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AbstratWe study dynamial moduli stabilization driven by gaugino ondensation in supergravity. Inthe presene of bakground radiation, there exists a region of initial onditions leading tosuessful stabilization. We point out that most of the allowed region orresponds to initialHubble rate H lose to the sale of ondensation �, whih is the natural uto� of the e�etivetheory. We �rst show that inluding the ondensate dynamis sets a strong bound on theinitial onditions. We then �nd that (omplete) deoupling of the ondensate happens at Habout two orders of magnitude below �. This bound implies that in the usual senario withthe ondensate integrated out, only the viinity of the minimum leads to stabilization. Finally,we disuss the e�ets of thermal orretions.
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1 IntrodutionHigher dimensional supersymmetri theories suh as string theory are good andidates to explainthe origin of four-dimensional physis at low energies. In general, ompati�ation of the addi-tional dimensions yields a large vauum degeneray, parametrized in terms of the so-alled moduli�elds. In order to reprodue our observable universe and its partile ontent, onsistent higher di-mensional theories must o�er some mehanisms to �x the mass and the vauum expetation value(vev) of the moduli. In type IIB string ompati�ations, nontrivial bakground �uxes stabilizemost of the geometrial moduli [1℄, but leave some other �at diretions unlifted. In partiular, theoverall volume parametrized by a Kähler modulus � is not �xed and hene requires the inlusionof nonperturbative e�ets [2�4℄.Gaugino ondensation [5,6℄ is perhaps the best understood and most suessful suh mehanismapable of providing masses to moduli. It is a key ingredient in raetrak models [7℄, models withKähler stabilization [8℄, and the Kahru-Kallosh-Linde-Trivedi (KKLT) senario [9℄. The suessof these models relies on the assumption that the ondensate forms at a high sale, induing ane�etive salar potential for moduli. However, it is known that dynamial stabilization of moduli isfragile and depends on the partiulars of the universe evolution [10℄. If the osmologial expansionis dominated by some energy soure other than the moduli, suh as radiation or vauum energy,the initial onditions leading to stabilization may be less restrited than in a modulus dominateduniverse. This statement has been on�rmed in matter and radiation dominated senarios [11�13℄inluding �nite temperature orretions [14℄.Despite this progress, there is no reason to believe that only moduli dynamis will be a�etedby the evolution of the universe. Indeed, it has been reently shown that in a universe undergoingfast expansion, the ondensate itself may be destabilized leading to unsuessful moduli stabiliza-tion [15℄. Thus, also the ondensate is altered by the presene of additional soures of energy.Whether gaugino ondensation ours depends on the dynamis of the gaugino pairs, whih an bedesribed in terms of a omplex (super)�eld u in the Veneziano�Yankielowiz (VY) approah [5℄.In the present work we take this view seriously and study the onsequenes of the interationbetween the ondensate and bakground radiation upon moduli stabilization. The main questionswe will be onerned with are:� when an the ondensate �eld u be safely integrated out without introduing inonsisteniesin the theory?� for whih initial onditions does gaugino ondensation lead dynamially to moduli stabiliza-tion?We shall show that for most on�gurations that lead to moduli stabilization, the ondensate annotbe integrated out and its dynamis must be onsidered. Although, for illustrative purposes, weshall fous on the KKLT model, it is straightforward to extend our �ndings to any model of modulistabilization driven by gaugino ondensation, where similar results are expeted.2 Single �eld dynamisAs mentioned above, we onsider the KKLT model [9℄ for moduli stabilization in the ontext oftype IIB string theory. After �xing the omplex struture moduli and the dilaton, the e�etive lowenergy N = 1 four-dimensional supergravity theory only ontains the volume modulus �, whih is2



stabilized by gaugino ondensation.1 More spei�ally, an SU(N) gauge theory loalized on D7-branes wrapped around the ompati�ation volume has a �eld-dependent oupling2 g2 = 1=�r.If this setor is asymptotially free, it undergoes gaugino ondensation below a dynamial sale�. Using the VY approah [5℄, it has been shown [17℄ that the only Kähler and superpotentialonsistent with all symmetries areK = �3 ln� � + �� � u�u3 � ; (2.1)W = u3 (� + 2 lnu ) ;where the hiral super�eld u3 / TrW aW a admits the ondensate �a�a as lowest omponent. Theonstant  = 3N= �16�2� is the one-loop beta funtion oe�ient.In supergravity, the salar potential is given byV = eK hKi �|DiWD �|W � 3 jW j2 i ; (2.2)where Ki �| = (K�{j)�1 is the inverse Kähler metri, and DiW = Wi +KiW is the usual ovariantderivative de�ned over the Kähler manifold. In the limit of small u� 1, the dominant ontributionto the potential isVF ' eK jDuW j2Ku�u; (2.3)whih has as extrema W = 0, Wu ' 0 and Wuu ' 0, oru = 0 ; u = umin = exp�� �2 � 13� ; u = umax = exp�� �2 � 56� : (2.4)The �rst solutionW = u = 0 formally orresponds to a supersymmetri hirally invariant vauum.However, the existene of suh a vauum is inonsistent [18, 19℄. Arguably, this minimum anbe interpreted as an unstable nonsupersymmetri state [20℄, where the VY potential annot betrusted. The other two solutions orrespond to a minimum and a barrier separating it from theunphysial state at the origin. Note that they are lose in �eld spae. The minimum umin is theVY-solution orresponding to gaugino ondensation. Thus, we de�ne the ondensation sale� � umin : (2.5)The mass of the �eld u around the minimum is of order �, and therefore the �eld an be integratedout at energies below this sale. Plugging the result into (2.1), expanding in small u�u and addinga onstant W0 arising from integrating out the �ux-stabilized moduli, we reover the familiarKKLT potentialK = �3 ln (� + ��) ;W = W0 + WNP = W0 + Ae�a� ; (2.6)and identify A = �1= (ae), a = 3= (2). Note that for reasonable gauge groups, the onstant a isbigger than one. Also, the inlusion of W0 in (2.1) does not signi�antly displae the position ofthe extrema (2.4).1Note that a similar senario arises in the weakly oupled heteroti string [16℄, where � has to be replaed bythe dilaton S.2From now on, the subsripts r and i denote respetively real and imaginary parts of the �elds.3



Having lari�ed how gaugino ondensation generates an e�etive potential for the modulus,we turn our attention to the single �eld KKLT model. As is well known, the salar potential (2.2)for � exhibits a supersymmetri minimumW0 = � Ae�a�min �1 + a (�min + ��min)3 � ; (2.7)Vmin = � A2a2e�a(�min+��min)3 (�min + ��min) < 0 ;of negative energy. We inlude a supersymmetry-breaking uplifting termVup = CXp ; (2.8)where X = e�K=3 and C may be tuned so as to obtain a Minkowski vauum. In the KKLTsenario the uplift is provided by an anti D3-brane in a throat (in the bulk) of the ompati�ationmanifold, whih gives p = 2 (p = 3). The minimum (2.7) is then separated from the runawaysolution by a barrier whose height is set by the gravitino mass.Before disussing the dynamis of the system, let us omment on the approximations uponwhih we rely in the remainder of the paper. It is known that (warped) string-inspired onstru-tions, suh as KKLT, reeive additional ontributions, e.g. �0 orretions [21℄, open-string looporretions [22℄ and orretions due to (strong) warping [23,24℄. Although they may signi�antlyalter the form (2.1) of the supergravity ation [25℄, we do not inorporate these e�ets in ourstudy. Our main onern is to understand whether a gaugino ondensate an be integrated in/outwhen the dynamis of a modulus is taken into aount. As suh, we perform a omparative studybetween the single �eld behavior and the full system evolution. The orretions mentioned aboveare in this sense somewhat orthogonal to our purpose, and should not a�et our onlusions.Moreover, let us emphasize again that we fous on the KKLT model as an illustrative example.Our observations hold for all moduli stabilization senarios whih rely on gaugino ondensation,inluding for instane those without warping.2.1 Dynamial stabilizationThe barrier separating the KKLT minimum from the runaway solution at in�nity is small om-pared to any other natural sales in the problem. This is true, in partiular, for the phenomenolog-ially favored ase of low-energy supersymmetry breaking. At the same time, the salar potentialis exponentially steep. One an therefore wonder how likely it is that the modulus will end up inthe right minimum and not roll o� to in�nity. This is known as the overshoot problem, and has�rst been reognized in [26℄. Dynamially, the higher the energy with whih the �eld starts itsdynamial evolution, the more frition is needed in order to slow it down so that it �nally settlesin the minimum.In [10�14℄, it was shown that the presene of a bakground �uid an help avoiding the over-shoot problem by providing the neessary frition. Indeed, there exists a relatively large range ofinitial onditions that lead to suessful stabilization. Clearly, this range grows with the initialbakground density, see e.g. Fig. 1 and 2 in [14℄. Throughout this paper, we onsider the bak-ground �uid to be omposed of radiation. This allows us to work in a model-independent way. Ifthe expansion of the universe were instead driven by matter or vauum energy density, the on-densate would aquire a large mass of order H2 with a model dependent oe�ient. Moreover, as4



was shown in [15℄, if the bakground �eld gives the dominant ontribution to SUSY breaking, theindued mass term destabilizes the gaugino minimum at a sale H � �, with  � 1, somewhatbelow the ondensation sale (2.5). In a radiation dominated universe, the Hubble indued massfor the ondensate and the volume modulus is small and an be negleted at tree level [27℄. Forinstane, a oupling of the form uu�T �� , where T is the stress-energy tensor of radiation, vanishesat tree level. One might however worry that this is not neessarily the ase at one loop. We willome bak to this point in Setion 4 when we onsider �nite temperature orretions.In supergravity, the dynamis of a set of �elds �i with non-anonial kineti terms is desribedby the equations of motion��i + 3H _�i + �ij k _�j _�k + Ki �|��|V = 0 ; (2.9)where the Christo�el symbols are �ij k = Ki �l �Kj �l��k . The Hubble radius is subjet to the Friedmannonstraint:3H2 = Lkin + V + � ; (2.10)where Lkin = Ki �| _�i _���|, and the energy density of the bakground radiation satis�es_� + 4H� = 0 ) � = �; ini e�4N ; (2.11)where in the last equality, we have used as time variable the number of e-foldsN = lnR, with R thesale fator (reall that H = _R=R). Here and in the following we use a subsript ini to denote theorresponding quantity at the initial time N = 0. Without the bakground omponent, any initialonditions satisfying V (�ini) > V (�max) will lead to overshoot of the �elds and onsequently to aphenomenologially unaeptable runaway solution. However, as mentioned before, if the energydensity in the universe is dominated by radiation, the evolution of the salar �elds is damped,and a muh larger range of initial onditions leads to modulus stabilization. This e�et enters theequations of motion (2.9) via a large Hubble rate H 'p�=3.The expliit equations of motion derived from (2.9) for the KKLT model are given in Ap-pendix A. Eqs. (A.5) in the ase of the potential (2.6) an be solved numerially. With thispurpose, we assume that the �eld has vanishing initial veloity ��; ini = 0. Following [12, 14℄, weparametrize the initial radiation as�; ini = 
1� 
 V (�r; ini) ; (2.12)where we used the frational energy density in radiation 
 = �;ini=(3H2). Note that for 
 � 1=2radiation initially dominates. An example of modulus stabilization is given in Fig. 1, where wehave taken 
 = 0:99. The rest of the parameters is given as in [9, 12℄, i.e A = 1, a = 0:1 andm3=2 ' 1 TeV. The onstant W0 and C are dedued from (2.7) and (2.8).2.2 Consisteny ConditionAs �r rolls down the KKLT potential in the presene of the thermal �uid (2.11), the orrespondingsale � = umin = exp [� (a�r + 1) =3℄ evolves as well. Indeed, only when the modulus is settledin its minimum does the gauge oupling of the hidden setor stabilize as well. In order for thepotential to follow e�etively from (2.6), we have to ensure that ondensation does our even as5
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Figure 1: Example of initial ondition leading to stabilization. The left panel shows the evolution of the�eld with time, in this ase �r; ini ' 40. The dashed green line gives the position of the minimum. On theright �gure is plotted the evolution of � (red, dashed line) and H (blue, solid line) with time.
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Figure 2: Set of initial onditions f�r; ini; �i; inig leading to stabilization at the minimum of the KKLTpotential for �; ini = 10�4, A = 1; a = 0:1 and m3=2 = 1 TeV. The solid line orresponds to the resultof [14℄. The darker region an be exluded sine Hini > �ini.the modulus is dynamially evolving. In other words, there is a natural onsisteny ondition:the Hubble rate H has to be smaller than the ondensation sale � at all times.It an be seen from the right plot of Fig. 1 that the sale � for this spei� example is indeedhigher than H and remains as suh with time. Atually, beause the �eld starts with vanishingveloity, it is lear that if Hini . �ini, then the same holds at later times.In Fig. 2 we show how the region of suessful initial onditions for � found in [12℄ is modi�edone we require that these points are onsistent with having the ondensate initially formed.Atually, even if the ondensate is initially formed, and thus remains so at later times, it islegitimate to wonder below whih sale it an be safely integrated out. This is why we also showthe bound Hini � 10�1�ini in Fig. 2. Formally, a �eld an be integrated out one its osillationsaround its minimum are negligible. Hene, for a large range of initial parameters, onsistenyrequires that we integrate the ondensate in, and onsider the whole system (2.1) together withW0. In the next setion, we let the two �elds evolve and study the region of stabilization, puttingpartiular emphasis on the way the ondensate may be integrated bak out.
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3 Dynamis of the gaugino-modulus systemIn this setion we disuss the dynamis of the Kähler modulus with the gaugino ondensateintegrated in. For simpliity, in what follows, we onentrate on the real parts of � and u, andomit subsripts. Dynamis of the imaginary parts shall be treated elsewhere [28℄.The VY e�etive potential for gaugino ondensate u is given in (2.1), the additional upliftterm in (2.8). As the Hubble sale approahes the ondensation sale, the evolution of the fullondensate-modulus system starts to deviate from the KKLT desription, whih is only a goodapproximation for small u when (2.3) is valid. This an be seen expliitly from the F-term potentialVF = 1X2 ��2W0u3 + (2+ 3� + 6 lnu)2u4 + 13(4 + 2�)u6� (3.1)with X = e�K=3, as before. The quarti term in VF is proportional to jWuj2. In the limit thatu � 1 and W0 small, both the ubi and the u6 term are subdominant, and we reover the VYresult that Wu = 0 minimizes the potential. The salar potential is a surfae; it exhibits a valleyof attration orresponding to the diretion umin(�). This valley is muh steeper in the ondensatediretion than along the modulus diretion. Along the u diretion there is a barrier separatingthe �good� minimum, from the state at u = 0; in the modulus diretion there is the usual barrierseparating the �good� KKLT minimum from the runaway solution at in�nity.The equations of motion for � and u momenta in a spatially �at Friedmann-Robertson-Walkerspaetime are given by (A.4). As before, we assume an homogeneous bakground radiation energydensity, whih evolves in an expanding universe aording to (2.11).We integrated numerially the equations of motion for the real �elds f�; ug keeping the phases�xed at their instantaneous minimum. The free parameters in the model are , W0 (whih de-termines the vauum gravitino mass), and 
 . In what follows, we hoose  = 1=7 and a)W0 = 10�6 and b) W0 = 10�8. For these parameters, the minimum with the modulus sta-bilized is at �min = 1:22 (1:68) and u0 = umin(�min) = 0:01 (0:002) for W0 = 10�6 (10�8).Demanding a Minkowski vauum, we obtain the uplifting parameter C � 3 � 10�13 (3 � 10�17) forW0 = 10�6 (10�8). We used relatively large values of W0, giving rise to high sale supersymmetrybreaking, beause of numerial onveniene. Nevertheless, we expet that our qualitative resultsan be straightforwardly extrapolated to lower sales.In our study, we take a onservative approah and assume that whenever u jumps the barrier atumax and is driven towards the state at the origin, the gauginos do not ondense and, onsequently,� does not get stabilized. Apart from an understanding of the physis at the minimum u = 0,disussing the dynamis of u in this ase requires to inlude quantum e�ets, suh as partileprodution of �elds whih are light at the speial symmetry point at the origin [29℄. Partileprodution damp the motion of u, possibly trapping it in the region juj < umax and leaving ourresults untouhed. Another possibility is that the �eld has enough momentum to go through theorigin and boune bak over the barrier to end up at umin. This ould open up an additionalregion of preferable initial onditions, whih nonetheless will strongly depend on the details of thepotential near the origin.3.1 When an the gaugino ondensate safely be integrated out?The �rst issue to address is to determine for whih initial energy sales Hini it is a good approxi-mation to integrate out the gaugino ondensate and work in the low energy e�etive KKLT theory,7
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Figure 3: The regions bounded by the urves orrespond to initial onditions leading to modulus stabi-lization in the KKLT model with  = 1=7 and a) W0 = 10�6 and b) W0 = 10�8 as a funtion of the initialabundane 
 . The thin/red urve is obtained in absene of u and the thik/blue urve is for u integratedin and initially at its minimum umin. Blak dotted lines orrespond to (H=�)ini = 1; 10�2; 10�3.and for whih initial onditions the dynamis of the full system should be taken into aount. Toanswer this question we determined the range of initial onditions for �ini leading to modulusstabilization in the e�etive KKLT model, with u integrated out. We ompared the results withthe range of �ini leading to stabilization in the full system, where both u and � are kept as dy-namial �elds, starting with u initially lying in the valley of attration, i.e. uini = umin(�ini). Wenumerially determined this uini, as the analyti approximation (2.4) breaks down for small �ini(whih orresponds to large u). In both ases we started with zero momenta for all �elds.The spae of initial onditions f�ini; 
g for whih the system evolves to the overall minimumis plotted in Fig. 3; for all other initial onditions, u and/or � overshoot. The thin/red urvegives the stabilization region for the KKLT potential with u integrated out. The results agreewith previous �ndings [12℄: provided that the initial energy density is dominated by radiation,there is a large range of initial �ini leading to stabilization. Starting with initial values �ini to theleft of the urve, the modulus piks up too muh momentum and overshoots; starting with initialvalues �ini to the right of the urve, the modulus is too lose to the minimum and there is notenough time to damp the �eld, with overshoot as result. Finally, we note that there is anothersmall stabilization region for �ini lose to the minimum �min (that is not displayed in the plot),for whih the initial potential energy is less than the height of the barrier Vini < Vmax.The equivalent urve for the full system is the thik/blue line. As expeted, there are largedisrepanies for small �ini, and thus large umin(�ini), whereas for larger �ini both systems give thesame results. In terms of n = (H=�)ini, the deviations are negligible when this ratio drops belown = 10�2, and beome large around n = 10�1 � Fig. 3 shows the lines for n = 1; 10�2; 10�3.This is almost independent of W0, i.e. of the vauum gravitino mass; the reason is that for suhinitial onditions the ubi term in the potential (3.1) is negligible, and all W0 dependene dropsout. This allows to restate the results in terms of Vini as well: for Vini . 10�7 the KKLT and fullpotential behave very similarly, whereas for Vini & 10�5 they deviate signi�antly.We note that the smaller W0 is, the longer it takes for the �elds to roll down to their minima,and the longer they are exposed to damping; this explains why less initial radiation 
 is needed8



for stabilization. Hene, for a TeV gravitino mass, W0 � 10�14 and  = 1=10, it is natural toexpet the same behavior as in Fig. 3, with an even larger aessible range of 
 . In that ase,one an further show that stabilization ours at the uni�ation-ompatible point g2 = 1=2.As already stressed, the main reason for the breakdown of the KKLT approximation at largeinitial energy densities is due to the way the ondensate is integrated out. Formally, the �eld ushould be integrated out at the level of the salar potential. In the KKLT approah, however,this is not the ase: the �eld u is sent to zero in the Kähler potential, and replaed by its vev inthe superpotential. The di�erene between the two approahes is easy to understand by studyingthe struture of the salar potential (2.2); it gives rise to extra terms when the �rst approahis followed. The way heavy �elds an be integrated out onsistently in supergravity has beenthe enter of renewed attention in the past months [30�32℄. In this paper, we are dealing withintermediate energy ranges for whih the extra terms in the salar potential are not negligible.They have an impat on the dynamis of the system. Therefore, for small �ini, the solutionfor umin (2.4) is no longer a good approximation, and thus higher order terms in u (the u6-term in eq. (3.1)) have to be taken into aount. Numerially, we �nd that the exat and theanalytial solutions start to deviate more and more as we inrease Vini. Notie that for �ini < 0:2(or Vini & 10�3), the nontrivial minimum of VF (� = �ini; u) along the u diretion disappearsaltogether, implying that gaugino ondensation annot our. This explains the uto� in thestabilization region in both plots. For �ini < 0:2, any uini leads to overshoot.3.2 Initial onditions leading to modulus stabilizationWe now determine the stabilization region in f�ini; uinig spae, onsidering initial onditions withboth the modulus and the ondensate displaed from the instantaneous minimum. One againthe �elds start their evolution at rest.The results forW0 = 10�6 and 
 = 0:95 are shown in Fig. 4. The initial onditions f�ini; Æu �uini � umin(�ini)g leading to stabilization lie in the shaded/green area. A large range of modulusinitial values leads to stabilization 0:2 . �ini . 0:6, whereas only a small displaement in Æu isallowed. The reason for this is simple: the potential is muh steeper in the ondensate diretion,even a omparatively small displaement jÆuj . 2 � 10�2 implies a large inrease in Vini, andonsequently leads to overshoot.To address the likelihood of initial onditions leading to stabilization, it is therefore useful toonsider not the initial �eld displaement, but rather the orresponding hange in energy Vini.Given an initial energy Vini, and random initial onditions for both the modulus and ondensate(but suh that Vini remains �xed), how large is the stabilization region in the spae of initial on-ditions? In Fig. 4 are plotted the equipotential lines orresponding to Vini = 10�1; 10�2; : : : ; 10�8.The lines are approximately orthogonal to Æu = 0 for small �ini. Considering all initial ondi-tions along one suh line to be equally likely, the stabilization region is very small. Most initialonditions lead to overshoot. This is quite a di�erent result than the onlusion one (naively)draws from the one-dimensional system with the ondensate integrated out. Con�ning to initialonditions to the left of the maximum, a good proportion of initial onditions leads to stabilization.The solid/orange line at Æu = 0 in Fig. 4 orresponds to a similar study in the e�etive KKLTmodel, without the dynamis of u. The points along that line at the left of the shaded/green areaare initial onditions that appear to lead to stabilization from the one-dimensional standpoint.One the dynamis of the ondensate are onsidered, it is lear that those points are inonsistent.9
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The existene of a thermal bath a�ets the moduli dynamis. First, the solution of Friedmann'sequations for the radiation density beomes� = �init e�4N �1 + rg2 (�init)1 + rg2 (�) �1=3 ; (4.3)where r denotes the ratio5 a2=a0 and N = lnR as before. Sine � enters the Hubble rate H,eq. (4.3) implies that temperature orretions introdue an additional soure of frition whihdereases as the universe expands. As a result, the equations of motion (2.9) are modi�ed asfollows��|V ! ��|(V + F ) = ��|V � 13 r�1 + rg2 ��|g2 ; (4.4)where we have used the relation between the energy density and the temperature of the thermal�uid � = �p+Tdp=dT = �3a0(1+ rg2)T 4 with the pressure given by p = �F (g; T ). Thisnew ontribution to the equations of motion renders manifest the e�et of the e�etive poten-tial (4.1). Note that irrespetive of whether the initial temperature is larger than the temperatureat whih the minimum of the potential gets lifted, Tini > Trit, the modulus an still be stabilized.If the frition is large enough, the minimum emerges before the modulus has had time to approahit. Some of the initial onditions that lead to stabilization at zero temperature are however erased.Thus, the region of admissible onditions redues under the in�uene of the thermal bath.We note that it is possible that a subset of the thermal degrees of freedom do not have amodulus dependent gauge or Yukawa oupling, and only interat gravitationally with the modulussetor. If this subset is large, the parameter jrj an be made arbitrarily small, and the results ofthe previous setion apply.4.1 Initial onditions leading to modulus stabilizationAs before, we onsider the KKLT model with the ondensate �eld u integrated in and the pa-rameters  = 1=7 and W0 = 10�6. In addition, we take the initial radiation abundane to be
 = 0:99 and onsider two di�erent on�gurations with r = �3=4�2 and r = �0:04 to illustratethe dependene on thermal orretions. The �rst ase orresponds to an SU(2) pure Yang-Millsthermal setor and is thus the minimal jrj ahievable when the ontribution (4.2) is the onlyomponent in radiation. Fig. 5 shows the set of admissible initial onditions f�ini; Æug that leadto stabilization. The region surrounded by the dashed line orresponds to the result obtained inthe previous setion for zero temperature (f. Fig. 4). Inside this region, we �nd those admissibleinitial onditions for r = �0:04 (light shaded) and r = �3=4�2 � �0:076 (dark shaded).A few omments are in order. The region of stabilization learly redues when jrj inreases.For the SM gauge group SU(3)�SU(2), one �nds r � �0:1, whih leads to a onsiderable redutionof the allowed region. This implies that only for an even more �ne-tuned value 
 � 1 does stabi-lization our in a more realisti senario. Also, the smallest value that the modulus an initiallytake depends on the thermal bakground. This happens beause the higher the potential energyof the modulus Vini is, the faster it rolls down to the position of the minimum. If the temperatureis not su�iently low, the modulus �nds no minimum and onsequently runs away. Similarly, if5Our de�nition of r di�ers by a fator 4� ompared to [14℄. This originates from the di�erent dependene ofthe gauge oupling on �. 11
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Figure 5: Region of initial onditions leading to � stabilization in the KKLT model. The dashed linesurrounds all admissible initial values in the absene of thermal orretions. The light-shaded (dark-shaded) region orresponds to the allowed parameters in presene of thermal orretions, with r = �0:04(r = �3=4�2). The hosen parameters are  = 1=7, W0 = 10�6, 
 = 0:99.� starts too lose to the loal maximum of the modulus potential, at higher temperatures themodulus does not feel the attration of the minimum and esapes.We explore also how the stabilization of the modulus depends on the initial radiation abun-dane 
 . In Fig. 6, we present our results inluding the ondensate dynamis (blue/thik urves).In the left (right) panel we have setW0 = 10�6 (10�8). The area over the solid (blue/thik) urve isthe set of stabilization-ompatible initial onditions at zero temperature. The area over the dashed(blue/thik) urve desribes stabilization when thermal e�ets are inluded, with r = �3=4�2.As expeted, for low initial radiation abundane, the modulus runs away before the temperaturedereases below Trit and, therefore, stabilization is not possible. This sets a bound on the initialvalue of 
 , whih in our examples is 
;min � 0:98 (0:92) forW0 = 10�6 (10�8) with r = �3=4�2.We ontrast these �ndings with those results obtained in the traditional way, i.e. in absene ofthe dynamial ondensate �eld u (red/thin urves). Note that the thin and the thik urves onlyoinide in a narrow region lose to the stabilization point of � (�min � 1:22 for W0 = 10�6 and�min � 1:68 for W0 = 10�8). This implies that, integrating out the ondensate is only valid forthese points, that is, for initial onditions suh that the Hubble rate Hini is between two and threeorders of magnitude lower than the ondensation sale �ini at the beginning of modulus evolutionThis observation is rather model independent and has to be taken into aount in general whendealing with moduli stabilization driven by gaugino ondensate in an evolving universe.5 ConlusionsWe have studied the osmologial evolution of a modulus oupled to a gaugino ondensate and itsonsequenes for moduli stabilization. Using the KKLT model as an illustrative example, we haveshown that, in presene of bakground radiation, most of the region yielding modulus stabilizationorresponds to points in parameter spae for whih the Hubble parameter Hini is lose to the saleat whih the gauginos ondense �ini. One the dynamis of the gaugino pairs is inluded, we haveshown that:� integrating out the ondensate diretly in the superpotential and the Kähler potential fails12



a)
0.2 0.4 0.6 0.8 1.0

0.85

0.90

0.95

1.00

Σini

W
Γ

W0 = 10-6

r=-3�4Π2

H
in

i
>
L

in
i

H
in

i
>

10
-

2 L
in

i

H
in

i
>

10
-

3 L
in

i

b)
0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Σini

W
Γ

W0 = 10-8

r=-3�4Π2

H
in

i
>

10
-

2 L
in

i

H
in

i
>

10
-

3 L
in

i

Figure 6: The regions enlosed by the urves orrespond to initial onditions leading to modulus stabiliza-tion in the KKLT model with  = 1=7 and a) W0 = 10�6 and b) W0 = 10�8 as a funtion of the initialabundane 
 . The thin/red urves are obtained in absene of the �eld u for r = 0 (solid) and r = �3=4�2(dashed). The thik/blue urves are obtained for u integrated in and initially at its minimum umin forr = 0 (solid) and r = �3=4�2 (dashed). Blak dotted lines orrespond to (H=�)ini = 1; 10�2; 10�3.to desribe moduli dynamis unless Hini is about two orders of magnitude smaller than �ini,� the dynamis of the ondensate sets a stronger bound on the initial onditions leading tostabilization.The former point implies that if one is to onsider that the ondensate has been integratedout before the modulus starts its evolution, then only the viinity of the minimum leads tostabilization.We have also disussed the role of thermal orretions and shown that they do not a�et theonlusions above. Thermal e�ets impat on the initial frition needed to damp the modulusand stabilize it, onstraining further the range of initial onditions that lead to stabilization.To onlude, we point out that our observations are model independent and have to be takeninto aount in general when dealing with moduli stabilization driven by gaugino ondensate in anevolving universe. Also, our results are expeted to hold independently of the hoie of parameters.In partiular, they should be valid in settings with a realisti supersymmetry breaking sale.AknowledgmentsWe are grateful to Emilian Dudas and Oleg Lebedev for valuable disussions.A Equations of motionThe equations of motion (2.9)��i + 3H _�i + �ij k _�j _�k + Ki �|��|V = 0 ; (A.1)an be separated into real and imaginary parts (resp. denoted �r and �i) and read��kr + 3H _�kr + �klm � _�lr _�mr � _�li _�mi � + 12Kk �l �V��lr = 0 ;13



��ki + 3H _�ki + �klm � _�li _�mr + _�lr _�mi � + 12Kk �l �V��li = 0 : (A.2)Applied to the KKLT system (2.6), we have��r + 3H _�r � 1�r � _�r2 � _�i2�+ 2�2r3 �V��r = 0 ;��i + 3H _�i � 2�r _�r _�i + 2�2r3 �V��i = 0 : (A.3)In setion 3, we aim at omparing the region of stabilization with the results obtained in [12℄.However, from then on, we onentrate on the real parts of � and u. Dynamis of the imaginaryparts shall be treated elsewhere.For the exat system (2.1), the �rst equation in (A.2) beomes��r + 3H _�r � 22�r � u2r=3 � _�r2 � ur3 _ur _�r�+ 2�r � u2r=36 (2�r��rV + ur�urV ) = 0 ;�ur + 3H _ur � 22�r � u2r=3 �ur3 _ur2 � _ur _�r�+ 2�r � u2r=36 (ur��rV + 3�urV ) = 0 : (A.4)In general, it proves muh easier to re-express eqs. (2.9) in terms of the anonial momentaassoiated to the �elds �i = �Lkin=� _�i� 0 i = 1H _�i (�i) ; (A.5)� 0i = � 3�i + 1H ���i �Lkin � V (�i) � ;where prime denotes derivative with respet to N (i.e _x = Hx0). These equations an then beintegrated numerially in order to obtain the solutions �i(N).Referenes[1℄ S. B. Giddings, S. Kahru, and J. Polhinski, Phys. Rev. D66 (2002), 106006,[hep-th/0105097℄.[2℄ M. Dine, R. Rohm, N. Seiberg, and E. Witten, Phys. Lett. B156 (1985), 55.[3℄ T. Banks and M. Dine, Phys. Rev. D50 (1994), 7454�7466, [hep-th/9406132℄.[4℄ T. Barreiro, B. de Carlos, and E. J. Copeland, Phys. Rev. D57 (1998), 7354�7360,[hep-ph/9712443℄.[5℄ G. Veneziano and S. Yankielowiz, Phys. Lett. B113 (1982), 231.[6℄ T. R. Taylor, G. Veneziano, and S. Yankielowiz, Nul. Phys. B218 (1983), 493.[7℄ N. V. Krasnikov, Phys. Lett. B193 (1987), 37�40.[8℄ J. A. Casas, Phys. Lett. B384 (1996), 103�110, [hep-th/9605180℄.14
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