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The Sigma Model onComplex Projetive Superspaes
Constantin Candu1, Vladimir Mitev1, Thomas Quella2,Hubert Saleur3;4 and Volker Shomerus11 DESY Hamburg, Theory Group,Notkestrasse 85, D{22607 Hamburg, Germany2 Institute for Theoretial Physis, University of Amsterdam,Valkenierstraat 65, 1018 XE Amsterdam, The Netherlands3 Institute de Physique Th�eorique, CEA Salay,F-91191 Gif-sur-Yvette, Frane4 Physis Dept., USC, Los Angeles, CA 90089-0484, USAAbstratThe sigma model on projetive superspaes C PS�1jS gives rise to a ontinu-ous family of interating 2D onformal �eld theories whih are parametrized bythe urvature radius R and the theta angle �. Our main goal is to determinethe spetrum of the model, non-perturbatively as a funtion of both parameters.We sueed to do so for all open boundary onditions preserving the full globalsymmetry of the model. In string theory parlor, these orrespond to volume �ll-ing branes that are equipped with a monopole line bundle and onnetion. Thepaper onsists of two parts. In the �rst part, we approah the problem within theontinuum formulation. Combining ombinatorial arguments with perturbativestudies and some simple free �eld alulations, we determine a losed formula forthe partition funtion of the theory. This is then tested numerially in the se-ond part. There we extend the proposal of [arXiv:0908.1081℄ for a spin hainregularization of the C PS�1jS model with open boundary onditions and use it todetermine the spetrum at the onformal �xed point. The numerial results arein remarkable agreement with the ontinuum analysis.
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1 INTRODUCTION 11 IntrodutionSigma models with target spae supersymmetry are of muh reent interest. Theypossess a number of truly remarkable properties. Most importantly, many of them omein ontinuous families with vanishing �-funtion, i.e. they provide examples of (non-unitary) 2-dimensional onformal �eld theories with ontinuously varying exponents.There are several series of suh models that arise from ompat symmetri superspaes,inluding the sigma model on the odd-dimensional superspheres S2S+1j2S and on theomplex projetive superspaes C PS�1jS. Their systemati investigation was initiatedin [1℄. More reently, the superspheres have been reonsidered both through numerialand algebrai investigations of lattie disretizations [2, 3℄ and within the ontinuumformulation [4℄. In partiular, it was shown that the onformal weights of �elds withopen boundary onditions possess a very simple dependene on the urvature radius ofthe supersphere. In fat, when Neumann boundary onditions are imposed on both endsof the strip, the boundary partition funtion an be omputed exatly. The resultingformula provides strong evidene for a remarkable new non-perturbative (in the radiusR or, equivalently, the sigma model oupling g�) duality between the sigma model onsuperspheres and the OSP(2S + 2j2S) Gross-Neveu model. It generalizes the famousduality between the ompati�ed free boson and the massless Thirring model.The aim of this note is to extend the investigations of [2, 4℄ to sigma models withtarget spae C PS�1jS. The sigma model on omplex projetive superspaes gives riseto a 2-parameter family of onformal �elds theories with entral harge  = �2. Inaddition to the sigma model oupling g� (or radius R) one an also introdue a thetaterm with arbitrary oeÆient �. There are several reasons to be interested in thesemodels. To begin with, the spaes C PS�1jS are the simplest examples of Calabi-Yausupermanifolds. Supersymmetri sigma models on these spaes have been investigatedby several authors (see e.g. [5, 6, 7, 8, 9, 10℄) after Witten had proposed the opentopologial B-model on C P3j4 as a andidate for a string theoreti desription of N=4super Yang-Mills theory [11℄. Further motivation omes from one of the rami�ationsof the AdS=CFT orrespondene. Aording to a reent onjeture in [12℄, the IR�xed point of the e�etive gauge �eld theory on a stak of D2 branes is dual to stringtheory on AdS4 � C P3j4. Though our �ndings for the sigma model on C PS�1jS do notpossess diret appliations to the spetrum of string theory, our study throws light onsome basi features suh as e.g. the issue of instanton orretions to physial quantities.



1 INTRODUCTION 2Sine the bosoni base of C PS�1jS has a non-trivial seond ohomology H2, world-sheetinstanton solutions to the lassial sigma model do exist and signal the possibility ofnon-perturbative e�ets. These seem well worth a more detailed investigation, both inthe C PS�1jS sigma models and the string bakground AdS4� C P3j4. A third motivationwe want to mention is related to the theory of quantum Hall plateau transitions. Themodel we are about to study may be onsidered as a ompat relative of the sigma modelU(1; 1j2)=U(1j1)� U(1j1) at � = � that has been extensively studied in this ontext in[13, 14℄. Some of our onstrutions and results suggest interesting extensions to thenon-ompat model. We shall ome bak to the last two appliations in the onludingsetion.Let us now desribe the ontent of the paper and its main results. Our work is splitinto two parts, one on the ontinuum formulation, the other on numerial studies of alattie disretization. Our presentation begins with a review of the lassial sigma modelon C PS�1jS. Sine we are mostly interested in world-sheets with boundaries, partiularattention will be paid to boundary onditions. In partiular, we analyze the possibleU(S jS) symmetri boundary onditions. As we shall disuss, these are assoiated withomplex line bundles on C PS�1jS and hene they are labelled by an integerM . In Setion3 we analyze the quantum theory in the limit of in�nite radius R (vanishing sigma modeloupling g�). We start our presentation by reviewing the state spae of a partile onC P1j2 in the presene of a monopole gauge �eld. One of the two di�erent desriptionswe provide generalizes straightforwardly to the full quantum �eld theory. The main goalof setion 3 is to onstrut and analyze the partition funtion (3.18) of the boundary�eld theory at R = 1. Our strategy then is to deform the partition funtion fromR =1 to �nite R. To this end we adapt the bakground �eld expansion to the sigmamodel on C PS�1jSand explain how to ompute boundary 2-point funtions. As in thease of superspheres, there are remarkable anellations in the expansion for boundaryonformal weights. These suggest an exat expression (4.22) for the partition funtionof the model at �nite radius and for arbitrary value of the � angle. After explainingthe various ingredients of this formula, we extrat a list of onsequenes that will beonfronted with numerial tests.In the seond part, we onsider a lattie version of the sigma model on C PS�1jS.This lattie version was �rst studied in [15℄. Our approah does not rely on diret dis-retization of the ation and Monte Carlo simulations, but rather on the general relationbetween sigma models and spin hains. We are thus led to study an "antiferromagneti"



1 INTRODUCTION 3spin hain where the degrees of freedom take values in an alternating sequene of u(S jS)modules V and V ?. By allowing interations between nearest neighbors as well as seondnearest neighbors, we are able to reover the spetrum of the C PS�1jS model, and tohek most preditions from the ontinuum theory. In partiular, we �nd good agree-ment with our proposal for the exat partition funtion (4.22), and we determine therunning oupling onstant g2� in terms of the lattie parameters. We also ome up witha natural lattie version of the boundary onditions of the sigma model assoiated withnon trivial omplex line bundles.



2 THE SIGMA MODEL ON PROJECTIVE SUPERSPACE 4Part I: Continuum Theory
In the �rst part we shall approah the C PS�1jS model through its ontinuum formulation.Target spae supersymmetry will allow us to �nd exat expressions for the onformalweights of boundary �elds as a funtion of radius R and theta angle �.2 The Sigma Model on Projetive SuperspaeThe aim of this setion is to review some fats about the omplex projetive superspaeC PS�1jS and the non-linear sigma model thereon. In the �rst subsetion we disusstwo di�erent formulations of the theory. The �rst one involves a onstraint and itis manifestly U(S jS) invariant. There exists an alternative desription, in whih theonstraint is solved at the expense of breaking the U(S jS) symmetry down to U(S�1jS).Both formulations will play some role in the subsequent analysis. The seond subsetionontains a omprehensive analysis of U(S jS) symmetri boundary onditions. We shallargue that there exists an in�nite family of suh boundary onditions, one for eahinteger M . They orrespond to the hoie of a omplex line bundle in C PS�1jS alongwith a onnetion one-form AM . For S = 2 the onnetion one-form is a supersymmetriversion of the gauge �eld produed by a Dira monopole of harge M .2.1 The sigma model on C PS�1jSComplex projetive superspaes C PS�1jS are built in a way that resembles losely theonstrution of their bosoni ousins. We begin with at superspae C SjS . The S om-plex bosoni oordinates are denoted by za and we use �a for the S fermioni diretions.Within the at omplex superspae we onsider the odd (real) dimensional superspherede�ned by the equation SXa=1 zaz�a + SXa=1 �a��a = 1 : (2.1)



2 THE SIGMA MODEL ON PROJECTIVE SUPERSPACE 5The supersphere S2S�1j2S arries an ation of U(1) by simultaneous phase rotations ofall bosoni and fermioni oordinates,za �! ei$za ; �a �! ei$�a : (2.2)Note that this transformation indeed leaves the onstraint invariant. The omplex pro-jetive superspae C PS�1jS is the quotient spae S2S�1j2S/U(1).Funtions on the supersphere S2S�1j2S arry an ation of the the Lie supergroupU(S jS). These transformations inlude the phase rotations (2.2) whih at trivially onC PS�1jS. Hene, the stabilizer subalgebra of a point on the projetive superspae isgiven by u(1) � u(S � 1jS) where the �rst fator orresponds to the ation (2.2). Weonlude that C PS�1jS = U(S jS)= (U(1) � U(S � 1jS)) : (2.3)Their simplest representative is C P0j1 i.e. the spae with just two real fermioni o-ordinates. The sigma model with this target spae is equivalent to the theory of twosympleti fermions, whih has been extensively investigated, as for example in [16, 17℄.Let us also reall that for S = 2, the bosoni base of C P1j2 is a 2-sphere. The superspaeC P1j2= S2 � C 2 is a bundle with fermioni omplex 2-dimensional �bers. As for theirbosoni ousins, the seond homology group H2(C PS�1jS) = Z of omplex projetivesuperspaes is non-trivial. Consequently, C PS�1jS supports line bundles whose seondChern-lass is haraterized by an integer M 2 Z. In the ase of C P1j2, the expres-sion for the orresponding onnetion one-form is well known from the theory of Diramonopoles. We shall often refer to the integer M as the monopole number.The onstrution of the sigma model on C PS�1jS an be inferred from the geometrionstrution we outlined above. The model involves a �eld multiplet Z� = Z�(z; �z) withS bosoni omponents Z� = z�; � = 1; : : : ; S; and the same number of fermioni �eldsZ� = ���S; � = S+1; : : : ; 2S. To distinguish between bosons and fermions we introduefrom now on a grading funtion j � j, whih is 0 when evaluated on the labels of bosoniand 1 on the labels of fermioni quantities. In addition we also need a non-dynamialU(1) gauge �eld a. With this �eld ontent, the ation takes the formS = 12g2� Z d2z(�� � ia�)Zy�(�� + ia�)Z� � i�2� Z d2z�����a� (2.4)



2 THE SIGMA MODEL ON PROJECTIVE SUPERSPACE 6and the �elds Z� are subjet to the onstraint Zy�Z� = 1. 1 The integration over theabelian gauge �eld an be performed expliitly and it leads to the replaementa� = i2 �Zy���Z� � (��Zy�)Z�� : (2.5)The term multiplied by � does not ontribute to the equations of motion for a�. As itsbosoni ounterpart, the C PS�1jS sigma model on a losed surfae possesses instantonsolutions. The orresponding instanton number is omputed by the term that multipliesthe parameter �. Sine it is integer valued, the parameter � = �+ 2� an be onsideredperiodi as long as the world-sheet has no boundary.In order to pass to our seond formulation of the C PS�1jS model we employ the gaugefreedom to solve the onstraint Zy�Z� = 1 as followsZ1 = Zy1 = 1p1 + wy � w; Zi+1 = wip1 + wy � w; Zyi+1 = w�{p1 + wy � w : (2.6)Thereby we have parametrized the target spae C PS�1jS through a set of S� 1 omplexbosoni omponents w1; : : : ; wS�1 and a set of S omplex fermioni ones wS; : : : ; w2S�1.Plugging this parametrization (2.6) bak into the ation (2.4) we obtain an unonstrainedreformulation of the C PS�1jS sigma modelS = 12g2� Z d2z gi�|��w�|��wi + i�2� Z d2z ���igi�|��w�|��wi; (2.7)where gi�| is the anonial Fubini-Study metri on C PS�1jSgi�| = Æij1 + wy � w � (�1)jjjw�{wj(1 + wy � w)2 : (2.8)The disadvantage of this reformulation is the non-linear ation of the U(S jS) supergroupon the projetive oordinates w; �w. Let us reall in passing that the Fubini-Study metrion C PS�1jS determines the following K�ahler two-form! = d2z ���igi�|��w�|��wi = �igi�|dw�| ^ dwi : (2.9)The K�ahler form is properly normalized and generates the seond integral ohomologygroup of C PS�1jS, that is Z !2� = 1 : (2.10)1Note that we eliminated the radius R of the omplex projetive spae in favor of a oupling g�2�entering the ation in front of the metri. Equivalently, we an set g2� = 1 and work with a radiusparameter R appearing in the modi�ed onstraint Zy�Z� = 4R2.



2 THE SIGMA MODEL ON PROJECTIVE SUPERSPACE 7It follows, as stated before, that our bulk model is not a�eted if we shift � by integermultiples of 2�, i.e. we an restrit the parameter � to the interval � 2 [��; �[.2.2 Ation of the boundary modelWe are now going to disuss U(S jS) symmetri boundary onditions of the C PS�1jSmodel. For readers used to the string theoreti onept of branes and the geometrilassi�ation of boundary onditions, the �nal outome is not surprising. Note thatC PS�1jS admits a natural left ation of U(S jS). Sine C PS�1jS is homogeneous underthis ation, any U(S jS) symmetri brane must be volume �lling. But branes are notsimply (sub-)manifolds in target spae. They also arry a bundle L with onnetionA. In the ase at hand, there is an in�nite family of omplex line bundles LM onC PS�1jS whih are parametrized by the integer M 2 Z. To ensure U(S jS) invariane,the onnetion AM must have onstant urvature 
M . Consequently, its urvature isproportional to the K�ahler form !, i.e. 
M �M!. We shall now see how these geometriinsights manifest themselves in the world-sheet desription. Our presentation will notmake any more referene to string theoreti notions.We want to onsider the C PS�1jS sigma model on a world-sheet � with boundary.The hoie we have in mind is a strip � = [0; �℄� R or, equivalently, the upper half ofthe omplex plane z = x + iy; y > 0. We are looking for boundary onditions whiharise from adding boundary terms of the formSb = Z 0�1 dx �ALi (w; �w)�xwi + AL�{ (w; �w)�xw�{�+ Z 10 dx (L $ R ) (2.11)to the ation (2.4, 2.7). Here, AL(R) = AL(R)i dwi +AL(R)�{ dw�{ are one-forms whih are atleast loally de�ned on C PS�1jS. When we map the half plane bak to the strip, pointswith z = x > 0 are mapped to the right boundary while those with z = x < 0 end up onthe left side. To �nd onsistent boundary onditions we require invariane of the totalation St = S + Sb with respet to arbitrary variations Æwi(z; �z). It follows thatgi�|� 12g2� �y + �2��x�w�| = 2
L(R)ij �xwj + 2
L(R)i�| �xw�| (2.12)g�{j � 12g2� �y � �2��x�wj = 2
L(R)�{�| �xw�| + 2
L(R)�{j �xwj;



2 THE SIGMA MODEL ON PROJECTIVE SUPERSPACE 8where z = �z < 0 (> 0) and 
L(R) is the urvature 2-form of the onnetion AL(R). It isglobally de�ned on C PS�1jS through
L(R) = dAL(R) = �
L(R)ij dwj ^ dwi � 2
L(R)i�| dw�| ^ dwi � 
L(R)�{�| dw�| ^ dw�{: (2.13)Before imposing the onditions of U(S jS) symmetry, we note that our boundary ondi-tions (2.12) should preserve the omplex struture of the C PS�1jS supermanifold. Con-sequently, the omplex onjugate of the �rst equation in (2.12) must yield the seondequation without any additional onstraint. While applying this onstraint one musttake into aount the reality ondition of a salar �eld in Eulidean spae-timewi(z; �z)� = w�{(1=z�; 1=�z�): (2.14)Thus, we onlude that the two equations in (2.12) are ompatible if and only if 
L(R)is imaginary.Boundary onditions (2.12) are said to preserve the global U(S jS) symmetry if theyare invariant with respet to an in�nitesimal ation of the supergroup. To give a preisemeaning to this statement, let us note that the set of eqs. (2.12) an be interpreted as thevanishing ondition of some real vetor �eld L on the left boundary, with omponentsLi = � 12g2� �y � �2��x�wi � 2gi�k
L�k�|�xw�| � 2gi�k
L�kj�xwj; (2.15)L�{ = � 12g2� �y + �2��x�w�{ � 2g�{k
Lkj�xwj � 2g�{k
Lk�|�xw�| (2.16)and a similar expression for another real vetor �eld R on the right boundary. Theglobal U(S jS) invariane of the boundary onditions (2.12) is then equivalent to theinvariane of the vetor �eld L;R with respet to the in�nitesimal ation of the u(S jS)Lie superalgebra. In other words, the Lie derivative of the vetor �eld (2.15) withrespet to any u(S jS) Killing vetor must vanish. As world-sheet translations andglobal symmetry transformations ommute, it follows that the 2-forms 
L(R) must beinvariant. On the other hand, on any irreduible omplex symmetri superspae, thereis only one invariant losed 2-form, namely the K�ahler form !. Hene, invariane of theboundary onditions with respet to the global symmetry requires that
L = iM! ; 
R = iN! (2.17)where ! is the K�ahler form (2.9). In the lassial theory, the M;N an assume anyreal value. For the assoiated path integral to be well de�ned, however, they must be



2 THE SIGMA MODEL ON PROJECTIVE SUPERSPACE 9integers. Even though this setions deals with the lassial ation, we shall assumeM;N 2 Z from now on. For later use it is onvenient to re-write L and R in an indexfree notation,L = 12g2� �y + iJ � �2� +M� �x ; R = 12g2� �y + iJ � �2� +N� �x : (2.18)Here we have introdued the (globally well de�ned) omplex struture J on the tangentspae of C PS�1jS. The omponents Li = dwi(L) and L�{ = dw�{(L) are reovered from Lwith the help of the anonial basis dwi and dw�{ in the otangent spae. Note that L andR only ontain a spei� ombination �1 = 2M+�=� and, respetively, �2 = 2N+�=�.We onlude that the periodi variable � of the bulk theory gets promoted to a realvalued variable � in the boundary problem [18℄. In the limit g� ! 0, the value of �is irrelevant. In other words, the boundary onditions are purely Neumann when weapproah in�nite radius.Before we lose this setion, let us briey write the boundary onditions in termsof the manifestly U(S jS) ovariant formulation (2.4) of our theory. In this ase, thevariations of the basi �elds Z� must be onsistent with the onstraint eq. (2.1),(ÆZy�)Z� + Zy�ÆZ� = 0 :In order for the boundary ontributions to the variation of the ation to vanish, we mustimpose the usual twisted Neumann boundary onditions of the type(�y + iay)Z� = �1g2�(�x + iax)Z� ;(�y � iay)Zy� = ��1g2�(�x � iax)Zy� (2.19)for z = �z < 0 and a similar ondition with M replaed by N , i.e. �1 replaed by �2,along the right half z = �z > 0 of the boundary. The parameters �1 = 2M + �=� and�2 = 2N + �=� are the same ombination of the � angle in the bulk and the monopolenumbers M;N that appeared in eq. (2.18).So far we have only disussed the lassial theory. Understanding the detailed prop-erties of the assoiated quantum �eld theories is the main aim of the following setions.For the time being let us just mention that the non-linear sigma models on C PS�1jShave been argued to possess vanishing � funtion [1℄. This means that they give riseto onformal quantum �eld theories for any hoie of the two ouplings g� and �. Theentral harge of these models must agree with the entral harge of the free �eld theoryat g� � 0, i.e. all models of this type have  = �2.



3 SPECTRUM OF THE NON-INTERACTING SIGMA MODEL 103 Spetrum of the non-interating sigma modelOur disussion of the quantum �eld theory will begin with the limiting ase g� = 0 inwhih all the interations are turned o�. To keep things expliit, we will restrit to the�rst non-trivial ase with S = 2. Most of what we are about to desribe generalizesquite easily to higher dimensional projetive superspaes. We want to investigate thespetrum of the C P1j2 model on the strip (or half-plane) with twisted Neumann boundaryonditions imposed along the boundary. In more stringy terms this orresponds toonsidering volume �lling branes whih wrap the 2-sphere of C P1j2. In a �rst step weshall analyze the spetrum in the partile limit. Then, in the seond step, we inludederivative �elds and onstrut a partition funtion for the theory in the limit of vanishingoupling g�.3.1 Spetrum for a partile moving on C P1j2The semilassial or minisuperspae approximation amounts to onsidering the stringas a point like objet, that is to negleting the � dependene of the �elds wi(�; �).Thereby, we redue the �eld theory to a point partile problem. We shall disuss thequantization of this system in two di�erent ways. In the �rst desription we use thegauge �xed formulation of the theory in terms of variables wi; w�{. The spetrum of theassoiated Hamiltonian is known from [19℄. Our seond approah employs the U(2j2)ovariant formulation. Its results agree with the �rst treatment, but the U(2j2) ovariantonstrution is extended more easily to the full �eld theory.So, let us start from the ation (2.7) and set all �-derivatives to zero. Integratingout the transverse oordinate � of the strip � = [0; �℄� R we get the following partiletheory S = Z 1�1 d� � �2g2� gi�| _w�| _wi + Ai _wi + A�{ _w�{� ; (3.1)where loally the onnetion one-form A is the di�erene of the two one-forms AR andAL, i.e. A = AR � AL : (3.2)The lassial Hamiltonian of this quantum mehanial system takes the following simpleform H = �2g2�� gi�|(�i � Ai)(��| � A�|) ; (3.3)



3 SPECTRUM OF THE NON-INTERACTING SIGMA MODEL 11where the anonial momenta are given by�i = �2g2� gi�| _w�| + Ai ; ��{ = �2g2� g�{j _wj + A�{ : (3.4)We an now pass to the quantum theory through the usual anonial quantization, i.e.by replaing Poisson brakets with ommutators,[wi;�j℄ = [w�{;��|℄ = Æij : (3.5)Note that the fator i of the usual ommutation relations [xi; pj℄ = iÆij is missing beausewe are formulating the theory in Eulidean time � = it. For the quantization proedureto make sense, the one-form Amust be a onnetion on a omplex line bundle over C P1j2,see [20℄. This furnishes a quantization ondition for the urvature of the onnetion,dA = �il! (3.6)with l any integer and ! the K�ahler form on C P1j2. The spae of setions of suh bundlesmay be realized expliitly as equivariant funtions f(w; �w) on C P1j2 with the propertyf(ei�w; e�i� �w) = eil�f(w; �w) : (3.7)Taking into aount (3.2) we get the ondition that l = M � N must neessarily bean integer. Hene, if we admit e.g. AL = 0 as a possible boundary onditions, mutualonsisteny requires N 2 Z. The quantized form of the lassial Hamiltonian (3.3) is,up to a numerial prefator, the Bohner-Laplaian �(l)CPS�1jS on the omplex line bundleover C P1j2 with monopole harge l 2 ZĤ(l) = �g2�� �(l)CPS�1jS : (3.8)The eigenvalues of the Bohner-Laplaian on C PS�1jS where studied in [19℄. For theHamiltonian we obtainhl(k) = g2�� �2k2 + (2k + jlj)(jlj � 1)� l2� for k = 0; 1; 2; : : : (3.9)From the spetrum we an read o� whih u(2j2) multiplets are realized as setions ofmonopole bundles on C P1j2. We will list the orresponding representations of U(2j2) abit later at the end of our seond onstrution of the spetrum.



3 SPECTRUM OF THE NON-INTERACTING SIGMA MODEL 12Let us now see how to reprodue the spetrum of the partile theory within theU(2j2) ovariant formulation. As before, we depart from the spae C 2j2 with oordinatesZ = (z1; z2; �1; �2). The 4-tuple Z transforms in the fundamental representation V ofu(2j2). On the projetive superspae C P1j2, the multiplet Z and its onjugate Zy obeythe following onstraint Zy � Z = 1 : (3.10)Note that Zy transforms in the dual fundamental representation Zy 2 V ? so that theequation (3.10) is onsistent with the u(2j2) symmetry. Consequently, if we quotient thespae of funtions on C 2j2 by the ideal that is generated from Zy �Z� 1, we end up withsome non-trivial u(2j2) module B. The enter of u(2j2) ats on B through the phaserotations (2.2), thereby de�ning a deomposition B = Ll Bl where Bl � B onsists ofelements f 2 B suh that f ! exp(il$)f under the map (2.2). The spaes Bl ontainpreisely all setions of the omplex line bundle with monopole number l.We want to determine the partition funtion of the partile limit, i.e. a funtion thatounts setions in the monopole line bundles, or, equivalently, elements in the u(2j2)module Bl. Before we onstrut this ounting funtion, let us introdue the followingbasis in the 4-dimensional Cartan subalgebra,Jx = 12 � �3 00 0 � Jy = 12 � 0 00 �3 � Jz = 12 � I2 00 �I2 � Ju = I42 : (3.11)Here In is the n-dimensional identity and �3 the Pauli matrix �3 =diag(1;�1). Thepartition funtion readsZ(0)M;N(x; y; z) = trBl(xJxyJyzJz) = limt!1 Ijuj=1du 1� t2ul=2+1 Y�;�=� 12 (1 + y�z��u�t)(1� x�z�u�t) ; (3.12)where l =M�N is the di�erene of the monopole numbers, as before. The trae is takenover all setions of line bundles on C P1j2 and the integral over u is to be understood inthe formal sense, i.e. as a projetor. The limit t ! 1 implements the onstraint (3.10)(see [4℄ for details) while the integral over the variable u selets those states that strethbetween two line bundle with monopole number N and M , respetively. Of ourse,states within Z(0)M;N still arry a Ju harge. It takes the onstant value Ju = l=2.Our aim now is to deompose the partition funtion of the partile theory intoharaters of the symmetry u(2j2). In a �rst step we expand Z(0) into haraters of



3 SPECTRUM OF THE NON-INTERACTING SIGMA MODEL 138-dimensional bosoni subalgebra u(2j2)0 �= sl2 � sl2� u(1)� u(1). The latter are givenby �B(j1;j2;a;b)(x; y; z; u) = �j1(x)�j2(y) za ub ; (3.13)where j1; j2 2 N=2 and a; b 2 C . It is rather straightforward to ompute the orre-sponding branhing funtions and we shall not spell out the results of this intermediatestep here. A similar omputation in the ase of supersphere sigma models an be foundin [4℄. The next step then is to ombine the haraters of the bosoni subalgebra intoharaters of u(2j2). Two types of haraters turn out to appear. The generi ones arethe haraters of Ka-modules, i.e. of irreduible and degenerate long multiplets. Theirrelation to haraters of the bosoni subalgebra is given by�K[j1;j2;a;b℄ = �B(j1;j2;a;b) �1 + z�1�( 12 ; 12) + z�2 ��(1;0) + �(0;1)�+ z�3�( 12 ; 12) + z�4� : (3.14)Here and in the following we abbreviate the produts �j1(x)�j2(y) of sl2-haratersas �(j1;j2). In this expression, the �rst fator is assoiated with the bosoni multipletof ground states while the expression within brakets arises from the four fermionilowering operators in a Ka-module of u(2j2). In addition to the Ka-modules, we alsoneed formulas for haraters of some speial atypial irreduibles. Aording to [21℄, theharaters of these atypials are given by�[ l2 ;0; l2 ; l2 ℄ = �B( l2 ;0; l2 ; l2) + �B( l�12 ; 12 ; l�22 ; l2) + �B( l�22 ;0; l�42 ; l2)�[ l�22 ;0; 4�l2 ;� l2 ℄ = �B( l2 ;0;� l2 ;� l2) + �B( l�12 ; 12 ;� 2+l2 ;� l2) + �B( l�22 ;0; 4�l2 ;� l2)�[ l+12 ; 12 ; l+22 ; l2 ℄ = �B( l+12 ; 12 ; l+22 ; l2) + �B( l2 ;0; l2 ; l2) + �B( l+22 ;0; l2 ; l2) + �B( l2 ;1; l2 ; l2) (3.15)+�B( l+12 ; 12 ; l�22 ; l2) + �B( l�12 ; 12 ; l�22 ; l2) + �B( l2 ;0; l�42 ; l2)�[ l2 ;0; 4�l2 ;� l2 ℄ = �B( l+12 ; 12 ; 2�l2 ;� l2) + �B( l2 ;0;� l2 ;� l2) + �B( l+22 ;0;� l2 ;� l2) + �B( l2 ;1;� l2 ;� l2)+�B( l+12 ; 12 ; 2�l2 ;� l2) + �B( l�12 ; 12 ; 2�l2 ;� l2) + �B( l2 ;0; 4�l2 ;� l2) ;where l � 0 and the value l = �1 is admitted only in the third equation. It is understoodthat a bosoni harater is to be omitted on the right hand side if one of its �rst twolabels is negative. We also note that �12 ; 0; 12 ; 12� and �0; 12 ; 12 ;�12� are assoiated withthe fundamental representation and its dual. The formulas (3.14) and (3.15) are the



3 SPECTRUM OF THE NON-INTERACTING SIGMA MODEL 14only ones we need in order to obtain the expansion of the partition funtion in terms ofharaters of u(2j2)Z(0)M;N(x; y; z) = (1 + Æl;0) �[ jlj2 ;0; l+2�2sgn(l)2 ; l2 ℄ + (3.16)+�[j l2+ 34 j� 14 ; 1+sgn(l+1)4 ; l+3�sgn(l+1)2 ; l2 ℄ + 1Xk=2 �K[k�1+ jlj2 ;0; jlj2 +2; l2 ℄ ;where l = M � N and sgn(x) = 1 if x � 0, sgn(x) = �1 otherwise. The �rst twosummands in this formula involve haraters of irreduible atypials while all remainingones are assoiated with full Ka-modules. In the speial ase that l =M �N = 0, thepartition funtion is ounting funtions on C P1j2. Note that the last label b of all rep-resentations beomes trivial for l = 0 meaning that we are dealing with representations[j1; j2℄p = [j1; j2; p; 0℄ of the quotient pu(2 j2). If we restrit further to the subalgebrapsu(2j2) we may ombine the atypial haraters into the harater of a single (atyp-ial) Ka-module [0; 0℄. Consequently, the deomposition ontains ontributions from[k; 0℄ with k = 0; 1; 2; : : : These are the haraters2 of the psu(2j2) supermultipletswhih are generated from spherial harmonis on the bosoni base of C P1j2. For valuesl =M �N > 0, the lowest value of j1 is j1 = jlj=2. Suh a uto� is a well known featureof setions in monopole bundles.The result (3.16) agrees with our earlier desription of the spetrum (3.9). To relatethe two �ndings we note that in a representation [j1; j2; a; b℄ of u(2j2) the quadratiCasimir elements take the valueCas�(�) = 2[j1(j1 + 1)� j2(j2 + 1) + b(a� 2)℄� 4�b2: (3.17)Sine u(2j2) is not semisimple, there exists a one-parameter family of suh Casimirelements. It is parametrized by the oeÆient �� of E2 where E denotes the entralelement of u(2j2). More details an be found in Appendix A. Plugging in the labels ofrepresentations from eq. (3.16) one reovers the spetrum (3.9) of the Bohner-Laplaian,provided the parameter � in the Casimir element is set to � = 1 (see Appendix B fordetails). This onludes our disussion of the partile limit.2See [22℄ for more details on the representation theory of psu(2j2).



3 SPECTRUM OF THE NON-INTERACTING SIGMA MODEL 153.2 Partition funtion at in�nite radiusThe partition funtion of the boundary onformal �eld theory in the limit of vanishingtarget spae urvature an be onstruted by extending our disussion of the partilelimit to inorporate derivatives along the boundary. The main formula isZM;N(x; y; z; q) = �(q) q 112 Ijuj=1 duul=2+1 �(q) limt!1(1� t2) �� Y�;�=� 12 1 + y� (zu�1)� t1� x� (zu)� t 1Yn=1 Y�;�=� 12 1 + y� (zu�1)� qn1� x� (zu)� qn : (3.18)As in the partile model, the limit t ! 0 is used to implement the onstraint (3.10)on the zero modes of �elds. But in the �eld theory, there is an in�nite tower of �eldidenti�ations that follow by taking derivatives. One the onstraint on zero modes hasbeen taking into aount, the net e�et of the remaining �eld theoreti identi�ationsis to remove loal utuations in one bosoni diretion from the state spae. This isahieved my multiplying the ounting funtion with the Euler funtion �(q). A morethorough mathematial derivation of this argument may be found in [4℄. The lineintegral over u projets onto �elds that possess the same behavior under the global phaserotations (2.2) of �elds. In the �eld theory, however, loal phase rotations are gauged bythe non-dynamial gauge �eld a. Thereby, we remove utuations into a seond bosonidiretion. On the level of our partition funtion the double ounting of �elds whih arerelated by loal gauge transformations is avoided by another multipliation with theEuler funtion �(q).Now that we understood our basi expression from the partition funtion of themodel, let us deompose the �eld theory spetrum into representations of the globalsymmetry u(2j2). As in the partile limit, we expand into bosoni haraters �rst,ZM;N(x; y; z; q) = X�B(j1;j2;a;b)(x; y; z) B(j1;j2;a;b)(q) ;where b = l=2 and the sum runs over all j1; j2 2 N2 , a 2 Z2 for whih a + b � 2j1 mod 2and a � b � 2j2 mod 2. The haraters � of the even part u(2j2)0 were displayed in



3 SPECTRUM OF THE NON-INTERACTING SIGMA MODEL 16equation (3.13) above. For the assoiated branhing funtions  B one �nds B(j1;j2;a;b)(q) = q 112�(q)4 �q�j2 � q3j2+2 + �q a�b2 + q b�a2 � �1� q2j2+1�� �� qj22+(a�b2 )2 Xl=ja+b2 jj1+l2N 1Xm;n=1(�1)m+n (1� qm+n) �q(m�n)(j1�l) � q(m�n)(j1+l+1)�q�m(m�1)+n(n�1)2 ;where we require that a and b be suh thata+ b � 2j1 mod 2 a� b � 2j2 mod 2 : (3.19)The branhing funtions for the Ka-modules of the full superalgebra u(2j2) an beobtained through the following in�nite sums K[j1;j2;a;b℄ = 1Xn=0(�1)n [n2 ℄Xm=0 n�2mXr;s=0  B(j1+n2�(m+r);j2+n2�(m+s);a+n;b) : (3.20)Weights [j1; j2; a; b℄ of u(2j2) are atypial when b = �(j1 � j2) or b = �(j1 + j2 + 1).Whenever the weights are atypial, our expressions for  K must be summed further toobtain branhing funtions of irreduible representations. The neessary formulas arelisted in Appendix C. Here, we shall simply display our results in terms of the branhingfuntions  K, ZM;N(x; y; z; q) = X�K[j1;j2;a;l=2℄(x; y; z) K[j1;j2;a;l=2℄(q) : (3.21)The sum runs over all j1; j2 2 N2 , a 2 Z2 for whih a + l=2 � 2j1 mod 2 and a � l=2 �2j2 mod 2. For our purposes, the branhing funtions  K are already good enough, sinewe are only interested in the values that the quadrati Casimir takes on the states of ourtheory and not in their preise transformation properties whih, sine indeomposablerepresentations appear quite naturally, an be very ompliated. We reall that theharaters �K of u(2j2) Ka-modules are given by eq. (3.14). For typial weights, thefuntions  K are proper branhing funtions with non negative integer oeÆients.It is very instrutive to apply the same ombinatorial onstrutions to the simplertheory of sympleti fermions, i.e. for S = 1. The symmetry of this model is desribedby the superalgebra u(1j1). We selet a partiular basis Jz; Ju for the Cartan subalgebraby �xing the values in the fundamental representation aording toJz = 12 � 1 �1 � Ju = 12 � 1 1 � : (3.22)



3 SPECTRUM OF THE NON-INTERACTING SIGMA MODEL 17Just as in the ase of the C P1j2 model, we onstrut the partition funtion in the limitR ! 1 by taking tensor produts of the fundamental representation of u(1j1) and itsdual. After that we apply our onstraint and gauge presription. The partition funtionZ =Pl Zlul=2 for all bundles is then given by the formulaZ(qjz; u) = q 112�(q)2 limt!1(1� t2) 1Yn=0 (1 + z� 12u 12 qn)(1 + z 12u� 12 qn)(1� z 12u 12 qn)(1� z� 12u� 12 qn)= q 112�(q) Xa;b2Z=2a+b2Z za �1 + z�1� ubq (b�a)(b�a+1)2 ; (3.23)where in the produt of the �rst line we are instruted to make the formal substitutionq0 ! t before evaluating the limit t ! 1. Sine Ka module haraters for u(1j1) arede�ned by3 �Kha ; bi = za �1 + z�1�ub ;we obtain the following expression for the branhing funtions Kha ; bi(q) = q 112�(q)q (b�a)(b�a+1)2 for a; b 2 Z=2; a+ b 2 Z : (3.24)The quadrati Casimir takes the value 2b(2a � 1) � 4b2 in the Ka module labeled byha ; bi. For a given value of b = l=2 = (M � N)=2, there are four states of onformalweight h = 0 in the spetrum. More preisely, we �nd thatZ(0)M;N(z; u) = �Khl=2 ; l=2i + �Khl=2+1 ; l=2i ;where l = M � N . When l 6= 0, the two u(1j1) multiplets that appear in the deom-position of Z(0) are typial. This hanges only for l = 0. In that ase, the two atypialmultiplets h0 ; 0i and h1 ; 0i ombine into a 4-dimensional projetive indeomposable ofu(1j1). Suh boundary theories of the sympleti fermions with four ground states were�rst onstruted in [24℄. Let us also observe that the number of haraters in the de-omposition of Z(0) agrees with the number of atypial haraters in the orrespondingdeomposition (3.16) for the C P1j2 model. This is no oinidene. In fat, one may showthat states of the sympleti fermion model are assoiated to atypial multiplets of thesigma model on C P1j2.3In our notations, the seond label b refers to the value of the entral element E of u(1j1). Thisdi�ers from the notations that were used e.g. in [23℄.



4 SIGMA MODEL PERTURBATION THEORY 184 Sigma model perturbation theoryOur aim here is to spell out formulas for the boundary partition funtion of the C P1j2model any �nite ouplings g� and �. In the �rst subsetion we shall briey sketh howthe bakground �eld expansion an be adapted to supersymmetri target spaes and usethis formalism to alulate onformal weights of boundary �elds exatly, to all orders inperturbation theory. As in the ase of superspheres, the shift of the onformal weightsturns out to be given by a partiular quadrati Casimir element of u(2j2). The results ofthe �rst subsetion are then ombined with our expression (3.21) for the free partitionfuntion to onstrut the full (perturbative) partition funtion of the C P1j2 model withNeumann-type boundary onditions.4.1 Bakground �eld expansion and 2-point funtionsLet us onsider a sigma model on an arbitrary K�ahler supermanifold of superdimension2pj2q. If we parametrize the supermanifold through real oordinates 'i, its ation takesthe following formS['℄ = 12g2� Z� d2z ���'(z); ��'(z)�'(z) + i�2� Z'(�) !; (4.1)where (X; Y )' denotes the salar produt of two vetor �elds X; Y at the point ' of thesupermanifold and ! is the K�ahler form. We assume the latter to be normalized suhthat R�(�) ! is integer. For the path integral measure we useD['℄ = Yx2� d��'(z)�; d�(') =pg(') d'1 : : : d'2p+2q :The measure may be regularized by putting the theory on a square lattie with spainga. To evaluate the salar produt we introdue a basis ei =  ���'i of right derivatives.Expanding two vetors X = eiX i and Y = eiY i, with respet to this basis, we obtain(X; Y ) = (�1)jijX igijY j = gijY jX i : (4.2)Here, the order of fators does ertainly matter. From the symmetry (X; Y ) = (Y;X) ofthe salar produt in the tangent spae we derive the following symmetry of the metritensor gij = (�1)jijjjjgji :



4 SIGMA MODEL PERTURBATION THEORY 19We are interested in omputing perturbatively the partition funtion and the orrelationfuntions by the steepest desent method around the onstant lassial solution '(z; �z) =�'. For arbitrary Riemannian manifolds, one an perform the perturbation theory in thebakground �eld method by swithing to the geodesi oordinates as de�ned in [25℄.When dealing with omplex spaes, however, there exists more appropriate oordinateswhih keep the omplex struture manifest. Let wa be a set of holomorphi oordinatesfor the K�ahler supermanifold and hoose some point on it with �xed oordinates wa0 . Aset of holomorphi oordinates va for the omplex supermanifoldM is alled a normalsystem of oordinates at wa0 if the metri ga�b(v; �vjw0; �w0) is of the formga�b(v; �vjw0; �w0) = ga�b(w0; �w0) + 1Xn=1 a�ba1�b1���an�bn(w0; �w0) v�bnvan : : : v�b1va1 : (4.3)The holomorphi transition funtions w = w0(v) between the set of holomorphi oor-dinates w and the normal oordinates v at w0 are ompletely �xed by the required formof the metri (4.3). In fat, one an prove by indution that the transition funtionsw0(v) must possess the following power series expansion in vw� = �w0(v) = w�0 + 1Xn=1 1n!�rn�1v v����w0(w0) (4.4)= w�0 + v� � 1Xn=2 1n!��b1b2;b3;:::;bn���w0vbn � � � vb3vb2vb1 : (4.5)Here, r denotes the ovariant derivative on the K�ahler manifold. It involves theChristo�el symbols whih may be omputed from the metri aording to�ijk = gil ��wk glj :In eq. (4.5) we have expressed the expansion oeÆients through multiple ovariantderivatives ��b1b2;:::;bn of the Christo�el symbols ��b1b2 . When evaluating these derivatives,we only treat the lower labels bi as tensor indies, i.e. the ovariant derivatives do notat on the label �.In order to atually ompute the metri (4.3) we use a nie trik. Namely, wepropose to onsider some holomorphi mapping wa(�) from a ompat Riemann surfae�, parametrized by the holomorphi oordinate �, to the omplex symmetri spae thatis parametrized by the holomorphi oordinates wa. Sine the omponents of vetor



4 SIGMA MODEL PERTURBATION THEORY 20�elds are known in any frame, the metri in normal oordinates v at w0 may be derivedfrom the equation ��w(�); �� �w(��)�w(�) = ��v(�); ���v(��)�fv(z);w0g : (4.6)The solution an be written as a power series in v; �v with oeÆients built out of theomponents of the urvature tensor at w0. Indeed, it is not hard to hek that(�v(�); ���v(��))fv(�);w0g = 1Xn=0 (�1)n2n ��Qn��v(��)�v(�); ���v(��)�w0; (4.7)where we used the operator Q( �Y )X = R(X; �Y )Xwhih is de�ned for arbitrary (anti-)holomorphi vetors ( �Y )X and R is the urva-ture tensor on our K�ahler supermanifold. In the ase of omplex projetive superspaeC PS�1jS the urvature tensor readsR(X; �Y )Z = (X; �Y )Z + (Z; �Y )X : (4.8)Plugging this bak in to the series (4.7), one may resum the expression to obtain(X; �Y )fv;w0g = (X; �Y )w01 + (v; �v)w0 � (X; �v)w0(v; �Y )w0�1 + (v; �v)w0�2 (4.9)where X(v) and �Y (�v) are arbitrary holomorphi and, respetively, anti-holomorphi ve-tor �elds and the salar produt ( ; )w0 is omputed with the Fubini-Study metri (2.8)at w0.In the bakground �eld method, the oordinates v and �v are now promoted to �eldsv(z; �z) and �v(z; �z) on the world-sheet. The ation (4.1) beomesS[v℄ = Z� d2z � 1g2� + i�� ���v; ���v�fv;w0g + � 1g2� � i�� ����v; ��v�fv;w0g (4.10)where the metri ( ; )fv;w0g in normal oordinates was omputed in eq. (4.7) as a powerseries of matrix elements of the urvature tensor (4.8). For the appliations we have inmind, the ation (4.10) is formulated on a world-sheet with boundary.Let us assume that the boundary onditions that are imposed along the boundarypreserve the global supergroup symmetry. Then the path integration fatorizes into



4 SIGMA MODEL PERTURBATION THEORY 21two ontributions. One of them is a �nite dimensional integral along the value w0 ofthe fundamental �eld w(z0) at one point z0 of the world-sheet. The seond is the pathintegral along its \deviation" v(z). For the measure, this split takes the following formD[w; �w℄ = d�(w0; �w0)D[v; �v℄ ; (4.11)whereD[v; �v℄ = Yx6=0 ip+q2p+qqg�v(x); �v(x)jw0; �w0�dv1(x)^d�v1(x) : : : dvp+q(x)^d�vp+q(x) : (4.12)One an hek that the superdeterminant of the metri in normal oordinates does neverdepend on v(x). For the Fubini-Study metri (2.8) on the omplex projetive superspaeC PS�1jS one even �nds thatg�v(x); �v(x)jw0; �w0� = g(w0; �w0) = 1 : (4.13)In onlusion, omputations in the bakground �eld expansion for C PS�1jS are performedwith the standard path integral measure using the free �eld theory ationS0[v℄ = Z� d2z � 1g2� + i�� ���v; ���v�w0 + � 1g2� � i�� ����v; ��v�w0 : (4.14)The interation terms are obtained by expanding the Fubini-Study metri (4.9) in theutuation �eld v. After this preparation we are now ready to ompute some quantitiesin the sigma model on C PS�1jS.As a warm-up example, let us alulate the index Jg�;�0;0 (q) = Zg�;�0;0 (1; 1;�1; q), i.e.the partition funtion of the boundary theory with M = 0 = N speialized to thevalues x = 1 = y and z = �1. It is easy to see from eq. (3.14) that the haraters ofKa-modules vanish at this speial point, simply beause the ontributions from bosonsand fermions anel against eah other. It follows from our eq. (3.21) that the index Jvanishes at g� = 0. Our aim here is to show that it atually vanishes for all values ofg� and �. Aording to eq. (4.11), the perturbative partition funtion Jg�;�0;0 of the sigmamodel eq. (4.10) an be written asJg� ;�0;0 (q) = Z d�(w0; �w0)jg�;�0;0 (w0; �w0): (4.15)We shall all jg�;�0;0 (w0; �w0) the loal partition funtion. By arefully analyzing the per-turbative expansion of the partial partition funtion one an prove that it reeives no



4 SIGMA MODEL PERTURBATION THEORY 22orretions from the interation terms, that isjg�;�0;0 (w0; �w0) = j(0)0;0(w0; �w0); (4.16)where j(0)0;0(w0; �w0) is the loal partition funtion of the free theory (4.14). The equal-ity (4.16) may be derived with the help of the property (4.7) of the metri in normaloordinates. It expresses the perturbative loal index in terms of tensor powers of theurvature tensor on C PS�1jS. But all the orretions to the index vanish. In fat, onemay show (see appendix D) that all salars onstruted from the tensor powers of theurvature tensor on C PS�1jS are zero. This ompletes the proof of eq. (4.16). It re-mains to integrate the loal index over the target spae oordinates w0. Sine neitherthe measure nor the free ation ontain w0, we infer that the loal index itself must beonstant. Using that the superspae C PS�1jS has vanishing volume we an now onludeJg�;�0;0 (q) = 0, as we had laimed before.The main goal of this setion is to ompute 2-point funtions and thereby to deter-mine the onformal dimensions of boundary �elds as a funtion of g� and �. Let O[w℄(z)denote a (boundary) �eld of the sigma model on our K�ahler manifold. After insertion ofthe hange of oordinates formula (4.5), the �elds beome funtionals of the (onstant)bakground w0 and the utuation �eld v. The orrelation funtions are then given by
Y� O� [w℄(z�; �z�)� / Z d�(w0) DY� O��w0(v)�(z�; �z�) e�Sintg�;� [v℄Ew0 : (4.17)We ompute the quantity on the the right hand side by expanding in powers of v boththe interation and the �elds O� [w0(v)℄. The notation h iw0 we used in eq. (4.17)means that the expression in brakets must be alulated in the free theory (4.14) with�xed zero mode w0.We have applied the general presription (4.17) to the omputation of boundary 2-point funtions for boundary ondition hanging �elds with M = N in the C P1j2 sigmamodel. From the results, we obtained the following expression for the onformal weightsof tahyon vertex operators in the representation [k � 1; 0; 2; 0℄; k = 1; 2; : : : ; of u(2j2),hg�;�0;0 [k � 1; 0; 2; 0℄ = g2�� "1� g4� � �� + 2N�2#Cas�=1[k � 1; 0; 2; 0℄ +O(g8�) : (4.18)It is easy to see [26℄ that onformal weights for boundary ondition hanging operatorswith M = N depend on g� and � only through the ombination�geff� �2 = g2�1 + g4� � �� + 2N�2 ; (4.19)



4 SIGMA MODEL PERTURBATION THEORY 23whih gives the dependene on g� and � in the propagator of the quantum �elds. Theomputation of the latter for boundary onditions of the type (2.18) with M = N anbe found in [27℄. We have not managed to arry the omputation of weights to higherorders. This is partly due to the fat that the bakground �eld expansion breaks thepsl(2j2) symmetry down to sl(1j2) so that some of the simpli�ations that arise fromspeial features of the Lie superalgebra psl(2j2) (see e.g. [28℄) are not diretly appliable.Nevertheless, we take eq. (4.18) as a strong indiation that boundary weights of tahyonivertex operators transforming in some representation � of u(2j2) behave as,hg�;�M;N(�) = h�M;N(g�; �) + gM;N(g�; �)4 Cas�=1(�) (4.20)with some funtions h�M;N(g�; �) and gM;N(g�; �) that will be determined below. Thisonjetured behavior of the onformal weights will be one of the entral ingredients inour formula for the boundary partition funtion of the C P1j2 model. It has also passedextensive numerial heks that we desribe in the seond part of this work.4.2 Partition funtion at �nite ouplingIt is now time to spell out the entral formula of this paper. We propose the follow-ing boundary partition funtion of the C P1j2 model with monopole bundle boundaryonditions M;N imposed along the two boundaries of the strip,Zg�;�M;N(x; y; z; q) = q 12�M;N (g�;�)(�M;N (g�;�)�1)X�K[j1;j2;a;l=2℄(x; y; z) � (4.21)� q 14gM;N (g�;�) ÆlC(2)([j1;j2;a;l=2℄)  K[j1;j2;a;l=2℄(q) :The partition funtion depends on the ouplings g� and � through the funtions �M;N(g�; �)and gM;N(g�; �). These funtions are universal, i.e. do not depend on the representation[j1; j2; a; b℄ the �eld transforms in. We will provide expliit formulas below (see eqs.(4.23) and (4.24)). The funtions � and g also turn out to be the same for all C PS�1jSmodels, regardless of the value of S. Hene, our partition funtion depends on S onlythrough the branhing funtions  and a ertain di�erene ÆlC(2) of Casimir elements ofu(SjS). For S = 2, the former were determined in setion 3 through our analysis of themodel at g� = 0. The relevant Casimir element Cas� was displayed in eq. (3.17) before.



4 SIGMA MODEL PERTURBATION THEORY 24What appears in eq. (4.22) is the di�ereneÆlC(2)([j1; j2; a; l=2℄) = Cas�=1([j1; j2; a; l=2℄)� Cas�=1(�0;l)= 2[j1(j1 + 1)� j2(j2 + 1)℄ + l(a� 2)� l2 + jlj (4.22)The weight �0;l orresponds to the representation of the ground state. The latter mini-mizes the value of �Cas�=1 among all the representations that appear in the deompo-sition (3.21), see appendix B for details.Let us now address the two funtions � and g in more detail. Obviously, the funtion� determines the onformal weight of the ground state in the boundary theory. Thefuntion g, on the other hand, enodes how onformal weights of the exited stateshange relative to the ground state as we vary the two bulk ouplings g� and �. Welaim that both � and g are independent of the integer S, i.e. they are the same for allprojetive superspaes C PS�1jS. We shall only sketh the argument here. It is based onthe observation that all C PS�1jS models ontain sympleti fermions as a true subsetor[38℄. In other words, all �elds of the sympleti fermion model C P0j1 an be embeddedinto the theory with target spae C PS�1jS in suh a way that their orrelation funtionsare preserved under the embedding. A very elegant proof of this statement will be givenin a forthoming publiation. For the C P1j2 model, states from the sympleti fermionsubsetor are to be found within the �rst two (atypial) multiplets in the deomposition(3.16) of �elds with weight h = 0 at g� = 0. Sine the weights of theses two multipletsdetermine the two funtions � and g uniquely, we an ompute both � and g within thefree �eld theory of sympleti fermions.Our �rst goal now is to ompute the funtions �M;N within the sympleti fermionmodel. To this end we look bak at our formula (2.19) that desribes the gluing onditionof �elds at the boundary in terms of the parameters N;M and �. These boundaryonditions are of Neumann type, twisted by the presene of a nontrivial matrix W ofthe form W (�) = ig2� �� 00 ��� :The matrix W relates the derivatives along and perpendiular to the boundary of theworld-sheet. Sine � = 2N + �=�, the matrix W may be written as a sum W =B(�) + F (N) of a `bulk magneti �eld' B = B(�) and the `�eld strength' F = F (N)of the monopole. If we hoose di�erent monopole numbers M;N on the two sides ofthe strip, the gluing onditions along the left and the right boundary are di�erent.



4 SIGMA MODEL PERTURBATION THEORY 25Consequently, the orresponding boundary ondition hanging �elds must be in twistedsetors. In order to determine the twist parameter �, we reformulate the boundaryondition in terms of a gluing automorphism 
 that relates hiral �elds rather than thederivatives �x and �y. The gluing automorphism is given by
 = 1 +W1�W :Let us denote the two di�erent values of � along the left and the right boundary by�1 and �2. Similarly, we shall use the symbols Wi = W (�i) and 
i = 
(�i) for theorresponding �eld strengthW and the gluing automorphism 
 along the two half-lines.It follows that the sympleti fermions possess monodromy
12 = 
1
�12 = �+W (�1 � �2)��W (�1 ��2) where � = 1 + g4��1�2when taken around a boundary �eld insertion. The trae of this monodromy matrix 
12determines the twist parameter of the sympleti fermions through 2 os 2�� = tr
12.Putting all this together we �ndos 2��M;N(g�; �) = (1 + g4��1�2)2 � (�1 � �2)2g4�(1 + g4��1�2)2 + (�1 � �2)2g4� ; (4.23)where �1 = 2M+�=� and �2 = 2N+�=�. There are a few speial ases to be disussed.To begin with let us hoose M = N . When the two boundary onditions on both sidesof the interval are idential so that �1 = �2, then os 2�� = 1 and onsequently thetwist parameter vanishes. Similarly, we note that the twist parameter always vanishes inthe limit of in�nite radius, i.e. when g� = 0. The boundary theory with vanishing twistparameter was onstruted expliitly in [24℄. The more general ase has been onsideredin [29℄.It remains to �nd the seond set of funtions gM;N . We shall see momentarily thatthey are very losely related to �M;N . As we have just argued, the ground states in oursympleti fermion model on the upper half-plane are twist �elds with a twist parameter�. The orresponding onformal weight ishgr� = 12�(�� 1) :Exited states in the sympleti fermion model are generated by ating with modes ofthe form ����n; n � 0. Hene, the �rst exitations above the ground states possess



4 SIGMA MODEL PERTURBATION THEORY 26onformal weight hex = hgr� + �. These states of the sympleti fermions are embeddedinto the seond term in the deomposition (3.16). Consequently, the two funtions �and g must be related by�M;N(g�; �) = 14ÆC(2)(�1;M�N)gM;N(g�; �) = 12 jM �N jgM;N(g�; �) (4.24)where the weights �0;l and �1;l in terms of the labels [j1; j2; a; b℄ an be found in se. B.The equation determines gM;N in terms of the twist parameter �M;N , at least whenM 6= N . When M = N , the twist parameter vanishes. Sine the oeÆient jM �N j onthe right hand side of equation (4.24) also goes to zero as M ! N , the funtion gN;Nan be omputed asgN;N(g�; �) = limM!N �2�M;N(g�; �)jM �N j � = 4g2���1 + g4�( �� + 2N)2� : (4.25)Hene, the universal funtion gN;N is related to the e�etive oupling geff� we foundwhile analyzing the bakground �eld expansion in eq. (4.19),gN;N(g�; �) = 4� �geff� �2 : (4.26)Before we onlude this subsetion let us spell out one more speial ase of ourexpression for � to prepare for our lattie analysis in the next setion. In the seondpart, we will perform numerial alulations for nonzero values of the monopole hargesM;N . Simulations with M = 0 and N = �1 at the point g� = 1 will give the groundstate energy h� = �1=8. This orresponds to the twist parameter � = 1=2. To reproduethis values, we needos 2��0;1(g2� = 1; �) = �1 + �� � �� � 2��2 � 4�1 + �� � �� � 2��2 + 4 = �1 :We read o� that the lattie model must ow to the ontinuum theory with � = �. Itis interesting to note that the � angle of the bulk theory may be determined from thebehavior of boundary onformal weights.



5 BRAUER ALGEBRA AND ALTERNATING U(S jS) SPIN CHAIN 27Part II: Disretization and Numeris
Our proposal for the exat partition funtion of u(2j2) symmetri boundary theories isbased on two entral ingredients. On the one hand, there are perturbative studies aroundg� = 0 that indiate that onformal weights evolve with the quadrati Casimir element.In addition, the lose relation of the C P1j2 model with sympleti fermions allowedus to determine the universal funtions gM;N in front of the Casimir element and theground state energies. While the embedding of sympleti fermions is a non-perturbativefeature of the C P1j2 model, the Casimir evolution was only analyzed perturbatively inthe oupling onstant g�. In order to further test our formulas for the evolution ofonformal weights, we shall now introdue a lattie model. The disrete theory an bestudied numerially without any need to expand in the oupling onstant g�. We shall�nd remarkable agreement between our analytial studies of the ontinuum model andthe numerial results for its disretization. The agreement suggests that our proposalfor the partition funtions of boundary theories is exat. In partiular, it does not seemto reeive non-perturbative orretions.5 Brauer algebra and alternating u(S jS) spin hainThe main purpose of this setion is to establish the Hamiltonian (5.4) with a = 0 as apromising andidate to desribe a disrete version of the bulk dynamis in the C PS�1jSmodels. Our disussion will require some bakground on (walled) Brauer algebras whihwe desribe �rst.Lattie studies of two dimensional C PS models involve, in their most diret version,the Monte Carlo study of a model with S dimensional omplex unit vetors on theverties and U(1) gauge �elds on the edges of a square lattie, together with the properdisretization of the topologial term (this is somewhat less obvious of ourse, as thereis no topology on the lattie) [30, 31℄. Condensed matter physis has provided analternative to this approah, where the �elds an now emerge dynamially as olletiveexitations of quantum spins. The onjeture by Haldane [32, 33℄ that the long distaneproperties of SU(2) spin hains is desribed by the O(3) sigma model at � = 0 for integer
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Pi,i+2Figure 1: The identity I and the generators Ei; Pi of the Brauer algebra of dimension(2L � 1)!! are represented on the left; the walled Brauer algebra generator Pi;i+2 =PiPi+1Pi is represented on the right.(� = � for half integer) spin opened the way to studying the mapping of most generalspin hains to sigma models [34℄. Lately, this idea has been intensely revisited in theontext of the AdS/CFT duality.Geometri quantization arguments [34, 35℄ show that the simplest spin hain weould use to understand the C PS�1jS model is based on alternating the fundamentalrepresentation V of u(S jS) and the dual fundamental V ?. For a desription of thesemodules, see [1℄. Moreover, for a homogeneous hain, we should get � = �.Integrable spin hains for this hoie of representations turn out to have a non generiontinuum limit, desribed by a WZW model [36℄. To see the physis of the C PS�1jSmodel, we need to use more generi interations. The ones we shall �nd to desribethe physis of the ontinuum theory do not preserve integrability. Fortunately, a lotan still be understood analytially by studying the properties of the hains under thesimultaneous ation of the (super) Lie algebra symmetry and its ommutant [37℄. Inthe present ase, this ommutant is given by the walled Brauer algebra. The algebraiapproah that we are about to review has a number of appealing features. In partiular,up to a ertain point of the analysis, it may be formulated without any referene to thevalue of S.Throughout the following subsetions we denote the generators of the Brauer algebraB2L(0) by E1; P1; : : : ; E2L�1; P2L�1. In the symbol B2L(0), the index 2L is related to thedimension of the Brauer algebra by dimB2L(0) = (4L � 1)!! and the parameter inparenthesis denotes the so-alled fugaity for loops. The de�ning relations of B2L(0)an be found in [39℄. The words of this Brauer algebra admit a representation as graphson 4L labelled verties with 2L edges onneting the verties pairwise in all (4L� 1)!!possible ways (rossings are allowed). The identity I of the Brauer algebra and thegenerators Ei; Pi are represented by the graphs on the left in �g. 1. In order to multiplythe diagrams one arranges the �rst 2L verties horizontally with the remaining 2Lverties on top of the �rst ones. The produt of a diagram d1 with a diagram d2 is



5 BRAUER ALGEBRA AND ALTERNATING U(S jS) SPIN CHAIN 29the diagram d1d2 obtained by i) plaing the diagram d1 on top of the diagram d2, ii)identifying the top of the diagram d2 with the bottom of the diagram d1 and iii) replaingevery loop generated in this proess by 0. The periodi Brauer algebra is an extensionof the Brauer algebra by two generators E2L and P2L whih satisfy the same de�ningrelation as the generators of the Brauer algebra if the index i � i + 2L is regarded asperiodi. The words of the periodi Brauer algebra are diagrams with the top and thebottom being irles wrapped around a ylinder and arrying 2L verties eah, suh thatthe latter are pairwise onneted in all possible ways by 2L edges living on the surfaeof the ylinder. The periodi Brauer algebra has in�nite dimension.The elements Ei and Pi;i+2 = PiPi+1Pi freely generate a subalgebra alled the walledBrauer algebra. The generators Pi;i+2 are represented on the right in �g. 1. This walledBrauer algebra is of entral importane for the study of u(SjS)-invariants as explainedin the following. Let V denote the fundamental representation of u(SjS) and V ? be itsdual. Generalizing the well known statement for u(N), Sergeev proved [40℄ that there is asurjetive homomorphism from the walled Brauer algebra to the invariants of the tensormodule (V 
 V ?)
2L or, equivalently, to the u(SjS)-entralizer of (V 
 V ?)
L. Thismeans that the u(SjS)-entralizer of (V 
 V ?)
L an be viewed as some representationof the walled Brauer algebra. In partiular, the most general u(SjS)-symmetri spinhain Hamiltonian H one an write down must represent some element of the walledBrauer algebra. If we restrit to nearest neighbor interations only (hene de�ning au(SjS) version of the Heisenberg hain), we get a Hamiltonian of the formHTL = �Xi tiEi : (5.1)This Hamiltonian, all of its powers and the orresponding evolution operator e��HTL lieentirely in the Temperley-Lieb subalgebra of the walled Brauer algebra. Thus, by thedouble entralizer theorem, the symmetry of HTL must be bigger then u(SjS). One anshow [41℄ that the spetrum of low lying exitation of the homogeneous hain HTL in thesaling limit is desribed by the free �eld theory of a pair of free sympleti fermions,S � Z d2z ���1(z; �z)���2(z; �z): (5.2)The degeneraies of the exitations of the lattie model must be omputed by employingindependent representation theoreti tools developed in [37℄.We are naturally interested in deformations of the Temperley-Lieb Hamiltonian (5.1)whih break the symmetry all the way down to u(SjS) and preserve onformal invariane



5 BRAUER ALGEBRA AND ALTERNATING U(S jS) SPIN CHAIN 30in the ontinuum limit. The simplest u(SjS)-symmetri Hamiltonian is the sum ofgenerators of the walled Brauer algebra. Sine the generator Pi;i+2 orresponds to seondnearest neighbor interations on the spin hain (V 
 V ?)
L, it is natural to onsiderthe following u(SjS)-symmetri deformation of the Hamiltonian (5.1)Hgen = �Xi �tiEi + wiPi;i+2 + aiEiEi+1 + biEi+1Ei� : (5.3)The eigenvalues of the Hamiltonian (5.3) are more easily omputed by working in theadjoint - that is in the diagrammati - representation of the walled Brauer algebra,rather than in the representation on (V 
 V ?)
L. However, when swithing between thealternating spin hain and adjoint representations of the walled Brauer algebra one loosesontrol of the degeneraies of eigenvalues. These an be reovered from representationtheory by methods similar to those used in [2℄. We shall all the Hamiltonian (5.3)algebrai when it is onsidered in the adjoint representation of the walled Brauer algebra.The atual spetrum of the u(SjS) alternating spin hain will be a subset of the spetrumof the algebrai Hamiltonian (5.3). We all this subset a u(SjS)-setor of the algebraiHamiltonian. With a little bit of representation theory of the walled Brauer algebra onean prove that the eigenvalues of the u(S�1jS�1) spin hain Hamiltonian are a subsetof the eigenvalues of the u(SjS) spin hain Hamiltonian. This is done in essentially thesame way as in [2℄.At a ritial point, the spae of states of the statistial model usually possessessome additional disrete symmetries. Without loss of generality one an impose thesedisrete symmetries on the Hamiltonian (5.3), thereby reduing the number of indepen-dent ouplings ti; wi; ai; bi. The sale invariant vauum in periodi boundary onditionsis neessarily translation invariant. Consequently, we shall restrit to homogeneousHamiltonians (5.3), i.e. to Hamiltonians that are invariant under the disrete shift au-tomorphism Ei ! Ei+1; Pi�1;i+1 ! Pi;i+2of the periodi walled Brauer algebra. If we additionally assume invariane with respetto the reetion automorphismEi ! E2L�i+1; Pi;i+2 ! P2L�i;2L�i+2;then the Hamiltonian beomesH = � 2LXi=1 �tEi + wPi;i+2 + a(EiEi+1 + Ei+1Ei)� : (5.4)



5 BRAUER ALGEBRA AND ALTERNATING U(S jS) SPIN CHAIN 31We shall restrit to real ouplings t; w and a. It will take some more disussion to gainsuÆient intuition into the new ouplings w and a. In partiular we shall argue thatw is an exatly marginal oupling whih orresponds to the radius parameter R of theontinuum theory. The oupling a, on the other hand, seems to have little e�et andwill eventually be set to zero.In order to interpret the ouplings a and w we shall mostly work with the u(1j1)subsetor, i.e. we will onsider the Hamiltonian (5.4) as an operator on the state spaeof the u(1j1) alternating spin hain. The resulting theory is a disrete version of the freetheory of sympleti fermions. We an make the link by introduing a set of 2L reationand annihilation fermioni operatorsf'i; �'jg = Æij; i; j = 1; : : : ; 2L : (5.5)These may be employed to represent the generators of the walled Brauer algebra throughthe following quadrati expressionsEj = (�1)j( �'j � �'j+1)('j + 'j+1) (5.6)Pj�1;j+1 = (�1)j�1� ( �'j�1 � �'j+1)('j�1 � 'j+1)� :The ontinuum limit of the u(1j1) Hamiltonian (5.4) with a = 0 is desribed by anation of the type (5.2), the same we found for w = 0. In other words, when a = 0 andS = 1, the perturbation with Pi;i+2 is truly redundant: On the lattie, its only e�et isto renormalize the sound veloityvsound = 2tp1 + 4w :Swithing on the oupling a 6= 0 in the u(1j1) alternating spin hain (5.4) provides aquarti interation in terms of the disrete fermions (5.5). The resulting model does notseem to be exatly solvable. One of the fourth order terms of the ontinuum theory,ÆS � Z d2z �1(z)�2(z)���1(z)���2(z);has been studied in detail in [42℄. It was shown to be either marginally relevant ormarginally irrelevant, depending on the sign of its oupling. In the ontinuum theory,adding a fourth order term in the fermions is atually inonsistent with the u(1j1)symmetry of the model.4 Free sympleti fermions possess 16 bulk �elds of weight4We thank N. Read for a disussion of this point.



6 OPEN ALTERNATING u(SjS) SPIN CHAIN 32h = �h = 1. These are obtained by multiplying 1; �1; �2; �1�2 with ��1 or ��2 and asimilar term with �� in plae of �. Under the right (or left) ation of u(1j1), thesetransform in four indeomposable projetives. A loser look reveals that only two ofthe 16 �elds are true invariants, i.e. they are annihilated by all the u(1j1) generators.These two �elds are quadrati in the fermions. Hene, adding a fourth order term to thesympleti fermion model breaks the u(1j1) symmetry. We thus onlude that non-zerovalues of the parameter a in the lattie theory will not e�et the ontinuum theory, atleast not for small enough value of a.We suggest that the above onlusions should essentially remain orret for S > 1.Numerial diagonalization of the algebrai Hamiltonian (5.4) for a = 0 indiates that itslowest eigenvalue lies in the u(1j1)-setor. This means that one an ompute this lowesteigenvalue by restriting the algebrai Hamiltonian (5.4) to the state spae of the u(1j1)alternating spin hain. Hene, w should be exatly marginal even for S > 1, at leastas long as a = 0. It is tempting to think that this onlusion remains valid for nonzerovalues of a and that a ontinues to be irrelevant.To have a omplete orrespondene between the ouplings of the C PS�1jS sigmamodel and those of our lattie model we are still left with the problem to identify aseond lattie oupling that ould implement the � angle. Let us antiipate that the� parameter orresponds to staggering the ouplings of the lattie model. We will getbak to this in the onlusion.In the following we shall provide strong evidene for our laim that the spetrum oflow lying exitations of the alternating u(SjS) spin hain (5.4) with a = 0 is desribedby the sigma model on the omplex projetive superspae C PS�1jS with � = �.6 Open alternating u(SjS) spin hainFollowing the outome of our disussion in the last setion, let us now work with thealternating u(SjS)-spin hain on the spae (V 
 V ?)
L with HamiltonianH = � 2L�1Xi=1 Ei � w 2L�2Xi=1 Pi;i+2 : (6.1)In order to ompare numerial results with the ontinuum theory, we need to onsideran open hain. Numerial evidene suggests that in the limit w !1 and L!1, theeigenvalues Eh(L) of the Hamiltonian (6.1) beome in�nitely degenerated. Therefore,



6 OPEN ALTERNATING u(SjS) SPIN CHAIN 33we identify the point w = 1 with the large volume limit of the sigma model on theomplex projetive superspae C PS�1jS. A similar identi�ation has been proposed in[2℄ for the osp(2S + 2j2S)-spin hain on V 
L.Without any additional algebrai guidane, the spetrum of the Hamiltonian (6.1)is rather diÆult to analyze. In order to unravel some of the struture, it is usefulto lassify eigenvalues aording to the representations of the walled Brauer algebrathat appear in the deomposition of the state spae (V 
 V ?)
L. If one is interestedin states that transform aording to some irreduible representation of the u(SjS)symmetry, it pays o� to identify those representations of the walled Brauer algebrathat are ompatible with the required symmetry. The Hamiltonian (6.1) may then berestrited and diagonalized within eah suh building blok.We shall be mainly onerned with the numerial analysis of exitations of H whoseeigenvalues vanish in the limit w!1. On the sigma model side, these are the salingdimensions of tahyoni �elds, i.e. of those �elds that an be built from square integrablefuntions on the omplex projetive superspae C PS�1jS. Aording to the results of [43℄(see also part I of this work), the spae of tahyoni �elds may be identi�ed with themultipliity free diret sum of supersymmetri, self-dual, traeless u(SjS) tensors t(k; k)of rank 2k > 2 and the indeomposable traeless but reduible tensor t(1; 1) = V 
 V ?.Note that the trivial tensor t(0; 0) is a submodule of V 
 V ?. In our analysis of theC P1j2 model, these were denoted by t(k; k) = �k;0 for k � 2. The spae t(1; 1) ontains�1;0 and the trivial module �0;0 twie. More details on these labels an be found inappendix B.We now restrit the Hamiltonian (6.1) to the submodule of (V 
 V ?)
L that ontainsall states in the u(SjS) representations t(k; k), where k = 0; : : : ; L. The vetor spaeof all possible embeddings of u(SjS) tensors t(k; k) into (V 
 V ?)
L; k 6= 1; an beendowed with an ation of the walled Brauer algebra and it provides an (indeomposable)representation whih we denote by TL;L(k; k). Similarly, the vetor spae of all possibleembeddings of the u(SjS) tensor t(1; 1) = V 
 V ? into (V 
 V ?)
L an be endowedwith an ation of the walled Brauer algebra. In this ase, the spae gives rise to anindeomposable representation IL;L. It is not diÆult to see that the spae TL;L(0; 0)(whih we de�ned previously) is a submodule of IL;L. The orresponding quotient will bedenoted by TL;L(1; 1) = IL;L=TL;L(0; 0). The spae TL;L(1; 1) is atually not irreduibleeither. In fat, it an be shown to possess the module TL;L(0; 0) as a quotient. All thesestatements may be proved using the geometri (adjoint) representation of the walled
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Figure 2: Plot of g0;0(w) extrated from the watermelon exponents h0;0(2), h0;0(3) andh0;0(4) omputed at L = 9 with the help of eq. (6.2).Brauer algebra.Borrowing from the literature on self-avoiding walks, we shall all the lowest eigen-value of the Hamiltonian (6.1) in the spae TL;L(k; k) the 2k-legged water melon exponenth0;0(k). Aording to our disussion above, the degeneray of h0;0(k) is dim t(k; k). Thenumerial results presented in �g. 2 strongly suggest that the ontinuum limit of thewatermelon exponents is given by the very simple expressionh0;0(k) = g0;0(w) Cas(k)4 = g0;0(w)k(k � 1)2 ; (6.2)where Cas(k) is the value of the quadrati Casimir5 in the irreduible representationst(k; k) for k 6= 1. For k = 1, Cas(k) = 0 is the value of the quadrati Casimir ineither the adjoint or the trivial representation of u(SjS). The degeneray of the h0;0(1)watermelon exponent with the vauum is due to the fat that, as we mentioned above,TL;L(0; 0) is a quotient of TL;L(1; 1).The numerial results should be ompared with our formulas (4.22) and (4.26) thatdetermine the onformal weight h = ÆC(2)g0;0=4 of boundary �elds in the ontinuummodel. Using the assoiation of the kth watermelon exponent with the weight �k;0 andthe ditionary at the end of appendix B, we onlude thatÆ0C(2)([k � 1; 0; 2; 0℄) = 2k(k � 1) :5For these representations, the value of the quadrati Casimir is independent of �, see (B.2).



7 TWISTED OPEN ALTERNATING u(SjS) SPIN CHAINS 35This is in perfet agreement with our ontinuum theory. Note that both on the lattieand in the ontinuum the ratio between the onformal weight and the value of theCasimir element is universal, i.e. it is independent of k. On the lattie, the universalfuntion g0;0 = g0;0(w) depends on the lattie oupling w. The orresponding funtiong0;0 = g0;0(g�; �) is known expliitly, see eq. (4.26). Antiipating that � = � in theontinuum limit of our lattie theory (see below), we an use the identi�ation g0;0(w) =g0;0(g�; � = �) to determine the funtional dependene w = w(g�) of the lattie on thesigma model oupling g�.7 Twisted open alternating u(SjS) spin hainsThe numerial analysis performed in the previous setion suggests that the spetrumof the open u(SjS) spin hain is desribed in the ontinuum limit by the sigma modelon C PS�1jS subjet to Neumann boundary onditions or modi�ed Neumann boundaryonditions in the presene of a �-term. However, the sigma model on C PS�1jS admitsa muh larger set of boundary onditions that do not break the global u(SjS) symme-try, namely those desribed by the nontrivial omplex line bundles over C PS�1jS. Theomplex line bundles an be di�erent at the di�erent ends of the string and we labelthem by two integers M and N alled monopole harges. These bundles may be in-trodued by adding boundary terms to the ation, that is integrals of loally de�ned1-forms along the two boundaries. Eah of these forms is then interpreted as a onne-tion de�ning a omplex line bundle. Naturally, if the two bundles are di�erent, thenso are the boundary onditions at the two boundaries of the world-sheet. Twisting ofthe spetrum should then be expeted when M 6= N . In fat, as we showed in se. 4.2,the u(1j1) subsetor of the C PS�1jS sigma model is desribed by a pair of twisted freesympleti fermions with twisting parametertan ��M;N = 2lg2�1 + �1�2g4� ; (7.1)where �1 = ��+2M , �2 = ��+2N and l =M�N . It is natural to ask if one an assoiatea spin hain to eah of these more general boundary onditions. As we explain in thefollowing, this is indeed possible. We shall desribe the general setup in the followingsubsetion. Then we desribe our numerial results, �rst for the u(1j1) subsetor andthen for the watermelon exponents in the general twisted open hain.



7 TWISTED OPEN ALTERNATING u(SjS) SPIN CHAINS 367.1 Monopole boundary onditionsThe spae of setions in the non-trivial omplex line bundles over C PS�1jS is endowedwith an ation of u(SjS) rather than psl(SjS). Therefore, in order to break the psl(SjS)symmetry one an proeed by onsidering the hain of se. 6 with some extra V 's orsome extra V ? attahed to the ends of the hain. Depending on what we attah to eitherend of the hain, there are four ases to onsider. We list them in the following togetherwith the Hamiltonians we hose to desribe their dynamisV 
m 
 (V 
 V ?)
L 
 (V ?)
n : HV V ? = HVL +HB +HV ?RV 
m 
 (V 
 V ?)
L 
 V 
n : HV V = HVL +HB +HVR(V ?)
m 
 (V 
 V ?)
L 
 (V ?)
n : HV ?V ? = HV ?L +HB +HV ?R(V ?)
m 
 (V 
 V ?)
L 
 V 
n : HV ?V = HV ?L +HB +HVR ; (7.2)where the bulk Hamiltonian is the same as in se. 6 with a = 0, i.e.HB = � 2L+m�1Xi=m+1 Ei � w 2L+m�2Xi=m+1 Pi;i+2 ; (7.3)while the boundary Hamiltonians are as followsHVL =� u mXi=1 Pi;i+1 HV ?R = �v 2L+m+n�1Xi=2L+m Pi;i+1 (7.4)HV ?L =� um�1Xi=1 Pi;i+1 � w0Pm;m+2 � t0Em (7.5)HVR =� t00E2L+m � w00P2L+m�1;2L+m+1 � v 2L+m+n�1Xi=2L+m+1 Pi;i+1 : (7.6)Taking into aount that the monopole harges M and N desribing the boundaryonditions of the C PS�1jS sigma model an be both positive and negative, the existeneof four types of hains (7.2) labelled by two positive integers m;n is quite suggestive of apossible identi�ation. On the other hand, the boundary onditions in the C PS�1jS sigmamodel and the bundles assoiated to the orresponding branes do not depend on thedetails of the onnetion, but only on their urvature. The latter is essentially �xed bythe monopole harge M or N . In view of the relation we are about to establish betweenthe spetrum of the C PS�1jS sigma model and that of the hains (7.2), the previous



7 TWISTED OPEN ALTERNATING u(SjS) SPIN CHAINS 37remarks raise the question as to how muh the spetrum of the Hamiltonians (7.2)depend on the preise form of the boundary terms (7.4{7.5). We shall analyze this issuein the u(1j1) subsetor �rst.7.2 Numeris for the u(1j1) subsetorTo answer the question of universality and hek the appliability of formula (7.1) to thehains (7.2), we �rst look at their u(1j1) subsetors. In this subsetor, we an extendour representation (5.5) through disrete free fermions to twisted open spin hain. Withthe boundary interation termsPV
 V = �PV ?
 V ? = [1� ( �'1 � �'2)('1 � '2)℄PV
 V ?
 V = �PV ?
V
 V ? = [1� ( �'1 � �'3)('1 � '3)℄EV
V ? = �EV ?
V = �( �'1 � �'2)('1 + '2);we obtain a free system that an be studied numerially and with great eÆieny. Letus antiipate the following three basi outomes of the numerial analysis.1. The u(1j1) spin hains (7.2) ow to the free �eld theory of sympleti fermionswith twisted boundary onditions of the form (2.19).2. The twisting parameter � does not depend on the boundary ouplings u; t0; w0; t00,w00; v as long as t0; t00; u and v are non-zero and the bulk length L of the hain issuÆiently large.3. In the ontinuum limit, the dependene of the twisting parameter � on m; n andw for all four hains (7.2) is reprodued by eq. (4.23) for the C PS�1jS sigma modelwith � = � (7.7)provided the following identi�ation between the monopole harges and the thik-ness of the boundaries of the hains is performedV 
m 
 (V 
 V ?)
L 
 (V ?)
n : M = +m N = +n (7.8)V 
m 
 (V 
 V ?)
L 
 V 
n : M = +m N = �n (7.9)(V ?)
m 
 (V 
 V ?)
L 
 (V ?)
n : M = �m N = +n (7.10)(V ?)
m 
 (V 
 V ?)
L 
 V 
n : M = �m N = �n : (7.11)



7 TWISTED OPEN ALTERNATING u(SjS) SPIN CHAINS 38We now present the numerial evidene supporting these laims one by one.The numerial alulations supporting laim 1) are presented in �g. 3, where weompare the onformal dimension h for the ground state of our spin hain with theexpression h = �(�� 1)2 (7.12)whih determined the onformal dimension of twist �elds in terms of the twist parameter�. For the lattie model, the twist parameter is measured as the �rst exitation overthe vauum in the u(1j1) subsetor.
+

+ +
+

+

+

+

+

+

+

+

+

+
+

+

+
+
+
+
+
+

*

*
*
*

*

*

*

*

*

*

*
*

*
*

*
*
*
*
*
*
*

0 1 2 3 4

-0.125

-0.120

-0.115

-0.110

-0.105

-0.100

-0.095

w

h0,-2

���
1
2
HΛ0,-2 - 1L Λ0,-2 h0,-2

+

*

L = 8
L = 9

t"=1
w"=w

v" = 10
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7 TWISTED OPEN ALTERNATING u(SjS) SPIN CHAINS 407.3 Watermelon exponents for the twisted open hainOur aim now is to generalize the disussion of setion 6 to the ase of general monopoleboundary onditions. More preisely, we would like to determine the onformal weightof tahyon vertex operators. For l > 0, the latter are assoiated with supersymmetriirreduible traeless tensors t(k + l; k) of ontravariant rank k + l and ovariant rank k,while for l < 0 these are the supersymmetri irreduible traeless tensors t(k; k + jlj) ofontravariant rank k and ovariant rank k+ jlj. In both ase k is a non-negative integer,whih for C P1j2 orresponds to the labels �k;l used before.Let us restrit the algebrai Hamiltonians (7.2) to the representation of the walledBrauer algebra provided by the spae of embeddings of the tensors t(k + l; k) andt(k; k+jlj) into the spin hains (7.8{7.11) with monopole numbersM and N . The lowesteigenvalue of the Hamiltonian in eah of these setors will be alled the (2k+ jlj)-leggedwatermelon exponent hM;N(k). As in the ase of the hain in se. 6, the watermelon ex-ponents all vanish in the limit w! 0, i.e. in the region that we assoiated with the largevolume limit of the C PS�1jS sigma model. The �rst two of these watermelon exponentsare already ontained in the u(1j1) subsetor of the model, both in the ontinuum andon the lattie. They are not degenerate. The exponent hM;N(0) desribes the twistedvauum, while hM;N(1) is assoiated with the �rst exitation. Their non-zero di�ereneis �M;N = hM;N(1)� hM;N(0) : (7.13)Another important observation oming from lattie alulations is the Casimir evo-lution for the exitations of the spin hains (7.2). Numerial alulations provide om-pelling evidene that the following formulaÆhM;N(k) = hM;N(k)� hM;N(0) = gM;N k(k + jlj � 1)2 (7.14)holds for suÆiently large w and with a universal funtion gM;N that depends only onM;N and w. In order to ompare with our ontinuum theory, we note thatÆlC(2) � l2 + k � 1; 0; l2 + 2; l2�� ÆlC(2) � l2 ; 0; l2 ; l2� = 2k(k + l � 1) (7.15)for l = M � N > 0. A similar result an be obtained when l = M � N < 0. Theexpression ÆlC(2) was de�ned in eq. (4.22). The watermelon exponents hM;N(k) areassoiated with the label �k;l. The translation into the label used in eq. (4.22) an be
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Figure 6: Test of eq. (7.16) following from the assumption of Casimir evolution (7.14).Calulations where made for spin hains (7.2) of bulk length L = 7 and L = 8 and theorresponding urves almost superpose.found at the end of appendix B. In onlusion, we see that our lattie observation (7.14)for the watermelon exponents agrees with their proposed ontinuum desription in theC P1j2 model.By analogy with se. 6, the funtion gM;N should be interpreted as the e�etivetension of the string strething between the bundle with monopole harge M and thebundle with monopole harge N . In the ontinuum theory, we related the funtion gM;Nto the twist parameter �M;N through the equation�M;N = jM �N j2 gM;N : (7.16)It is interesting to test the validity of this relation numerially. In �g. 6 we represent theratio jljgM;N=2�M;N as a funtion of w. As before, we measure the funtion gM;N throughthe equation (7.14) for di�erent exitations hM;N(k). If the Casimir evolution (7.14)holds true, then we should see a onstant value of jljgM;N=2�M;N = 1 for the ratio,independently of the watermelon exponent that is used to measure gM;N . While thingswork out remarkably well in the regime of large w, obvious disrepanies appear whenw is lose to w � 0. The possible interpretation of these di�erenes are disussed in thenext subsetion.



7 TWISTED OPEN ALTERNATING u(SjS) SPIN CHAINS 427.4 Comments on the region of small wThere are atually several possibilities to interpret the failure of eq. (7.16) near w = 0.We will disuss two senarios below. The ultimate test of the orret explanation will beleft for future work. In onfronting our numerial results with the proposed ontinuumdesription, we have taitly assumed that the spin hains (7.2) at w = 0 still desribe apoint in the moduli spae of the C PS�1jS sigma model. This is a very strong assumptiongiven that the symmetry of the bulk Hamiltonian (7.3) beomes muh larger [37℄ thanu(SjS) at w = 0, essentially beause the lines in the Brauer algebra representation arethen prevented from rossing.In assessing the meaning of the observed disrepanies, it is useful to reall thata similar issue has also appeared for the osp(2S + 2j2S) spin hain onsidered in [2℄.The osp spin hain was proposed as a disretization of the S2S+1j2S supersphere sigmamodel. Generi features of the lattie spetrum were found to be in exellent agreementwith the onjetured spetrum of the sigma model, as long as w was large. However,problems similar to the ones we desribed in the previous subsetion were enounteredat the point w = 0. Note that in the supersphere ase, the disrepany was only visiblewhen looking at �elds outside the O(2) subsetor of osp(2S+2j2S) theory. Again, a verysimilar observation was made for the u(1j1) setor of the u(SjS) spin hain. With allthese similarities, it seems likely that the disrepanies between lattie and ontinuumanalysis in the u(SjS) and osp(2S+2j2S) model should have the same explanation.In the ase of the supersphere sigma model, however, the assumption of Casimirevolution for the whole spetrum stands on rather �rm grounds. To begin with, theperturbative expansion for boundary onformal weights in the supersphere model maybe summed to all orders. Terms that ould spoil the Casimir evolution were shown tovanish. Moreover, world-sheet instanton orretions annot alter these �ndings, simplybeause they do not exist in this ase. Finally, a onjetured duality between thesupersphere sigma model and the osp(2S+2j2S) Gross-Neveu model was shown to beperfetly onsistent with the Casimir evolution of boundary onformal weights [44, 4℄.All this makes it seem very likely that the onformal weights of the two investigatedsigma models all evolve with the Casimir, as enoded in our formula (4.22).Having argued that the disrepanies between our lattie and ontinuum results areunlikely to signal a breakdown of the Casimir evolution in the sigma model, we wantto entertain a seond logial possibility, namely that the ontinuum limit of the spin



8 CONCLUSIONS AND OPEN PROBLEMS 43hains (7.2) is desribed by a C PS�1jS sigma model only for w > 0, while at w = 0 itis not. If this was true then the disrepanies we observed in �g. 6 would simply resultfrom interhanging the thermodynami limit L ! 1 with the limit w ! 0. A similarnon-ommutativity of limiting proedures an also be observed in the large volume limitw ! 1 where the symmetry of the Hamiltonian is one more enhaned muh beyondthe generi u(SjS) transformations.Support for our seond explanation of the disrepanies omes from a loser inspe-tion of the watermelon exponents. At w = 0, the lattie model is exatly solvable andwe believe that the di�erenes between water-melon exponents are given byÆhM;N(k) = k(k + 2�M;N � 1)2 (7.17)where �M;N is again measured as the di�erene �M;N = hM;N(1)�hM;N(0). The formula(7.17) an most ertainly be derived analytially. But for now, we simply justify it byobserving that it �ts the general pattern of boundary exponents in (non interseting)loop models disussed in [45℄. Indeed, it an be rewritten ashM;N(k) = h2�M;N�1;2�M;N�1+2kwhere on the right hand side we use the Ka formula at  = �2:hr;s = (2r � s)2 � 18A veri�ation of this formula is presented in tab. 1. The numbers in the grid should allgo to unity in the saling limit. We see that the agreement with eq. (7.17) is quite im-pressive. The behavior of watermelon exponents in the hain with w 6= 0 is signi�antlydi�erent. This supports our laim that the ontinuum theory of the w = 0 lattie modeldoes not belong to the ontinuous family of onformal �eld theories that is parametrizedby w > 0.8 Conlusions and Open ProblemsIn this work we have analyzed the boundary partition funtions for all u(2j2) invariantboundary onditions of the sigma model in the projetive superspae C P1j2. The de-pendene of this partition funtion on the bulk ouplings g� and � and on the boundarymonopole harges M;N was displayed in eq. (4.22). It ontains the branhing funtions



8 CONCLUSIONS AND OPEN PROBLEMS 44M N 2ÆhM;N (k)k(k+2�M;N�1)k = 2 k = 3 k = 41 0 1.050128 1.037253 1.0107662 0 1.098296 1.094754 1.0704050 -1 0.98817 0.969892 0.9450220 -2 1.016252 1.006706 0.9842961 -2 1.034566 1.033275 1.014131Table 1: Numerial hek of the proposed formula (7.17) for the watermelon exponentsof the spin hains (7.2) at w = 0. Calulations where made for bulk length L = 7.(3.20) of the model at R =1 along with two universal funtions �M;N and gM;N whihare de�ned through eqs. (4.23) and (4.24), respetively. The partition funtion enodesthe dependene of boundary onformal weights on the various ouplings and justi�esand generalizes the results in [15℄. In the seond part, we introdued a lattie modelwith Hamiltonian (5.4) on an alternating spin hain. Numerial studies of the latterrevealed an exellent agreement with the preditions from the ontinuum theory, atleast for suÆiently large values of the lattie oupling w. In partiular, we were able tomodel all the boundary onditions of the ontinuum theory by adding boundary layersof �nite width to the open spin hain, see eq. (7.2).One of the most interesting appliations of our results would be to searh for valuesof the parameters g� and � at whih the world-sheet symmetry gets enhaned, e.g. tosome aÆne Lie algebra symmetry. A similar Wess-Zumino point exists for sigma modelson superspheres S2S+1j2S and it gives rise to an interesting dual desription of the theorythrough a non-geometri Gross-Neveu model. It is very likely that similar points existfor sigma model on omplex projetive superspaes as well. Even though we have notyet been able to identify a point with aÆne psl(2j2) symmetry, we hope to return tothis issue soon.Another possible further diretion onerns the losely related non-ompat sigmamodel on the oset spae U(1; 1j2)=U(1j1)�U(1j1) that was onsidered in [14℄ beause ofits possible relevane for the theory of quantum Hall plateau transitions. The spin haindisussed in [14℄ involves in�nite dimensional representations and a pure Heisenberginteration.6 It would be interesting, among other things, to study the role of next to6This hain was proposed earlier in unpublished work by N. Read.



8 CONCLUSIONS AND OPEN PROBLEMS 45nearest neighbor interations in that ase, and to analyze whether they allow �ne tuningof the running oupling onstant as in our model. It ould also be of interest to interpretour bundle boundary onditions in terms of edge states in the Hall e�et [18℄.A striking onlusion of our study is that, like in the supersphere ase, the hain withthe simplest interation (no loop rossing in the Brauer formulation, or w = 0) seemsto be in a di�erent universality lass from the generi w 6= 0 ase. Non-ommutativityof the limits L ! 1 and w ! 0 means more preisely that the perturbation induedby turning w 6= 0 on the lattie is relevant at w = 0. The onformal �eld theory at thatpoint admits a very large symmetry, but has not yet been fully explored. For the wholepiture to be onsistent, the bulk spetrum should ontain an invariant, marginallyrelevant operator, whih should moreover be absent in the minimal U(1 j1) or O(2)subsetor. The existene of this operator remains to be established.Let us point out that there are some other preditions of the Casimir evolutionthat ould be heked in the large volume regime. Note that the Casimir evolution forthe weights of tahyoni vertex operators is supported by both perturbative and non-perturbative numerial alulations only in the theory with equal boundary monopoleharges M = N . While the onjetured exat form (4.20) of watermelon exponents inthe theory with arbitrary boundary monopole harges M;N passed several analytialand numerial tests, it ould not be baked up by perturbative alulations beyond theleading order beause we did not sueed to generalize the bakground �eld expansionto twisted boundary onditions. Nonetheless, we suspet that suh a generalizationexists and the watermelon exponents will most likely be omputed again in terms ofeigenvalues of some Laplaian on the bundle with monopole harge l = M � N . Thepoint is that for l 6= 0 this Laplaian is not unique, as an be seen from the existene ofa 1-parameter family of u(SjS) Casimirs Cas�, see app. B. However, if we hoose� = 1� gM;N(g�; �)2then the onjetured form (4.20) for the watermelon exponents oinides exatly with aCasimir evolution type formulahg�;�M;N(k) = gM;N(g�; �)4 Cas�(�k;l);whih is most natural in the ontext of the bakground �eld method. On the otherhand, these onjetured watermelon exponents possess the following simple expansion



A THE QUADRATIC CASIMIR ELEMENTS 46in the oupling g�, hM;N(k) = g2�� Cas�=1(�k;l) + 2g4��2 l2 +O(g6�) :Here, Cas�=1(�k;l) are the eigenvalues of the Bohner-Laplaian of the omplex linebundles over C PS�1jS and, as we said, the �rst term an be reprodued by the semi-lassial approximation. In the ase l 6= 0 the �rst orretion to the semi-lassial resultomes at order g4�. This is an aessible non-trivial hek to be performed one theperturbation theory for twisted boundary onditions is ironed out.Moving away from � = � in the sigma model orresponds to staggering the ouplingsof the spin hain. In the ase w = 0, it is well known that staggering in fat does nota�et the spetrum at all. For w 6= 0, we expet in general that staggering will renor-malize the oupling onstant to whih the lattie model ows (so the g2�(w) dependenewill be now a dependene on w and the staggering parameter), on top of a�eting thevalue of � in the formulas. Our ontinuum theory makes rather non-trivial preditionsabout this funtional dependene that seem well worth further investigation.Aknowledgments: We espeially thank N. Read for an earlier ollaboration onthe subjet, and for many illuminating omments and disussions. We thank NathanBerkovits, Thomas Creutzig, Manfred Herbst, Maros Marino, Tristan MLoughlin,Nikita Nekrasov, Nik Read, Soo-Jong Rey, Peter R�nne, Sakura Sh�afer-Nameki andEdward Witten for disussions and omments. We are gratefull to the Galileo GalileiInstitute for its hospitality during the beginning of this work. This researh was sup-ported in part by the National Siene Foundation under Grant No. PHY05-51164. Theresearh of TQ is funded by a Marie Curie Intra-European Fellowship, ontrat numberMEIF-CT-2007-041765. HS was supported by the ANR and the Network INSTANS.A The quadrati Casimir elementsFor a simple ontragredient Lie superalgebra g the invariant, supersymmetri, onsistent,non-degenerate and bilinear form � : g � g ! C exists and is de�ned uniquely up toa proportionality onstant. Every suh invariant form � de�nes a quadrati entralelement in the universal enveloping Lie superalgebra in the standard way. To be morepreise, let Ta be a basis of g and let T a be the dual basis with respet to �, that is�(T a; Tb) = Æab : (A.1)



A THE QUADRATIC CASIMIR ELEMENTS 47Then the quadrati Casimir assoiated to the invariant form � is de�ned asCas = Xa TaT a : (A.2)It is not hard to verify that Cas is indeed entral. The Lie superalgebra u(S jS) weare dealing with in this work, however, is not simple. After a normalization has been�xed, it possesses a one parameter family of invariant, supersymmetri, onsistent, non-degenerate and bilinear forms. Let V ' V�0�V�1 denote the graded fundamental moduleof u(S jS) with even dimension dimV�0 = S and odd dimension dimV�1 = S and RV :u(S jS)! u(V ) be the orresponding representation. Then the one parameter spae ofinvariant forms of u(S jS) is onstruted by using the invariant supertrae�(X; Y ) = strRV (XY ) + � strRV (X) strRV (Y ) : (A.3)Let now E ji be the standard basis of u(V ), that is the 2S � 2S matries with an entry1 in the i-th row and j-th olumn and 0 entries everywhere else. Aording to thedef. (A.1), the basis dual to E ji with respet to the form (A.3) is given by�E ji �� = (�1)jjjE ij � �ÆijE ;where we have denoted by E the identity matrix. The quadrati Casimir of a redutiveLie superalgebra is onstruted in the same way as in eq. (A.2). When the invariantforms are not unique, the same is true for the Casimir element. In partiular, thequadrati Casimir element of u(S jS) that is assoiated to the form (A.3) beomesCas� = E ji E ij (�1)jjj � �E2 : (A.4)The eigenvalues of Cas� in an irreduible representation with highest weight � an beevaluated by omputing salar produts in the weight spae h� in exatly the sameway as for simple Lie superalgebras. Let us see how this works. Choose the diagonalgenerators D1 = E 11 ; : : : ; D2S = E 2S2S as a basis of the Cartan subalgebra h of u(S jS)and denote by �1; : : : ; �S; Æ1; : : : ; ÆS, respetively, the dual basis in h. The restrition of� to h de�nes a natural isomorphism ' : h! h� by'(H 0)(H 00) = �(H 0; H 00) (A.5)and endows h� with a salar produt(�; �)� = ��'�1(�); '�1(�)� : (A.6)



A THE QUADRATIC CASIMIR ELEMENTS 48In the basis Æi; �j of h�, the natural isomorphism (A.5) redues to'(D1) = �1; : : : ; '(D2S) = ÆS:The matrix elements of the salar produt (A.6) in the weight spae h� of u(S jS) withrespet to the basis �i; Æj an easily be omputed(�i; �j)� = Æij � �; (Æi; Æj)� = �Æij � �; (�i; Æj)� = �� : (A.7)One natural way to parametrize the highest weight vetors � for irreduible represen-tations of u(S jS) is by speifying the oordinates of � with respet to the basis �i; Æj.Thus, if � = SXi=1 �iÆi + �i�i (A.8)is the highest weight of a highest weight representation, then�i = �(Di); �i = �(DS+i); i = 1; : : : ; S : (A.9)The eigenvalues of the Casimir element do not depend on the onventions for positivenessin the weight spae. To ompute them, we shall use a non-standard, but onvenientabsolute ordering �1 > : : : > �S > Æ1 > : : : > ÆS (A.10)whih �xes the positive roots to�i � �j; Æk � Æl; �i � Æk ;where i < j and k < l. Now if v� is the highest weight vetor of some highest weightrepresentation, then the eigenvalue of the Casimir on that representation an be easilyomputedCas� v� = 2SXi=1 (�1)jijD2i v� � �E2v� + 2SXj=2 j�1Xi=1 [E ji ; E ij ℄(�1)jjjv�=  2SXi=1 (�1)jij�(Di)2 � ��(E)2 + 2SXj=2 j�1Xi=1 [(�1)jjj�(Di)� (�1)jij�(Dj)℄! v� :



B LAPLACIAN ON COMPLEX LINE BUNDLES OVER C PS�1jS 49Using the eqs. (A.7, A.8 and A.9) one an derive the desired form for the eigenvaluesCas�(�) of the Casimir (A.4) in a highest weight representation with highest weight �,namely Cas�(�) = (�;� + 2�)�; (A.11)where � is the Weyl vetor2� = X1�i<j�S(�i � �j + Æi � Æj)� SXi;j=1(�i � Æj)with respet to the hosen absolute ordering (A.10). Keeping in mind that the Weylvetor is the half sum of all positive roots minus the half sum of all negative roots, theformula eq. (A.11) for the eigenvalues of the Casimir an be rendered independent ofthe de�nition of positiveness in the weight spae.In the paper we use another notation for the weights of u(2j2), whih stems froma di�erent hoie (3.11) of basis for the Cartan algebra. With respet to this basis, ahighest weight � = [j1; j2; a; b℄ has the following omponents�(Jx) = j1 ; �(Jy) = j2; �(Jz) = a ; �(Ju) = b : (A.12)The ditionary between the labels �i; �j of eq. (A.8) and the labels j1; j2; a; b is easy toestablish�1��2 = 2j1 ; �1� �2 = 2j2 ; �1+�2� �1� �2 = 2a ; �1+�2+ �1+ �2 = 2b :(A.13)Moreover, from eq. (A.11) we obtain our formula (3.17) for the value of the Casimirelements in the representations [j1; j2; a; b℄ of u(2j2).B Laplaian on omplex line bundles over C PS�1jSLet gpq be the matrix elements of the metri g on C PS�1jS in some set of loal realoordinates 'p, gpq be the matrix inverse to gpq, r be the Levi-Civita onnetion withrespet to the metri g and A = Ap(')d'p be the one-form monopole de�ning a omplexline bundle over C PS�1jS. Then the Bohner-Laplaian on the omplex line bundle overC PS�1jS is de�ned by the following seond order, u(S jS)-invariant di�erential operator� = gpq(rp + Aq)(rp + Aq):



B LAPLACIAN ON COMPLEX LINE BUNDLES OVER C PS�1jS 50Existene theorems [46℄ ensure that a non-trivial omplex line bundle exists and isunique if and only if the urvature 
 = dA of the onnetion A satis�es the followingintegrality ondition ZCP1 
2�i 2 Z:Let wi be a set of loal holomorphi oordinates on C PS�1jS. Then the standardmetri on C PS�1jS is given by the Fubini-Study metrigi�| = Æij1 + wy � w � (�1)jjjw�{wj(1 + wy � w)2 ;where the sign onventions for the salar produt in the supereulidean spae C S�1jSare wy � w = Æijw�|wi. The metri form isds2 = gpqd'pd'q = 2gi�|dw�|dwiand all the geodesis are losed and of �xed length p2�. The K�ahler form! = �igi�|dw�| ^ dwian be normalized to yield a generator for the seond integral ohomology group. Indeed,from ZCP1 ! = 2�;the existene ondition for the omplex line bundle redues to
 = �il!;where l 2 Z is alled the monopole harge.By standard methods in the theory of omplex line bundles, see [19℄, one an provethat the spae of setions of the bundle with monopole harge l is isomorphi to thespae of equivariant funtions on C PS�1jS, that is the spae of funtions f(w; �w) withthe property f(ei�w; e�i� �w) = ei�lf(w; �w);where � is real. This funtional spae an be onstruted as a square integrable spanon the monomials Zi1 : : : Zik+l �Zj1 : : : �Zjk , where Zi are the omponents of some vetorbelonging to the u(S jS)-fundamental representation � satisfying Zy �Z = 1 and k; l areintegers suh that k � 0; k + l � 0.



B LAPLACIAN ON COMPLEX LINE BUNDLES OVER C PS�1jS 51The harmoni deomposition of the spae of equivariant funtions with monopoleharge l 6= 0 is a multipliity free diret sum of u(S jS) supersymmetri traeless irre-duible tensors t(k + l; k) of ontravariant rank k + l � 0 and ovariant rank k � 0.The highest weights of these tensors an be easily omputed in the Æi; �j basis of se. A.If one hooses the absolute ordering (A.10) in the weight spae of u(S jS) then thehighest weight of the fundamental representation beomes �1, while of that of the dualrepresentation �ÆS. The weight of a supersymmetri tensor power of a vetor followsimmediately from the de�nition of the tensor ation of the superalgebra. Thus, thehighest weights of the supersymmetri irreduible traeless tensors t(k + l; k); l > 0 are�k;l = ((k + l)�1 � ÆS�k+1 � � � � � ÆS; k � S(k + l)�1 � (k � S)�S � Æ1 � � � � � ÆS; k > S ;while those of the tensors t(k0 + l; k0) = t(k; k + jlj); l < 0 are�k;l = (k�1 � ÆS�k�jlj+1 � � � � � ÆS; k + jlj � Sk�1 � (k + jlj � S)�1 � Æ1 � � � � � ÆS; k + jlj > S ;where in both ases k � 0.With this expliit onstrution of the omplex line bundles at hand one an omputethe spetrum of the Bohner-Laplaian, see [19℄. The net result for the eigenvalues�l(k) of � is �l(k) = �2�k + jlj2 ��k + jlj2 � 1�+ l22 ; (B.1)where k � 0. Comparing this spetrum to the eigenvalues of the Casimir (A.4, A.11)Cas�(�k;l) = 2k2 + (2k + jlj)(jlj � 1)� �l2; (B.2)we see that � = �Cas�=1 :In the end let us list the labels (A.12) of the highest weights �k;l of supersymmetritraeless irreduible u(2j2)-tensors t(k+l; k) and t(k; k+jlj). Using the ditionary (A.13)we get for l � 0�0;l = � l2 ; 0; l2 ; l2� ; �1;l = � l + 12 ; 12 ; l2 + 1; l2� ; �k;l = � l2 + k � 1; 0; l2 + 2; l2� ;for k = 2; 3; : : : . When l < 0 we have�0;�1 = �0; 12 ; 12 ;�12� ; �k;l = �� l2 + k � 1; 0; l2 + 2; l2� ; k + jlj � 2:



C ATYPICAL BRANCHING FUNCTIONS 52C Atypial branhing funtionsIn this appendix we ollet expliit formulas for the branhing funtions of atypialu(2j2) representations in terms of those for Ka-modules. Let latter were displayed inthe main text. As in the rest of the paper, �nite dimensional representations of u(2j2)are labelled by four parameters j1; j2 2 N=2 and a; b 2 R. There are �ve di�erent kindsof atypiality onditions on these labels. For eah of these we shall then list the atypialbranhing funtions. All of them an be derived using the harater formulas in [21℄.� b = j1 � j2 = 0 [0;0;a;0℄ =  K[0;0;a;0℄ +  K[0;0;a+4;0℄ +  K[ 12 ; 12 ;a+1;0℄ +  K[ 12 ; 12 ;a+3;0℄ [ 12 ; 12 ;a;0℄ =  K[ 12 ; 12 ;a;0℄ +  K[ 12 ; 12 ;a+2;0℄ +  K[0;0;a+1;0℄ +  K[1;1;a+1;0℄ (C.1) [j;j;a;0℄ =  K[j;j;a;0℄ +  K[j;j;a+2;0℄ +  K[j� 12 ;j� 12 ;a+1;0℄ +  K[j+ 12 ;j+ 12 ;a+1;0℄ for j � 1� b = j1 � j2 6= 0 [ 12 ;0;a; 12 ℄ =  K[ 12 ;0;a; 12 ℄ +  K[0; 12 ;a+3; 12 ℄ [0; 12 ;a;� 12 ℄ =  K[0; 12 ;0;a;� 12 ℄ +  K[ 12 ;0;a+3;� 12 ℄ [j1;0;a;j1℄ =  K[j1;0;a;j1℄ +  K[j1�1;0;a+2;j1℄ for j1 � 1 (C.2) [0;j2;a;�j2℄ =  K[0;j2;a;�j2℄ +  K[0;j2�1;a+2;�j2℄ for j2 � 1 [j1;j2;a;j1�j2℄ =  K[j1;j2;a;j1�j2℄ +  K[j1� 12 ;j2� 12 ;a+1;j1�j2℄ for j1 and j2 � 0� b = �j1 + j2 6= 0 [j1;j2;a;�j1+j2℄ =  K[j1;j2;a;�j1+j2℄ +  K[j1+ 12 ;j2+ 12 ;a+1;�j1+j2℄ (C.3)� b = j1 + j2 + 1 [0;j2;a;j2+1℄ =  K[0;j2;a;j2+1℄ +  K[0;j2+1;a+2;j2+1℄ (C.4) [j1;j2;a;j1+j2+1℄ =  K[j1;j2;a;j1+j2+1℄ +  K[j1� 12 ;j2+ 12 ;a+1;j1+j2+1℄ for j1 � 12



D VANISHING INVARIANTS ON C PS�1jS 53� b = �j1 � j2 � 1 [j1;0;a;�j1�1℄ =  K[j1;0;a;�j1�1℄ +  K[j1�1;0;a+2;�j1�1℄ (C.5) [j1;j2;a;�j1�j2�1℄ =  K[j1;j2;a;�j1�j2�1℄ +  K[j1+ 12 ;j2� 12 ;a+1;�j1�j2�1℄ for j2 � 12Expliit expressions for the atypial branhing funtions are now obtained by pluggingin our formula (3.20) for the branhing funtions of Ka modules. The oeÆients ofatypial branhing funtions turn out to be positive.D Vanishing invariants on C PS�1jSWe start by onsidering a general symmetri superspae G=H, where G is a Lie super-group with an involutive automorphism � suh that H is the maximal ompat subgroupof G �xed by �. Let e be the identity of G and onsider the point o = eH. The Riemannstruture on G=H is de�ned by the requirement that G is a supergroup of isometries.This means that the ation of G de�nes the metri and the urvature tensor globallyone their values are given at a single point, say o.Let now g and h denote the Lie superalgebras of the Lie supergroups G and Hrespetively. De�ne the quotient vetor spae m = g=h. The ommutation relations ofg split with respet to the involutive automorphism � into the following three families[h; h℄ � h; [h;m℄ � m; [m;m℄ � h: (D.1)In partiular, this means that m is a representation of h, whih we denote by � : h !u(m).The urvature tensor for symmetri spaesRo(X; Y )Z = [[X; Y ℄; Z℄; X; Y; Z 2 m; (D.2)was omputed in [47℄. We straightforwardly generalize this expression to symmetrisuperspaes, as long as X; Y; Z are even graded vetors. Let � be a g-invariant, non-degenerate, supersymmetri and onsistent form on g � g. If m is an irreduible realrepresentation of h, then the solution to the ondition that H is an isometry group(h �X; h � Y )o = (X; Y )o; X; Y 2 m



D VANISHING INVARIANTS ON C PS�1jS 54is uniquely determined, up to a proportionality onstant alled the radius of G=H, bythe restrition of � to m�m (X; Y )o = �(X; Y ): (D.3)Note that, in order to be ompatible with the automorphism �, the invariant g-form� must be blok diagonal with respet to the diret sum deomposition g = h � m.Therefore, the non-degeneray of � implies the non-degeneray of ( ; )o as de�ned ineq. (D.3).The urvature tensor being ovariantly onstant, it ommutes with the ation of Hat o. It will prove more omfortable to use instead of this ommuting homomorphismRo 2 Homh � ^2 m
m;m�the endomorphism 
o 2 Endhm
 m de�ned the following way�Y 
W;
o(Z;X)�o = �W;Ro(X; Y )Z�o = �[X; Y ℄; [Z;W ℄�o;where the salar produt on m
m is de�ned as(X 
 Y; Z 
W )o = (W;X)o(Y; Z)o:Let Ti be a basis of m and Ta be a basis of h. Again, beause � is blok diagonal withrespet to the deomposition g = m� h, the restrition of � to h� h is non-degenerate.Denote by T a the basis dual to Ta with respet to �, that is�(T a; Tb) = Æab :We shall rise and lower the group indexes with the help of the form � and its inverserather than with the Killing form of g, whih might be degenerate even for simple Liesuperalgebras. Beause of eq. (D.3), this is onsistent with the rising and the loweringof tensor indexes at o with the metri ( ; )o and its inverse. Using the eqs. (D.1) onean show that 
o(X; Y ) = (�1)jaj[T a; X℄
 [Ta; Y ℄:Put di�erently, the previous equation an be written as
o = (�1)jaj�(T a)
 �(Ta) = �(Ta)
 �(Tb)�ab;where �ab = �(Ta; Tb)



D VANISHING INVARIANTS ON C PS�1jS 55and �ab is the inverse of �ab. It beomes now obvious that a non-zero ontration in atensor power of 
o

no = �(Ta1)
 �(Ta2)
 � � � 
 �(Ta2n�1)
 �(Ta2n)�a2a1 � � ��a2na2n�1will result in a fusion of the type�(Tai)
 �(Taj )! �(TaiTaj ):In partiular, subtrating all but one trae in 

no one gets an expression of the form�(Ta1 � � �Ta2n)�a2n���a1 ; (D.4)where �a2n���a1 is one of the (2n � 1)!! h-invariant tensors that an be onstruted byraising to the n-th tensor power the h-invariant tensors �aiaj . Denote by Z(h) the enterof the universal enveloping superalgebra U(h) of h. Then we see that the expression ineq. (D.4) is an element of Z(h) in the representation �. We arrive at the onlusion thatall h-invariant rank 2 tensors built from the tensor powers of the urvature tensor Roby traing the appropriate number of times with the metri ( ; )o an be interpretedas elements of Z(h) in the representation �.Consider now the ase of omplex projetive superspaesC PS�1jS = U(SjS)=U(S � 1jS)� U(1):Complexifying everything, we get that m is the diret sum of the fundamental repre-sentation �S�1jS of sl(S � 1jS) and of its onjugate ��S�1jS, thus revealing the omplexstruture of the supermanifold. Moreover, h = sl(S � 1jS) � z, where z is a two di-mensional enter. Let � be the u(SjS)-invariant, non-degenerate form provided by thesupertrae in the fundamental representation. Then the restrition of � to h�h is blokdiagonal with respet to the diret sum deomposition h = sl(S � 1jS) � z. One anhoose as basis for z the entral element E of u(SjS) together with its dual N withrespet to �. Realling that the invariant tensor �a2n���a1 were built from tensor prod-uts of �aiaj , we notie that E and N an only appear in eq. (D.4) in pairs. Therefore,given that E is in the kernel of �, the invariant tensors in eq. (D.4) are e�etively in the�-image of Z� sl(S � 1jS)�. Finally, all these must vanish beause �S�1jS and ��S�1jSboth belong to the blok of the trivial representation of sl(S � 1jS).
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