sele
tion of higher twist 
orre
tions is not in agree-ment with what one obtains from summing all leading-log 1=x 
ontributions from the BFKL Pomeron fan diagrams.This summation may be performed using the Balitsky-Kov
hegov (BK) equation [26, 27, 28℄. To illustrate this, wesummarize the results of the 
omplete small-x analysis whi
h 
an be found in [4, 29, 30℄. The sum of all diagrams
ontributing to the leading logarithmi
 1=x approximation 
an be organized in two 
lasses.(i) BFKL ladders 
onsisting of reggeized gluons. At the lower end, reggeized gluons 
an split into two or three ele-mentary gluons. In the former 
ase, the 
olor stru
ture of the splitting is des
ribed by a stru
ture 
onstant f
a1a2 , inthe latter 
ase by the produ
t of two stru
ture 
onstants, e.g. f
a1dfda2a3 .(ii) BFKL-like ladders where, instead of the reggeized gluons whi
h belong to the adjoint 
olor representation, wehave Reggeons in the symmetri
 o
tet and singlet 
olor representations. In both 
ases, the traje
tory fun
tions arethe same as for the reggeized gluon. The 
orresponding 
olor tensors are listed in [29℄. The sum of these diagramsis symmetri
 under the ex
hange of momenta and 
olor indexes.(iii) Diagrams with a four gluon t-
hannel state. This state is symmetri
 under the ex
hange of t-
hannel gluons(momenta and 
olor indexes). There is no dire
t 
oupling of this state to the quark loop at the top. Instead, throughthe 2! 4 reggeized gluon vertex it 
ouples to a BFKL ladder whi
h then 
onne
ts with the quark loop (Fig. 3). Class(i) and (ii) represent the all-order generalizations of (a) and (b), respe
tively, whereas (iii) starts at the order g10. In[29℄, (i) and (ii) are denoted by DR4 , 
lass (iii) by DI4 .As we have already stated, in (iii) the four gluon state that we have dis
ussed before does not 
ouple dire
tlyto the quark loop: the 
oupling goes through a BFKL ladder and a 2 ! 4 transition vertex. Making use of thelarge-Q2 results dis
ussed before, we interpret this as a mixing between the non-quasipartoni
 twist four pie
e insidethe BFKL ladder and the twist four gluon operator. A detailed analysis [30℄, however, shows that, at the leadinglogarithmi
 logQ2, approximation, this transition kernel between the two twist-4 operators, in the large-N
 limit,vanishes. This also holds for the transition of the twist-6 pie
e inside the BFKL ladder to the twist-6 pie
e in the fourgluon state. Generalizing this to more than four t-
hannel gluons, one arrives at the 
on
lusion that, in the doubleleading logarithmi
 approximation, the 
ontribution of higher twists given by the BK fan diagrams vanishes, and onlypropagation of two intera
ting t-
hannel gluons 
ontributes to the amplitudes. Note however that this result is onlyvalid in the large-N
 limit.Therefore, from a theoreti
al point of view, the twist expansion derived from the sele
tion of diagrams with 2nt-
hannel gluons in the large-N
 limit should be viewed as being di�erent from des
riptions based upon the BKequation. III. COLOR DIPOLE PICTUREIt is important to emphasize that, in the small-x limit, for the 
lass of QCD diagrams whi
h we have dis
ussed, thes
attering amplitude for the elasti
 s
attering of a virtual photon on a quark 
an be 
ast into the dipole form [31℄:�
�pT;L(x;Q2) = Xf Z d2r Z 10 dz j	fT;L(z; r;Q2)j2 �(x; r) (12)
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FIG. 3: A fan diagram.where T and L denote the virtual photon polarization: transverse and longitudinal, respe
tively. The light-
onephoton wave fun
tion, 	fT;L, is modeled by the lowest order 
�g ! q�q s
attering amplitudes whi
h givej	fT (z; r;Q2)j2 = 2N
�eme2f4�2 ��z2 + (1� z)2� �2K21 (�r) +m2f K20 (�r)	 (13)j	fL(z; r;Q2)j2 = 8N
�eme2f4�2 Q2z2(1� z)2K20 (�r) (14)where K0;1 are the Bessel{M
Donald fun
tions, �2 = z(1� z)Q2 +m2f and r = jrj. The measured stru
ture fun
tionsare related to �
�pT;L(x;Q2) by the standard formulaFT;L = Q24�2�em (15)In (12), all details des
ribing the intera
tion of the quark-antiquark pair with the target quark are 
ontained in thedipole 
ross se
tion, �(x; r). In parti
ular, the ex
hange of two non-intera
ting 
olor singlet gluon ladders provides a
ontribution proportional to the produ
t of two gluon stru
ture fun
tions, (xg(x;C=r2))2.Important 
hara
teristi
s of the twist expansion follow from the stru
ture of the photon wave fun
tions and do notdepend upon the details of �(x; r). This is most easily seen by taking the Mellin transform of (12). In general, theMellin transform of a fun
tion f(r2) is de�ned as~f(s) �Mr2�f(r2)�(s) = Z 10 dr2 (r2)s�1 f(r2) (16)while the inverse relation reads f(r2) = ZC ds2�i (r2)�s ~f(s) (17)where the integration 
ontour C lays in the fundamental strip of the Mellin transform to be dis
ussed below.Let us write Eq. (12) in the following form�
�pT;L(x;Q2) = Z 10 dr2r2 HT;L(r;Q2)�(x; r) (18)where HT;L(r;Q2) � �r2 Xf Z 10 dz j	fT;L(z; r;Q2)j2 : (19)Substituting the inverse Mellin transform of the dipole 
ross se
tion,�(x; r) = ZC ds2�i (r2Q20)�s ~�(x; s) (20)



7we �nd the Mellin representation of the 
�p 
ross se
tions, given by the Parseval formula�
�pT;L(x;Q2) = ZCs ds2�i ~�(x; s) ~HT;L(�s;Q2=Q20) (21)where ~HT;L(�s;Q2) is the Mellin transform of HT;L(r;Q2). The integration 
ontour Cs in the 
omplex s-plane ispla
ed in the fundamental strip in whi
h the integrals de�ning ~�(x; s) and ~HT;L(�s;Q2) are 
onvergent. The strip isdetermined from the following leading behaviour of both fun
tions at small and large values of r (up to logarithms ofr): HT;L(r;Q2) = � 
onst for r ! 0;1=r2n for r !1 (22)with n = 1 for transverse and n = 2 for longitudinal polarization. For the dipole 
ross se
tion we take, as an example,�(x; r) = � r2 for r ! 0;
onst for r !1 (23)In this 
ase the fundamental strip of ~�(x; s) is de�ned by the 
ondition �1 < Re s < 0 while the fundamental stripof ~HT;L(s;Q2) is given by 0 < Re s < n. Taking into a

ount the minus sign in ~HT;L(�s;Q2), we �nd that theintegration 
ontour Cs in Eq. (21) lays in the strip:� 1 < Re s < 0 : (24)It 
an be 
hosen parallel to the imaginary axis, for example, s = �1=2 + i� with real �.For the Mellin transform of HT;L(r;Q2) we restri
t ourselves to massless quarks, mf = 0. In this 
ase, HT;L arefun
tions of only one 
ombined variable, r̂ = r Q:HT (r̂) = A0 Z 10 dz [z2 + (1� z)2℄ z(1� z) r̂2K21(pz(1� z) r̂) (25)HL(r̂) = 4A0 Z 10 dz z2(1� z)2 r̂2K20(pz(1� z) r̂) : (26)where we introdu
ed A0 = N
�em
e2�=(2�) and 
e2� = Pf e2f . In Appendix A we found the Mellin transforms ofthese fun
tions in the form ~HT;L(s;Q2) = �Q24 ��s ~HT;L(s) (27)with ~HT;L(s) given by Eqs. (A9) and (A10):~HT (s) = A0�8 �(2 + s) �(1 + s) �(s) �(1� s) �(3� s)�(3=2 + s) �(2� s) �(5=2� s) : (28)and ~HL(s) = A0�4 (�(1 + s))3 �(2� s)�(3=2 + s) �(5=2� s) : (29)Both fun
tions have simple or multiple poles for negative and positive real values of s.Substituting these results into Eq. (21) we obtain�
�pL;T (x;Q2) = ZCs ds2�i �Q20Q2��s ~�(x; s) ~HT;L(�s) (30)with the 
ontour Cs in the fundamental strip (24). The twist expansion is obtained by 
losing the s-
ontour to theleft. The fun
tions ~HT;L(s) have single poles to the right of C at positive integers, ex
ept for the regular points



8at s = 2 for transverse and s = 1 for longitudinal polarizations. Thus, both fun
tions have the following Laurentexpansion around ea
h singular point s = n:~HT;L(s) = a(n)T;Ls� n + b(n)T;L + O (s� n) (31)with a(1)T = �23A0;a(2)T = 0; b(2)T = �45A0 (32)and a(1)L = 0; b(1)L = 23A0a(2)L = �1615A0: (33)Assuming, for simpli
ity, that to the left of Cs, ~�(x; s) has only poles at s = �1; 2; ::: (the more realisti
 
ase where~� has 
uts in the 
omplex s-plane will be dis
ussed further below), we 
lose the 
ontour to the left and arrive at thetwist expansion: �
�pL;T (x;Q2) = 1Xn=1�(�=2n)T;L (x;Q2) : (34)where �(�=2n) � 1=Q2n (modulo powers of logQ2). With (28) and (29) we obtain:�(�=2n)T;L = ZCn ds2�i �Q20Q2��s ~�(x; s)(�a(n)T;Ls+ n + b(n)T;L + : : :) (35)where the dots stand for terms regular at s = �n. In parti
ular, for the twist-4 
orre
tions we re-dis
over the previousresult from (1):(i) due to the vanishing of a(2)T , the longitudinal stru
ture fun
tion is enhan
ed,(ii) the leading terms in FT and FL 
ome with opposite signs.For 
ompleteness, we also 
onsider the 
omplex half s-plane to the right of the 
ontour C. It is well known thatthe Bessel-M
Donald fun
tions K�(x) have a 
onvergent expansion around x = 0, whereas for large arguments theexpansion in powers of 1=x is asymptoti
. Therefore, writing the fun
tions HT;L(r̂) in the formHT (r̂) = A0�8 ZC ds2�i � r̂24 ��s �(2 + s) �(1 + s) �(s) �(1� s) �(3� s)�(3=2 + s) �(2� s) �(5=2� s) (36)HL(r̂) = A0�4 ZC ds2�i � r̂24 ��s (�(1 + s))3 �(2� s)�(3=2 + s) �(5=2� s) ; (37)we 
on
lude that the expansion in powers of r̂ | whi
h is obtained by 
losing the 
ontour to the left | is 
onvergent.In 
ontrast, the expansion in powers of 1=r̂ | whi
h 
orresponds to 
losing the 
ontour to the right and 
omputingresidues of the poles at positive integers | leads to a divergent result whi
h form an asymptoti
 series for HT;L(r̂)when r̂2 !1: HT;L(r̂) � h(1)T;Lr̂2 + h(2)T;Lr̂4 + h(3)T;Lr̂6 + : : : ; (38)where the 
oeÆ
ients h(n)T;L � a(n)T;L are equal to:h(1)T = 83A0 ; h(2)T = 0 ; h(3)T = 307235 A0 (39)h(1)L = 0 ; h(2)L = 25615 A0 ; h(3)L = 921635 A0 : (40)



9This asymptoti
 expansion justi�es the large-r behaviour of HT;L(r;Q2) used in the determination of the fundamentalstrip (24). Moreover, returning to (21) we 
on
lude that, be
ause of the negative sign of the argument of ~HT;L, thetwist expansion is an asymptoti
 expansion.In 
on
lusion, the opposite sign stru
ture as well as the relative enhan
ement of the twist-4 
orre
tions to FL aregeneral features of the small-x limit in QCD, and they provide the possibility that the total twist-4 
orre
tion to F2may be
ome small. In the following we 
hoose, for a quantitative estimate, a parti
ular model, the QCD improveddipole model. IV. THE MODELWe aim for the 
onstru
tion of the twist expansion of the proton stru
ture fun
tions FT and FL at small values ofthe Bjorken variable x. The starting point for our following analysis is the GBW saturation model [12℄ and its QCDimproved version whi
h in
orporates the leading logarithmi
 DGLAP evolution [15℄.The standard formula de�ning the total 
ross se
tion for the s
attering of a virtual photon 
�T;L(Q2) on a proton pat small value of the Bjorken variable x has already been written down in (12). The fun
tion �(x; r) in Eq. (12) is the
olor dipole 
ross se
tion, des
ribing the intera
tion of the qq pair with the proton. In the original GBW formulation[12℄ it depends on the dipole size r and the Bjorken variable x, and takes the following form�(x; r) = �0 �1� exp ��r2Q2sat(x)=4�	 (41)where Q2sat is a saturation s
ale whi
h depends on x. After in
orporating the DGLAP evolution for small dipole sizesthe dipole 
ross se
tion is modeled in [15℄ as�(x; r) = �0 �1� exp ��
(x; r2)�	 (42)where the opa
ity 
(x; r2) = �2r2 �s(�2) g(x; �2)3�0 ; (43)and g(x; �2) � xG(x; �2) is the gluon distribution (multiplied by x) whi
h obeys the DGLAP evolution equation (B1)from Appendix B. The evolution s
ale �2 was originally assumed to depend on the dipole size in the following way:�2 = C=r2 + �20 : (44)Both models of the dipole 
ross se
tion are eikonal and follow the Glauber-Mueller formulae. For the remainder ofthis se
tion, we restri
t ourselves to the original GBW model.Following our dis
ussion of the previous se
tion, we need the Mellin transform of the dipole 
ross se
tion. In the
ase of the GBW parameterization (41), we �nd~�(x; s) = �0 Z 10 dr2 (r2)s�1 �1� exp ��r2Q2sat(x)=4�	= ��0�Q2sat4 ��s �(s) : (45)Substituting this result, together with relation (27), into Eq. (21), we obtain�
�pL;T (x;Q2) = �0 ZCs ds2�i �Q2satQ2 ��s f��(s)g ~HT;L(�s) (46)with the 
ontour Cs in the fundamental strip (24). We see that the poles to the left of Cs at negative integers leadto the twist expansion: �
�pL;T (x;Q2) = 1Xn=1�(�=2n)T;L (x;Q2) : (47)



10where �(�=2n) � 1=Q2n. Singularities 
ome from the single poles of the Euler gamma fun
tion �(s) and from thepoles in ~HT;L(�s). In parti
ular, en
ir
ling the pole at s = �n by a small 
ounter-
lo
kwise oriented 
ontour Cn,and expanding both fun
tions around this point, we obtain�(�=2n)T;L = �0 ZCn ds2�i �Q2satQ2 ��s( 
(n)1s+ n + 
(n)0 + : : :)(�a(n)T;Ls+ n + b(n)T;L + : : :) (48)where the dots denote terms regular at s = �n. The result of the integration is indeed proportional to 1=Q2n withthe logarithmi
 enhan
ement 
oming from the double poles�(�=2n)T;L = �0 Q2nsatQ2n n�
(n)1 a(n)T;L log(Q2=Q2sat) + �
(n)1 b(n)T;L � 
(n)0 a(n)T;L�o : (49)In parti
ular, we �nd [11℄ { for twist-2:�(�=2)T = �em�0� 
e2� Q2satQ2 �log(Q2=Q2sat) + 
E + 1=6	 (50)�(�=2)L = �em�0� 
e2� Q2satQ2 (51)and for twist-4: �(�=4)T = 35 �em�0� 
e2� Q4satQ4 (52)�(�=4)L = �45 �em�0� 
e2� Q4satQ4 �log(Q2=Q2sat) + 
E + 1=15	 : (53)Noti
e the negative sign of �(�=4)L and the la
k of logarithm in �(�=2)L and �(�=4)T due to the singularity stru
ture (31)with a(1)L = 0 and a(2)T = 0.V. SINGULARITY STRUCTURE OF THE DGLAP IMPROVED MODELIn the DGLAP improved saturation model, the r-dependen
e of the dipole 
ross se
tion, given by Eq. (42), is ratherinvolved and its exa
t Mellin transform is not known. However, it is still possible to extra
t the information about theMellin transform ne
essary to 
arry out the twist analysis. For this purpose it is 
onvenient to use a slightly modi�edde�nition of the s
ale �2 in Eq. (42): �2 = � C=r2 for r2 < C=�20;�20 for r2 � C=�20 : (54)Su
h a modi�
ation preserves all the desired features of the original model and allows to separate the r2-integrationrange of the Mellin transform of the dipole 
ross se
tion ~�(x; s) into two regions: the perturbative one, de�ned by the
ondition r2 < C=�20, in whi
h the gluon density and strong 
oupling 
onstant are given by one-loop expressions withthe s
ale �2 = C=r2, and the soft region, de�ned by the 
ondition r2 � C=�20, where the s
ale is frozen at �2 = �20:Thus ~�(x; s) = ~�pert(x; s) + ~�soft(x; s) : (55)In the soft region the dipole 
ross se
tion takes the form of the GBW saturation model (41) with the saturations
ale Q2sat(x) = 4�2�s(�20) g(x; �20)3�0 : (56)
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s[H *σ](s)

T

FIG. 4: The singularity stru
ture of ~�(x; s) ~HT (�s) in the 
omplex s-plane to the left of the Mellin integration 
ontour Cs inthe fundamental strip shown as the gray band. The zigzag lines indi
ate the 
uts 
oming from powers of the Mellin transformof �s(�2)g(x;�2) while the full 
ir
les are the poles of ~HT (�s) that 
oin
ide with bran
h points of ~�(x; s). The 
rossed 
ir
leat s = �2 is the bran
h point that is not a

ompanied by the pole of ~HT (�s).The 
ontribution from this region to the Mellin transform is given by~�soft(x; s) = Z 1C=�20 dr2 (r2)s�1 �1� exp ��r2Q2sat(x)=4�	= ��0�Q2sat4 ��s�ass + �(s; a)� (57)where a = CQ2sat=(4�20) and �(s; a) is the in
omplete gamma fun
tion whi
h has no singularities in the 
omplexs-plane. The soft part has only a single pole at s = 0 whi
h does not 
ontribute to the twist expansion.The 
ontribution from the perturbative region may be 
omputed term by term from the expansion�pert(x; r) = 1Xn=1�(n)pert(x; r)= 1Xn=1�0 (�1)n+1n! 
npert(x; r2) (58)and the perturbative part of the opa
ity reads
pert(x; r2) = �23�0 r2�s(C=r2) g(x;C=r2)� �C=r2 � �20� : (59)The Mellin transform ~�pert(x; s) exists due to the theta distribution and is given by the sum of the Mellin transformsof the subsequent terms in the expansion (58)~�(n)pert(x; s) = �0 (�1)n+1n! f
npert(x; s) (60)Ea
h term 
ontributes a 
ut singularity in the s-plane extending to the left from the bran
h point at negative integers,see Fig. 4. The positions of the bran
h points are determined by the 
orresponding power of r2 sin
e the powers of�s(�2)g(x; �2) do not introdu
e any additional shift.For example, we 
ompute �rst the Mellin transformMr2��s(C=r2)g(x;C=r2)��C=r2 � �20�� (s) = � C�2�s g�sg(x; s) (61)where g�sg denotes the Mellin transform with respe
t to the s
ale �2, de�ned asg�sg(x; s) = Z 1�20 d�2�2 ��2�2��s �s(�2)g(x; �2) : (62)



12In su
h a 
ase the inverse relation reads�s(�2)g(x; �2) = ZC ds2�i ��2�2�s g�sg(x; s) : (63)where the integration 
ontour lays to the right of the right-most singularity. Using the property of the Mellin transform:Mt[tnf(t)℄(s) = Mt[f(t)℄(s+ n), we �ndMr2 [
pert(x; r2)℄(s) = �23�0 � C�2�s+1 g�sg(x; s+ 1) (64)and after substituting solution (B16), we obtain~
pert(x; s) = �23�0 � C�2�s+1 Z d!2�i x�! 2� ~g0(!)~Pgg(!) (s+ 1)� b02� ~Pgg(!) : (65)The logarithmi
 
ut singularity along the negative real axis with the bran
h point at s = �1 is obvious from thissolution. The Mellin transform of 
2pert(x; r2) is given byMr2 [
2pert(x; r2)℄(s) = � �23�0�2 � C�2�s+2 (̂�sg)2(x; s+ 2) (66)= � �23�0�2 � C�2�s+2 Z ds02�i g�sg(x; s0) g�sg(x; s+ 2� s0) : (67)where (̂�sg)2 is the Mellin transform (62) of the produ
t [�s(�2)g(x; �2)℄2, and the Mellin 
onvolution theorem wasused in the last equality. It 
an be shown expli
itly that expression (66) has a 
ut singularity along the real axis for�1 < s < �2 with the bran
h point at s = �2.In general, we have Mr2 [
npert(x; r2)℄(s) = � �23�0�n � C�2�s+n (̂�sg)n(x; s+ n) (68)with the logarithmi
 
ut along the negative real axis starting at the bran
h point at s = �n, see Fig. 4. In summary, thesingularity stru
ture of the Mellin transform (55), relevant for the twist expansion, is determined by the perturbativepart only. VI. TWIST DECOMPOSITION IN THE DGLAP IMPROVED MODELAt ea
h twist the saturation model in
orporates a few distin
t 
ontributions that have a 
lear interpretationwithin perturbative QCD. The 
ontributions may be 
lassi�ed using the singularity stru
ture of the produ
t~�(x; s) ~HT;L(�s;Q2) in the Mellin plane. A. Twist-2 
ontributionsStarting from the twist-2 analysis, we 
lose the 
ontour Cs of the Mellin integration in Eq. (21) with two largequarter-
ir
les Q1 and Q2 and a 
ontour Ds enveloping the 
omplex 
ut of ~�(x; s) with the bran
h point at s = �1,see Fig. 5. Then, we de
ompose ~�(x; s) into a part whi
h singular at s = �1, given by ~�(1)pert(x; s) = �0 ~
pert(x; s),and a part whi
h is regular at this point, ~�(s=�1)reg (x; s). The latter part 
onsists both the soft 
ontribution (57) andthe 
ontributions from multiple ex
hanges with 
uts starting from s = �2. Thus, using expansion (31) for ~HT;L(�s)with n = 1, we obtain the twist-2 part in the form�(�=2)T;L = Z�Ds ds2�i �Q24 �s n�0 ~
pert(x; s) + ~�(s=�1)reg (x; s)on�a(1)T;Ls+ 1 + b(1)T;L + O(s+ 1)o (69)
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FIG. 5: The dis
ontinuity stru
ture of ~�(1)pert(x; s) ~HT (�s) and the integration 
ontours in the 
omplex s-plane with the pie
es:Q1; Q2 and Ds. The meaning of all symbols is as in Fig. 4where the integration 
ontour is reversed with respe
t to the 
ontour Ds shown in Fig. 5, and the Laurent expansion
oeÆ
ients a(1)T = � 23A0 ; a(1)L = 0 ; b(1)T = � 43
E � 59�A0 ; b(1)L = 23A0 : (70)with A0 = N
�em
e2�=(2�).Let us 
ompute the twist-2 
ontribution for transverse photons 
oming from the most singular part of the Mellinintegrand: �a�(�=2)T = �0 Z�Ds ds2�i �Q24 �s ~
pert(x; s)n�a(1)Ts+ 1 o : (71)The analogous longitudinal 
ontribution vanishes sin
e a(1)L = 0. Using relation (64), we �nd�a�(�=2)T = �4�2a(1)T3Q2 Z�Ds ds2�i �CQ24�2 �s+1 g�sg(x; s+ 1)s+ 1 : (72)The 
ontour integration 
an be 
omputed dire
tly after substituting Eq. (65) or, alternatively, one 
an realize thatthe integral in (72) is the inverse Mellin transform (63) at the s
ale �2 = CQ2=4 of the following fun
tionS(2)T (x; �2) = Z �2�20 d�02�02 �s(�02)g(x; �02) + S(2)T (x; �20) ; (73)where the reminder S(2)T (x; �20) depends only on the gluon distribution at an initial s
ale �20. It 
an be 
omputed usingthe DGLAP equation (B13) S(2)T (x; �20) = ZC! d!2�i x�! 2� ~g(!; �20)~Pgg(!) : (74)Thus, we �nally obtain�a�(�=2)T = �4�2a(1)T3Q2 (Z CQ2=4�20 d�02�02 �s(�02) g(x; �02) + S(2)T (x; �20)) : (75)The leading logarithmi
 term in Eq. (75) 
oin
ides with the standard DGLAP expression for �
�pT obtained assumingthat the see quarks 
ome from the gluon splitting in the last step of the evolution.The higher orders in the Laurent expansion of ~HT;L(�s) in Eq. (69), beyond the singular term, 
orrespond to higherorder terms in the perturbative expansion of the twist-2 
ontribution. The next-to-leading order (NLO) 
ontribution



14originate from the 
onstant term b(1)T;L. The obtained expression is of the form (72) without (s+1) in the denominator.Thus, we immediately obtain �b �(�=2)T;L ���NLO = 4�2b(1)T;L3Q2 �s(CQ2=4) g(x;CQ2=4) ; (76)whi
h for the transverse polarization 
arries one power of the large logarithm logQ2 less than the leading term in�a�(�=2)T . Noti
e that, as expe
ted, for the longitudinal polarization the �rst non-vanishing twist-2 
ontributionenters at the NLO level. A similar pro
edure 
ould also be applied to higher terms of the Laurent series, giving
ontributions with su

essively de
reasing power of logQ2. Obviously, these higher order terms do not exhaust all thehigher order QCD e�e
ts. They are parts of the QCD 
orre
tions to the twist-2 amplitude whi
h 
ome from in
lusionof the quark transverse momentum in the quark box beyond the 
ollinear limitSo far we have dealt with the singular part of ~�(x; s) at s = �1, generated by the �rst term in the perturbativepart of the Glauber-Mueller series (58) proportional to the gluon distribution g(x; �2). The remaining terms of thisseries as well as the soft part ~�soft(x; s) are regular at s = �1. However, they 
ontribute to twist-2 through the poleof HT (�s) at this point, giving �
�(�=2)T = �4a(1)TQ2 ~�(s=�1)reg (x; s = �1) : (77)The fun
tion on the r.h.s is a sum of two pie
es: the soft part, ~�soft(x; s = �1), and the Mellin transform of theregular part of the perturbative 
omponent, �pert(x; r) � �(1)pert(x; r), 
omputed for s = �1. Thus~�(s=�1)reg (x; s = �1) = Z C=�200 dr2r4 n�(x; r) � �(1)pert(x; r)o + ~�soft(x; s = �1) : (78)We summarize by displaying the most leading twist-2 
ontribution to the 
�p 
ross se
tions, obtained in the DGLAPimproved saturation model (with C = 4):�(�=2)T = 8�2A09 1Q2 Z Q2�20 d�02�02 �s(�02) g(x; �02) (79)�(�=2)L = 8�2A09 1Q2 �s(Q2) g(x;Q2) : (80)Noti
e the similarity 
on
erning leading logarithms between the twist-2 
ontributions in the original GBW model,Eqs. (50) and (51), and the above formulae.B. Twist-4 
ontributionsThe formula for twist-4 is determined by the Mellin transform ~�(2)pert(x; s) of the se
ond term in Eq. (58) and theLaurent expansion of ~HT;S(�s) around s = �2:�(�=4)T;L = Z�D(1)s ds2�i �Q24 �s n��02 f
2pert(x; s) + ~�(s=�2)reg (x; s)on�a(2)T;Ls+ 2 + b(2)T;L + O(s + 2)o (81)where the integration 
ontour envelopes the 
ut singularity with the bran
h point at s = �2 in whi
h the fun
tion~�(s=�2)reg (x; s) is regular, see Fig. 6. The Laurent expansion 
oeÆ
ient are now given bya(2)T = 0 ; a(2)L = � 1615A0 ; b(2)T = � 45A0 ; b(2)L = � 3215
E � 344225�A0 : (82)The vanishing a(2)T means that the leading logarithmi
 twist-4 
ontribution�a��=4)T = �0 a(2)T2 Z�D(1)s ds2�i �Q24 �s ℄
2pert(x; s)s+ 2 ; (83)
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FIG. 6: The singularity stru
ture in Mellin plane relevant for twist-4 transverse and longitudinal 
ontributions together withthe integration 
ontours. The meaning of all symbols is as in Fig. 4, but the original 
ontour, Cs, is repla
ed by the shiftedC(1)s . The fundamental strip is also shifted.vanishes for transverse photons. For the longitudinal polarization it 
an be found in a similar way as for twist-2, withthe following result�a�(�=4)L = 8�0a(2)LQ4 � �23�0�2(Z CQ2=4�20 d�02�02 ��s(�02) g(x; �02)�2 + S(4)L (x; �20)) (84)where the reminder is of non-perturbative origin and does not depend on Q2,S(4)L (x; �20) = b20log��20�2 � Z d!2�i x�! Z d!02�i ~g0(!0) ~g0(! � !0)b02� ~Pgg(!0) + b02� ~Pgg(! � !0)� 1 : (85)The NLO 
orre
tion to twist-4 
omes from the 
onstant term, b(2)T;L, in the Laurent expansion of ~HT;L(�s) arounds = �2. It is straightforward to obtain�b �(�=4)T;L ���NLO = �8�0b(2)T;LQ4 � �23�0�2 ��s(CQ2=4) g(x;CQ2=4)�2 ; (86)whi
h in the longitudinal 
ase has one logarithm of Q2 less then the leading 
ontribution (84). As for twist-2, thehigher terms in the Laurent expansion of ~HT;L(�s) give rise to yet higher order perturbative 
orre
tions.Multiple s
attering e�e
ts (with n � 3) and the soft 
ontribution are important only for the longitudinal twist-4,�(�=4)L (x;Q2). They are 
olle
ted in�
�(�=4)L = �16a(2)LQ4 h~�(s=�2)reg (x; s = �2) + ~�soft(x; s = �2)i (87)where ~�(s=�2)reg (x; s = �2) = Z C=�200 dr2r6 h�(x; r) � �(1)(x; r) � �(2)(x; r)i : (88)In summary, the following leading logarithmi
 stru
ture is found for twist-4 (with C = 4)�(�=4)T = 32�4A045�0 1Q4 ��s(Q2) g(x;Q2)�2 (89)�(�=4)L = �128�4A0135�0 1Q4 Z Q2�20 d�02�02 ��s(�02) g(x; �02)�2 ; (90)whi
h should be 
ompared to the results obtained in the original GBW saturation model, Eqs. (52) and (53). Noti
ethe similarity in the sign and the leading logarithmi
 stru
ture.



16C. Dis
ussionThe results (79),(80) and (89),(90) on the leading logarithmi
 behaviour of the twist-2 and twist-4 
ontributionsare quite general. For the nu
leon stru
ture fun
tions FT and FL they imply that the relative twist-4 
orre
tion toFT is strongly suppressed w.r.t. the twist-2 
ontribution sin
e the subleading twist-4 term in FT appears only at theNLO. On the 
ontrary, for FL the leading twist term enters only at the NLO and the the twist-4 
orre
tion entersat the leading order. So, the relative twist-4 e�e
ts in FL are expe
ted to be enhan
ed. Note that both in the 
aseof FT and FL, the twist-4 e�e
ts are enhan
ed w.r.t. the twist-2 
ontribution by an additional power of the gluondensity g(x;Q2). At suÆ
iently small x, when the gluon density is large, this enhan
ement may 
ompensate thetwist-4 suppression w.r.t. the leading twist-2 
ontribution.For the stru
ture fun
tion F2 = FT +FL we expe
t small relative 
orre
tions from the higher twists be
ause of theopposite sign of the terms proportional to a(2)L and b(2)T;L. In fa
t, both a(2)L and b(2)T;L are negative. Thus it follows from(89) and (90) that the resulting LO twist-4 
ontribution to F2 
oming from FL is positive and both the dominant(though NLO) term in FT and the NLO 
orre
tion to FL are negative. This leads to partial 
an
ellation between thetwist-4 LO and NLO 
ontributions to F2 at moderate Q2, whi
h 
an be also viewed as a partial 
an
ellation betweenthe twist-4 
orre
tions to FL and FT .These 
on
lusions about the importan
e of the higher twist 
orre
tions are expe
ted to be quite general be
ausethey follow dire
tly from the twist stru
ture of the quark box and do not depend on the detailed form of the twist-4gluon distribution. In fa
t, for a generi
 twist-4 gluon density G4(x;Q2) (not ne
essarily proportional to [g(x;Q2)℄2),the qualitative pattern of the 
omputed twist-4 
orre
tions emerges. This happens be
ause independently of thedetailed form of gluon density, the perturbative 
olor dipole s
attering 
ross se
tion at twist-4 is proportional tor4 �s(C=r2)G4(x;C=r2). Using a generally valid relation: R (ds=2�i)x�s ~f(s)=s = R x dx0f(x0), one �nds�(�=4)T � b(2)TQ4 �2s(Q2)G4(x;Q2) ; (91)and �(�=4)L � �a(2)LQ4 Z Q2 d�02�02 �2s(�02)G4(x; �02) + b(2)LQ4 �2s(Q2)G4(x;Q2) : (92)This 
on�rms that for twist-4 the pattern of 
an
ellations in F2 between FL and FT (or between LO and NLO terms)is indeed universal. VII. TWIST DECOMPOSITION IN THE COORDINATE SPACEThe pre
eding analysis was 
arried out in the Mellin spa
e. This representation is useful to understand the keyfeatures of the twist de
omposition and mat
h the DGLAP improved saturation model with QCD. However, in theexpli
it 
al
ulations of the twist 
omposition of the 
�p 
ross se
tions we �nd it more 
onvenient to use the 
oordinaterepresentation. The main reason is that the multiple s
attering 
ontributions are represented as multiple 
onvolutionsin the Mellin spa
e and as simple powers of r2�s(�2)g(x; �2) in the 
oordinate spa
e. Thus, we shall 
onstru
t anexpli
it pres
ription that fa
ilitates the twist de
omposition in the 
oordinate spa
e. The obtained formula (99) isequivalent to its 
ounterpart in the Mellin moment representation and it will be used to provide numeri
al estimatesof the twist de
omposition of the nu
leon stru
ture fun
tions.The singularity stru
ture of the produ
t ~�(x; s) ~HT;L(�s;Q2) is similar to the stru
ture of ~�(x; s) ex
ept of thebran
h points of ~�(x; s) whi
h are strengthened by the poles of ~HT;L(�s;Q2). In what follows, we shall isolate the
ontributions of the singularities emerging at s = �1;�2; : : : and link them with the twist 
ontributions � = 2; 4; : : :,respe
tively Let us de�ne two sets of fun
tions,�(n)(x; r) = �(x; r) � �0 nXk=1 (�1)kk! 
k(x; r2) (93)and after introdu
ing r̂ = rQ H(n)T;L(r̂) = HT;L(r̂) � nXk=1 h(k)T;L(r̂)2k (94)
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ture of ~�(0)(x; s) ~HT (�s;Q2) and ~�(1)(x; s) ~HT (�s;Q2), and the integration 
ontours in the
omplex s-plane. The meaning of all symbols is as in Fig. 4 { additionally, pie
es of the 
losed integration 
ontour are shown:C(1)s ; D(0)s ; D(1)s , et
.where h(k)T;L are the 
oeÆ
ients of the asymptoti
 expansion of HT;L(r̂), see Eq. (39). Additionally, �(0) = � andH(0)T;L = HT;L. We see that �(n) des
ribes the 
ontribution to the dipole 
ross se
tion of (n+ 1) and more s
atteringsand H(n)T;L gives the 
ontribution to the photon wave fun
tion from the poles of twist � = 2(n + 1) and higher. Thenew fun
tions have the following asymptoti
s at small and large values of r (modulo logarithms):�(n)(x; r) � � (r2)n+1 for r ! 0(r2)n for r !1 (95)and H(n)T;L(r̂) � � 1=r̂2n for r ! 01=r̂2(n+1) for r !1 : (96)Now, it is easy to prove that �(n)(x; r) and H(n)T;L(r̂) have Mellin transforms, ~�(n)(x; s) and ~H(n)T;L(�s;Q2), with thefundamental strip: � (n+ 1) < Re s < �n : (97)It is moved to the left by n units with respe
t to the fundamental strip given by Eq. (24).The singularities of the Mellin transform ~�(n)(x; s) emerging at the bran
h point to the left of its fundamental stripare the same as the 
orresponding singularities of the fun
tions: ~�(0)(x; s); ~�(1)(x; s); : : : ; ~�(n�1)(x; s). The fun
tionsH(n)T;L(r̂) are shifted with respe
t to HT;L(r̂) by a �nite power series in 1=r̂2, so their Mellin transforms are identi
aland equal to the Mellin transform ~HT;L(s;Q2) for all n. The series subtra
tion results only in the already dis
ussedshift in the position of the fundamental Mellin strip. Therefore, the di�eren
e�(n)[�HT;L℄(x;Q2) = ZC(n�1)s ds2�i ~�(n�1)(x; s) ~H(n�1)T;L (�s;Q2) � ZC(n)s ds2�i ~�(n)(x; s) ~H(n)T;L(�s;Q2) (98)de�nes the 
ontribution of the n-th singularity (i.e. the 
ut dis
ontinuity with the bran
h point at s = �n) to theintegral in Eq. (21), see Fig. 7 for illustration. In our analysis we identify this 
ontribution with the � = 2n twist
omponent of �
�pT;L.The Mellin integrals in Eq. (98) may be expressed in the 
oordinate spa
e to give a formula that fa
ilitates a dire
tdetermination of all twists in the 
oordinate representation:�(2n)T;L (x;Q2) = Z 10 dr2r2 n�(n�1)(x; r)H(n�1)T;L (rQ) � �(n)(x; r)H(n)T;L(rQ)o : (99)Clearly, the twist de
omposition would be 
omplete and1Xn=1�(�=2n)T;L = �
�pT;L (100)



18provided that the in�nite summation of �(n)[�HT;L℄(x;Q2) is 
onvergent1.The pres
ription given by Eq. (99) may be also applied to the original GBW dipole 
ross se
tion whi
h Mellintransform has a series of isolated poles at s = �n instead of the series of 
ut singularities. In this 
ase, in Eq. (93) apolynomial is subtra
ted and the Mellin transform of �(n)(x; r) is identi
al to ~�(x; s) given by Eq. (45). Therefore,formulae (98) and (99) may also be applied to extra
t the 
ontribution from all singularities of ~�(x; s)HT;L(�s;Q2)to give the twist expansion in the 
ase of the GBW dipole 
ross se
tion. An expli
it numeri
al 
he
k showed that theexpansion obtained using pres
ription (99) agrees with the analyti
 results in [11℄.VIII. HEAVY QUARKSSo far we studied the massless quark 
ontribution. Within the kT -fa
torization approa
h it is straightforward tostudy also the 
ase with a non-zero quark mass. In parti
ular, the Mellin transforms of the photon wave fun
tionssquared with mf 6= 0, whi
h generalize expressions (A9) and (A10), are known [12℄. We shall denote them by~HT;L(s;Q2;m2f ). The 
ontribution of a heavy quark to the 
�p 
ross se
tion may be obtained using the Parsevalformula (21) in whi
h the repla
ement ~HT;L(�s;Q2) ! ~HT;L(�s;Q2;m2f ) is made. For Re s > 0, the fun
tions~HT;L(s;Q2;m2f ) are regular in s. Therefore, the s-singularity stru
ture of the integrand ~�(x; s) ~HT;L(�s;Q2;m2f ) in(21) is determined by the singularity stru
ture of ~�(x; s). Hen
e, for heavy quarks the twist-� 
omponent is determinedby the n-fold s
attering 
omponent of the dipole 
ross-se
tion,�(�=2n)T;L (x;Q2;mf ) = Z 10 dr2r2 HT;L(r2; Q2;m2f )�n(x; r2) (101)where �n(x; r2) = �0(�1)n+1 
n(x; r2)=n!. Note that for heavy quarks with m2f � �20, the integration in (101) doesnot lead to any infra-red divergen
es sin
e the photon wave fun
tion provides an exponential 
ut-o� proportional toexp(�rmf ) for the r2 integration. This was not the 
ase for the light quarks, when m2f � �20, for whi
h formula (101)
annot be applied. IX. PHENOMENOLOGICAL RESULTS AND CONSEQUENCESIn this se
tion the obtained estimates are presented for the higher twist e�e
ts in FT , FL and F2, and also, separately,for the 
harm quark 
omponents of FT , FL and F2. Additionally, we dis
uss the phenomenologi
al 
onsequen
es of our�ndings for the measurements at the LHC. We performed an expli
it numeri
al evaluation of higher twist 
omponentsof the proton stru
ture fun
tions in the DGLAP improved saturation model, de�ned by Eqs. (42){(43) with theevolution s
ale given by Eq. (54): �2 = � C=r2 for r2 < C=�20�20 for r2 � C=�20 :Furthermore, we 
ompared the results to those obtained in [11℄ within the GBW model [12℄ without the DGLAPevolution.The parameters of the DGLAP improved saturation model were �tted to des
ribe all HERA data on F2 at x < 0:01.In the model we took into a

ount three massless quark 
avors and the massive 
harmed quark with m
 = 1:3 GeV.The gluon density at the input s
ale Q20 = 1 GeV2 was assumed to take the formxg(x;Q20) = Ag x�� (1� x)5:6 : (102)The parameters obtained from the best �t with �2 = 0:94=d:o:f are the following:C = 0:55 ; �20 = 1:62 ; Ag = 1:07 ; � = 0:14 ; �0 = 22 mb : (103)1 In fa
t the series in not 
onvergent; the expression was obtained assuming the validity of the asymptoti
 HT;L(rQ) expansion for largerQ down to rQ = 0. Therefore, the obtained series is asymptoti
.
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Twist ratios: tw-4/tw-2
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1 2 3 4 5 6 7 8 9FIG. 8: The ratio of twist-4 to twist-2 
omponents of FT , FL and F2 at x = 4 �10�5 in the GBW model with 
harm (
ontinuouslines) and in the DGLAP improved saturation model (dashed lines).A. Stru
ture fun
tionsThe obtained relative twist-4 
orre
tions (with respe
t to the twist-2 ones) to the stru
ture fun
tions FT , FL andF2 are displayed in Fig. 8, as a fun
tion of Q2, for x = 4 � 10�5 (for this value the saturation s
ale Qs(x) = 1 GeVin the GBW model with 
harm). The 
ontinuous 
urves obtained in [11℄ 
orrespond to the GBW model with 
harmquarks [12℄, and the dashed ones are obtained in the DGLAP improved saturation model (BGK) [15℄ with theparameters given above. The di�eren
es between the GBW model and the BGK models are visible, but rather small.The qualitative pi
ture is fully 
onsistent between the models and agrees very well with the results of the analyti
analysis outlined in Se
. VI. Thus, the higher twist 
orre
tions are strongest in FL, and mu
h weaker in FT . In F2there o

urs a rather �ne 
an
ellation between the twist-4 
ontributions to FT and FL, at all Q2, down to 1 GeV2.Although an e�e
t of this kind was expe
ted, it still remains somewhat surprising that this 
an
ellation works so well.
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Twist ratios: tw-2/exact
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1 2 3 4 5 6 7 8 9FIG. 9: The ratio of the twist-2 
omponent to the full light quark result of the model for FT , FL and F2 at x = 4 � 10�5 in theGBW model with 
harm (
ontinuous lines) and in the DGLAP improved saturation model (dashed lines).We also show in Fig. 9 the ratio of the twist-2 
omponent to the full dipole model result for FT , FL and F2. The fullresult in
orporates the resummed 
ontributions of all twists. On the qualitative level, the e�e
t of all higher twistsshown in Fig. 9 are similar to the e�e
t of twist-4 in Fig. 8, indi
ating that the higher twist 
orre
tions are driven bythe twist-4 
ontribution down to Q2 = 1 GeV2. It is remarkable, that the 
an
ellation of the higher twist e�e
ts inF2 o

urs also in the all-twist result. Clearly, the results shown in Fig. 9 indi
ate that at lower Q2, the 
onventionaltwist-2 
al
ulations underestimate the value of FT , signi�
antly overestimate the value of FL and slightly overestimatethe value of F2.One should stress, that the theoreti
al 
on
lusions about the strength of the higher twist 
orre
tions, related to thepowers of �s, are only valid in the perturbative range, where �s is small. They are therefore, well justi�ed for Q2above, say, 5 GeV2. In that region, indeed, the di�eren
e between higher twists in FL and FT is quite pronoun
ed.At lower Q2, where �s is not small, the di�eren
es in powers of �s should not lead to quantitatively distin
t results in



21FT and FL. Indeed, at Q2 = 1 GeV2, the relative twist-4 
orre
tions to FT and FL are 30% and 50% 
orrespondingly,that is they do not di�er very mu
h. B. Charm 
ontributionThe DIS 
ross-se
tion at small-x and a moderate Q2 re
eives signi�
ant 
ontribution from the 
harmed quark. The
ontribution of the bottom quark may be safely negle
ted due to its small 
harge eb = 1=3 and its large mass. For theregion of interest, Q2 � 10 GeV2, the mass, m
, of the 
harmed quark 
annot be negle
ted, as Q2 � 4m2
 . Therefore,our extra
tion of the higher twist e�e
ts in 
harm stru
ture fun
tions F 
T and F 
L is based on the results of Se
. VIII.The results for higher twist e�e
ts in the 
harm stru
ture fun
tions F 
T and F 
L are shown in Fig. 10. Displayed arethe twist-2 and twist-4 
omponents and the all-twist result. In 
ontrast with the 
ase of the light quarks, the highertwist e�e
ts introdu
e negative 
orre
tions both in F 
T and in F 
L, and the magnitude of the ratio of twist-4 to twist-2
ontributions is similar in both 
ases and rea
hes a few per
ent. Consequently, the e�e
t of higher twists in F 
2 issimilar. C. Comparison with FL dataRe
ently, new measurements were performed of the proton FL stru
ture fun
tion in a wide kinemati
 range [16℄. Themeasurements probe FL for 
orrelated (x;Q2) pairs down to x = 5:9�10�5 and Q2 = 1:8 GeV2, see Fig. 11. The data inthe lowest range of x are parti
ularly interesting, as in this region, the leading twist, �xed order DGLAP 
al
ulationsfa
e intrinsi
 problems [32, 33℄. Spe
i�
ally, in that region, the 
onvergen
e of the subsequent FL approximationswithin perturbative expansions is rather poor, up to the next-to-next-leading order (NNLO) approximation [33℄. Inaddition, at very small x and low Q2, the estimated FL be
omes negative, violating the fundamental 
ondition ofpositivity [33℄. This indi
ates that the DGLAP treatment in this region has to be improved. In what follows, we shallpresent the 
omparison of the new FL data with the dipole model results, and we shall shortly 
ompare our approa
hwith another su

essful approa
h to F2 and FL, based on the leading twist DGLAP s
heme, improved by a small xresummation [32℄.In Fig. 11 we show the 
omparison of our results with the preliminary data on FL from the H1 
ollaboration. Inthe top of the plot, the values of x are indi
ated for ea
h data point. Note that the experimental data points showstrong 
orrelation between the values of Q2 and x. Thus, small Q2 values are measured for smaller values of x. Thesolid 
urve represents the all twist result from the DGLAP improved saturation model applied in this paper, whilethe dashed line shows the twist-2 
ontribution within this model. The di�eren
e between the two 
urves 
omes fromthe negative higher twist terms, with a dominant 
ontribution of twist-4. The des
ription of the data provided by themodel is good, both for the twist-2 approximation and the all-twist result. We stress, that all the model parametersare �xed by the �t to F2 data and no new parameters are introdu
ed in the des
ription of FL.Clearly, the low Q2 region of the plot, where x is also small, is highly sensitive to higher twist e�e
ts. In parti
ular,for the lowest measured values of (x;Q2), the twist-2 
ontribution is already about two times larger then the exa
tresult. Unfortunately, the 
urrent experimental errors are sizable and no eviden
e for higher twist e�e
ts 
an be drawnfrom the measurements, yet. We stress, however, that FL at small x and Q2 should be an ex
ellent observable to �ndsu
h e�e
ts, provided that the experimental errors may be further redu
ed.The defe
ts of the �xed order DGLAP des
ription of FL at small x and Q2 were shown to be partially 
uredby in
luding into the DGLAP framework a resummation of small x 
orre
tions, enhan
ed by powers of logx. Theresummation, proposed by Thorne and White (TW) [32℄, absorbs the NLL BFKL e�e
ts at the leading twist into theNLO DGLAP evolution. In the 
urrently relevant kinemati
 range, the des
ription of FL based on the TW approa
his remarkably similar [33℄ to the one obtained within a saturation model with the impa
t parameter dependen
e (the,so 
alled, b-Sat model) [34℄. In addition, the b-Sat model results for FL agree well with the results of this paper.The TW s
heme provides a good des
ription of the existing FL data. The FL at small x and Q2 following from thesaturation models is signi�
antly lower than the 
orresponding TW result, but the di�eren
es are not pronoun
edenough to permit a dis
rimination between the approa
hes with the present data. Let us, however, stress, that theasymptoti
 x! 0 (or Q2 ! 0) behaviour of the stru
ture fun
tions should be di�erent in approa
hes 
onsistent withunitarity 
onstraints, (as e.g. the saturation models), and the leading twist approa
h. In the former 
ase, FL shouldvanish in the limit, while in the latter 
ase it should remain non-zero. Thus, one expe
ts, that the leading twistapproa
h should be insuÆ
ient at a very low x and �xed Q2, and that the in
lusion of higher twist e�e
ts should bene
essary in that limit.
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Charm contribution
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ontribution to FT and FL at x = 4 � 10�5 in the DGLAP improved saturation model. Shown are the
ontributions of the twist-2 
omponent (dashed lines), the twist-4 
omponent (dotted lines) and the full result (
ontinuouslines). D. Dis
ussion and impli
ations for the LHCThe analysis performed in this paper shows that the importan
e of the higher twist 
orre
tions may essentiallydepend on the pro
ess and the probe. In parti
ular, higher twist e�e
t in the stru
ture fun
tion F2 are stronglysuppressed due to rather �ne 
an
ellations between FT and FL. Su
h 
an
ellations are not expe
ted to o

ur in ageneri
 
ase. For instan
e, the higher twist e�e
t in FL are enhan
ed. Thus far, parton density fun
tions (pdfs) inDIS were �tted mostly to the F2 data. Due to small higher twist e�e
ts in F2, one expe
ts that the suppressed highertwist 
ontributions should not a�e
t the quality of the determination of pdfs. This is, 
ertainly, a good news. Theestimated 
orre
tion due to higher twist e�e
ts in FL at small x and a moderate Q2 is, however, mu
h larger, andthis 
orre
tion should be taken into a

ount when in
luding the FL data into �ts of pdfs.The example of F2 and FL in the DIS shows that the multiple s
attering (higher twist) e�e
ts are probed in variousways, depending on the observable. Similar di�eren
es in the magnitude of higher twist e�e
ts in various observablesmay o

ur in the hadroni
 
ollisions, e.g. in pp 
ollisions at the LHC. In parti
ular, 
an
ellations present in F2 is notexpe
ted for the bulk of LHC observables probing the gluon distributions at small-x. Thus, in general, the relative
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Comparison with H1 data
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2FIG. 11: Comparison of the DGLAP improved saturation model with the preliminary H1 on FL [16℄. The solid line is theall-twist result while the dashed line shows the twist-2 
ontribution. The value of x is indi
ated for ea
h data point.e�e
ts of higher twists at the LHC should be larger than they are in F2. As an example, let us give the 
ase of theforward Drell-Yan pro
ess, that 
an be e�e
tively des
ribed using the dipole formulation [35℄. At LHC-b, the Drell-Yan pro
ess may be probed at moderate Q2 � 10 GeV2 and x � 10�6, what should provide a gold-plated probe ofthe gluon density at small x. However, the higher twists e�e
ts may be quite strong there. In parti
ular, let us invokean example of the Lam{Tung relation [36℄ that holds for angular distribution of Drell-Yan lepton pairs. A

ording tothis relation, the twist-2 
ontribution to one of the angular 
omponents of the dilepton distribution vanishes in theleading logarithmi
 approximation. Therefore, higher twist e�e
ts in this 
omponent should be enhan
ed, in analogyto the 
ase FL [36, 37℄. Thus, given the low values of x and Q2, that 
an be rea
hed in the measurements in LHC-b,the violations of Lam-Tung relation should provide a sensitive probe of the higher twist gluoni
 operators at small x.On the other hand, the higher twist e�e
t may be also large in the total 
ross-se
tion of the forward Drell-Yan pro
ess.In that 
ase, a determination of gluon density at small x, based on the leading twist 
ontribution alone would beina

urate, and the higher twist 
ontributions should be taken into a

ount. Besides that, the higher twist e�e
tsmay be larger in pro
esses with gluons, like e.g. the forward gluoni
 jet produ
tions, where the multiple s
attering ofthe gluon is enhan
ed by its 
olor 
harge, as 
ompared to the quark res
attering in the DIS 
ase. In su
h pro
esses,we do not expe
t that any 
an
ellations of res
attering e�e
ts should o

ur, of the type found in F2.X. CONCLUSIONSIn this paper the leading higher twist 
ontributions to proton stru
ture fun
tions, F2, FT and FL, at small Bjorken xand moderate Q2 were analyzed. The problem was analyzed theoreti
ally 
onfronting two di�erent approa
hes. Inthe �st approa
h, we fo
used on a subset of QCD diagrams des
ribing 
ontributions of quasipartoni
 gluon operators,that should dominate the higher twist e�e
ts in the deeply inelasti
 s
attering at small x. We demonstrated, that thissub
lass of the diagrams, at the leading logarithmi
 approximations and in the large N
 leads to a pi
ture 
onsistentwith the DGLAP improved saturation model. In 
ontrast, we 
onsidered also the problem of higher twists in theBalitsky-Kov
hegov framework, in whi
h, the BFKL Pomeron fan diagram are resummed. In this approa
h, highertwist 
ontributions 
oming from the fan diagrams vanish in the leading logQ2 approximation.The pattern of the most important twist-2 and twist-4 
ontributions to F2, FT and FL is determined by the properties



24of the quark loop through whi
h the virtual photon intera
ts with the gluoni
 �eld of the proton. Therefore, it isuniversal and its key features should not depend on the model details. Those features are: (i) the twist-4 
orre
tionto FT enters only at the NLO, and so, the twist-4 
orre
tion to FT is suppressed; (ii) the twist-2 
ontribution to FLenters at NLO, and the LO twist-4 term in FL is relatively enhan
ed and more important; (iii) the relative sign oftwist-4 
orre
tions to FT and FL is opposite, and the higher twist e�e
ts partially 
an
el in F2 = FT + FL. Thesegeneral 
on
lusions were then 
on�rmed by a quantitative phenomenologi
al analysis.We performed a numeri
al twist analysis of the DIS 
ross-se
tions at small-x within the DGLAP improved saturationmodel. In order to 
arry out a quantitative estimate of the higher twist e�e
ts in the stru
ture fun
tions, we proposeda method allowing for a dire
t, numeri
al twist de
omposition of the saturation model 
ross se
tions. The methodwas then applied to the DGLAP improved saturation model, �tted to the HERA F2 data. Contributions of twist-2,twist-4 and all twists to F2, FT and FL were then extra
ted. We found a strikingly good 
an
ellation of the highertwist e�e
ts in F2, for whi
h, at x = 3 � 10�4, the relative 
orre
tion from higher twists is found to be at a fewper
ent level down to Q2 = 1 GeV2. The higher twist 
orre
tions to FT were found to be moderate, below 10% forQ2 > 3 GeV2 at x = 3 � 10�4. On the other hand, the twist-4 
orre
tion in FL was found to be large, about 50%, atQ2 = 1 GeV2, and still sizeable, about 20%, at Q2 = 10 GeV2. Therefore, whereas the leading twist analyses of F2are fully justi�ed, one should in
lude the higher twist e�e
ts in analyses of the FL data at small x and moderate Q2.We also found that the saturation model des
ription of the re
ent FL measurements at small x and low Q2 is good.Unfortunately, the data are not pre
ise enough to prove that the in
lusion of higher twist 
orre
tions improves thedes
ription of the data.Finally, some impli
ations were dis
ussed of the results for analyzes of the LHC data. In parti
ular, we stresseda strong pro
ess-dependen
e of the higher twist 
ontributions, exempli�ed before by the striking di�eren
es betweenF2 and FL. It follows from our analysis, that F2 is prote
ted by 
an
ellations from the higher twist e�e
ts, andsu
h 
an
ellations are not expe
ted to be generi
. Therefore, the higher twist e�e
ts in some LHC observables maybe mu
h stronger that they are in F2. Thus, it is 
ru
ial to estimate higher twist e�e
ts when attempting a pre
isedetermination of parton densities in LHC measurements at small x and moderate Q2, like e.g. in the forward Drell-Yanpro
ess at low Q2, or in the forward jet produ
tion.A
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ompute the Mellin transform of HT (rQ) given by Eq. (25)~HT (s;Q2) = Z 10 dr2 (r2)s�1HT (rQ) : (A1)Substituting Eq. (25) we obtain ~HT (s;Q2) = �Q24 ��s ~HT (s) (A2)where ~HT (s) = 4�sA0 Z 10 dz [z2 + (1� z)2℄ z(1� z) Z 10 dr̂2 (r̂2)sK21(pz(1� z) r̂) : (A3)with r̂ = rQ. Changing the variable, y2 = z(1� z)r̂2, we �nd~HT (s) = 4�sA0 Z 10 dz z2 + (1� z)2zs(1� z)s Z 10 dy2 (y2)sK21 (y) : (A4)The integral over z equalsIz � Z 10 dz z2 + (1� z)2zs(1� z)s = 2 Z 10 dz z2�s(1� z)�s = 2 �(3� s)�(1� s)�(4� 2s) (A5)



25where we used the de�nition of the Euler beta fun
tion. The gamma fun
tion in the denominator 
an be written as�(2(2� s)) = 22(2�s)�1p� �(2� s)�(2� s+ 1=2) (A6)and from this we have Iz = p�41�s �(1� s)�(3� s)�(2� s)�(5=2� s) : (A7)The integral over y2 in Eq. (A4) equalsZ 10 dy2 (y2)sK21 (y) = 2 Z 10 dy y2s+1K21 (y) = 2 p�4 �(2 + s)�(1 + s)�(s)�(3=2 + s) : (A8)Thus, we �nally �nd ~HT (s) = A0�8 �(2 + s) �(1 + s) �(s) �(1� s) �(3� s)�(3=2 + s) �(2� s) �(5=2� s) : (A9)A similar 
al
ulation allows to 
ompute the Mellin transform~HL(s) = A0�4 (�(1 + s))3 �(2� s)�(3=2 + s) �(5=2� s) (A10)APPENDIX B: EVOLUTION OF THE GLUON DENSITYThe gluon density used in our analysis, g(x; �2) � xG(x; �2), obeys the following leading logarithmi
 DGLAPevolution equation: �2 �g(x; �2)��2 = �s(�2)2� Z 1x dz Pgg(z) g �xz ; �2� (B1)where the 
ontribution from quarks is negle
ted and the gluon splitting fun
tion Pgg takes the form,Pgg(z) = 6 �1� zz + z(1� z) + z(1� z)+ + 1112Æ(1� z)�� nf3 Æ(1� z) (B2)and the one loop strong 
oupling is given by �s(�2) = b0log(�2=�2) (B3)with b0 = 12�=(33� 2nf ). This equation may be solved in the double Mellin moment spa
e,g(x; �2) = Z d!2�i x�!Z d
2�i ~g(!; 
)��2�2�
 (B4)where ~g(!; 
) obeys the following equation� ��
 f
~g(!; 
)g = b02� ~Pgg(!) ~g(!; 
) (B5)and the splitting kernel in the Mellin representation, ~Pgg(!), is given by~Pgg(!) = Z 10 dz z!Pgg(z) = 6 � 1! � 1! + 1 + 1! + 2 � 1! + 3 � 
E �  (! + 2)�+ 33� 2nf6 : (B6)The general solution to Eq. (B5) reads ~g(!; 
) = ~g0(!) 
�1� b02� ~Pgg(!) (B7)



26where ~g0(!) is an arbitrary fun
tion whi
h may be �xed using an initial 
ondition. Thus, the solution expressed interms of the original variables (x; �2) is given byg(x; �2) = Z d!2�i x�! ~g0(!)Z d
2�i 
�1� b02� ~Pgg(!)��2�2�
 : (B8)The 
ontour integral over 
 may be performed for all �2 > �2 after the integration 
ontour is deformed to envelopethe 
ut along the negative real half-axis. We �ndg(x; �2) = Z d!2�i x�! ~g(!; �2) (B9)where ~g(!; �2) = ~g0(!)��1 + b02� ~Pgg(!)� �log��2�2�� b02� ~Pgg(!) : (B10)The initial 
ondition for the DGLAP equation at some s
ale �20 � �2 is given by its Mellin transform ~g(!; �20). Thus,writing (B10) for �2 = �20, we obtain~g0(!) = ~g(!; �20) ��1 + b02� ~Pgg(!)� �log��20�2��� b02� ~Pgg(!) ; (B11)whi
h in turn, after the substitution to (B9), leads to the well known formg(x; �2) = Z d!2�i x�! ~g(!; �20) � log(�2=�2)log(�20=�2)� b02� ~Pgg(!) : (B12)We also need the double Mellin representation of the produ
t �s(�2)g(x; �2). In the mixed (!; �2) representationthe DGLAP equation (B1) reads �2 �~g(!; �2)��2 = ~Pgg(!)2� �s(�2) ~g(!; �2) : (B13)Taking the Mellin moment (62) of both sides (with s = 
), we obtain
 ~g(!; 
) = ~Pgg(!)2� g�sg(!; 
) : (B14)Thus, after inserting relation (B7) we �ndg�sg(!; 
) = 2�~g0(!)~Pgg(!) 
� b02� ~Pgg(!) (B15)whi
h after 
oming ba
k to the x variable readsg�sg(x; 
) = Z d!2�i x�! 2�~g0(!)~Pgg(!) 
� b02� ~Pgg(!) : (B16)Both fun
tions have logarithmi
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