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Linear bosoni and fermioni quantum gauge theorieson urved spaetimesThomas-Paul Hak � Alexander Shenkel
Marh 20, 2013Abstrat We develop a general setting for the quantization of linear bosoni and fermioni �eld theoriessubjet to loal gauge invariane and show how standard examples suh as linearised Yang-Mills theoryand linearised general relativity �t into this framework. Our onstrution always leads to a well-de�nedand gauge-invariant quantum �eld algebra, the entre and representations of this algebra, however, have tobe analysed on a ase-by-ase basis. We disuss an example of a fermioni gauge �eld theory where the ne-essary onditions for the existene of Hilbert spae representations are not met on any spaetime. On theother hand, we prove that these onditions are met for the Rarita-Shwinger gauge �eld in linearised pureN = 1 supergravity on ertain spaetimes, inluding asymptotially at spaetimes and lasses of spae-times with ompat Cauhy surfaes. We also present an expliit example of a supergravity bakgroundon whih the Rarita-Shwinger gauge �eld an not be onsistently quantized.Keywords quantum �eld theory on urved spaetimes; gauge theories; supergravity; algebrai quantum�eld theory1 IntrodutionQuantum �eld theory on urved spaetimes has gone through major developments in the last deades.Expliit models have been onstruted in this framework, inluding the salar �eld [Dim80℄, the Dira �eld[Dim82,San08,DHP09℄ and the Proa �eld [Fur99℄. These examples have later been reast into a generalapproah to the quantization of bosoni and fermioni matter �eld theories on urved spaetimes [BGP07,BG11℄. On the other hand, examples of theories exhibiting a loal gauge invariane have been investigatedin detail, inluding the Maxwell �eld [Dim92,FP03,Pfe09,DS11,DL11,DHS12℄ and linearised general rel-ativity on Einstein manifolds [FH12℄. The quantization of gauge �eld theories bears new ompliations,whih are not present for matter �eld theories. In partiular, the equation of motion in a gauge �eld theoryis not hyperboli and thus one does not have a well-de�ned Cauhy problem or Green's operators, whihare the basi strutures entering the onstrution of matter quantum �eld theories. This problem has beenresolved in the examples mentioned above by onsidering only the gauge invariant ontent of suh a theory,i.e. gauge invariant observables, and making use of a speial gauge �xing ondition. We emphasise thateven though a gauge �xing is used in this onstrution, the resulting algebra of observables is by de�nitiongauge invariant. The algebra of gauge invariant observables of a gauge �eld theory an have new featuresompared to matter �eld theories. As it has been shown in [BGP07,BG11℄ (see also Setion 4 in the presentpaper) the algebra of observables of a bosoni matter quantum �eld theory never has a non-trivial entre.In gauge �eld theories this an in general only be guaranteed under additional assumptions on the Cauhysurfae in the spaetime, see [Dim92℄ for the Maxwell �eld and [FH12℄ for linearised general relativityII. Institut f�ur Theoretishe Physik, Universit�at Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany. E-mail: thomas-paul.hak�desy.de � Fahgruppe Mathematik, Bergishe Universit�at Wuppertal, Gau�stra�e 20, 42119 Wuppertal, Germany.E-mail: shenkel�math.uni-wuppertal.de
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2 Thomas-Paul Hak, Alexander Shenkelon Einstein manifolds. There are examples of Cauhy surfaes suh that the algebra of gauge invariantobservables of the Maxwell �eld has a non-trivial entre [DL11,DHS12℄. Due to the theory of degenerateWeyl algebras [BHR04℄ these entres do not pose mathematial problems for the quantum �eld theory onan individual spaetime, but they have impat on whether or not the theory is loally ovariant in the senseof [BFV03℄, see e.g. [DL11,DHS12℄. Furthermore, the entres are ertainly of physial interest and shouldbe understood in detail. We also want to mention that in addition to these results on linear quantumgauge �eld theories there has been a lot of e�ort in onstruting perturbatively interating quantum gauge�eld theories on urved spaetimes, see e.g. [Hol07,FR11℄ and referenes therein. In our work we restritourselves to linear quantum �eld theories, sine as it will beome lear later, there are a lot of non-trivialaspets whih have to be understood in detail even at the linear level. This is in partiular the ase forfermioni gauge �eld theories. The restrition to linear theories will allow us to quantize gauge �elds with-out introduing auxiliary �elds as it happens in the BRST/BV-formalism, f. [Hol07,FR11℄. However, wepresume that our onstrution for the bosoni ase yields a gauge invariant algebra of quantum observableswhih is isomorphi to the one obtained in [Hol07,FR11℄ at lowest order in perturbation theory.The goal of the present paper is twofold: First, we aim at developing a general framework for thequantization of linear gauge �eld theories. This an be seen as an extension of [BGP07,BG11℄ to �eldtheories subjet to a loal gauge invariane. We allow for bosoni as well as fermioni theories and providean axiomati de�nition of a lassial linear gauge �eld theory in terms of �bre bundles and di�erentialoperators thereon. Our setting is general enough to over the matter �eld theories of [BGP07,BG11℄, whihwill be promoted to gauge �eld theories with a trivial gauge struture, as well as the standard examplessuh as linearised Yang-Mills theory and linearised general relativity on Einstein manifolds. Even more, ourgeneral framework is suÆiently exible to inlude examples of fermioni gauge �eld theories. The primeexample of suh a theory is the gravitino �eld (also alled Rarita-Shwinger �eld) in linearised pure N = 1supergravity, whih we will disuss in detail. A further example whih we will study in detail is a fermioniversion of linearised Yang-Mills theory, whih emerges for example as the fermioni setor of a Yang-Millstheory modeled on a Lie supergroup. Bosoni gauge �eld theories an always be quantized in terms of(possibly degenerate) Weyl algebras, while fermioni gauge �eld theories bear additional ompliations,similar to their matter �eld theory ounterparts [BGP07,BG11℄. The issue there is that the inner produtspae assoiated to a fermioni matter or gauge �eld theory is in general inde�nite, and one thereforeenounters physial as well as mathematial problems. The mathematial issue is that suh inde�nite innerprodut spaes an not be quantized with the usual CAR-representation. The physial problem is that,even if there would exist a suitable CAR-algebra, there are negative norm states in any representation of it.In ontrast to other approahes to the quantization of gauge �eld theories whih are based on kinematial(i.e. still ontaining gauge degrees of freedom) representation spaes, our negative norm states would bestates in the physial (i.e. gauge invariant) Hilbert spae and would thus pose problems for the physialinterpretation of the fermioni gauge �eld theory under onsideration. This brings us to the seond goalof this paper, whih is the investigation under whih onditions the two examples of fermioni gauge�eld theories give rise to positive de�nite inner produt spaes and thus an be onsistently quantizedin terms of a CAR-representation. We prove that the fermioni generalisation of linearised Yang-Millstheory always leads to an inde�nite inner produt spae and thus an not be quantized on any spaetime.This implies that the perturbative quantization of Yang-Mills theories based on Lie supergroups is, inthe above mentioned sense, inonsistent and puts strong mathematial onstraints on suh theories. Onthe other hand, our result is well in line with the spin-statistis theorem. The situation is better for thegravitino �eld of linearised pure supergravity. We provide a suÆient ondition for this theory to give riseto a positive inner produt spae, whih demands the existene of a speial type of gauge transformation.For ompat Cauhy surfaes this ondition is ful�lled if the indued (Riemannian) Dira operator on theCauhy surfae has a trivial kernel. We also onsider ertain non-ompat Cauhy surfaes and answer thequestion of positivity aÆrmatively. This shows that, under assumptions on the Cauhy surfae, treatingthe Rarita-Shwinger �eld as a fermioni gauge �eld theory (as it is required by supergravity) improves onwell-known issues appearing in the quantization of the Rarita-Shwinger �eld when treated as a matter �eldtheory, see e.g. [BG11,HM11,SU11℄. Introduing a mass term for the gravitino �eld in a gauge-invariantway requires the oupling of matter �elds to the supergravity and will be disussed elsewhere. We alsoprovide an example of a supergravity bakground on whih the Rarita-Shwinger gauge �eld an not be



Linear bosoni and fermioni quantum gauge theories on urved spaetimes 3onsistently quantized via a CAR-representation. Considering the spaetimeM = R �TD�1 { with TD�1denoting the D�1-torus { equipped with the at Lorentzian metri, we show that in ase of the trivial spinstruture the inner produt is inde�nite, while for all other spin strutures it is positive de�nite. A ompletelassi�ation of Cauhy surfaes and indued metris thereon whih lead to a positive inner produt forthe Rarita-Shwinger gauge �eld seems to be very ompliated and is beyond the sope of this work.The outline of this paper is as follows: In Setion 2 we review some basi aspets of Lorentzian geometryand di�erential operators on vetor bundles following mainly the presentation in [BGP07,BG11℄. We thenintrodue our de�nition of lassial gauge �eld theories in Setion 3 and show that the basi examplesstudied in the literature �t into this framework. We onlude this setion with a theorem on propertiesof lassial gauge �eld theories, whih generalises the properties found in the expliit examples to theaxiomati level. In Setion 4 we study the quantization of gauge �eld theories and in partiular proposesuitable algebras of gauge invariant observables. The question of non-degeneray (positivity) of bosoni(fermioni) gauge �eld theories is investigated in Setion 5. The Rarita-Shwinger gauge �eld is disussedseparately in Setion 6. Appendix A ontains our spinor onventions.2 Notation and preliminariesWe �x our notations and review briey some aspets of Lorentzian manifolds and di�erential operators onvetor bundles. We mainly follow [BGP07,BG11℄ and refer to these works for more details and referenesto other literature.A Lorentzian manifold is a smooth and oriented onneted D-dimensional manifold M equipped witha smooth Lorentzian metri g of signature (�;+; : : : ;+). The assoiated volume form will be denotedby volM . A time-oriented Lorentzian manifold will be alled a spaetime. For every subset A � M of aspaetime M we denote the ausal future/past of A by J�(A). A losed subset A �M is alled spaelikeompat if there exists a ompat C � M suh that A � J(C) := J+(C) [ J�(C). A Cauhy surfaein a spaetime M is a subset � � M whih is met exatly one by every inextensible ausal urve anda spaetime is alled globally hyperboli if and only if it ontains a Cauhy surfae. We shall need thefollowing theorem proven by Bernal and S�anhez [BS04,BS05℄:Theorem 2.1. Let (M; g) be a globally hyperboli spaetime.(i) Then there exists a smooth manifold �, a smooth one-parameter family of Riemannian metris fgtgt2Ron � and a smooth positive funtion # on R��, suh that (M; g) is isometri to (R��;�#2dt2�gt).Under this isometry eah ftg �� orresponds to a smooth spaelike Cauhy surfae in (M; g).(ii) Let also e� be a smooth spaelike Cauhy surfae in (M; g). Then there exists a smooth splitting (M; g) '(R ��;�#2dt2 � gt) as in (i) suh that e� orresponds to f0g ��.Let V;W be a K -vetor bundles over M with K = R or C . A di�erential operator of order k is a linearmap P : �1(V ) ! �1(W ), with �1(V ); �1(W ) denoting the C1(M)-modules of setions of V;W ,whih in loal oordinates (x0; : : : ; xD�1) and a loal trivialisation of V and W looks likeP = Xj�j�kA�(x) �j�j�x� : (2.1)Here � = (�0; : : : ; �D�1) 2 ND0 denotes a multi-index, j�j = �0 + � � � + �D�1 is its length and �j�j�x� =�j�j�(x0)�0 ����(xD�1)�D�1 . The A� are smooth funtions with values in the linear homomorphisms from thetypial �bre of V to the one of W . The prinipal symbol �P of P assoiates to eah ovetor � 2 T �xM ahomomorphism �P (�) : Vx !Wx between the �bre Vx and Wx over x 2M . Loally,�P (�) = Xj�j=kA�(x) �� ; (2.2)



4 Thomas-Paul Hak, Alexander Shenkelwhere �� = ��00 : : : ��D�1D�1 and � = �� dx� (sum over � = 0; : : : ; D � 1 understood). In addition to �1(V )we introdue the notations �10 (V ) for the setions of ompat support and �1s (V ) for the setions ofspaelike ompat support.Let now K = R and let h ; iV be a non-degenerate bilinear form on V , that is a family of non-degeneratebilinear maps h ; iVx : Vx�Vx ! R on the �bres Vx, for all x 2M , that depend smoothly on x. We de�nethe bilinear map h ; i� (V ), for all setions f; h 2 �1(V ) with ompat overlapping support,hf; hi� (V ) := ZM volM hf; hiV : (2.3)Let us also assume that W omes with a non-degenerate bilinear form h ; iW . Then every di�erentialoperator P : �1(V ) ! �1(W ) of order k has a unique formal adjoint , i.e. a di�erential operator P y :�1(W )! �1(V ) of order k, suh thathP yf; hi� (V ) = hf; Phi� (W ) ; (2.4)for all f 2 �1(W ) and h 2 �1(V ) with ompat overlapping support. If V = W , h ; iV = h ; iW andP y = P we say that P is formally self-adjoint (with respet to h ; iV ).De�nition 2.2. Let P : �1(V ) ! �1(V ) be a di�erential operator on a vetor bundle V over aLorentzian manifold M . A retarded/advaned Green's operator for P is a ontinuous linear map G� :�10 (V )! �1(V ) satisfying(i) P ÆG� = id,(ii) G� Æ P ���10 (V ) = id,(iii) supp(G�f) � J�(supp(f)) for any f 2 �10 (V ).De�nition 2.3. Let P : �1(V )! �1(V ) be a di�erential operator on a vetor bundle V over a globallyhyperboli spaetime M with a non-degenerate bilinear form h ; iV .(i) We say that P is Green-hyperboli if P and P y have Green's operators1.(ii) We say that P is Cauhy-hyperboli if the Cauhy problems for P and P y are well-posed.Remark 2.4. The Green's operators of a Green-hyperboli operator on a globally hyperboli spaetimeare neessarily unique, see Remark 3.7 in [BG11℄. Cauhy-hyperboli operators are also Green-hyperboli,but there are Green-hyperboli operators that are not Cauhy-hyperboli, see Setion 2.7 in [BG11℄.Example 2.5. Let M be a globally hyperboli spaetime and V a vetor bundle over M .1.) A seond-order di�erential operator P on V is alled a normally hyperboli operator (also wave op-erator) if its prinipal symbol is given by the inverse metri g�1 times the identity on the �bre,�P (�) = g�1(�; �) id. In other words, a di�erential operator is normally hyperboli if and only if inloal oordinates x� and a loal trivialisation of VP = g��(x) ���� + A�(x) �� +B(x) ; (2.5)where A� and B smooth funtions valued in the endomorphisms of the typial �bre of V .2.) A �rst-order di�erential operator P on V is alled of Dira-type if P 2 = P ÆP is a normally hyperbolioperator.The formal adjoints of normally hyperboli operators and operators of Dira-type are again normally hy-perboli and of Dira-type respetively, and these two lasses of di�erential operators are Green-hyperboliand even Cauhy-hyperboli, see [BGP07,BG11,Mue10℄.1 We are grateful to Ko Sanders for pointing out that the existene of Green's operators for P y does in general not followfrom the existene of Green's operators for P .



Linear bosoni and fermioni quantum gauge theories on urved spaetimes 5As a last prerequisite we require the following lemma and theorem on properties of Green's operators.See Lemma 3.3 and Theorem 3.5 in [BG11℄ for the proofs.Lemma 2.6. Let M be a globally hyperboli spaetime and V a vetor bundle over M equipped with anon-degenerate bilinear form h ; iV . Denote by G� the retarded/advaned Green's operators for a Green-hyperboli operator P on V . Then the retarded/advaned Green's operators Gy� for P y satisfy, for allf; h 2 �10 (V ), hGy�f; hi� (V ) = hf;G�hi� (V ) : (2.6)In partiular, if P y = P is formally self-adjoint then hG�f; hi� (V ) = hf;G�hi� (V ), for all f; h 2 �10 (V ).Theorem 2.7. Let M be a globally hyperboli spaetime, V a vetor bundle over M and P a Green-hyperboli operator on V . For G� being the retarded/advaned Green's operators for P we de�ne the linearmap G := G+ �G� : �10 (V ) ! �1s (V ). Then the following sequene of linear maps is a omplex, whihis exat everywhere: f0g �! �10 (V ) P�! �10 (V ) G�! �1s (V ) P�! �1s (V ) : (2.7)3 Classial gauge �eld theoriesIn this setion we provide a general setting to desribe lassial gauge �eld theories. This requires, of ourse,more strutures ompared to lassial �eld theories whih are not subjet to gauge invariane, i.e. lassialmatter �eld theories. Throughout this artile all �eld theories are assumed to be real and non-interating,i.e. the dynamis is governed by a linear equation of motion operator. The non-trivial oupling is thus onlyto �xed lassial bakground �elds, suh as the gravitational �eld or bakground gauge �elds.Before investigating lassial gauge �eld theories we �rst provide a de�nition of a lassial matter �eldtheory following the spirit of [BGP07,BG11℄ and give some examples.De�nition 3.1. A (real) lassial matter �eld theory is given by a triple �M;V; P �, where{ M is a globally hyperboli spaetime{ V is a real vetor bundle over M equipped with a non-degenerate bilinear form h ; iV{ P : �1(V )! �1(V ) is a formally self-adjoint Green-hyperboli operatorWe say that a lassial matter �eld theory is bosoni if h ; iV is symmetri and fermioni if h ; iV isantisymmetri.Example 3.2 (Klein-Gordon �eld). Let M be a globally hyperboli spaetime and V := M � R be thetrivial real line bundle. We equip V with the anonial non-degenerate symmetri bilinear form h ; iV ,whih is indued from the inner produt on the typial �bre R given by, for all v1; v2 2 R,hv1; v2iR = v1 v2 : (3.1)The C1(M)-module of setions �1(V ) is isomorphi to C1(M).Using the di�erential d : 
n(M)! 
n+1(M) and its formal adjoint Æ : 
n(M)! 
n�1(M), given byÆ = (�1)nD+D � d� with D = dim(M) and � denoting the Hodge operator, we de�ne the Klein-Gordonoperator of mass m 2 [0;1)P : C1(M)! C1(M) ; f 7! Pf = Ædf +m2f : (3.2)This operator is formally self-adjoint with respet to h ; iV and normally hyperboli, thus in partiularalso Green-hyperboli.This shows that the Klein-Gordon �eld is a bosoni lassial matter �eld theory aording to De�nition3.1.



6 Thomas-Paul Hak, Alexander ShenkelExample 3.3 (Majorana �eld). For our spinor onventions see Appendix A and for a general disussion ofspinor �elds we refer to [San08℄. Let M be a globally hyperboli spaetime of dimension D mod 8 = 2; 3; 4equipped with a spin struture and let DM be the Dira bundle. The typial �bre of DM is given byC 2bD=2 . We an use the harge onjugation map  : DM ! DM to de�ne the real subbundle V :=DMR := �e 2 DM : e = e	, whih we all the Majorana bundle. We equip the typial �bre R2bD=2 ofDMR with the non-degenerate antisymmetri bilinear map, for all v1; v2 2 R2bD=2 ,hv1; v2iR2bD=2 = i vT1 C v2 ; (3.3)where C denotes the harge onjugation matrix, i the imaginary unit and T the transposition operation.This indues a non-degenerate antisymmetri bilinear form h ; iV on V = DMR.Let us denote by TM the tangent and by T �M the otangent bundle on M . Using the onnetionr : �1(V ) ! �1(V 
 T �M), whih is indued by the Levi-Civita onnetion, and the -matrix setion 2 �1�TM
End(V )�, whih is ovariantly onstant, we de�ne the Dira operator =r : �1(V )! �1(V )by the ontration of  andr. In loal oordinates we have =r = �r�. We further de�ne the Dira operatorof mass m 2 [0;1) by P : �1(V )! �1(V ) ; f 7! Pf = =rf +mf : (3.4)The operator P is formally self-adjoint with respet to h ; iV and of Dira-type, thus in partiular Green-hyperboli.This shows that the Majorana �eld is a fermioni lassial �eld theory aording to De�nition 3.1.For a lassial gauge �eld theory De�nition 3.1 is not suitable, sine �rstly it does not enode the notionof gauge invariane and seondly, as well-known, gauge invariane implies that the dynamis of gauge �eldsan not be governed by hyperboli operators. To inlude the missing strutures we propose the followingaxioms:De�nition 3.4. A lassial gauge �eld theory is given by a six-tuple �M;V;W; P;K; T �, where{ M is a globally hyperboli spaetime{ V andW are real vetor bundles overM equipped with non-degenerate bilinear forms h ; iV and h ; iW{ P : �1(V )! �1(V ) is a formally self-adjoint di�erential operator{ K : �1(W ) ! �1(V ) is a di�erential operator satisfying P Æ K = 0 and R := Ky Æ K Cauhy-hyperboli for non-trivial K 6= 0{ T : �1(W ) ! �1(V ) is a di�erential operator, suh that eP := P + T ÆKy is Green-hyperboli andQ := Ky Æ T is Green-hyperboli for non-trivial K 6= 0We say that a lassial gauge �eld theory is bosoni if h ; iV is symmetri and fermioni if h ; iV isantisymmetri.Remark 3.5. As the following examples will show, the objets appearing in the six-tuple �M;V;W; P;K; T �desribing a lassial gauge �eld theory have the following physial interpretation:Setions of the vetor bundle V desribe on�gurations of the gauge �eld. The operator P governsits dynamis and the formal self-adjointness of P an be interpreted as saying that P = 0 are theEuler-Lagrange equations obtained from a quadrati ation funtional for  . The operator K generatesgauge transformations by, for all  2 �1(V ) and � 2 �1(W ),  7!  0 =  + K�. Thus, setions ofW desribe on�gurations of the gauge transformation parameters. The ondition P Æ K = 0 enodesthe gauge invariane of the dynamis, in partiular it implies that pure gauge on�gurations K� 2 �1(V )solve the equation of motion. The ondition R := Ky ÆK Cauhy-hyperboli is used to prove that Ky = 0is a onsistent gauge �xing ondition, i.e. that any solution of P = 0 with spaelike ompat support isgauge equivalent to a solution in the kernel of Ky, see Theorem 3.12 (iv). The Green-hyperboli operatoreP := P + T Æ Ky is the equation of motion operator after the anonial gauge �xing Ky = 0. TheGreen-hyperboli operator Q := Ky Æ T ensures that the anonial gauge �xing is ompatible with timeevolution.



Linear bosoni and fermioni quantum gauge theories on urved spaetimes 7Even though Ky has also the interpretation of a gauge �xing operator, we want to stress that we donot perform any expliit gauge �xing and work ompletely in terms of gauge invariant quantities whendisussing algebras of observables. This follows in partiular from Proposition 5.1 whih implies that theanonial (anti)ommutation relations of the gauge �eld do not depend on eP , but only on P . A relatedobservation is that two lassial gauge �eld theories whih di�er only in the operator T an be onsideredto be equivalent, see Proposition 4.9.Sine for a given �ve-tuple �M;V;W; P;K� the hoie of T seems to be non-unique in general andsine in the following examples T is usually read o� from the �ve-tuple �M;V;W; P;K� rather than beinggiven as an independent datum, a natural question is whether and under whih additional assumptions adi�erential operator T satisfying the last point of De�nition 3.4 exists for every �ve-tuple �M;V;W; P;K�satisfying the �rst four points of De�nition 3.4. Unfortunately, a satisfatory answer to this question, whihwould allow us to treat linear gauge theories solely in terms of �ve-tuples �M;V;W; P;K�, seems to benon-trivial and is beyond the sope of this work. For this reason we have hosen to onsider T as anadditional datum in our following general treatment of linear gauge theories.Before providing non-trivial examples of lassial gauge �eld theories we show that any lassial matter�eld theory is also a lassial gauge �eld theory with trivial gauge struture K.Proposition 3.6. Let �M;V; P � be a lassial matter �eld theory and let T : �1(V ) ! �1(V ) be anarbitrary di�erential operator. Then �M;V; V; P;K = 0; T � is a lassial gauge �eld theory with trivialgauge struture K = 0.Proof. Sine K = 0 we also have Ky = 0. All onditions of De�nition 3.4 are easily veri�ed.The standard examples of linearised bosoni and fermioni gauge �eld theories also �t into De�nition3.4.Example 3.7 (Linearised Yang-Mills �eld). The Yang-Mills �eld should only serve as an illustrativeexample. This is why we restrit ourselves to the ase of trivial gauge bundles in order to simplify thedisussion.Let M be a globally hyperboli spaetime and g be a real semisimple Lie algebra. Let W be the trivialvetor bundle W :=M � g and V :=W 
 T �M , with T �M denoting the otangent bundle. We equip Wwith the non-degenerate symmetri bilinear form h ; iW indued from the Killing form on the typial �bre
g, for all w1; w2 2 g, hw1; w2ig = Tr�adw1 adw2� (3.5)and V with the non-degenerate symmetri bilinear form h ; iV given by the produt of h ; iW and theinverse metri g�1 on M . The C1(M)-module of setions �1(W ) is isomorphi to the C1(M)-moduleof g-valued funtions C1(M; g) and �1(V ) is isomorphi to the g-valued one-forms 
1(M; g).A Yang-Mills �eld in this setting is a setion A 2 
1(M; g). The urvature of A is given by F = dA+12 [A;A℄ 2 
2(M; g). We de�ne the ovariant di�erential dA : 
n(M; g)! 
n+1(M; g) by dA� := d�+[A; �℄and denote its formal adjoint by ÆA : 
n(M; g)! 
n�1(M; g). Expliitly, ÆA� = (�1)nD+D �dA��, where� denotes the Hodge operator and D = dim(M). The Yang-Mills equation reads ÆAF = 0.Let us now linearise the Yang-Mills �eld A around a solution A0 2 
1(M; g) of the Yang-Mills equation,i.e. we write A = A0 + � with � 2 
1(M; g) and onsider only terms linear in �. The linearised urvaturereads Flin = F0 + dA0�, where F0 is the urvature of A0 and dA0 the ovariant di�erential given by A0.The linearisation of the Yang-Mills equation yields0 = ÆA0F0 + ÆA0dA0�+ (�1)D � [�; �F0℄ = ÆA0dA0�� �[�F0; �℄ ; (3.6)sine A0 is on-shell. We de�ne the di�erential operator P on 
1(M; g) ' �1(V ),P : 
1(M; g)! 
1(M; g) ; � 7! P� = ÆA0dA0�� �[�F0; �℄ : (3.7)It is formally self-adjoint with respet to h ; iV .



8 Thomas-Paul Hak, Alexander ShenkelThe gauge invariane of the full (not linearised) theory is given by transformations A 7! A + dA�labelled by � 2 C1(M; g). Notie that C1(M; g) ' �1(W ). If we linearise the gauge transformations weobtain for all � 2 C1(M; g) the transformation law � 7! �+ dA0�. Let us de�ne the operator K byK : C1(M; g)! 
1(M; g) ; � 7! K� = dA0� : (3.8)It is a standard alulation to hek that P Æ K = 0, provided the bakground Yang-Mills �eld A0 ison-shell, i.e. ÆA0F0 = 0.We de�ne further the operatorT : C1(M; g)! 
1(M; g) ; � 7! T� = dA0� : (3.9)Notie that T = K and that eP := P + T ÆKy = ÆA0 Æ dA0 + dA0 Æ ÆA0 � �[�F0; � ℄ is normally hyperboliand thus in partiular Green-hyperboli. We further obtain Q := Ky Æ T = ÆA0 Æ dA0 , whih is a normallyhyperboli operator on C1(M; g) and thus in partiular Green-hyperboli. The operator R := Ky ÆK =ÆA0 Æ dA0 agrees with Q and is Cauhy-hyperboli.This shows that the linearised Yang-Mills �eld on a trivial g-bundle is a bosoni lassial gauge �eldtheory aording to De�nition 3.4.Example 3.8 (Linearised general relativity). The ase of linearised D=4 general relativity in presene ofa osmologial onstant � has been reently studied in detail by Fewster and Hunt [FH12℄. We briey showthat this theory is a bosoni lassial gauge �eld theory aording to De�nition 3.4 and refer to [FH12℄ formore details. As in this paper we restrit ourselves to D=4 and employ a tensor index notation to simplifyreadability.Let M be a globally hyperboli spaetime of dimension D=4. Let further W := T �M be the otangentbundle and V := W2 T �M be the bundle of symmetri ontravariant tensors of rank 2. The metri g�� 2�1(V ) of the globally hyperboli spaetimeM is assumed to be a solution of the vauumEinstein equationsR�� = �g�� , with R�� denoting the Rii tensor of g�� . We equip W with the anonial non-degeneratesymmetri bilinear form h ; iW indued by the inverse metri g�� on M and V with the non-degeneratesymmetri bilinear formhf; hiV = f�� h�� = g��g���f�� � 12g�� f�h�� = f��h�� � 12 f h ; (3.10)where f = f�� = g��f�� is the trae and � is alled the trae-reversal operation.Let us onsider utuations g�� + ��� , with ��� 2 �1(V ), of the bakground metri. The equation ofmotion operator obtained by linearising the vauum Einstein equations reads for the trae-reversed metriutuations h�� := ��� = ��� � 12g�� �P : �1(V )! �1(V ) ; h�� 7! (Ph)�� = g��r�r�h�� +�h�� + 2�h�� � 2r�r(�h�)� ; (3.11)where r denotes the Levi-Civita onnetion orresponding to g�� and � = r�r� = g��r�r� thed'Alembert operator. The parenthesis ( ) denotes symmetrisation of weight one. It an be heked that Pis formally self-adjoint with respet to h ; iV .The gauge invariane of linearised general relativity is governed by the operatorK : �1(W )! �1(V ) ; w� 7! (Kw)�� = r(�w�) = r(�w�) � 12g��r�w� : (3.12)The property P ÆK = 0, whih holds for bakgrounds satisfying the on-shell ondition R�� = �g�� , hasalready been veri�ed in [FH12℄, see also [SW74℄. More preisely, the operators PFH and KFH of Fewsterand Hunt are related to ours by P = �2PFH Æ � and K = 12 � ÆKFH and from PFH ÆKFH = 0 it followsP Æ K = �PFH Æ � Æ � Æ KFH = �PFH ÆKFH = 0, sine the trae-reversal squares to the identity. Theformal adjoint of K is given by, for all h�� 2 �1(V ), (Kyh)� = �r�h�� .Let us further de�ne the operatorT : �1(W )! �1(V ) ; w� 7! (Tw)�� = �2(Kw)�� = �2�r(�w�) � 12g��r�w�� : (3.13)



Linear bosoni and fermioni quantum gauge theories on urved spaetimes 9For eP := P + T ÆKy we obtaineP : �1(V )! �1(V ) ; h�� 7! ( ePh)�� = �h�� � 2R� ��� h�� ; (3.14)where R� ��� is the Riemann tensor. This is a normally hyperboli operator and thus in partiular Green-hyperboli. For Q := Ky Æ T we obtainQ : �1(W )! �1(W ) ; w� 7! (Qw)� = �w� + �w� ; (3.15)whih is also a normally hyperboli operator and thus in partiular Green-hyperboli. The operator R :=Ky ÆK = � 12Q is a multiple of a normally hyperboli operator and in partiular Cauhy-hyperboli.This shows that linearised general relativity in presene of a osmologial onstant is a bosoni lassialgauge �eld theory aording to De�nition 3.4.Example 3.9 (Toy model: Fermioni gauge �eld). Before introduing the Rarita-Shwinger gauge �eldas an example of a fermioni gauge �eld theory in Example 3.10 we �rst disuss a simple toy model.LetM be a globally hyperboli spaetime and let �R2m ; 
�, withm 2 N, be the sympleti vetor spaeof dimension 2m, i.e. 
 is a non-degenerate antisymmetri 2m � 2m-matrix. We de�ne W := M � R2mto be the trivial vetor bundle and equip it with the non-degenerate antisymmetri bilinear form h ; iWindued from the sympleti struture on the typial �bre, for all w1; w2 2 R2m ,hw1; w2i
 := wT1 
w2 : (3.16)We further de�ne V := W 
 T �M , where T �M is the otangent bundle, and equip it with the non-degenerate antisymmetri bilinear form h ; iV given by the produt of h ; iW and the inverse metri g�1on M . The C1(M)-module of setions �1(W ) is isomorphi to the C1(M)-module C1(M;R2m ) and�1(V ) is isomorphi to the R2m -valued one-forms 
1(M;R2m ).We de�ne the operatorP : 
1(M;R2m )! 
1(M;R2m ) ; � 7! P� = Æd� ; (3.17)whih is formally self-adjoint with respet to h ; iV . We further de�neK : C1(M;R2m )! 
1(M;R2m ) ; � 7! K� = d� : (3.18)It obviously holds P ÆK = 0 and the formal adjoint of K is Ky = Æ. De�ning the operatorT : C1(M;R2m )! 
1(M;R2m ) ; � 7! T� = d� ; (3.19)we obtain that the operators eP := P + T ÆKy = Æ Æ d + d Æ Æ (on 
1(M;R2m )) and Q := Ky Æ T = Æ Æ d(on C1(M;R2m )) are normally hyperboli and thus in partiular Green-hyperboli. Sine T = K we alsohave that R := Ky Æ K = Æ Æ d is a normally hyperboli operator on C1(M;R2m ) and in partiularCauhy-hyperboli.The six-tuple �M;V;W; P;K; T � is thus a fermioni lassial gauge �eld theory aording to De�nition3.4.Example 3.10 (Rarita-Shwinger gauge �eld). Our model for the Rarita-Shwinger gauge �eld is inspiredby D=4 simple supergravity, whih we will briey sketh. For details on supergravity we refer to [VN81,Nil83,WB92℄. The �eld ontent of this theory is the gravitational �eld, desribed by a vierbein E, andthe gravitino �eld 	 . The ation funtional is given by a loally supersymmetri extension of the Einstein-Hilbert ation of general relativity. Solutions of the orresponding equations of motion in a trivial gravitinobakground 	 = 0 are given by Rii-at Lorentzian manifolds (M; g). We are interested in modellinglinearised utuations of the gravitino �eld around these bakgrounds.As we have already seen in the Examples 3.7 and 3.8, the on-shell onditions for the bakground �eldsare neessary to maintain gauge invariane of the linearised gauge �eld theory. Thus, we are fored toassume that M is a globally hyperboli spaetime whih is Rii-at and equipped with a spin struture.We take D mod 8 = 2; 3; 4 in order to have a suitable Majorana ondition available, see Appendix A forour spinor onventions. The Rarita-Shwinger gauge �eld on more general spaetimes requires the oupling



10 Thomas-Paul Hak, Alexander Shenkelof supergravity to matter �elds and will be disussed elsewhere. We also assume that D � 3 to have anon-trivial equation of motion for the gravitino (otherwise the ��� de�ned below is trivial; note that thisis well in aord with the fat that gravity in D=2 is not dynamial). We de�ne W := DMR to be theMajorana bundle (see Example 3.3) and V := DMR
T �M , where T �M denotes the otangent bundle. WeequipW with the anonial non-degenerate antisymmetri bilinear form h ; iW , see (3.3) for an expressionon the typial �bre. It is onvenient not to use the supergravity gravitino 	 2 �1(V ) (linearised aroundthe trivial on�guration) as the dynamial degrees of freedom, but to do a �eld rede�nition instead. This issimilar to the trae-reversal we have used in Example 3.8. Using the -setion  2 �1�TM 
End(DMR)�we de�ne the linear map e� : �1(V )! �1(V ), whih is given in loal oordinates by, for all  2 �1(V ),e � :=  � � 1D�2� � � , where � = g�� �. Notie that � e � = � 2D�2� � and that e� is invertible viae��1 given loally by e �1� =  � � 12�� � . We de�ne the Rarita-Shwinger gauge �eld  2 �1(V ) bythe equation 	 = e , where 	 2 �1(V ) is the linearised supergravity gravitino �eld. We equip V with thenon-degenerate bilinear form h ; iV , whih reads in loal oordinatesh 1;  2iV := hf 1�;  �2 iW = h 1�;  �2 iW + 1D � 2 h� 1�; � 2�iW : (3.20)Notie that h ; iV is antisymmetri.The equation of motion for the linearised supergravity gravitino �eld 	 2 �1(V ) is obtained bythe supergravity ation and it is given by the massless Rarita-Shwinger equation, whih reads in loaloordinates ���r�	� = 0, where ��� = [���℄, the parenthesis [ ℄ denotes antisymmetrisation ofweight one and r is the onnetion on V = DMR
 T �M indued by the Levi-Civita onnetion. For therede�ned degrees of freedom  2 �1(V ) with 	 = e the dynamis is governed by the equation of motionoperator P , given in loal oordinates byP : �1(V )! �1(V ) ;  � 7! (P )� = =r � � �r� � : (3.21)This operator is formally self-adjoint with respet to h ; iV .The linearised loal supersymmetry transformations at on the supergravity gravitino �eld 	 2 �1(V )by 	� 7! 	� +r��, where � 2 �1(W ). For the rede�ned degrees of freedom  2 �1(V ) with 	 = e weobtain the operator K, given in loal oordinates byK : �1(W )! �1(V ) ; � 7! (K�)� = gr���1 = r��� 12� =r� : (3.22)By a standard alulation one heks that P Æ K = 0 if and only if the metri g is Rii-at, whihwas exatly the on-shell ondition imposed by supergravity. The formal adjoint of K is given by, for allf 2 �1(V ), Kyf = �r�f�.Let us further de�ne the operatorT : �1(W )! �1(V ) ; f 7! (Tf)� = ��f : (3.23)Then eP := P +T ÆKy is simply the (twisted) Dira operator on V , given in loal oordinates by ( eP )� ==r �. We further �nd that the operator Q := KyÆT is the Dira operator onW (remember that the setion is ovariantly onstant). These operators are of Dira-type and thus in partiular Green-hyperboli. Forthe operator R := KyÆK we �nd, for all � 2 �1(W ), R� = � 12r�r��, where we have used that the metrig is Rii-at. This is up to a onstant prefator a normally hyperboli operator and thus in partiularCauhy-hyperboli.This shows that the Rarita-Shwinger gauge �eld is a fermioni lassial gauge �eld theory aordingto De�nition 3.4.We ollet important properties of lassial gauge �eld theories whih follow from the De�nition 3.4and will be required later for the onstrution and analysis of the algebra of observables. Before, we haveto introdue some notations:De�nition 3.11. Let �M;V;W; P;K; T � be a lassial gauge �eld theory. We de�ne the following spaes:



Linear bosoni and fermioni quantum gauge theories on urved spaetimes 11{ Ker0(Ky) := �h 2 �10 (V ) : Kyh = 0	{ Sol := �f 2 �1s (V ) : Pf = 0	{ G := K[�1s (W )℄ := �Kh : h 2 �1s (W )	{ bG := K[�1(W )℄ \ �1s (V ) = �Kh 2 �1s (V ) : h 2 �1(W )	Notie that G � bG � Sol, where the last inlusion is due to P ÆK = 0. We say that  ;  0 2 �1s (V ) are G-gauge equivalent , if there exists a K� 2 G suh that  0 =  +K�. Analogously, we say that  ;  0 2 �1s (V )are bG-gauge equivalent , if there exists a K� 2 bG suh that  0 =  +K�. Sine the inlusion G � bG holdstrue, G-gauge equivalene implies bG-gauge equivalene.Theorem 3.12. Let �M;V;W; P;K; T � be a lassial gauge �eld theory with eP := P +T ÆKy, Q := Ky ÆTand R := Ky ÆK. Let us denote by G eP� : �10 (V ) ! �1(V ) the retarded/advaned Green's operators foreP . In ase of K 6= 0 we denote by GQ�; GR� : �10 (W ) ! �1(W ) the retarded/advaned Green's operatorsfor Q and R, respetively. Then the following hold true:(i) Ky Æ eP = Q ÆKy and eP ÆK = T ÆR.(ii) If K 6= 0, then Ky ÆG eP� = GQ� ÆKy on �10 (V ) and K ÆGR� = G eP� Æ T on �10 (W ).(iii) G eP := G eP+ �G eP� satis�es, for all f; h 2 Ker0(Ky),hf;G ePhi� (V ) = �hG eP f; hi� (V ) : (3.24)That is, G eP is formally skew-adjoint with respet to h ; iV on the kernel Ker0(Ky) � �10 (V ).(iv) Any  2 �1s (V ) is G-gauge equivalent to a  0 2 �1s (V ) satisfying Ky 0 = 0.In partiular, any  2 Sol is G-gauge equivalent to a  0 2 Sol satisfying Ky 0 = 0 and thus alsoeP 0 = 0.(v) Any  2 Sol satisfying Ky = 0 is G-gauge equivalent to G ePh for some h 2 Ker0(Ky).(vi) Let h 2 Ker0(Ky), then G ePh 2 G if and only if h 2 P [�10 (V )℄.(vii) Let T 0 : �1(W ) ! �1(V ) be an arbitrary di�erential operator suh that replaing T by T 0 is alassial gauge �eld theory and let eP 0 := P + T 0 Æ K. Then hf;G eP 0� hi� (V ) = hf;G eP�hi� (V ), for allf; h 2 Ker0(Ky).Proof. Proof of (i): Sine P is formally self-adjoint and P Æ K = 0 we obtain Ky Æ P = 0. It followsKy Æ eP = Ky Æ T ÆKy = Q ÆKy and eP ÆK = T ÆKy ÆK = T ÆR.Proof of (ii): Using (i) we obtain, for all h 2 �10 (W ) and f 2 �10 (V ),hh;KyG eP�fi� (W ) = hQyGQy� h;KyG eP�fi� (W ) = hGQy� h;QKyG eP�fi� (W )= hGQy� h;Ky ePG eP�fi� (W ) = hGQy� h;Kyfi� (W ) = hh;GQ�Kyfi� (W ) ; (3.25)where we also have used Lemma 2.6 in the last equality. The hypothesis now follows from the non-degeneray of h ; iW . The other identity is proven analogously.Proof of (iii): For K = 0 we have eP = P and the hypothesis follows from the fat that P was assumedto be formally self-adjoint and Lemma 2.6. Let us now assume that K 6= 0 and onsider f; h 2 Ker0(Ky).From (ii) we obtain KyG eP�f = GQ�Kyf = 0 and similarly KyG eP�h = 0. Thus,hf;G eP�hi� (V ) = h ePG eP�f;G eP�hi� (V ) = hPG eP�f;G eP�hi� (V ) = hG eP�f; PG eP�hi� (V )= hG eP�f; ePG eP�hi� (V ) = hG eP�f; hi� (V ) ; (3.26)where we have used in the seond and fourth equality that on Ker(Ky) the operator eP equals P and inthe third equality that P is formally self-adjoint. This in partiular shows (3.24).



12 Thomas-Paul Hak, Alexander ShenkelProof of (iv): Let  2 �1s (V ) be arbitrary and let � 2 �1s (W ). We de�ne  0 :=  +K� and obtainfrom the ondition Ky 0 = 0 the equation KyK� = �Ky . Sine Ky 2 �1s (W ) and R = Ky Æ Kwas assumed to be Cauhy-hyperboli this equation has a solution � 2 �1s (W ), see [BF09, Chapter 3,Corollary 5℄ for a disussion of how to treat inhomogeneities of non-ompat support. It then holds that 0 =  +K� 2 �1s (V ) with Ky 0 = 0 and K� 2 G.Proof of (v): We �rst note that as a onsequene of (ii) and Theorem 2.7 we obtain that G ePh withh 2 �10 (V ) satis�es KyG ePh = GQKyh = 0 if and only if Kyh 2 Q[�10 (W )℄.Let now  2 Sol be suh that Ky = 0. As a onsequene, eP = 0 and sine eP is Green-hyperbolithere is a h 2 �10 (V ) suh that  = G ePh, see Theorem 2.7. Due to the argument above, we haveKyh = Qkfor some k 2 �10 (W ). Let us onsider the following G-gauge transformation �KGRk (ii)=  �G ePTk = G eP �h� Tk� : (3.27)De�ning h0 := h� Tk we have shown that  is G-gauge equivalent to G ePh0 with Kyh0 = Kyh�KyTk =Qk �Qk = 0, i.e. h0 2 Ker0(Ky).Proof of (vi): If h = Pf 2 P [�10 (V )℄ then G ePh = G ePPf = �G ePTKyf = �KGRKyf is an element inG. To show the other diretion, let h 2 Ker0(Ky) be suh that there is a k 2 �1s (W ) satisfying G ePh = Kk.It follows that KyKk = 0 and sine R = Ky ÆK is assumed to by Cauhy-hyperboli there is by Theorem2.7 an f 2 �10 (W ) suh that k = GRf . Using (ii) we obtain Kk = KGRf = G ePTf = G ePh, whihimplies h� Tf = ePq for some q 2 �10 (V ). The ondition Kyh = 0 further leads us to �KyTf = QKyq,i.e. Q�Kyq+ f� = 0, and sine f and q are of ompat support we have by Theorem 2.7 f = �Kyq. Thus,h = Tf + ePq = �TKyq + ePq = Pq.Proof of (vii): For arbitrary f; h 2 Ker0(Ky) we ompute using (iii) and (ii)hf;G eP�hi� (V ) = hG eP�f; hi� (V ) = hG eP�f; eP 0G eP 0� hi� (V )= hG eP�f; ePG eP 0� hi� (V ) + hG eP�f; �T 0 � T �KyG eP 0� hi� (V ) = hf;G eP 0� hi� (V ) : (3.28)
4 Gauge invariant on-shell algebra of observablesThe goal of this setion is to onstrut from the data of a lassial gauge �eld theory �M;V;W; P;K; T � asuitable quantum algebra of gauge invariant observables desribing the quantized gauge �eld theory. Wewill �rst review the quantization of bosoni and fermioni matter �eld theories and then extend theseonstrutions to gauge �eld theories. We again follow the spirit of [BG11℄, where also more details onbosoni and fermioni quantization an be found.The strategy to quantize a bosoni (fermioni) matter �eld theory �M;V; P � is to �rst assoiate to it asuitable sympleti (inner produt) spae, whih is then quantized in terms of a CCR (CAR) representation.Proposition 4.1. Let �M;V; P � be a lassial matter �eld theory, denote the Green's operators for P byG� and G := G+ �G�. We de�ne the vetor spae E := �10 (V )=P [�10 (V )℄ and the bilinear map� : E � E ! R ; ([f ℄; [h℄) 7! ��[f ℄; [h℄� = hf;Ghi� (V ) = ZM volM hf;GhiV : (4.1)Then the map � is well-de�ned and weakly non-degenerate. If further �M;V; P � is bosoni, then � isantisymmetri, i.e. (E ; �) is a sympleti vetor spae. If �M;V; P � is fermioni, then � is symmetri,i.e. (E ; �) is an (i.g. inde�nite) inner produt spae.



Linear bosoni and fermioni quantum gauge theories on urved spaetimes 13Proof. The map � is well-de�ned, sine G is formally skew-adjoint with respet to h ; iV (see Lemma 2.6)and we have G Æ P = 0 on �10 (V ).We now show that � is weakly non-degenerate. Notie that beause of the non-degeneray of h ; iV theondition hf;Ghi� (V ) = 0, for all f 2 �10 (V ), implies Gh = 0. By Theorem 2.7 there exists k 2 �10 (V ),suh that h = Pk, meaning that [h℄ = [0℄. Thus, � is weakly non-degenerate.Using again the skew-adjointness of G and the symmetry (antisymmetry) of h ; iV for a bosoni(fermioni) matter �eld theory we obtain, for all [f ℄; [h℄ 2 E ,��[f ℄; [h℄� = hf;Ghi� (V ) = �hGf; hi� (V ) = �hh;Gfi� (V ) = � ��[h℄; [f ℄� ; (4.2)where � is for bosoni and + for fermioni theories.For a physially and also mathematially onsistent quantization of fermioni �eld theories we have todemand further a positivity ondition on � . See the Remarks 4.6 and 4.8 below for a detailed omment.De�nition 4.2. A fermioni lassial matter �eld theory �M;V; P � is of positive type if (E ; �) is a (real)pre-Hilbert spae, i.e. the map � is positive de�nite.We provide examples of fermioni lassial matter �eld theories of positive type in the next setion.Any bosoni lassial matter �eld theory an be quantized in terms of a CCR-representation.De�nition 4.3. A CCR-representation of a sympleti vetor spae (E ; �) is a pair (w; A), where A is aunital C�-algebra and w : E ! A is a map satisfying:(i) A = C�(w(E)),(ii) w(0) = 1,(iii) w(f)� = w(�f),(iv) w(f + h) = ei �(f;h)=2 w(f)w(h),for all f; h 2 E .Furthermore, any fermioni lassial matter �eld theory of positive type an be quantized in terms ofa CAR-representation.De�nition 4.4. A (self-dual) CAR-representation of a pre-Hilbert spae (E ; �) over R is a pair (b; A),where A is a unital C�-algebra and b : E ! A is a linear map satisfying:(i) A = C�(b(E)),(ii) b(f)� = b(f),(iii) �b(f); b(h)	 = �(f; h)1,for all f; h 2 E .The following theorem is proven in [BG11,BGP07℄.Theorem 4.5. There exists up to C�-isomorphism a unique CCR-representation (CAR-representation)for every sympleti vetor spae (pre-Hilbert spae).Remark 4.6. For de�ning the CCR-representation we have assumed that the map � is weakly non-degenerate. While for a bosoni lassial matter �eld theory this is automatially given by Proposition 4.1,this ondition turns out to be too restritive for gauge �eld theories, see Setion 5 for a disussion. Thequantization of a pre-sympleti vetor spae (E ; �) an always be performed in terms of a �eld polynomialalgebra. However, one looses the C�-algebra property when making this hoie. Fortunately, in [BHR04℄ theexistene and uniqueness of the Weyl algebra for a generi pre-sympleti vetor spae has been proven.This means that De�nition 4.3 an be extended to any pre-sympleti vetor spae and the result ofTheorem 4.5 is unaltered in this ase. We refer to [BHR04℄ for details on Weyl algebras of degenerate pre-sympleti vetor spaes. We �nish this remark by noting that a similar result for degenerate pre-Hilbertspaes and their CAR-quantization are not known to us.



14 Thomas-Paul Hak, Alexander ShenkelRemark 4.7. This remark is quite standard, however, it is essential for understanding our onstrutionof the algebra of observables for a gauge �eld theory.Let (E ; �) be the sympleti vetor spae assoiated to a bosoni lassial matter �eld theory �M;V; P �,i.e. E = �10 (V )=P [�10 (V )℄ and � as given in (4.1). The Weyl symbols w([f ℄), [f ℄ 2 E , are physiallyinterpreted as quantizations of the following funtionals wf , f 2 �10 (V ), on the on�guration spae�1(V ) of the lassial matter �eld theorywf : �1(V )! C ;  7! wf [ ℄ = ei h ;fi�(V ) : (4.3)The on-shell ondition P = 0 is then enoded on the level of the funtionals by identifying wPf bythe onstant funtional 1 (use (4.3) and that P is formally self-adjoint). The funtionals on the on-shellon�guration spae are thus labelled by equivalene lasses, i.e. elements in E = �10 (V )=P [�10 (V )℄.An analogous interpretation holds for a fermioni matter �eld theory, where the symbols b([f ℄), [f ℄ 2 E ,are interpreted as quantizations of the funtionalsbf : �1(V )! R ;  7! bf [ ℄ = h ; fi� (V ) ; (4.4)with f 2 �10 (V ). The on-shell ondition P = 0 is enoded here by identifying the funtionals bPf ,f 2 �10 (V ), with 0, giving rise to the vetor spae E = �10 (V )=P [�10 (V )℄ whih labels the funtionals onthe on-shell on�guration spae.Remark 4.8. We give a physial motivation for the positivity requirement for fermioni matter �eldtheories given in De�nition 4.2. Take any [f ℄ 2 E and onsider the orresponding symbol b([f ℄). FromDe�nition 4.4 (ii) and (iii) it follows that�b([f ℄); b([f ℄)	 = 2 b([f ℄)� b([f ℄) = �([f ℄; [f ℄)1 : (4.5)Assume that we have a representation of this algebra on a Hilbert spae and let j	i be any normalisedvetor h	 j	i = 1. Taking the expetation value of both sides of (4.5) gives us the equality �([f ℄; [f ℄) =2 hb([f ℄)	 jb([f ℄)	i. If now �([f ℄; [f ℄) < 0 the vetor jb([f ℄)	i has a negative norm square, whih is inon-sistent with the Hilbert spae assumption. In ase �([f ℄; [f ℄) = 0 the Hilbert spae vetor jb([f ℄)	i haszero norm and sine j	i has been an arbitrary normalised vetor the operator assoiated to b([f ℄) is thezero operator in any Hilbert spae representation.Let us now onsider a lassial gauge �eld theory �M;V;W; P;K; T �. The goal is to onstrut a pre-sympleti vetor spae for bosoni and a possibly inde�nite inner produt spae for fermioni lassialgauge �eld theories. Following the interpretation of Remark 4.7 we are thus looking for a suitable vetorspae of smearing funtions. It turns out to be onvenient to diretly enode gauge invariane on thelevel of this vetor spae, leading later to a quantization of only the gauge invariant degrees of freedom.Let us for example onsider a bosoni lassial gauge �eld theory: We an again onsider funtionals onthe o�-shell on�guration spae as in (4.3). Suh a funtional wf is gauge invariant, i.e. independent onwhether we evaluate it on  or  +K� with � 2 �1(W ), if and only if Kyf = 0. Indeed,wf [ +K�℄ = ei h +K�;fi�(V ) = ei h ;fi�(V )+i h�;Kyfi� (W ) = wf [ ℄ ; (4.6)for all � 2 �1(W ) if and only if Kyf = 0. Thus, in order to apture the gauge invariant degrees of freedomwe should onsider instead of �10 (V ) only the kernel Ker0(Ky) � �10 (V ) of Ky when formulating thespae E for gauge theories. The implementation of the on-shell ondition is then a suitable quotient bythe equation of motion operator. This onstrution an be performed and a well-de�ned pre-sympletistruture (respetively, inde�nite inner produt struture) an be de�ned on E for bosoni (respetivelyfermioni) gauge �eld theories.Proposition 4.9. Let �M;V;W; P;K; T � be a lassial gauge �eld theory with eP := P+T ÆKy, Q := KyÆTand R := KyÆK. Let us denote by G eP� the retarded/advaned Green's operators for eP and G eP := G eP+�G eP�.We de�ne the vetor spae E := Ker0(Ky)=P [�10 (V )℄ and the bilinear map� : E � E ! R ; ([f ℄; [h℄) 7! ��[f ℄; [h℄� = hf;G ePhi� (V ) = ZM volM hf;G ePhiV : (4.7)



Linear bosoni and fermioni quantum gauge theories on urved spaetimes 15Then the map � is well-de�ned. Furthermore, � is antisymmetri for bosoni gauge �eld theories andsymmetri for fermioni ones. Finally, let T 0 : �1(W ) ! �1(V ) be an arbitrary di�erential operatorsuh that �M;V;W; P;K; T 0� is a lassial gauge �eld theory and let � 0 : E � E ! R be de�ned in analogyto (4.7) by means of G eP 0 with eP 0 := P + T 0 ÆKy. Then � 0 = � .Proof. For the trivial ase K = 0 the proof is as in Proposition 4.1. In partiular, the vetor spae Eand the map � are then exatly those of a lassial matter �eld theory. So let us assume that K 6= 0.Aording to Theorem 3.12 (iii) G eP is formally skew-adjoint with respet to h ; iV on Ker0(Ky). That �is well-de�ned follows from this fat and the following alulation, for all f 2 Ker0(Ky) and h 2 �10 (V ),hf;G ePPhi� (V ) = hf;G eP ( eP � TKy)hi� (V ) = �hf;KGRKyhi� (V )= �hKyf;GRKyhi� (W ) = 0 ; (4.8)where in the seond equality we have used Theorem 3.12 (ii) and G eP ePh = 0.The antisymmetry (symmetry) of � for bosoni (fermioni) gauge �eld theories is proven as in the proofof Proposition 4.1.The last statement follows immediately from Theorem 3.12 (vii).In ontrast to lassial matter �eld theories we an not guarantee that the map � is weakly non-degenerate for a lassial gauge �eld theory. For bosoni gauge �eld theories this is mathematially notproblemati, sine the CCR-representation of De�nition 4.3 is also available and well-behaved for degen-erate pre-sympleti vetor spaes, see Remark 4.6. Physially, these degeneraies might be interpretedas harge observables and are worth being studied in detail for the important examples of gauge �eldtheories, see [DHS12℄ for the Maxwell �eld ase. In order to quantize fermioni gauge �eld theories we haveto require analogously to De�nition 4.2 positivity of the inner produt.De�nition 4.10. A fermioni lassial gauge �eld theory �M;V;W; P;K; T � is alled of positive type if �is positive de�nite, i.e. (E ; �) is a (real) pre-Hilbert spae.Bosoni lassial gauge �eld theories an be quantized via the CCR-representation (see De�nition 4.3with a possible extension to pre-sympleti vetor spaes as in Remark 4.6) and fermioni lassial gauge�eld theories of positive type via the CAR-representation (see De�nition 4.4). Although a quantization offermioni lassial gauge �eld theories in terms of a �eld polynomial algebra is also mathematially possibleif they are not of positive type, the physial interpretation of suh a quantum theory would remain unlear,f. Remark 4.8. It thus remains to study if a given fermioni lassial gauge �eld theory �M;V;W; P;K; T �is of positive type or not. From the physial perspetive it is also interesting to understand if a givenbosoni lassial gauge �eld theory has a weakly non-degenerate � or not.Irrespetive of the non-degeneray or positivity of � we an already prove an important struturalproperty of the (lassial and quantized) gauge �eld theory orresponding to �M;V;W; P;K; T �.Proposition 4.11. Every gauge �eld theory �M;V;W; P;K; T � satis�es the time-slie axiom: Let � bean arbitrary Cauhy surfae in (M; g), and let �� be any two other Cauhy surfaes suh that � (�J�(�+) \ J+(��)�. Then for every [f ℄ 2 E there is a representative f 2 Ker0(Ky) with supp(f) ��J�(�+) \ J+(��)�.Proof. We an obtain suh f by a standard onstrution. Let h 2 [f ℄ be arbitrary.Without loss of generalitywe an assume that supp(h) � J+(��). We pik a smooth funtion � suh that � = 0 on J�(��) and� = 1 on J+(�+) and de�ne f := h� P�G eP�h : (4.9)One an now verify that �G eP�h has ompat support, whene [f ℄ = [h℄, and that f has the required supportproperty.



16 Thomas-Paul Hak, Alexander Shenkel5 Non-degeneray and positivity of gauge �eld theoriesLet �M;V;W; P;K; T � be a lassial gauge �eld theory and denote by (E ; �) the vetor spae of Proposition4.9 equipped with the bilinear map � , whih is antisymmetri for bosoni and symmetri for fermionitheories. In order to investigate if � is weakly non-degenerate for bosoni or respetively positive de�nitefor fermioni theories it is in some ases onvenient to indue an equivalent bilinear map on the spae ofsolutions of P .Let us denote by Sol := � 2 �1s (V ) : P = 0	 the spae of all solutions of P with spaelikeompat support. For every  there exists a ompat set C �M , suh that supp( ) � J(C). We an split =  + +  � suh that supp( �) � J�(C). This splitting is not unique and the di�erene between twosuh splittings  =  ++ � =  e++ e� is given by a ompatly supported setion  e+� + =  �� e� =:� 2 �10 (V ). We de�ne on Sol the bilinear maph ; iSol : Sol� Sol! R ; ( 1;  2) 7! h 1;  2iSol = hP +1 ;  2i� (V ) : (5.1)This map is well-de�ned, sine �rstly from P 1 = 0 it follows that P +1 = �P �1 and in partiular thatP �1 has ompat support, suh that the integral exists. Seondly, it is independent of the splitting,hP e+1 ;  2i� (V ) = hP +1 ;  2i� (V ) + hP�;  2i� (V )= h 1;  2iSol + h�; P 2i� (V ) = h 1;  2iSol ; (5.2)where we have used that P is formally self-adjoint and that P 2 = 0. Notie that the map (5.1) is nottrivial, sine  +1 and  2 i.g. do not have ompat overlapping support and thus we an not integrate byparts P to the right side.Proposition 5.1. The following statements hold true:(i) The map h ; iSol is antisymmetri for bosoni and symmetri for fermioni gauge �eld theories.(ii) The map h ; iSol is bG-gauge invariant, i.e. for all  2 Sol and � 2 �1(W ) suh that K� 2 �1s (V ) wehave h ;K�iSol = hK�;  iSol = 0.In partiular, the map h ; iSol indues well-de�ned bilinear maps on the quotients Sol=bG and Sol=G(remember that G � bG).(iii) Let f; h 2 Ker0(Ky), then hG eP f;G ePhiSol = ��[f ℄; [h℄� : (5.3)Proof. Proof of (i): Let  1;  2 2 Sol be arbitrary and onsider the splittings  i =  +i + �i , i = 1; 2. Notiethat from P i = 0 is follows that P +i = �P �i . Thenh 1;  2iSol = hP +1 ;  2i� (V ) = hP +1 ;  +2 i� (V ) + hP +1 ;  �2 i� (V )= �hP �1 ;  +2 i� (V ) + h +1 ; P �2 i� (V ) = �h �1 ; P +2 i� (V ) � h +1 ; P +2 i� (V )= �h 1; P +2 i� (V ) = �hP +2 ;  1i� (V ) = �h 2;  1iSol ; (5.4)where � is for bosoni and + for fermioni theories. All integrations by parts of P in the alulation aboveare well-de�ned, sine the integrals are always over funtions with ompat support.Proof of (ii): Let  2 Sol and K� 2 bG. We obtainh ;K�iSol = hP +;K�i� (V ) = hKyP +; �i� (W ) = 0 : (5.5)In the seond equality we have used that P + is of ompat support and in the third equality thatKy Æ P = 0. By (5.4) we have hK�;  iSol = �hK�; P +i� (V ) = �h�;KyP +i� (W ) = 0.Proof of (iii): Let f; h 2 Ker0(Ky). Then G eP f;G ePh 2 Sol, sinePG eP f = ( eP � TKy)G eP f = �TKyG eP f = 0 ; (5.6)



Linear bosoni and fermioni quantum gauge theories on urved spaetimes 17where in the last equality we have used Theorem 3.12 (ii). The same applies for G ePh. A onvenientdeomposition is given by G eP f = G eP+f �G eP�f and we �ndhG eP f;G ePhiSol = hPG eP+f;G ePhi� (V ) = h ePG eP+f;G ePhi� (V ) = hf;G ePhi� (V ) = ��[f ℄; [h℄� ; (5.7)where in the seond equality we have used Theorem 3.12 (ii).We ombine the statements proven in Theorem 3.12 and Proposition 5.1 in order to onstrut anisomorphism between the spae (E ; �) of Proposition 4.9 and the spae (Sol=G; h ; iSol).Theorem 5.2. The sequene of maps Ker0(Ky) G eP�! Sol id�! Sol (5.8)indues a well-de�ned sequene of maps on the quotients (whih we denote with a slight abuse of notationby the same symbols) E = Ker0(Ky)=P [�10 (V )℄ G eP�! Sol=G id�! Sol=bG : (5.9)The �rst map is an isomorphism and the seond map is a surjetion whih beomes an isomorphism ifand only if G = bG. Furthermore, the sequene of maps (5.9) preserves the bilinear mappings in (E ; �),(Sol=G; h ; iSol) and (Sol=bG; h ; iSol).Proof. From Theorem 3.12 (vi) it follows that the �rst map is well-de�ned and injetive. Surjetivity ofthe �rst map follows from Theorem 3.12 (iv) and (v). The seond map is well-de�ned and surjetive sineG � bG. It is an isomorphism if and only if G = bG. The bilinear mappings are preserved due to Proposition5.1 (iii) and (ii).Corollary 5.3. If G � bG is a proper subspae then the map � in (E ; �) is degenerate.Proof. Assume that G � bG is a proper subspae. Then there is a � 2 �1(W ) suh that K� 62 G, butK� 2 bG � Sol. From Proposition 5.1 (ii) we know that h ;K�iSol = 0 for all  2 Sol. Sine in Sol=G thisK� is not equivalent to zero the bilinear map h ; iSol is degenerate on Sol=G. Beause (Sol=G; h ; iSol) isisomorphi to (E ; �) the statement follows.Remark 5.4. This orollary might suggest that it is more onvenient (regarding non-degeneray) tohoose (Sol=bG; h ; iSol) instead of (E ; �) as the underlying vetor spae for a CCR or CAR-representation.There are, however, two arguments against this hoie. Firstly, the additional elements in bG, whih arenot in G, an not be interpreted as on-shell onditions in aord with Remark 4.7. Seondly, as lari�ed in[DHS12℄ for the Maxwell �eld ase, the observables in bG n G an be of physial signi�ane.We next show that the map h ; iSol an be evaluated on any Cauhy surfae � � M . We split theglobally hyperboli spaetime M = �+ [ �� into the future/past �� := J�(�) � M of the Cauhysurfae �. We also split h ; i� (V ), for all f; h 2 �1(V ) with ompat overlapping support,hf; hi� (V ) = Z�+ volM hf; hiV + Z�� volM hf; hiV =: hf; hi+� (V ) + hf; hi�� (V ) : (5.10)This allows us to rewrite h ; iSol as follows, for all  1;  2 2 Sol,h 1;  2iSol = hP +1 ;  2i� (V ) = hP +1 ;  2i+� (V ) + hP +1 ;  2i�� (V )= �hP �1 ;  2i+� (V ) + hP +1 ;  2i�� (V ) : (5.11)In both terms we an now perform integration by parts, sine the integral over the future �+ (respetivelythe past ��) is over a funtion of support in J�(C) (respetively in J+(C)). The remaining boundaryterms are then loated on the Cauhy surfae �.



18 Thomas-Paul Hak, Alexander ShenkelProposition 5.5. Let P : �1(V ) ! �1(V ) be a �rst-order di�erential operator, whih is formallyself-adjoint with respet to h ; iV . Then for all  1;  2 2 Sol we have for any Cauhy surfae � �Mh 1;  2iSol = Z� vol� h�P (n[) 1j� ;  2j�iV ; (5.12)where �P is the prinipal symbol of P , n is the future pointing normal vetor �eld of �, vol� is the induedvolume form on � and j� denotes the restrition of setions to �.Proof. This is a result of Green's formula [Tay96, p. 160, Prop. 9.1℄ and of P 2 = 0. We have, for all 1;  2 2 Sol, h 1;  2iSol = �hP �1 ;  2i+� (V ) + hP +1 ;  2i�� (V )= Z� vol� �h�P (n[) �1 j� ;  2j�iV + h�P (n[) +1 j� ;  2j�iV �= Z� vol� h�P (n[) 1j� ;  2j�iV : (5.13)Before we disuss our examples of gauge �eld theories it is instrutive to onsider �rst the ase offermioni matter �eld theories. We will show that there are fermioni matter �eld theories whih are notof positive type (see De�nition 4.2), see also [BG11℄. This means that positivity is not a property whihfollows from the basi axioms of a fermioni lassial matter or gauge �eld theory, see De�nitions 3.1 and3.4.Example 5.6 (Positive and non-positive fermioni matter �eld theories). We start with the Majorana�eld of Example 3.3 as an example for a fermioni matter �eld theory of positive type. The prinipalsymbol of the massive Dira operator is given by �P (�) = � �� = =�, where in loal oordinates � = ��dx�.The bilinear map (5.12) then reads, for all  1;  2 2 Sol,h 1;  2iSol = i Z� vol� �=n 1j��TC 2j� : (5.14)Using Theorem 2.1 we obtain that the future-pointing normal vetor �eld of the Cauhy surfae � is givenby n = #�1 �t, where # is the positive funtion on R � � appearing in the metri g = �#2 dt2 � gt ofTheorem 2.1. Then =n = 0# = �i�, where � is the matrix used in de�ning the Dira adjoint, see AppendixA. Sine on Majorana spinors the Dira adjoint equals the Majorana adjoint and sine �y = � = ��1 wehave h 1;  2iSol = Z� vol�  y1j� 2j� : (5.15)It holds that h ;  iSol � 0 for all  2 Sol. Even more, h ;  iSol = 0 implies that the initial data  j� � 0vanishes and thus due to the Cauhy-hyperboliity of the massive Dira operator  � 0.An example of a fermioni matter �eld theory whih is not of positive type is the projeted Rarita-Shwinger �eld presented in [BG11, Setion 2.6℄. As above we use Theorem 2.1 to get a partiularlysimple expression for the normal vetor �eld. We take V := DMR 
 T �M , but restrit ourselves tothe image of the projetion operator de�ned by, for all  2 �1(V ), (� )� :=  � � 1D�� � . Thesesetions satisfy � � = 0. We equip the bundle V with the non-degenerate antisymmetri bilinear formhf; hiV = i fT� Ch�. The projeted Rarita-Shwinger operator is de�ned by, for all  2 �1(V ) with� � = 0, (P )� := =r � � 2D�r� � . It satis�es �(P )� = 0 for all  2 �1(V ) with � � = 0 andthus is a di�erential operator on the projeted Rarita-Shwinger bundle. It is formally self-adjoint withrespet to h ; iV on setions of the projeted Rarita-Shwinger bundle. The bilinear map (5.12) reads, forall  1;  2 2 Sol, h 1;  2iSol = Z� vol�  y1�j�  �2 j� : (5.16)



Linear bosoni and fermioni quantum gauge theories on urved spaetimes 19We an solve the onstraint � � = 0 for  0 and �nd  0 = �0i i, where i = 1; : : : ; D � 1 is a spatialindex. Putting this into (5.16) and setting  1 =  2 =  2 Sol leads toh ;  iSol = Z� vol� � yi j�  ij� � (i i)yj� (j j)j�� : (5.17)This is an inde�nite inner produt, sine if we evaluate it on initial data  ij� with i ij� = 0 we obtaina positive number, while evaluating it on  ij� = (i�)j� with �j� 2 �1s (DMR)j� we obtain a negativeone.We next will briey omment on the question of weak non-degeneray for our examples of bosonigauge �eld theories.Example 5.7 (Linearised Yang-Mills �eld). We analyze the ase of a Yang-Mills �eld linearised around avanishing bakground A0 and sketh the main non-degeneray result, see [DHS12℄ for details on the U(1)ase. In this ase, K = dA0 = d is the exterior di�erential and the assoiated (ompatly supported) deRham ohomology groups of M are de�ned asHn(M; g) := Ker �d : 
n(M; g)! 
n+1(M; g)�Im (d : 
n�1(M; g)! 
n(M; g)) = Hn(M;R) 
 g ; (5.18a)Hn0 (M; g) := Ker �d : 
n0 (M; g)! 
n+10 (M; g)�Im �d : 
n�10 (M; g)! 
n0 (M; g)� = Hn0 (M;R) 
 g : (5.18b)We �rst observe that �([f ℄; [h℄) = hf;G ePhi� (V ) = ZM hf; �G ePhi
g
= 0 ; (5.19)for all f 2 Ker0(Ky) = Ker0(Æ), implies in partiular thatZM hk; �dG ePhi

g
= 0 ; (5.20)for all k 2 
20(M; g). From the non-degeneray of RM h � ; � � ig we then obtain dG ePh = 0, suh that G ePhde�nes an element in H1(M; g). The Hodge-dual �f for f 2 Ker0(Æ) de�nes an element in HD�10 (M; g) andthus �([f ℄; [h℄) = 0 for all f implies that G ePh orresponds to the trivial element in H1(M; g) by Poinar�eduality (see e.g. [BT95℄), i.e. G ePh = d� for some � 2 C1(M; g). This in turn implies that the neessaryondition for weak non-degeneray found in Corollary 5.3 is suÆient in the ase at hand.In partiular, for any spaetime with ompat Cauhy surfaes we have G = bG and thus for thelinearised Yang-Mills �eld with A0 = 0 the spae (E ; �) is sympleti. We next provide a simple exampleof a spaetime for whih G � bG is a proper subset, thus � is degenerate by Corollary 5.3. Let us takeMinkowski spae RD with at metri g and remove the light one of the origin 0 2 RD , i.e. we onsiderthe globally hyperboli spaetime M := RD n J(f0g) with the indued metri. We further take two losedballs (with stritly positive radius) B1 � B2 � RD entred at 0 in RD and denote BM1 := B1 \M andBM2 := B2 \M . Let us now take a funtion � 2 C1(M; g) suh that 0 6= � = w 2 g is a onstant on J(BM1 )and � = 0 on M n J(BM2 ). The di�erential d� is then an element in 
1s(M; g) and thus d� 2 bG. It remainsto show that there is no ~� 2 C1s (M; g) suh that d� = d~�. In order to show this, let us onsider the smoothembedding � : (0;1)!M � RD given in Cartesian oordinates onM � RD by x 7! �(x) = (0; x; 0; : : : ; 0).Pulling bak the one-form d� and integrating over (0;1) we �nd by Stokes theoremZ(0;1) ��(d�) = Z(0;1) d��(�) = �w 6= 0 ; (5.21)while doing the same for d~� with ~� 2 C1s (M; g) results in 0. Thus, G � bG is a proper subset for the modelunder onsideration and � in (E ; �) is degenerate. For a physial interpretation of this degeneray we referto [DHS12℄.



20 Thomas-Paul Hak, Alexander ShenkelExample 5.8 (Linearised general relativity). If the globally hyperboli spaetimeM has ompat Cauhysurfaes the weak non-degeneray of the pre-sympleti struture for linearised general relativity on Ein-stein manifolds has been shown by Fewster and Hunt [FH12, Theorem 4.3℄. The analysis of the non-ompatase is to our best knowledge not yet ompletely understood.As it has been argued above, the positivity of a fermioni gauge �eld theory aording to De�nition 4.2is a physially and mathematially motivated ondition. We will study this aspet for our two examplesof fermioni gauge �eld theories in detail.Example 5.9 (Toy model: Fermioni gauge �eld). We give a simple proof that the fermioni toy modelintrodued in Example 3.9 is not of positive type. For this proof we do not need the expression of � on aCauhy surfae (5.11), but we will work with � as given in (4.7). Our strategy is as follows: We assumethe existene of a f 2 Ker0(Ky) suh that ��[f ℄; [f ℄� > 0 and then expliitly onstrut an f 0 2 Ker0(Ky)suh that ��[f 0℄; [f 0℄� < 0. For this we hoose a basis of the sympleti vetor spae �R2m ; 
�, suh that
 takes the standard form 
 = 0BBBBB� 0 1 0 0 : : :�1 0 0 00 0 0 10 0 �1 0... . . .
1CCCCCA : (5.22)We further onsider the 2m� 2m-matrix B = 0BBBBB�0 1 0 0 : : :1 0 0 00 0 0 10 0 1 0... . . .

1CCCCCA : (5.23)Let now f 2 Ker0(Ky) be suh that ��[f ℄; [f ℄� > 0. Then de�ning f 0 := Bf we have f 0 2 Ker0(Ky), sineKy = Æ and B ommutes. Using that BT
B = �
 and also that B ommutes with G eP and the Hodgeoperator, we obtain��[f 0℄; [f 0℄� = ZM f 0T ^
 �G eP f 0 = ZM fT ^ BT
B �G eP f = ���[f ℄; [f ℄� < 0 : (5.24)6 Positivity of the Rarita-Shwinger gauge �eldWe derive a suÆient ondition for the positivity of the Rarita-Shwinger gauge �eld and prove that thisondition is satis�ed on a large lass of spaetimes.Theorem 6.1. Consider the Rarita-Shwinger gauge �eld (M;V;W; P;K; T ) de�ned in Example 3.10.Then the following statements hold:(i) For all f1; f2 2 Ker0(Ky) and on a Cauhy surfae � as in Theorem 2.1�([f1℄; [f2℄) = Z� vol� � y1�j�  �2 j� � 1D � 2 = 1yj� = 2j�� ; (6.1)where  i := G eP fi 2 Sol, i = 1; 2, and = := � �.(ii) Let us assume that for all  2 Sol satisfying � � = 0 there exists an � 2 �1(W ) suh that=r� = 0 on M ; (6.2a)iri� = �i i on � ; (6.2b)and �j� is vanishing on the (possibly empty) boundary of �, whereas r�j� is bounded. Then (E ; �) isa pre-Hilbert spae, i.e. � is positive de�nite.



Linear bosoni and fermioni quantum gauge theories on urved spaetimes 21(iii) Let D � 4 and let M be asymptotially at in the following sense [PT81℄: There is a t 2 R, suhthat in a anonial foliation given by Theorem 2.1 the Cauhy surfae (�; gt) is omplete. Further,there is a ompat set C � �, suh that � n C is the disjoint union of a �nite number of subsets�1; : : : ; �N of �, eah di�eomorphi to the omplement of a ontratible ompat set in RD�1 . Underthis di�eomorphism, the Riemannian metri gt on �b, b = 1; : : : ; N , should be of the form(gt)ij = Æij + aij (6.3)in Cartesian oordinates xi of RD�1 , where aij = O(r�D+3), �kaij = O(r�D+2), and �l�kaij =O(r�D+1). Furthermore, the seond fundamental form (extrinsi urvature) hij of ftg � � shouldsatisfy hij = O(r�D+2), �khij = O(r�D+1).In this ase (E ; �) is a pre-Hilbert spae.(iv) Let M ontain ompat Cauhy surfaes. In a anonial foliation given by Theorem 2.1 let there be at 2 R, suh that the indued Dira operator on ftg �� has a trivial kernel.In this ase (E ; �) is a pre-Hilbert spae.Proof. Proof of (i): The prinipal symbol of the Rarita-Shwinger operator (3.21) reads �P (�) �� = =�Æ�� ���� . Hene, ^(�P (n[) )� = =n � + 1D�2�=n= and by (5.12) we have�([f1℄; [f2℄) = h 1;  2iSol = Z� vol� h�P (n[) 1j� ;  2j�iV= Z� vol� �h=n �1 j� ;  2�j�iW � 1D � 2 h=n = 1j� ; = 2j�iW�= Z� vol� � y1�j�  �2 j� � 1D � 2 = 1yj� = 2j�� ; (6.4)where the last identity follows by arguments used in Example 5.6.Proof of (ii): We see from (6.1) that positivity in partiular holds if for all  2 Sol we an set � � = 0and  0 = 0 on � by a suitable hoie of gauge �xing (reall that in our onventions the metri is positivede�nite on spaelike vetors). It is onvenient to perform suh a gauge �xing in two steps. First, let 0 2 Sol be arbitrary. Using a G-gauge transformationK� with � 2 �1s (W ), we de�ne  � :=  0�+(K�)� = 0� +r��� 12� =r�. Demanding � � = 0 leads to the equation=r� = 2D � 2 � 0� ; (6.5)whih an be solved for � 2 �1s (W ), e.g. by imposing a trivial initial ondition. Thus, any  0 2 Sol isG-gauge equivalent to a  2 Sol satisfying � � = 0. Using Proposition 5.1 (ii) and (6.1) we obtain afterthis gauge transformation �([f1℄; [f2℄) = h 1;  2iSol = Z� vol�  y1�j�  �2 j� : (6.6)Given suh a  2 Sol with � � = 0 we perform a seond gauge transformation to set the zero-omponent 0 = 0 on �, while preserving the -trae ondition � � = 0 on M . The -trae ondition is preservedby the gauge transformation K�, � 2 �1(W ), if and only if =r� = 0 on M . Using this and demanding thatthe zero omponent of the gauge transformed setion vanishes leads us to the equation (6.2b). We assumethat a solution � 2 �1(W ) of (6.2) exists, for all  2 Sol with � � = 0, and that �j� is vanishing on ��whereas r�j� is bounded.Notie that we do not demand that � is an element in �1s (W ), nor that K� 2 �1s (V ). It thus remainsto show that the inner produt h ; iSol is also gauge invariant under suh extended gauge transformations,more preisely that (note that gr�� = gr���1 = r�� due to (6.2a))Z� vol� h�P (n[)�� � j� ; (r��)j�iW (6.7)



22 Thomas-Paul Hak, Alexander Shenkelvanishes for all � 2 �1(W ) whih vanish at �� and all  2 �1(V ) whih are bounded on � and satisfyP = 0. To this avail, we note that the ovariant derivative r� ompatible with the Riemannian metrigt on � and r ompatible with g are related by [Wa84, Lemma 10.2.1℄r�� T�1����k�1����l = ��1�1 � � ���k�k��1�1 � � ���l�l���r�T�1����k�1����l ; (6.8)where ��� := Æ�� + n�n� is the projetor to the tangent bundle on �. Sine n��P (n[)�� = 0 we have��� �P (n[)�� = �P (n[)�� and we an replae r in (6.7) by r� . Integration by parts is well-de�ned underthe assumptions on  and �. Using again (6.8) in order to replae r� by r and projetors ��� , thestatement follows by applying the Leibniz rule and using the equation of motion P = 0.Proof of (iii): The �rst equation (6.2a) for � an be solved for arbitrary initial onditions �j� as =ris Cauhy-hyperboli, while the seond equation (6.2b) is an ellipti onstraint equation for suh initialonditions, whose solvability in general depends on the topology of � and the properties of gt. We shallnow use a generalisation of [PT81, Theorem 4.2℄ to prove this solvability under our hypotheses. Let R � 1be large enough suh that eah �b � RD�1 (we omit the di�eomorphisms �b ! RD�1 n ~C , with suitableontratible ompat ~C � RD�1 , here and in the following) ontains the exterior of the ball BR of radiusR. For eah b and eah r � R, we set �b;r := �b nBr and �x a smooth funtion � on � suh that � � 1,� = r in �b;2R and � = 1 in � n �SNb=1�b;R�. Let now s 2 f0; 1g and let k�ks;Æ;p, � 2 �1s (W )j� , denotethe weighted Sobolev norm k�ks;Æ;p := sk�Æ+1r��kp + k�Æ�kp ; (6.9a)where r� is the spin onnetion on � andk�kp := �Z� vol� ��y��p=2�1=p : (6.9b)By Hs;Æ;p we denote the ompletion of �1s (W )j� with respet to k � ks;Æ;p. Let us �rst onsider the aseD = 4. By [PT81, Theorem 4.2℄, the mapiri =: D : H1;Æ;p ! H0;Æ+1;p (6.10)is an isomorphism with a bounded inverse D�1, if p = 2, Æ = �1 or p � 2, 0 < Æ < 2� 3=p. Furthermore,D�1 maps setions in H0;Æ+1;p \ �1(W ) to setions in H1;Æ;p \ �1(W ). This proves that (6.2b) has aunique solution and that � 2 �1(W ). The required deay/boundedness properties of �j� and r�j� followby the arguments used in the proof of [PT81, Proposition 5.3℄. This implies that the ondition in (ii) isful�lled and thus (E ; �) is a pre-Hilbert spae for the asymptotially at ase in D = 4.One an straightforwardly generalise [PT81, Theorem 4.2℄ to the ase D > 4 by noting that the partof the proof of the said theorem whih is onerned with the invertability of D for p = 2, Æ = �1 an bestraightforwardly generalised to D > 4 as all inbetween steps are still valid in higher dimensions and withthe steeper deay of aij , �kaij and hij . At the same time, these parameters are suÆient to guarantee therequired deay/boundedness properties of �j� and r�j� for D > 4. Hene, the ondition in (ii) is ful�lledand (E ; �) is a pre-Hilbert spae for the asymptotially at ase in general D � 4.Proof of (iv): The ellipti di�erential operator iri on � is formally skew-adjoint with respet tothe inner produt h ; �i = R� vol�  y �, see [PT81, Setion 3℄ and note the di�erent Cli�ord algebraonventions used by the authors. Thus, the trivial kernel of iri implies a trivial kernel of its formal adjoint,and the solvability of (6.2b) for all soure terms is guaranteed by the general theory of ellipti operators onvetor bundles over ompat Riemannian manifolds, see e.g. [LM89, Chapter III℄ or Donaldson's leturenotes [Don08, Setion 3℄. Ellipti regularity implies that �j� 2 �1(W )j� . This �j� an be used as initialondition for solving (6.2a) and the resulting setion � 2 �1(W ) satis�es the required properties, sine �is ompat. Hene, the ondition in (ii) is ful�lled and (E ; �) is a pre-Hilbert spae.



Linear bosoni and fermioni quantum gauge theories on urved spaetimes 23To lose, we present an example of a Rii-at globally hyperboli spaetime M with spin strutureon whih the Rarita-Shwinger gauge �eld is not of positive type. Let us take M = R � TD�1, with TD�1denoting the D�1-torus, equipped with the at metri g = �dt2 +PD�1i=1 d'2i . Here t 2 R denotes timeand 'i 2 [0; 2�) are the angles on the torus. We hoose the trivial spin struture on M , in partiular thereexists a global basis of �1(V ). The equation of motion for the Rarita-Shwinger gauge �eld (3.21) reads(P )� = ��� � � ��� � = 0. Notie that, in partiular, all onstant setions  � � onst solve thisequation and thus belong to the spae Sol. We obtain for suh setionsh ;  iSol = (2�)D�1 � y� � � 1D � 2 = y = � ; (6.11)where (2�)D�1 is the volume of the torus. Choosing  � 6= 0 suh that  0 = 0 and i i = 0 we obtain thath ;  iSol = (2�)D�1  yi i > 0. On the other hand, hoosing  i = 0 and  0 6= 0 we obtainh ;  iSol = �(2�)D�1 D � 1D � 2  y0 0 < 0 : (6.12)We note that if we equip M = R � TD�1 with one of the 2D�1 � 1 non-trivial spin strutures [Bar00℄,the indued Dira operator on the torus TD�1 has a trivial kernel. Thus, the Rarita-Shwinger gauge �eldis of positive type by Theorem 6.1 (iv). This shows an interesting orrelation between the hoie of spinstruture and the positivity of the Rarita-Shwinger gauge �eld.Aknowledgements We would like to thank Claudio Dappiaggi, Klaus Fredenhagen, Hanno Gottshalk, Katarzyna Re-jzner, Ko Sanders, Christoph Stephan and Christoph F. Uhlemann for useful disussions and omments. T.P.H. gratefullyaknowledges �nanial support from the Hamburg researh luster LEXI \Conneting Partiles with the Cosmos".A Spinor and gamma-matrix onventionsWe review some aspets of spinors in higher dimensions following [VP99℄, being mainly interested in properties of Majoranaspinors. Let D mod 8 = 2; 3; 4 and we denote by �ab = diag (�;+;+; : : : ;+)ab the D-dimensional Minkowski metri. The -matries a, a = 0; : : : ; D�1, are omplex 2bD=2�2bD=2-matries satisfying the Cli�ord algebra relations fa; bg = 2 �ab.We take the timelike -matrix to be antihermitian 0y = �0 and the spatial -matries hermitian iy = i, for alli = 1; : : : ;D � 1. We further �x � := i0 whih satis�es �y = �. There exists a harge onjugation matrix C, whih isantisymmetri, i.e. CT = �C, in the dimensions we are onsidering, see Table 1 in [VP99℄. Further properties are Cy = C�1and, for all a = 0; : : : ;D � 1, aT = �CaC�1 : (A.1)We de�ne the harge onjugation operation on spinors � 2 C 2bD=2 by� := �� C� �� ; (A.2)where � denotes omponent-wise omplex onjugation. This operation squares to the identity, � = �, for all �. A Majoranaspinor is de�ned by the reality ondition � = � and the spae of Majorana spinors is a real vetor spae of dimension 2bD=2.For every Majorana spinor � the Dira adjoint equals the Majorana adjoint, � := �y� = �TC, and thus the hermitianstruture �� on Dira spinors equivalently reads for Majorana spinors�� = �TC� = ��TC� ; (A.3)where in the last equality we have used that CT = �C. We thus have a non-degenerate R-bilinear antisymmetri map �TC�on the spae of Majorana spinors. However, this map takes values in the purely imaginary numbers iR and therefore shouldbe resaled by the imaginary unit in order to take values in the reals R.ReferenesBar00. C. B�ar, \Dependene on the spin struture of the Dira spetrum," Seminaires et Congres 4, Global Analysis andHarmoni Analysis, J.P. Bourguignon, T. Branson, O. Hijazi (Eds.), 17-33, (2000) [arXiv:math/0007131℄.BF09. C. B�ar, (ed.) and K. Fredenhagen, (ed.), \Quantum �eld theory on urved spaetimes," Let. Notes Phys. 786, 1(2009).
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