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Linear bosoni
 and fermioni
 quantum gauge theorieson 
urved spa
etimesThomas-Paul Ha
k � Alexander S
henkel
Mar
h 20, 2013Abstra
t We develop a general setting for the quantization of linear bosoni
 and fermioni
 �eld theoriessubje
t to lo
al gauge invarian
e and show how standard examples su
h as linearised Yang-Mills theoryand linearised general relativity �t into this framework. Our 
onstru
tion always leads to a well-de�nedand gauge-invariant quantum �eld algebra, the 
entre and representations of this algebra, however, have tobe analysed on a 
ase-by-
ase basis. We dis
uss an example of a fermioni
 gauge �eld theory where the ne
-essary 
onditions for the existen
e of Hilbert spa
e representations are not met on any spa
etime. On theother hand, we prove that these 
onditions are met for the Rarita-S
hwinger gauge �eld in linearised pureN = 1 supergravity on 
ertain spa
etimes, in
luding asymptoti
ally 
at spa
etimes and 
lasses of spa
e-times with 
ompa
t Cau
hy surfa
es. We also present an expli
it example of a supergravity ba
kgroundon whi
h the Rarita-S
hwinger gauge �eld 
an not be 
onsistently quantized.Keywords quantum �eld theory on 
urved spa
etimes; gauge theories; supergravity; algebrai
 quantum�eld theory1 Introdu
tionQuantum �eld theory on 
urved spa
etimes has gone through major developments in the last de
ades.Expli
it models have been 
onstru
ted in this framework, in
luding the s
alar �eld [Dim80℄, the Dira
 �eld[Dim82,San08,DHP09℄ and the Pro
a �eld [Fur99℄. These examples have later been re
ast into a generalapproa
h to the quantization of bosoni
 and fermioni
 matter �eld theories on 
urved spa
etimes [BGP07,BG11℄. On the other hand, examples of theories exhibiting a lo
al gauge invarian
e have been investigatedin detail, in
luding the Maxwell �eld [Dim92,FP03,Pfe09,DS11,DL11,DHS12℄ and linearised general rel-ativity on Einstein manifolds [FH12℄. The quantization of gauge �eld theories bears new 
ompli
ations,whi
h are not present for matter �eld theories. In parti
ular, the equation of motion in a gauge �eld theoryis not hyperboli
 and thus one does not have a well-de�ned Cau
hy problem or Green's operators, whi
hare the basi
 stru
tures entering the 
onstru
tion of matter quantum �eld theories. This problem has beenresolved in the examples mentioned above by 
onsidering only the gauge invariant 
ontent of su
h a theory,i.e. gauge invariant observables, and making use of a spe
ial gauge �xing 
ondition. We emphasise thateven though a gauge �xing is used in this 
onstru
tion, the resulting algebra of observables is by de�nitiongauge invariant. The algebra of gauge invariant observables of a gauge �eld theory 
an have new features
ompared to matter �eld theories. As it has been shown in [BGP07,BG11℄ (see also Se
tion 4 in the presentpaper) the algebra of observables of a bosoni
 matter quantum �eld theory never has a non-trivial 
entre.In gauge �eld theories this 
an in general only be guaranteed under additional assumptions on the Cau
hysurfa
e in the spa
etime, see [Dim92℄ for the Maxwell �eld and [FH12℄ for linearised general relativityII. Institut f�ur Theoretis
he Physik, Universit�at Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany. E-mail: thomas-paul.ha
k�desy.de � Fa
hgruppe Mathematik, Bergis
he Universit�at Wuppertal, Gau�stra�e 20, 42119 Wuppertal, Germany.E-mail: s
henkel�math.uni-wuppertal.de
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2 Thomas-Paul Ha
k, Alexander S
henkelon Einstein manifolds. There are examples of Cau
hy surfa
es su
h that the algebra of gauge invariantobservables of the Maxwell �eld has a non-trivial 
entre [DL11,DHS12℄. Due to the theory of degenerateWeyl algebras [BHR04℄ these 
entres do not pose mathemati
al problems for the quantum �eld theory onan individual spa
etime, but they have impa
t on whether or not the theory is lo
ally 
ovariant in the senseof [BFV03℄, see e.g. [DL11,DHS12℄. Furthermore, the 
entres are 
ertainly of physi
al interest and shouldbe understood in detail. We also want to mention that in addition to these results on linear quantumgauge �eld theories there has been a lot of e�ort in 
onstru
ting perturbatively intera
ting quantum gauge�eld theories on 
urved spa
etimes, see e.g. [Hol07,FR11℄ and referen
es therein. In our work we restri
tourselves to linear quantum �eld theories, sin
e as it will be
ome 
lear later, there are a lot of non-trivialaspe
ts whi
h have to be understood in detail even at the linear level. This is in parti
ular the 
ase forfermioni
 gauge �eld theories. The restri
tion to linear theories will allow us to quantize gauge �elds with-out introdu
ing auxiliary �elds as it happens in the BRST/BV-formalism, 
f. [Hol07,FR11℄. However, wepresume that our 
onstru
tion for the bosoni
 
ase yields a gauge invariant algebra of quantum observableswhi
h is isomorphi
 to the one obtained in [Hol07,FR11℄ at lowest order in perturbation theory.The goal of the present paper is twofold: First, we aim at developing a general framework for thequantization of linear gauge �eld theories. This 
an be seen as an extension of [BGP07,BG11℄ to �eldtheories subje
t to a lo
al gauge invarian
e. We allow for bosoni
 as well as fermioni
 theories and providean axiomati
 de�nition of a 
lassi
al linear gauge �eld theory in terms of �bre bundles and di�erentialoperators thereon. Our setting is general enough to 
over the matter �eld theories of [BGP07,BG11℄, whi
hwill be promoted to gauge �eld theories with a trivial gauge stru
ture, as well as the standard examplessu
h as linearised Yang-Mills theory and linearised general relativity on Einstein manifolds. Even more, ourgeneral framework is suÆ
iently 
exible to in
lude examples of fermioni
 gauge �eld theories. The primeexample of su
h a theory is the gravitino �eld (also 
alled Rarita-S
hwinger �eld) in linearised pure N = 1supergravity, whi
h we will dis
uss in detail. A further example whi
h we will study in detail is a fermioni
version of linearised Yang-Mills theory, whi
h emerges for example as the fermioni
 se
tor of a Yang-Millstheory modeled on a Lie supergroup. Bosoni
 gauge �eld theories 
an always be quantized in terms of(possibly degenerate) Weyl algebras, while fermioni
 gauge �eld theories bear additional 
ompli
ations,similar to their matter �eld theory 
ounterparts [BGP07,BG11℄. The issue there is that the inner produ
tspa
e asso
iated to a fermioni
 matter or gauge �eld theory is in general inde�nite, and one thereforeen
ounters physi
al as well as mathemati
al problems. The mathemati
al issue is that su
h inde�nite innerprodu
t spa
es 
an not be quantized with the usual CAR-representation. The physi
al problem is that,even if there would exist a suitable CAR-algebra, there are negative norm states in any representation of it.In 
ontrast to other approa
hes to the quantization of gauge �eld theories whi
h are based on kinemati
al(i.e. still 
ontaining gauge degrees of freedom) representation spa
es, our negative norm states would bestates in the physi
al (i.e. gauge invariant) Hilbert spa
e and would thus pose problems for the physi
alinterpretation of the fermioni
 gauge �eld theory under 
onsideration. This brings us to the se
ond goalof this paper, whi
h is the investigation under whi
h 
onditions the two examples of fermioni
 gauge�eld theories give rise to positive de�nite inner produ
t spa
es and thus 
an be 
onsistently quantizedin terms of a CAR-representation. We prove that the fermioni
 generalisation of linearised Yang-Millstheory always leads to an inde�nite inner produ
t spa
e and thus 
an not be quantized on any spa
etime.This implies that the perturbative quantization of Yang-Mills theories based on Lie supergroups is, inthe above mentioned sense, in
onsistent and puts strong mathemati
al 
onstraints on su
h theories. Onthe other hand, our result is well in line with the spin-statisti
s theorem. The situation is better for thegravitino �eld of linearised pure supergravity. We provide a suÆ
ient 
ondition for this theory to give riseto a positive inner produ
t spa
e, whi
h demands the existen
e of a spe
ial type of gauge transformation.For 
ompa
t Cau
hy surfa
es this 
ondition is ful�lled if the indu
ed (Riemannian) Dira
 operator on theCau
hy surfa
e has a trivial kernel. We also 
onsider 
ertain non-
ompa
t Cau
hy surfa
es and answer thequestion of positivity aÆrmatively. This shows that, under assumptions on the Cau
hy surfa
e, treatingthe Rarita-S
hwinger �eld as a fermioni
 gauge �eld theory (as it is required by supergravity) improves onwell-known issues appearing in the quantization of the Rarita-S
hwinger �eld when treated as a matter �eldtheory, see e.g. [BG11,HM11,SU11℄. Introdu
ing a mass term for the gravitino �eld in a gauge-invariantway requires the 
oupling of matter �elds to the supergravity and will be dis
ussed elsewhere. We alsoprovide an example of a supergravity ba
kground on whi
h the Rarita-S
hwinger gauge �eld 
an not be



Linear bosoni
 and fermioni
 quantum gauge theories on 
urved spa
etimes 3
onsistently quantized via a CAR-representation. Considering the spa
etimeM = R �TD�1 { with TD�1denoting the D�1-torus { equipped with the 
at Lorentzian metri
, we show that in 
ase of the trivial spinstru
ture the inner produ
t is inde�nite, while for all other spin stru
tures it is positive de�nite. A 
omplete
lassi�
ation of Cau
hy surfa
es and indu
ed metri
s thereon whi
h lead to a positive inner produ
t forthe Rarita-S
hwinger gauge �eld seems to be very 
ompli
ated and is beyond the s
ope of this work.The outline of this paper is as follows: In Se
tion 2 we review some basi
 aspe
ts of Lorentzian geometryand di�erential operators on ve
tor bundles following mainly the presentation in [BGP07,BG11℄. We thenintrodu
e our de�nition of 
lassi
al gauge �eld theories in Se
tion 3 and show that the basi
 examplesstudied in the literature �t into this framework. We 
on
lude this se
tion with a theorem on propertiesof 
lassi
al gauge �eld theories, whi
h generalises the properties found in the expli
it examples to theaxiomati
 level. In Se
tion 4 we study the quantization of gauge �eld theories and in parti
ular proposesuitable algebras of gauge invariant observables. The question of non-degenera
y (positivity) of bosoni
(fermioni
) gauge �eld theories is investigated in Se
tion 5. The Rarita-S
hwinger gauge �eld is dis
ussedseparately in Se
tion 6. Appendix A 
ontains our spinor 
onventions.2 Notation and preliminariesWe �x our notations and review brie
y some aspe
ts of Lorentzian manifolds and di�erential operators onve
tor bundles. We mainly follow [BGP07,BG11℄ and refer to these works for more details and referen
esto other literature.A Lorentzian manifold is a smooth and oriented 
onne
ted D-dimensional manifold M equipped witha smooth Lorentzian metri
 g of signature (�;+; : : : ;+). The asso
iated volume form will be denotedby volM . A time-oriented Lorentzian manifold will be 
alled a spa
etime. For every subset A � M of aspa
etime M we denote the 
ausal future/past of A by J�(A). A 
losed subset A �M is 
alled spa
elike
ompa
t if there exists a 
ompa
t C � M su
h that A � J(C) := J+(C) [ J�(C). A Cau
hy surfa
ein a spa
etime M is a subset � � M whi
h is met exa
tly on
e by every inextensible 
ausal 
urve anda spa
etime is 
alled globally hyperboli
 if and only if it 
ontains a Cau
hy surfa
e. We shall need thefollowing theorem proven by Bernal and S�an
hez [BS04,BS05℄:Theorem 2.1. Let (M; g) be a globally hyperboli
 spa
etime.(i) Then there exists a smooth manifold �, a smooth one-parameter family of Riemannian metri
s fgtgt2Ron � and a smooth positive fun
tion # on R��, su
h that (M; g) is isometri
 to (R��;�#2dt2�gt).Under this isometry ea
h ftg �� 
orresponds to a smooth spa
elike Cau
hy surfa
e in (M; g).(ii) Let also e� be a smooth spa
elike Cau
hy surfa
e in (M; g). Then there exists a smooth splitting (M; g) '(R ��;�#2dt2 � gt) as in (i) su
h that e� 
orresponds to f0g ��.Let V;W be a K -ve
tor bundles over M with K = R or C . A di�erential operator of order k is a linearmap P : �1(V ) ! �1(W ), with �1(V ); �1(W ) denoting the C1(M)-modules of se
tions of V;W ,whi
h in lo
al 
oordinates (x0; : : : ; xD�1) and a lo
al trivialisation of V and W looks likeP = Xj�j�kA�(x) �j�j�x� : (2.1)Here � = (�0; : : : ; �D�1) 2 ND0 denotes a multi-index, j�j = �0 + � � � + �D�1 is its length and �j�j�x� =�j�j�(x0)�0 ����(xD�1)�D�1 . The A� are smooth fun
tions with values in the linear homomorphisms from thetypi
al �bre of V to the one of W . The prin
ipal symbol �P of P asso
iates to ea
h 
ove
tor � 2 T �xM ahomomorphism �P (�) : Vx !Wx between the �bre Vx and Wx over x 2M . Lo
ally,�P (�) = Xj�j=kA�(x) �� ; (2.2)



4 Thomas-Paul Ha
k, Alexander S
henkelwhere �� = ��00 : : : ��D�1D�1 and � = �� dx� (sum over � = 0; : : : ; D � 1 understood). In addition to �1(V )we introdu
e the notations �10 (V ) for the se
tions of 
ompa
t support and �1s
 (V ) for the se
tions ofspa
elike 
ompa
t support.Let now K = R and let h ; iV be a non-degenerate bilinear form on V , that is a family of non-degeneratebilinear maps h ; iVx : Vx�Vx ! R on the �bres Vx, for all x 2M , that depend smoothly on x. We de�nethe bilinear map h ; i� (V ), for all se
tions f; h 2 �1(V ) with 
ompa
t overlapping support,hf; hi� (V ) := ZM volM hf; hiV : (2.3)Let us also assume that W 
omes with a non-degenerate bilinear form h ; iW . Then every di�erentialoperator P : �1(V ) ! �1(W ) of order k has a unique formal adjoint , i.e. a di�erential operator P y :�1(W )! �1(V ) of order k, su
h thathP yf; hi� (V ) = hf; Phi� (W ) ; (2.4)for all f 2 �1(W ) and h 2 �1(V ) with 
ompa
t overlapping support. If V = W , h ; iV = h ; iW andP y = P we say that P is formally self-adjoint (with respe
t to h ; iV ).De�nition 2.2. Let P : �1(V ) ! �1(V ) be a di�erential operator on a ve
tor bundle V over aLorentzian manifold M . A retarded/advan
ed Green's operator for P is a 
ontinuous linear map G� :�10 (V )! �1(V ) satisfying(i) P ÆG� = id,(ii) G� Æ P ���10 (V ) = id,(iii) supp(G�f) � J�(supp(f)) for any f 2 �10 (V ).De�nition 2.3. Let P : �1(V )! �1(V ) be a di�erential operator on a ve
tor bundle V over a globallyhyperboli
 spa
etime M with a non-degenerate bilinear form h ; iV .(i) We say that P is Green-hyperboli
 if P and P y have Green's operators1.(ii) We say that P is Cau
hy-hyperboli
 if the Cau
hy problems for P and P y are well-posed.Remark 2.4. The Green's operators of a Green-hyperboli
 operator on a globally hyperboli
 spa
etimeare ne
essarily unique, see Remark 3.7 in [BG11℄. Cau
hy-hyperboli
 operators are also Green-hyperboli
,but there are Green-hyperboli
 operators that are not Cau
hy-hyperboli
, see Se
tion 2.7 in [BG11℄.Example 2.5. Let M be a globally hyperboli
 spa
etime and V a ve
tor bundle over M .1.) A se
ond-order di�erential operator P on V is 
alled a normally hyperboli
 operator (also wave op-erator) if its prin
ipal symbol is given by the inverse metri
 g�1 times the identity on the �bre,�P (�) = g�1(�; �) id. In other words, a di�erential operator is normally hyperboli
 if and only if inlo
al 
oordinates x� and a lo
al trivialisation of VP = g��(x) ���� + A�(x) �� +B(x) ; (2.5)where A� and B smooth fun
tions valued in the endomorphisms of the typi
al �bre of V .2.) A �rst-order di�erential operator P on V is 
alled of Dira
-type if P 2 = P ÆP is a normally hyperboli
operator.The formal adjoints of normally hyperboli
 operators and operators of Dira
-type are again normally hy-perboli
 and of Dira
-type respe
tively, and these two 
lasses of di�erential operators are Green-hyperboli
and even Cau
hy-hyperboli
, see [BGP07,BG11,Mue10℄.1 We are grateful to Ko Sanders for pointing out that the existen
e of Green's operators for P y does in general not followfrom the existen
e of Green's operators for P .



Linear bosoni
 and fermioni
 quantum gauge theories on 
urved spa
etimes 5As a last prerequisite we require the following lemma and theorem on properties of Green's operators.See Lemma 3.3 and Theorem 3.5 in [BG11℄ for the proofs.Lemma 2.6. Let M be a globally hyperboli
 spa
etime and V a ve
tor bundle over M equipped with anon-degenerate bilinear form h ; iV . Denote by G� the retarded/advan
ed Green's operators for a Green-hyperboli
 operator P on V . Then the retarded/advan
ed Green's operators Gy� for P y satisfy, for allf; h 2 �10 (V ), hGy�f; hi� (V ) = hf;G�hi� (V ) : (2.6)In parti
ular, if P y = P is formally self-adjoint then hG�f; hi� (V ) = hf;G�hi� (V ), for all f; h 2 �10 (V ).Theorem 2.7. Let M be a globally hyperboli
 spa
etime, V a ve
tor bundle over M and P a Green-hyperboli
 operator on V . For G� being the retarded/advan
ed Green's operators for P we de�ne the linearmap G := G+ �G� : �10 (V ) ! �1s
 (V ). Then the following sequen
e of linear maps is a 
omplex, whi
his exa
t everywhere: f0g �! �10 (V ) P�! �10 (V ) G�! �1s
 (V ) P�! �1s
 (V ) : (2.7)3 Classi
al gauge �eld theoriesIn this se
tion we provide a general setting to des
ribe 
lassi
al gauge �eld theories. This requires, of 
ourse,more stru
tures 
ompared to 
lassi
al �eld theories whi
h are not subje
t to gauge invarian
e, i.e. 
lassi
almatter �eld theories. Throughout this arti
le all �eld theories are assumed to be real and non-intera
ting,i.e. the dynami
s is governed by a linear equation of motion operator. The non-trivial 
oupling is thus onlyto �xed 
lassi
al ba
kground �elds, su
h as the gravitational �eld or ba
kground gauge �elds.Before investigating 
lassi
al gauge �eld theories we �rst provide a de�nition of a 
lassi
al matter �eldtheory following the spirit of [BGP07,BG11℄ and give some examples.De�nition 3.1. A (real) 
lassi
al matter �eld theory is given by a triple �M;V; P �, where{ M is a globally hyperboli
 spa
etime{ V is a real ve
tor bundle over M equipped with a non-degenerate bilinear form h ; iV{ P : �1(V )! �1(V ) is a formally self-adjoint Green-hyperboli
 operatorWe say that a 
lassi
al matter �eld theory is bosoni
 if h ; iV is symmetri
 and fermioni
 if h ; iV isantisymmetri
.Example 3.2 (Klein-Gordon �eld). Let M be a globally hyperboli
 spa
etime and V := M � R be thetrivial real line bundle. We equip V with the 
anoni
al non-degenerate symmetri
 bilinear form h ; iV ,whi
h is indu
ed from the inner produ
t on the typi
al �bre R given by, for all v1; v2 2 R,hv1; v2iR = v1 v2 : (3.1)The C1(M)-module of se
tions �1(V ) is isomorphi
 to C1(M).Using the di�erential d : 
n(M)! 
n+1(M) and its formal adjoint Æ : 
n(M)! 
n�1(M), given byÆ = (�1)nD+D � d� with D = dim(M) and � denoting the Hodge operator, we de�ne the Klein-Gordonoperator of mass m 2 [0;1)P : C1(M)! C1(M) ; f 7! Pf = Ædf +m2f : (3.2)This operator is formally self-adjoint with respe
t to h ; iV and normally hyperboli
, thus in parti
ularalso Green-hyperboli
.This shows that the Klein-Gordon �eld is a bosoni
 
lassi
al matter �eld theory a

ording to De�nition3.1.



6 Thomas-Paul Ha
k, Alexander S
henkelExample 3.3 (Majorana �eld). For our spinor 
onventions see Appendix A and for a general dis
ussion ofspinor �elds we refer to [San08℄. Let M be a globally hyperboli
 spa
etime of dimension D mod 8 = 2; 3; 4equipped with a spin stru
ture and let DM be the Dira
 bundle. The typi
al �bre of DM is given byC 2bD=2
 . We 
an use the 
harge 
onjugation map 
 : DM ! DM to de�ne the real subbundle V :=DMR := �e 2 DM : e
 = e	, whi
h we 
all the Majorana bundle. We equip the typi
al �bre R2bD=2
 ofDMR with the non-degenerate antisymmetri
 bilinear map, for all v1; v2 2 R2bD=2
 ,hv1; v2iR2bD=2
 = i vT1 C v2 ; (3.3)where C denotes the 
harge 
onjugation matrix, i the imaginary unit and T the transposition operation.This indu
es a non-degenerate antisymmetri
 bilinear form h ; iV on V = DMR.Let us denote by TM the tangent and by T �M the 
otangent bundle on M . Using the 
onne
tionr : �1(V ) ! �1(V 
 T �M), whi
h is indu
ed by the Levi-Civita 
onne
tion, and the 
-matrix se
tion
 2 �1�TM
End(V )�, whi
h is 
ovariantly 
onstant, we de�ne the Dira
 operator =r : �1(V )! �1(V )by the 
ontra
tion of 
 andr. In lo
al 
oordinates we have =r = 
�r�. We further de�ne the Dira
 operatorof mass m 2 [0;1) by P : �1(V )! �1(V ) ; f 7! Pf = =rf +mf : (3.4)The operator P is formally self-adjoint with respe
t to h ; iV and of Dira
-type, thus in parti
ular Green-hyperboli
.This shows that the Majorana �eld is a fermioni
 
lassi
al �eld theory a

ording to De�nition 3.1.For a 
lassi
al gauge �eld theory De�nition 3.1 is not suitable, sin
e �rstly it does not en
ode the notionof gauge invarian
e and se
ondly, as well-known, gauge invarian
e implies that the dynami
s of gauge �elds
an not be governed by hyperboli
 operators. To in
lude the missing stru
tures we propose the followingaxioms:De�nition 3.4. A 
lassi
al gauge �eld theory is given by a six-tuple �M;V;W; P;K; T �, where{ M is a globally hyperboli
 spa
etime{ V andW are real ve
tor bundles overM equipped with non-degenerate bilinear forms h ; iV and h ; iW{ P : �1(V )! �1(V ) is a formally self-adjoint di�erential operator{ K : �1(W ) ! �1(V ) is a di�erential operator satisfying P Æ K = 0 and R := Ky Æ K Cau
hy-hyperboli
 for non-trivial K 6= 0{ T : �1(W ) ! �1(V ) is a di�erential operator, su
h that eP := P + T ÆKy is Green-hyperboli
 andQ := Ky Æ T is Green-hyperboli
 for non-trivial K 6= 0We say that a 
lassi
al gauge �eld theory is bosoni
 if h ; iV is symmetri
 and fermioni
 if h ; iV isantisymmetri
.Remark 3.5. As the following examples will show, the obje
ts appearing in the six-tuple �M;V;W; P;K; T �des
ribing a 
lassi
al gauge �eld theory have the following physi
al interpretation:Se
tions of the ve
tor bundle V des
ribe 
on�gurations of the gauge �eld. The operator P governsits dynami
s and the formal self-adjointness of P 
an be interpreted as saying that P = 0 are theEuler-Lagrange equations obtained from a quadrati
 a
tion fun
tional for  . The operator K generatesgauge transformations by, for all  2 �1(V ) and � 2 �1(W ),  7!  0 =  + K�. Thus, se
tions ofW des
ribe 
on�gurations of the gauge transformation parameters. The 
ondition P Æ K = 0 en
odesthe gauge invarian
e of the dynami
s, in parti
ular it implies that pure gauge 
on�gurations K� 2 �1(V )solve the equation of motion. The 
ondition R := Ky ÆK Cau
hy-hyperboli
 is used to prove that Ky = 0is a 
onsistent gauge �xing 
ondition, i.e. that any solution of P = 0 with spa
elike 
ompa
t support isgauge equivalent to a solution in the kernel of Ky, see Theorem 3.12 (iv). The Green-hyperboli
 operatoreP := P + T Æ Ky is the equation of motion operator after the 
anoni
al gauge �xing Ky = 0. TheGreen-hyperboli
 operator Q := Ky Æ T ensures that the 
anoni
al gauge �xing is 
ompatible with timeevolution.



Linear bosoni
 and fermioni
 quantum gauge theories on 
urved spa
etimes 7Even though Ky has also the interpretation of a gauge �xing operator, we want to stress that we donot perform any expli
it gauge �xing and work 
ompletely in terms of gauge invariant quantities whendis
ussing algebras of observables. This follows in parti
ular from Proposition 5.1 whi
h implies that the
anoni
al (anti)
ommutation relations of the gauge �eld do not depend on eP , but only on P . A relatedobservation is that two 
lassi
al gauge �eld theories whi
h di�er only in the operator T 
an be 
onsideredto be equivalent, see Proposition 4.9.Sin
e for a given �ve-tuple �M;V;W; P;K� the 
hoi
e of T seems to be non-unique in general andsin
e in the following examples T is usually read o� from the �ve-tuple �M;V;W; P;K� rather than beinggiven as an independent datum, a natural question is whether and under whi
h additional assumptions adi�erential operator T satisfying the last point of De�nition 3.4 exists for every �ve-tuple �M;V;W; P;K�satisfying the �rst four points of De�nition 3.4. Unfortunately, a satisfa
tory answer to this question, whi
hwould allow us to treat linear gauge theories solely in terms of �ve-tuples �M;V;W; P;K�, seems to benon-trivial and is beyond the s
ope of this work. For this reason we have 
hosen to 
onsider T as anadditional datum in our following general treatment of linear gauge theories.Before providing non-trivial examples of 
lassi
al gauge �eld theories we show that any 
lassi
al matter�eld theory is also a 
lassi
al gauge �eld theory with trivial gauge stru
ture K.Proposition 3.6. Let �M;V; P � be a 
lassi
al matter �eld theory and let T : �1(V ) ! �1(V ) be anarbitrary di�erential operator. Then �M;V; V; P;K = 0; T � is a 
lassi
al gauge �eld theory with trivialgauge stru
ture K = 0.Proof. Sin
e K = 0 we also have Ky = 0. All 
onditions of De�nition 3.4 are easily veri�ed.The standard examples of linearised bosoni
 and fermioni
 gauge �eld theories also �t into De�nition3.4.Example 3.7 (Linearised Yang-Mills �eld). The Yang-Mills �eld should only serve as an illustrativeexample. This is why we restri
t ourselves to the 
ase of trivial gauge bundles in order to simplify thedis
ussion.Let M be a globally hyperboli
 spa
etime and g be a real semisimple Lie algebra. Let W be the trivialve
tor bundle W :=M � g and V :=W 
 T �M , with T �M denoting the 
otangent bundle. We equip Wwith the non-degenerate symmetri
 bilinear form h ; iW indu
ed from the Killing form on the typi
al �bre
g, for all w1; w2 2 g, hw1; w2ig = Tr�adw1 adw2� (3.5)and V with the non-degenerate symmetri
 bilinear form h ; iV given by the produ
t of h ; iW and theinverse metri
 g�1 on M . The C1(M)-module of se
tions �1(W ) is isomorphi
 to the C1(M)-moduleof g-valued fun
tions C1(M; g) and �1(V ) is isomorphi
 to the g-valued one-forms 
1(M; g).A Yang-Mills �eld in this setting is a se
tion A 2 
1(M; g). The 
urvature of A is given by F = dA+12 [A;A℄ 2 
2(M; g). We de�ne the 
ovariant di�erential dA : 
n(M; g)! 
n+1(M; g) by dA� := d�+[A; �℄and denote its formal adjoint by ÆA : 
n(M; g)! 
n�1(M; g). Expli
itly, ÆA� = (�1)nD+D �dA��, where� denotes the Hodge operator and D = dim(M). The Yang-Mills equation reads ÆAF = 0.Let us now linearise the Yang-Mills �eld A around a solution A0 2 
1(M; g) of the Yang-Mills equation,i.e. we write A = A0 + � with � 2 
1(M; g) and 
onsider only terms linear in �. The linearised 
urvaturereads Flin = F0 + dA0�, where F0 is the 
urvature of A0 and dA0 the 
ovariant di�erential given by A0.The linearisation of the Yang-Mills equation yields0 = ÆA0F0 + ÆA0dA0�+ (�1)D � [�; �F0℄ = ÆA0dA0�� �[�F0; �℄ ; (3.6)sin
e A0 is on-shell. We de�ne the di�erential operator P on 
1(M; g) ' �1(V ),P : 
1(M; g)! 
1(M; g) ; � 7! P� = ÆA0dA0�� �[�F0; �℄ : (3.7)It is formally self-adjoint with respe
t to h ; iV .



8 Thomas-Paul Ha
k, Alexander S
henkelThe gauge invarian
e of the full (not linearised) theory is given by transformations A 7! A + dA�labelled by � 2 C1(M; g). Noti
e that C1(M; g) ' �1(W ). If we linearise the gauge transformations weobtain for all � 2 C1(M; g) the transformation law � 7! �+ dA0�. Let us de�ne the operator K byK : C1(M; g)! 
1(M; g) ; � 7! K� = dA0� : (3.8)It is a standard 
al
ulation to 
he
k that P Æ K = 0, provided the ba
kground Yang-Mills �eld A0 ison-shell, i.e. ÆA0F0 = 0.We de�ne further the operatorT : C1(M; g)! 
1(M; g) ; � 7! T� = dA0� : (3.9)Noti
e that T = K and that eP := P + T ÆKy = ÆA0 Æ dA0 + dA0 Æ ÆA0 � �[�F0; � ℄ is normally hyperboli
and thus in parti
ular Green-hyperboli
. We further obtain Q := Ky Æ T = ÆA0 Æ dA0 , whi
h is a normallyhyperboli
 operator on C1(M; g) and thus in parti
ular Green-hyperboli
. The operator R := Ky ÆK =ÆA0 Æ dA0 agrees with Q and is Cau
hy-hyperboli
.This shows that the linearised Yang-Mills �eld on a trivial g-bundle is a bosoni
 
lassi
al gauge �eldtheory a

ording to De�nition 3.4.Example 3.8 (Linearised general relativity). The 
ase of linearised D=4 general relativity in presen
e ofa 
osmologi
al 
onstant � has been re
ently studied in detail by Fewster and Hunt [FH12℄. We brie
y showthat this theory is a bosoni
 
lassi
al gauge �eld theory a

ording to De�nition 3.4 and refer to [FH12℄ formore details. As in this paper we restri
t ourselves to D=4 and employ a tensor index notation to simplifyreadability.Let M be a globally hyperboli
 spa
etime of dimension D=4. Let further W := T �M be the 
otangentbundle and V := W2 T �M be the bundle of symmetri
 
ontravariant tensors of rank 2. The metri
 g�� 2�1(V ) of the globally hyperboli
 spa
etimeM is assumed to be a solution of the va
uumEinstein equationsR�� = �g�� , with R�� denoting the Ri

i tensor of g�� . We equip W with the 
anoni
al non-degeneratesymmetri
 bilinear form h ; iW indu
ed by the inverse metri
 g�� on M and V with the non-degeneratesymmetri
 bilinear formhf; hiV = f�� h�� = g��g���f�� � 12g�� f�h�� = f��h�� � 12 f h ; (3.10)where f = f�� = g��f�� is the tra
e and � is 
alled the tra
e-reversal operation.Let us 
onsider 
u
tuations g�� + ��� , with ��� 2 �1(V ), of the ba
kground metri
. The equation ofmotion operator obtained by linearising the va
uum Einstein equations reads for the tra
e-reversed metri

u
tuations h�� := ��� = ��� � 12g�� �P : �1(V )! �1(V ) ; h�� 7! (Ph)�� = g��r�r�h�� +�h�� + 2�h�� � 2r�r(�h�)� ; (3.11)where r denotes the Levi-Civita 
onne
tion 
orresponding to g�� and � = r�r� = g��r�r� thed'Alembert operator. The parenthesis ( ) denotes symmetrisation of weight one. It 
an be 
he
ked that Pis formally self-adjoint with respe
t to h ; iV .The gauge invarian
e of linearised general relativity is governed by the operatorK : �1(W )! �1(V ) ; w� 7! (Kw)�� = r(�w�) = r(�w�) � 12g��r�w� : (3.12)The property P ÆK = 0, whi
h holds for ba
kgrounds satisfying the on-shell 
ondition R�� = �g�� , hasalready been veri�ed in [FH12℄, see also [SW74℄. More pre
isely, the operators PFH and KFH of Fewsterand Hunt are related to ours by P = �2PFH Æ � and K = 12 � ÆKFH and from PFH ÆKFH = 0 it followsP Æ K = �PFH Æ � Æ � Æ KFH = �PFH ÆKFH = 0, sin
e the tra
e-reversal squares to the identity. Theformal adjoint of K is given by, for all h�� 2 �1(V ), (Kyh)� = �r�h�� .Let us further de�ne the operatorT : �1(W )! �1(V ) ; w� 7! (Tw)�� = �2(Kw)�� = �2�r(�w�) � 12g��r�w�� : (3.13)
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etimes 9For eP := P + T ÆKy we obtaineP : �1(V )! �1(V ) ; h�� 7! ( ePh)�� = �h�� � 2R� ��� h�� ; (3.14)where R� ��� is the Riemann tensor. This is a normally hyperboli
 operator and thus in parti
ular Green-hyperboli
. For Q := Ky Æ T we obtainQ : �1(W )! �1(W ) ; w� 7! (Qw)� = �w� + �w� ; (3.15)whi
h is also a normally hyperboli
 operator and thus in parti
ular Green-hyperboli
. The operator R :=Ky ÆK = � 12Q is a multiple of a normally hyperboli
 operator and in parti
ular Cau
hy-hyperboli
.This shows that linearised general relativity in presen
e of a 
osmologi
al 
onstant is a bosoni
 
lassi
algauge �eld theory a

ording to De�nition 3.4.Example 3.9 (Toy model: Fermioni
 gauge �eld). Before introdu
ing the Rarita-S
hwinger gauge �eldas an example of a fermioni
 gauge �eld theory in Example 3.10 we �rst dis
uss a simple toy model.LetM be a globally hyperboli
 spa
etime and let �R2m ; 
�, withm 2 N, be the symple
ti
 ve
tor spa
eof dimension 2m, i.e. 
 is a non-degenerate antisymmetri
 2m � 2m-matrix. We de�ne W := M � R2mto be the trivial ve
tor bundle and equip it with the non-degenerate antisymmetri
 bilinear form h ; iWindu
ed from the symple
ti
 stru
ture on the typi
al �bre, for all w1; w2 2 R2m ,hw1; w2i
 := wT1 
w2 : (3.16)We further de�ne V := W 
 T �M , where T �M is the 
otangent bundle, and equip it with the non-degenerate antisymmetri
 bilinear form h ; iV given by the produ
t of h ; iW and the inverse metri
 g�1on M . The C1(M)-module of se
tions �1(W ) is isomorphi
 to the C1(M)-module C1(M;R2m ) and�1(V ) is isomorphi
 to the R2m -valued one-forms 
1(M;R2m ).We de�ne the operatorP : 
1(M;R2m )! 
1(M;R2m ) ; � 7! P� = Æd� ; (3.17)whi
h is formally self-adjoint with respe
t to h ; iV . We further de�neK : C1(M;R2m )! 
1(M;R2m ) ; � 7! K� = d� : (3.18)It obviously holds P ÆK = 0 and the formal adjoint of K is Ky = Æ. De�ning the operatorT : C1(M;R2m )! 
1(M;R2m ) ; � 7! T� = d� ; (3.19)we obtain that the operators eP := P + T ÆKy = Æ Æ d + d Æ Æ (on 
1(M;R2m )) and Q := Ky Æ T = Æ Æ d(on C1(M;R2m )) are normally hyperboli
 and thus in parti
ular Green-hyperboli
. Sin
e T = K we alsohave that R := Ky Æ K = Æ Æ d is a normally hyperboli
 operator on C1(M;R2m ) and in parti
ularCau
hy-hyperboli
.The six-tuple �M;V;W; P;K; T � is thus a fermioni
 
lassi
al gauge �eld theory a

ording to De�nition3.4.Example 3.10 (Rarita-S
hwinger gauge �eld). Our model for the Rarita-S
hwinger gauge �eld is inspiredby D=4 simple supergravity, whi
h we will brie
y sket
h. For details on supergravity we refer to [VN81,Nil83,WB92℄. The �eld 
ontent of this theory is the gravitational �eld, des
ribed by a vierbein E, andthe gravitino �eld 	 . The a
tion fun
tional is given by a lo
ally supersymmetri
 extension of the Einstein-Hilbert a
tion of general relativity. Solutions of the 
orresponding equations of motion in a trivial gravitinoba
kground 	 = 0 are given by Ri

i-
at Lorentzian manifolds (M; g). We are interested in modellinglinearised 
u
tuations of the gravitino �eld around these ba
kgrounds.As we have already seen in the Examples 3.7 and 3.8, the on-shell 
onditions for the ba
kground �eldsare ne
essary to maintain gauge invarian
e of the linearised gauge �eld theory. Thus, we are for
ed toassume that M is a globally hyperboli
 spa
etime whi
h is Ri

i-
at and equipped with a spin stru
ture.We take D mod 8 = 2; 3; 4 in order to have a suitable Majorana 
ondition available, see Appendix A forour spinor 
onventions. The Rarita-S
hwinger gauge �eld on more general spa
etimes requires the 
oupling
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k, Alexander S
henkelof supergravity to matter �elds and will be dis
ussed elsewhere. We also assume that D � 3 to have anon-trivial equation of motion for the gravitino (otherwise the 
��� de�ned below is trivial; note that thisis well in a

ord with the fa
t that gravity in D=2 is not dynami
al). We de�ne W := DMR to be theMajorana bundle (see Example 3.3) and V := DMR
T �M , where T �M denotes the 
otangent bundle. WeequipW with the 
anoni
al non-degenerate antisymmetri
 bilinear form h ; iW , see (3.3) for an expressionon the typi
al �bre. It is 
onvenient not to use the supergravity gravitino 	 2 �1(V ) (linearised aroundthe trivial 
on�guration) as the dynami
al degrees of freedom, but to do a �eld rede�nition instead. This issimilar to the tra
e-reversal we have used in Example 3.8. Using the 
-se
tion 
 2 �1�TM 
End(DMR)�we de�ne the linear map e� : �1(V )! �1(V ), whi
h is given in lo
al 
oordinates by, for all  2 �1(V ),e � :=  � � 1D�2
� 
� � , where 
� = g�� 
�. Noti
e that 
� e � = � 2D�2
� � and that e� is invertible viae��1 given lo
ally by e �1� =  � � 12
�
� � . We de�ne the Rarita-S
hwinger gauge �eld  2 �1(V ) bythe equation 	 = e , where 	 2 �1(V ) is the linearised supergravity gravitino �eld. We equip V with thenon-degenerate bilinear form h ; iV , whi
h reads in lo
al 
oordinatesh 1;  2iV := hf 1�;  �2 iW = h 1�;  �2 iW + 1D � 2 h
� 1�; 
� 2�iW : (3.20)Noti
e that h ; iV is antisymmetri
.The equation of motion for the linearised supergravity gravitino �eld 	 2 �1(V ) is obtained bythe supergravity a
tion and it is given by the massless Rarita-S
hwinger equation, whi
h reads in lo
al
oordinates 
���r�	� = 0, where 
��� = 
[�
�
�℄, the parenthesis [ ℄ denotes antisymmetrisation ofweight one and r is the 
onne
tion on V = DMR
 T �M indu
ed by the Levi-Civita 
onne
tion. For therede�ned degrees of freedom  2 �1(V ) with 	 = e the dynami
s is governed by the equation of motionoperator P , given in lo
al 
oordinates byP : �1(V )! �1(V ) ;  � 7! (P )� = =r � � 
�r� � : (3.21)This operator is formally self-adjoint with respe
t to h ; iV .The linearised lo
al supersymmetry transformations a
t on the supergravity gravitino �eld 	 2 �1(V )by 	� 7! 	� +r��, where � 2 �1(W ). For the rede�ned degrees of freedom  2 �1(V ) with 	 = e weobtain the operator K, given in lo
al 
oordinates byK : �1(W )! �1(V ) ; � 7! (K�)� = gr���1 = r��� 12
� =r� : (3.22)By a standard 
al
ulation one 
he
ks that P Æ K = 0 if and only if the metri
 g is Ri

i-
at, whi
hwas exa
tly the on-shell 
ondition imposed by supergravity. The formal adjoint of K is given by, for allf 2 �1(V ), Kyf = �r�f�.Let us further de�ne the operatorT : �1(W )! �1(V ) ; f 7! (Tf)� = �
�f : (3.23)Then eP := P +T ÆKy is simply the (twisted) Dira
 operator on V , given in lo
al 
oordinates by ( eP )� ==r �. We further �nd that the operator Q := KyÆT is the Dira
 operator onW (remember that the se
tion
 is 
ovariantly 
onstant). These operators are of Dira
-type and thus in parti
ular Green-hyperboli
. Forthe operator R := KyÆK we �nd, for all � 2 �1(W ), R� = � 12r�r��, where we have used that the metri
g is Ri

i-
at. This is up to a 
onstant prefa
tor a normally hyperboli
 operator and thus in parti
ularCau
hy-hyperboli
.This shows that the Rarita-S
hwinger gauge �eld is a fermioni
 
lassi
al gauge �eld theory a

ordingto De�nition 3.4.We 
olle
t important properties of 
lassi
al gauge �eld theories whi
h follow from the De�nition 3.4and will be required later for the 
onstru
tion and analysis of the algebra of observables. Before, we haveto introdu
e some notations:De�nition 3.11. Let �M;V;W; P;K; T � be a 
lassi
al gauge �eld theory. We de�ne the following spa
es:
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etimes 11{ Ker0(Ky) := �h 2 �10 (V ) : Kyh = 0	{ Sol := �f 2 �1s
 (V ) : Pf = 0	{ G := K[�1s
 (W )℄ := �Kh : h 2 �1s
 (W )	{ bG := K[�1(W )℄ \ �1s
 (V ) = �Kh 2 �1s
 (V ) : h 2 �1(W )	Noti
e that G � bG � Sol, where the last in
lusion is due to P ÆK = 0. We say that  ;  0 2 �1s
 (V ) are G-gauge equivalent , if there exists a K� 2 G su
h that  0 =  +K�. Analogously, we say that  ;  0 2 �1s
 (V )are bG-gauge equivalent , if there exists a K� 2 bG su
h that  0 =  +K�. Sin
e the in
lusion G � bG holdstrue, G-gauge equivalen
e implies bG-gauge equivalen
e.Theorem 3.12. Let �M;V;W; P;K; T � be a 
lassi
al gauge �eld theory with eP := P +T ÆKy, Q := Ky ÆTand R := Ky ÆK. Let us denote by G eP� : �10 (V ) ! �1(V ) the retarded/advan
ed Green's operators foreP . In 
ase of K 6= 0 we denote by GQ�; GR� : �10 (W ) ! �1(W ) the retarded/advan
ed Green's operatorsfor Q and R, respe
tively. Then the following hold true:(i) Ky Æ eP = Q ÆKy and eP ÆK = T ÆR.(ii) If K 6= 0, then Ky ÆG eP� = GQ� ÆKy on �10 (V ) and K ÆGR� = G eP� Æ T on �10 (W ).(iii) G eP := G eP+ �G eP� satis�es, for all f; h 2 Ker0(Ky),hf;G ePhi� (V ) = �hG eP f; hi� (V ) : (3.24)That is, G eP is formally skew-adjoint with respe
t to h ; iV on the kernel Ker0(Ky) � �10 (V ).(iv) Any  2 �1s
 (V ) is G-gauge equivalent to a  0 2 �1s
 (V ) satisfying Ky 0 = 0.In parti
ular, any  2 Sol is G-gauge equivalent to a  0 2 Sol satisfying Ky 0 = 0 and thus alsoeP 0 = 0.(v) Any  2 Sol satisfying Ky = 0 is G-gauge equivalent to G ePh for some h 2 Ker0(Ky).(vi) Let h 2 Ker0(Ky), then G ePh 2 G if and only if h 2 P [�10 (V )℄.(vii) Let T 0 : �1(W ) ! �1(V ) be an arbitrary di�erential operator su
h that repla
ing T by T 0 is a
lassi
al gauge �eld theory and let eP 0 := P + T 0 Æ K. Then hf;G eP 0� hi� (V ) = hf;G eP�hi� (V ), for allf; h 2 Ker0(Ky).Proof. Proof of (i): Sin
e P is formally self-adjoint and P Æ K = 0 we obtain Ky Æ P = 0. It followsKy Æ eP = Ky Æ T ÆKy = Q ÆKy and eP ÆK = T ÆKy ÆK = T ÆR.Proof of (ii): Using (i) we obtain, for all h 2 �10 (W ) and f 2 �10 (V ),hh;KyG eP�fi� (W ) = hQyGQy� h;KyG eP�fi� (W ) = hGQy� h;QKyG eP�fi� (W )= hGQy� h;Ky ePG eP�fi� (W ) = hGQy� h;Kyfi� (W ) = hh;GQ�Kyfi� (W ) ; (3.25)where we also have used Lemma 2.6 in the last equality. The hypothesis now follows from the non-degenera
y of h ; iW . The other identity is proven analogously.Proof of (iii): For K = 0 we have eP = P and the hypothesis follows from the fa
t that P was assumedto be formally self-adjoint and Lemma 2.6. Let us now assume that K 6= 0 and 
onsider f; h 2 Ker0(Ky).From (ii) we obtain KyG eP�f = GQ�Kyf = 0 and similarly KyG eP�h = 0. Thus,hf;G eP�hi� (V ) = h ePG eP�f;G eP�hi� (V ) = hPG eP�f;G eP�hi� (V ) = hG eP�f; PG eP�hi� (V )= hG eP�f; ePG eP�hi� (V ) = hG eP�f; hi� (V ) ; (3.26)where we have used in the se
ond and fourth equality that on Ker(Ky) the operator eP equals P and inthe third equality that P is formally self-adjoint. This in parti
ular shows (3.24).



12 Thomas-Paul Ha
k, Alexander S
henkelProof of (iv): Let  2 �1s
 (V ) be arbitrary and let � 2 �1s
 (W ). We de�ne  0 :=  +K� and obtainfrom the 
ondition Ky 0 = 0 the equation KyK� = �Ky . Sin
e Ky 2 �1s
 (W ) and R = Ky Æ Kwas assumed to be Cau
hy-hyperboli
 this equation has a solution � 2 �1s
 (W ), see [BF09, Chapter 3,Corollary 5℄ for a dis
ussion of how to treat inhomogeneities of non-
ompa
t support. It then holds that 0 =  +K� 2 �1s
 (V ) with Ky 0 = 0 and K� 2 G.Proof of (v): We �rst note that as a 
onsequen
e of (ii) and Theorem 2.7 we obtain that G ePh withh 2 �10 (V ) satis�es KyG ePh = GQKyh = 0 if and only if Kyh 2 Q[�10 (W )℄.Let now  2 Sol be su
h that Ky = 0. As a 
onsequen
e, eP = 0 and sin
e eP is Green-hyperboli
there is a h 2 �10 (V ) su
h that  = G ePh, see Theorem 2.7. Due to the argument above, we haveKyh = Qkfor some k 2 �10 (W ). Let us 
onsider the following G-gauge transformation �KGRk (ii)=  �G ePTk = G eP �h� Tk� : (3.27)De�ning h0 := h� Tk we have shown that  is G-gauge equivalent to G ePh0 with Kyh0 = Kyh�KyTk =Qk �Qk = 0, i.e. h0 2 Ker0(Ky).Proof of (vi): If h = Pf 2 P [�10 (V )℄ then G ePh = G ePPf = �G ePTKyf = �KGRKyf is an element inG. To show the other dire
tion, let h 2 Ker0(Ky) be su
h that there is a k 2 �1s
 (W ) satisfying G ePh = Kk.It follows that KyKk = 0 and sin
e R = Ky ÆK is assumed to by Cau
hy-hyperboli
 there is by Theorem2.7 an f 2 �10 (W ) su
h that k = GRf . Using (ii) we obtain Kk = KGRf = G ePTf = G ePh, whi
himplies h� Tf = ePq for some q 2 �10 (V ). The 
ondition Kyh = 0 further leads us to �KyTf = QKyq,i.e. Q�Kyq+ f� = 0, and sin
e f and q are of 
ompa
t support we have by Theorem 2.7 f = �Kyq. Thus,h = Tf + ePq = �TKyq + ePq = Pq.Proof of (vii): For arbitrary f; h 2 Ker0(Ky) we 
ompute using (iii) and (ii)hf;G eP�hi� (V ) = hG eP�f; hi� (V ) = hG eP�f; eP 0G eP 0� hi� (V )= hG eP�f; ePG eP 0� hi� (V ) + hG eP�f; �T 0 � T �KyG eP 0� hi� (V ) = hf;G eP 0� hi� (V ) : (3.28)
4 Gauge invariant on-shell algebra of observablesThe goal of this se
tion is to 
onstru
t from the data of a 
lassi
al gauge �eld theory �M;V;W; P;K; T � asuitable quantum algebra of gauge invariant observables des
ribing the quantized gauge �eld theory. Wewill �rst review the quantization of bosoni
 and fermioni
 matter �eld theories and then extend these
onstru
tions to gauge �eld theories. We again follow the spirit of [BG11℄, where also more details onbosoni
 and fermioni
 quantization 
an be found.The strategy to quantize a bosoni
 (fermioni
) matter �eld theory �M;V; P � is to �rst asso
iate to it asuitable symple
ti
 (inner produ
t) spa
e, whi
h is then quantized in terms of a CCR (CAR) representation.Proposition 4.1. Let �M;V; P � be a 
lassi
al matter �eld theory, denote the Green's operators for P byG� and G := G+ �G�. We de�ne the ve
tor spa
e E := �10 (V )=P [�10 (V )℄ and the bilinear map� : E � E ! R ; ([f ℄; [h℄) 7! ��[f ℄; [h℄� = hf;Ghi� (V ) = ZM volM hf;GhiV : (4.1)Then the map � is well-de�ned and weakly non-degenerate. If further �M;V; P � is bosoni
, then � isantisymmetri
, i.e. (E ; �) is a symple
ti
 ve
tor spa
e. If �M;V; P � is fermioni
, then � is symmetri
,i.e. (E ; �) is an (i.g. inde�nite) inner produ
t spa
e.
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urved spa
etimes 13Proof. The map � is well-de�ned, sin
e G is formally skew-adjoint with respe
t to h ; iV (see Lemma 2.6)and we have G Æ P = 0 on �10 (V ).We now show that � is weakly non-degenerate. Noti
e that be
ause of the non-degenera
y of h ; iV the
ondition hf;Ghi� (V ) = 0, for all f 2 �10 (V ), implies Gh = 0. By Theorem 2.7 there exists k 2 �10 (V ),su
h that h = Pk, meaning that [h℄ = [0℄. Thus, � is weakly non-degenerate.Using again the skew-adjointness of G and the symmetry (antisymmetry) of h ; iV for a bosoni
(fermioni
) matter �eld theory we obtain, for all [f ℄; [h℄ 2 E ,��[f ℄; [h℄� = hf;Ghi� (V ) = �hGf; hi� (V ) = �hh;Gfi� (V ) = � ��[h℄; [f ℄� ; (4.2)where � is for bosoni
 and + for fermioni
 theories.For a physi
ally and also mathemati
ally 
onsistent quantization of fermioni
 �eld theories we have todemand further a positivity 
ondition on � . See the Remarks 4.6 and 4.8 below for a detailed 
omment.De�nition 4.2. A fermioni
 
lassi
al matter �eld theory �M;V; P � is of positive type if (E ; �) is a (real)pre-Hilbert spa
e, i.e. the map � is positive de�nite.We provide examples of fermioni
 
lassi
al matter �eld theories of positive type in the next se
tion.Any bosoni
 
lassi
al matter �eld theory 
an be quantized in terms of a CCR-representation.De�nition 4.3. A CCR-representation of a symple
ti
 ve
tor spa
e (E ; �) is a pair (w; A), where A is aunital C�-algebra and w : E ! A is a map satisfying:(i) A = C�(w(E)),(ii) w(0) = 1,(iii) w(f)� = w(�f),(iv) w(f + h) = ei �(f;h)=2 w(f)w(h),for all f; h 2 E .Furthermore, any fermioni
 
lassi
al matter �eld theory of positive type 
an be quantized in terms ofa CAR-representation.De�nition 4.4. A (self-dual) CAR-representation of a pre-Hilbert spa
e (E ; �) over R is a pair (b; A),where A is a unital C�-algebra and b : E ! A is a linear map satisfying:(i) A = C�(b(E)),(ii) b(f)� = b(f),(iii) �b(f); b(h)	 = �(f; h)1,for all f; h 2 E .The following theorem is proven in [BG11,BGP07℄.Theorem 4.5. There exists up to C�-isomorphism a unique CCR-representation (CAR-representation)for every symple
ti
 ve
tor spa
e (pre-Hilbert spa
e).Remark 4.6. For de�ning the CCR-representation we have assumed that the map � is weakly non-degenerate. While for a bosoni
 
lassi
al matter �eld theory this is automati
ally given by Proposition 4.1,this 
ondition turns out to be too restri
tive for gauge �eld theories, see Se
tion 5 for a dis
ussion. Thequantization of a pre-symple
ti
 ve
tor spa
e (E ; �) 
an always be performed in terms of a �eld polynomialalgebra. However, one looses the C�-algebra property when making this 
hoi
e. Fortunately, in [BHR04℄ theexisten
e and uniqueness of the Weyl algebra for a generi
 pre-symple
ti
 ve
tor spa
e has been proven.This means that De�nition 4.3 
an be extended to any pre-symple
ti
 ve
tor spa
e and the result ofTheorem 4.5 is unaltered in this 
ase. We refer to [BHR04℄ for details on Weyl algebras of degenerate pre-symple
ti
 ve
tor spa
es. We �nish this remark by noting that a similar result for degenerate pre-Hilbertspa
es and their CAR-quantization are not known to us.
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k, Alexander S
henkelRemark 4.7. This remark is quite standard, however, it is essential for understanding our 
onstru
tionof the algebra of observables for a gauge �eld theory.Let (E ; �) be the symple
ti
 ve
tor spa
e asso
iated to a bosoni
 
lassi
al matter �eld theory �M;V; P �,i.e. E = �10 (V )=P [�10 (V )℄ and � as given in (4.1). The Weyl symbols w([f ℄), [f ℄ 2 E , are physi
allyinterpreted as quantizations of the following fun
tionals wf , f 2 �10 (V ), on the 
on�guration spa
e�1(V ) of the 
lassi
al matter �eld theorywf : �1(V )! C ;  7! wf [ ℄ = ei h ;fi�(V ) : (4.3)The on-shell 
ondition P = 0 is then en
oded on the level of the fun
tionals by identifying wPf bythe 
onstant fun
tional 1 (use (4.3) and that P is formally self-adjoint). The fun
tionals on the on-shell
on�guration spa
e are thus labelled by equivalen
e 
lasses, i.e. elements in E = �10 (V )=P [�10 (V )℄.An analogous interpretation holds for a fermioni
 matter �eld theory, where the symbols b([f ℄), [f ℄ 2 E ,are interpreted as quantizations of the fun
tionalsbf : �1(V )! R ;  7! bf [ ℄ = h ; fi� (V ) ; (4.4)with f 2 �10 (V ). The on-shell 
ondition P = 0 is en
oded here by identifying the fun
tionals bPf ,f 2 �10 (V ), with 0, giving rise to the ve
tor spa
e E = �10 (V )=P [�10 (V )℄ whi
h labels the fun
tionals onthe on-shell 
on�guration spa
e.Remark 4.8. We give a physi
al motivation for the positivity requirement for fermioni
 matter �eldtheories given in De�nition 4.2. Take any [f ℄ 2 E and 
onsider the 
orresponding symbol b([f ℄). FromDe�nition 4.4 (ii) and (iii) it follows that�b([f ℄); b([f ℄)	 = 2 b([f ℄)� b([f ℄) = �([f ℄; [f ℄)1 : (4.5)Assume that we have a representation of this algebra on a Hilbert spa
e and let j	i be any normalisedve
tor h	 j	i = 1. Taking the expe
tation value of both sides of (4.5) gives us the equality �([f ℄; [f ℄) =2 hb([f ℄)	 jb([f ℄)	i. If now �([f ℄; [f ℄) < 0 the ve
tor jb([f ℄)	i has a negative norm square, whi
h is in
on-sistent with the Hilbert spa
e assumption. In 
ase �([f ℄; [f ℄) = 0 the Hilbert spa
e ve
tor jb([f ℄)	i haszero norm and sin
e j	i has been an arbitrary normalised ve
tor the operator asso
iated to b([f ℄) is thezero operator in any Hilbert spa
e representation.Let us now 
onsider a 
lassi
al gauge �eld theory �M;V;W; P;K; T �. The goal is to 
onstru
t a pre-symple
ti
 ve
tor spa
e for bosoni
 and a possibly inde�nite inner produ
t spa
e for fermioni
 
lassi
algauge �eld theories. Following the interpretation of Remark 4.7 we are thus looking for a suitable ve
torspa
e of smearing fun
tions. It turns out to be 
onvenient to dire
tly en
ode gauge invarian
e on thelevel of this ve
tor spa
e, leading later to a quantization of only the gauge invariant degrees of freedom.Let us for example 
onsider a bosoni
 
lassi
al gauge �eld theory: We 
an again 
onsider fun
tionals onthe o�-shell 
on�guration spa
e as in (4.3). Su
h a fun
tional wf is gauge invariant, i.e. independent onwhether we evaluate it on  or  +K� with � 2 �1(W ), if and only if Kyf = 0. Indeed,wf [ +K�℄ = ei h +K�;fi�(V ) = ei h ;fi�(V )+i h�;Kyfi� (W ) = wf [ ℄ ; (4.6)for all � 2 �1(W ) if and only if Kyf = 0. Thus, in order to 
apture the gauge invariant degrees of freedomwe should 
onsider instead of �10 (V ) only the kernel Ker0(Ky) � �10 (V ) of Ky when formulating thespa
e E for gauge theories. The implementation of the on-shell 
ondition is then a suitable quotient bythe equation of motion operator. This 
onstru
tion 
an be performed and a well-de�ned pre-symple
ti
stru
ture (respe
tively, inde�nite inner produ
t stru
ture) 
an be de�ned on E for bosoni
 (respe
tivelyfermioni
) gauge �eld theories.Proposition 4.9. Let �M;V;W; P;K; T � be a 
lassi
al gauge �eld theory with eP := P+T ÆKy, Q := KyÆTand R := KyÆK. Let us denote by G eP� the retarded/advan
ed Green's operators for eP and G eP := G eP+�G eP�.We de�ne the ve
tor spa
e E := Ker0(Ky)=P [�10 (V )℄ and the bilinear map� : E � E ! R ; ([f ℄; [h℄) 7! ��[f ℄; [h℄� = hf;G ePhi� (V ) = ZM volM hf;G ePhiV : (4.7)
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etimes 15Then the map � is well-de�ned. Furthermore, � is antisymmetri
 for bosoni
 gauge �eld theories andsymmetri
 for fermioni
 ones. Finally, let T 0 : �1(W ) ! �1(V ) be an arbitrary di�erential operatorsu
h that �M;V;W; P;K; T 0� is a 
lassi
al gauge �eld theory and let � 0 : E � E ! R be de�ned in analogyto (4.7) by means of G eP 0 with eP 0 := P + T 0 ÆKy. Then � 0 = � .Proof. For the trivial 
ase K = 0 the proof is as in Proposition 4.1. In parti
ular, the ve
tor spa
e Eand the map � are then exa
tly those of a 
lassi
al matter �eld theory. So let us assume that K 6= 0.A

ording to Theorem 3.12 (iii) G eP is formally skew-adjoint with respe
t to h ; iV on Ker0(Ky). That �is well-de�ned follows from this fa
t and the following 
al
ulation, for all f 2 Ker0(Ky) and h 2 �10 (V ),hf;G ePPhi� (V ) = hf;G eP ( eP � TKy)hi� (V ) = �hf;KGRKyhi� (V )= �hKyf;GRKyhi� (W ) = 0 ; (4.8)where in the se
ond equality we have used Theorem 3.12 (ii) and G eP ePh = 0.The antisymmetry (symmetry) of � for bosoni
 (fermioni
) gauge �eld theories is proven as in the proofof Proposition 4.1.The last statement follows immediately from Theorem 3.12 (vii).In 
ontrast to 
lassi
al matter �eld theories we 
an not guarantee that the map � is weakly non-degenerate for a 
lassi
al gauge �eld theory. For bosoni
 gauge �eld theories this is mathemati
ally notproblemati
, sin
e the CCR-representation of De�nition 4.3 is also available and well-behaved for degen-erate pre-symple
ti
 ve
tor spa
es, see Remark 4.6. Physi
ally, these degenera
ies might be interpretedas 
harge observables and are worth being studied in detail for the important examples of gauge �eldtheories, see [DHS12℄ for the Maxwell �eld 
ase. In order to quantize fermioni
 gauge �eld theories we haveto require analogously to De�nition 4.2 positivity of the inner produ
t.De�nition 4.10. A fermioni
 
lassi
al gauge �eld theory �M;V;W; P;K; T � is 
alled of positive type if �is positive de�nite, i.e. (E ; �) is a (real) pre-Hilbert spa
e.Bosoni
 
lassi
al gauge �eld theories 
an be quantized via the CCR-representation (see De�nition 4.3with a possible extension to pre-symple
ti
 ve
tor spa
es as in Remark 4.6) and fermioni
 
lassi
al gauge�eld theories of positive type via the CAR-representation (see De�nition 4.4). Although a quantization offermioni
 
lassi
al gauge �eld theories in terms of a �eld polynomial algebra is also mathemati
ally possibleif they are not of positive type, the physi
al interpretation of su
h a quantum theory would remain un
lear,
f. Remark 4.8. It thus remains to study if a given fermioni
 
lassi
al gauge �eld theory �M;V;W; P;K; T �is of positive type or not. From the physi
al perspe
tive it is also interesting to understand if a givenbosoni
 
lassi
al gauge �eld theory has a weakly non-degenerate � or not.Irrespe
tive of the non-degenera
y or positivity of � we 
an already prove an important stru
turalproperty of the (
lassi
al and quantized) gauge �eld theory 
orresponding to �M;V;W; P;K; T �.Proposition 4.11. Every gauge �eld theory �M;V;W; P;K; T � satis�es the time-sli
e axiom: Let � bean arbitrary Cau
hy surfa
e in (M; g), and let �� be any two other Cau
hy surfa
es su
h that � (�J�(�+) \ J+(��)�. Then for every [f ℄ 2 E there is a representative f 2 Ker0(Ky) with supp(f) ��J�(�+) \ J+(��)�.Proof. We 
an obtain su
h f by a standard 
onstru
tion. Let h 2 [f ℄ be arbitrary.Without loss of generalitywe 
an assume that supp(h) � J+(��). We pi
k a smooth fun
tion � su
h that � = 0 on J�(��) and� = 1 on J+(�+) and de�ne f := h� P�G eP�h : (4.9)One 
an now verify that �G eP�h has 
ompa
t support, when
e [f ℄ = [h℄, and that f has the required supportproperty.
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henkel5 Non-degenera
y and positivity of gauge �eld theoriesLet �M;V;W; P;K; T � be a 
lassi
al gauge �eld theory and denote by (E ; �) the ve
tor spa
e of Proposition4.9 equipped with the bilinear map � , whi
h is antisymmetri
 for bosoni
 and symmetri
 for fermioni
theories. In order to investigate if � is weakly non-degenerate for bosoni
 or respe
tively positive de�nitefor fermioni
 theories it is in some 
ases 
onvenient to indu
e an equivalent bilinear map on the spa
e ofsolutions of P .Let us denote by Sol := � 2 �1s
 (V ) : P = 0	 the spa
e of all solutions of P with spa
elike
ompa
t support. For every  there exists a 
ompa
t set C �M , su
h that supp( ) � J(C). We 
an split =  + +  � su
h that supp( �) � J�(C). This splitting is not unique and the di�eren
e between twosu
h splittings  =  ++ � =  e++ e� is given by a 
ompa
tly supported se
tion  e+� + =  �� e� =:� 2 �10 (V ). We de�ne on Sol the bilinear maph ; iSol : Sol� Sol! R ; ( 1;  2) 7! h 1;  2iSol = hP +1 ;  2i� (V ) : (5.1)This map is well-de�ned, sin
e �rstly from P 1 = 0 it follows that P +1 = �P �1 and in parti
ular thatP �1 has 
ompa
t support, su
h that the integral exists. Se
ondly, it is independent of the splitting,hP e+1 ;  2i� (V ) = hP +1 ;  2i� (V ) + hP�;  2i� (V )= h 1;  2iSol + h�; P 2i� (V ) = h 1;  2iSol ; (5.2)where we have used that P is formally self-adjoint and that P 2 = 0. Noti
e that the map (5.1) is nottrivial, sin
e  +1 and  2 i.g. do not have 
ompa
t overlapping support and thus we 
an not integrate byparts P to the right side.Proposition 5.1. The following statements hold true:(i) The map h ; iSol is antisymmetri
 for bosoni
 and symmetri
 for fermioni
 gauge �eld theories.(ii) The map h ; iSol is bG-gauge invariant, i.e. for all  2 Sol and � 2 �1(W ) su
h that K� 2 �1s
 (V ) wehave h ;K�iSol = hK�;  iSol = 0.In parti
ular, the map h ; iSol indu
es well-de�ned bilinear maps on the quotients Sol=bG and Sol=G(remember that G � bG).(iii) Let f; h 2 Ker0(Ky), then hG eP f;G ePhiSol = ��[f ℄; [h℄� : (5.3)Proof. Proof of (i): Let  1;  2 2 Sol be arbitrary and 
onsider the splittings  i =  +i + �i , i = 1; 2. Noti
ethat from P i = 0 is follows that P +i = �P �i . Thenh 1;  2iSol = hP +1 ;  2i� (V ) = hP +1 ;  +2 i� (V ) + hP +1 ;  �2 i� (V )= �hP �1 ;  +2 i� (V ) + h +1 ; P �2 i� (V ) = �h �1 ; P +2 i� (V ) � h +1 ; P +2 i� (V )= �h 1; P +2 i� (V ) = �hP +2 ;  1i� (V ) = �h 2;  1iSol ; (5.4)where � is for bosoni
 and + for fermioni
 theories. All integrations by parts of P in the 
al
ulation aboveare well-de�ned, sin
e the integrals are always over fun
tions with 
ompa
t support.Proof of (ii): Let  2 Sol and K� 2 bG. We obtainh ;K�iSol = hP +;K�i� (V ) = hKyP +; �i� (W ) = 0 : (5.5)In the se
ond equality we have used that P + is of 
ompa
t support and in the third equality thatKy Æ P = 0. By (5.4) we have hK�;  iSol = �hK�; P +i� (V ) = �h�;KyP +i� (W ) = 0.Proof of (iii): Let f; h 2 Ker0(Ky). Then G eP f;G ePh 2 Sol, sin
ePG eP f = ( eP � TKy)G eP f = �TKyG eP f = 0 ; (5.6)



Linear bosoni
 and fermioni
 quantum gauge theories on 
urved spa
etimes 17where in the last equality we have used Theorem 3.12 (ii). The same applies for G ePh. A 
onvenientde
omposition is given by G eP f = G eP+f �G eP�f and we �ndhG eP f;G ePhiSol = hPG eP+f;G ePhi� (V ) = h ePG eP+f;G ePhi� (V ) = hf;G ePhi� (V ) = ��[f ℄; [h℄� ; (5.7)where in the se
ond equality we have used Theorem 3.12 (ii).We 
ombine the statements proven in Theorem 3.12 and Proposition 5.1 in order to 
onstru
t anisomorphism between the spa
e (E ; �) of Proposition 4.9 and the spa
e (Sol=G; h ; iSol).Theorem 5.2. The sequen
e of maps Ker0(Ky) G eP�! Sol id�! Sol (5.8)indu
es a well-de�ned sequen
e of maps on the quotients (whi
h we denote with a slight abuse of notationby the same symbols) E = Ker0(Ky)=P [�10 (V )℄ G eP�! Sol=G id�! Sol=bG : (5.9)The �rst map is an isomorphism and the se
ond map is a surje
tion whi
h be
omes an isomorphism ifand only if G = bG. Furthermore, the sequen
e of maps (5.9) preserves the bilinear mappings in (E ; �),(Sol=G; h ; iSol) and (Sol=bG; h ; iSol).Proof. From Theorem 3.12 (vi) it follows that the �rst map is well-de�ned and inje
tive. Surje
tivity ofthe �rst map follows from Theorem 3.12 (iv) and (v). The se
ond map is well-de�ned and surje
tive sin
eG � bG. It is an isomorphism if and only if G = bG. The bilinear mappings are preserved due to Proposition5.1 (iii) and (ii).Corollary 5.3. If G � bG is a proper subspa
e then the map � in (E ; �) is degenerate.Proof. Assume that G � bG is a proper subspa
e. Then there is a � 2 �1(W ) su
h that K� 62 G, butK� 2 bG � Sol. From Proposition 5.1 (ii) we know that h ;K�iSol = 0 for all  2 Sol. Sin
e in Sol=G thisK� is not equivalent to zero the bilinear map h ; iSol is degenerate on Sol=G. Be
ause (Sol=G; h ; iSol) isisomorphi
 to (E ; �) the statement follows.Remark 5.4. This 
orollary might suggest that it is more 
onvenient (regarding non-degenera
y) to
hoose (Sol=bG; h ; iSol) instead of (E ; �) as the underlying ve
tor spa
e for a CCR or CAR-representation.There are, however, two arguments against this 
hoi
e. Firstly, the additional elements in bG, whi
h arenot in G, 
an not be interpreted as on-shell 
onditions in a

ord with Remark 4.7. Se
ondly, as 
lari�ed in[DHS12℄ for the Maxwell �eld 
ase, the observables in bG n G 
an be of physi
al signi�
an
e.We next show that the map h ; iSol 
an be evaluated on any Cau
hy surfa
e � � M . We split theglobally hyperboli
 spa
etime M = �+ [ �� into the future/past �� := J�(�) � M of the Cau
hysurfa
e �. We also split h ; i� (V ), for all f; h 2 �1(V ) with 
ompa
t overlapping support,hf; hi� (V ) = Z�+ volM hf; hiV + Z�� volM hf; hiV =: hf; hi+� (V ) + hf; hi�� (V ) : (5.10)This allows us to rewrite h ; iSol as follows, for all  1;  2 2 Sol,h 1;  2iSol = hP +1 ;  2i� (V ) = hP +1 ;  2i+� (V ) + hP +1 ;  2i�� (V )= �hP �1 ;  2i+� (V ) + hP +1 ;  2i�� (V ) : (5.11)In both terms we 
an now perform integration by parts, sin
e the integral over the future �+ (respe
tivelythe past ��) is over a fun
tion of support in J�(C) (respe
tively in J+(C)). The remaining boundaryterms are then lo
ated on the Cau
hy surfa
e �.
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k, Alexander S
henkelProposition 5.5. Let P : �1(V ) ! �1(V ) be a �rst-order di�erential operator, whi
h is formallyself-adjoint with respe
t to h ; iV . Then for all  1;  2 2 Sol we have for any Cau
hy surfa
e � �Mh 1;  2iSol = Z� vol� h�P (n[) 1j� ;  2j�iV ; (5.12)where �P is the prin
ipal symbol of P , n is the future pointing normal ve
tor �eld of �, vol� is the indu
edvolume form on � and j� denotes the restri
tion of se
tions to �.Proof. This is a result of Green's formula [Tay96, p. 160, Prop. 9.1℄ and of P 2 = 0. We have, for all 1;  2 2 Sol, h 1;  2iSol = �hP �1 ;  2i+� (V ) + hP +1 ;  2i�� (V )= Z� vol� �h�P (n[) �1 j� ;  2j�iV + h�P (n[) +1 j� ;  2j�iV �= Z� vol� h�P (n[) 1j� ;  2j�iV : (5.13)Before we dis
uss our examples of gauge �eld theories it is instru
tive to 
onsider �rst the 
ase offermioni
 matter �eld theories. We will show that there are fermioni
 matter �eld theories whi
h are notof positive type (see De�nition 4.2), see also [BG11℄. This means that positivity is not a property whi
hfollows from the basi
 axioms of a fermioni
 
lassi
al matter or gauge �eld theory, see De�nitions 3.1 and3.4.Example 5.6 (Positive and non-positive fermioni
 matter �eld theories). We start with the Majorana�eld of Example 3.3 as an example for a fermioni
 matter �eld theory of positive type. The prin
ipalsymbol of the massive Dira
 operator is given by �P (�) = 
� �� = =�, where in lo
al 
oordinates � = ��dx�.The bilinear map (5.12) then reads, for all  1;  2 2 Sol,h 1;  2iSol = i Z� vol� �=n 1j��TC 2j� : (5.14)Using Theorem 2.1 we obtain that the future-pointing normal ve
tor �eld of the Cau
hy surfa
e � is givenby n = #�1 �t, where # is the positive fun
tion on R � � appearing in the metri
 g = �#2 dt2 � gt ofTheorem 2.1. Then =n = 
0# = �i�, where � is the matrix used in de�ning the Dira
 adjoint, see AppendixA. Sin
e on Majorana spinors the Dira
 adjoint equals the Majorana adjoint and sin
e �y = � = ��1 wehave h 1;  2iSol = Z� vol�  y1j� 2j� : (5.15)It holds that h ;  iSol � 0 for all  2 Sol. Even more, h ;  iSol = 0 implies that the initial data  j� � 0vanishes and thus due to the Cau
hy-hyperboli
ity of the massive Dira
 operator  � 0.An example of a fermioni
 matter �eld theory whi
h is not of positive type is the proje
ted Rarita-S
hwinger �eld presented in [BG11, Se
tion 2.6℄. As above we use Theorem 2.1 to get a parti
ularlysimple expression for the normal ve
tor �eld. We take V := DMR 
 T �M , but restri
t ourselves tothe image of the proje
tion operator de�ned by, for all  2 �1(V ), (� )� :=  � � 1D
�
� � . Thesese
tions satisfy 
� � = 0. We equip the bundle V with the non-degenerate antisymmetri
 bilinear formhf; hiV = i fT� Ch�. The proje
ted Rarita-S
hwinger operator is de�ned by, for all  2 �1(V ) with
� � = 0, (P )� := =r � � 2D
�r� � . It satis�es 
�(P )� = 0 for all  2 �1(V ) with 
� � = 0 andthus is a di�erential operator on the proje
ted Rarita-S
hwinger bundle. It is formally self-adjoint withrespe
t to h ; iV on se
tions of the proje
ted Rarita-S
hwinger bundle. The bilinear map (5.12) reads, forall  1;  2 2 Sol, h 1;  2iSol = Z� vol�  y1�j�  �2 j� : (5.16)
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etimes 19We 
an solve the 
onstraint 
� � = 0 for  0 and �nd  0 = �
0
i i, where i = 1; : : : ; D � 1 is a spatialindex. Putting this into (5.16) and setting  1 =  2 =  2 Sol leads toh ;  iSol = Z� vol� � yi j�  ij� � (
i i)yj� (
j j)j�� : (5.17)This is an inde�nite inner produ
t, sin
e if we evaluate it on initial data  ij� with 
i ij� = 0 we obtaina positive number, while evaluating it on  ij� = (
i�)j� with �j� 2 �1s
 (DMR)j� we obtain a negativeone.We next will brie
y 
omment on the question of weak non-degenera
y for our examples of bosoni
gauge �eld theories.Example 5.7 (Linearised Yang-Mills �eld). We analyze the 
ase of a Yang-Mills �eld linearised around avanishing ba
kground A0 and sket
h the main non-degenera
y result, see [DHS12℄ for details on the U(1)
ase. In this 
ase, K = dA0 = d is the exterior di�erential and the asso
iated (
ompa
tly supported) deRham 
ohomology groups of M are de�ned asHn(M; g) := Ker �d : 
n(M; g)! 
n+1(M; g)�Im (d : 
n�1(M; g)! 
n(M; g)) = Hn(M;R) 
 g ; (5.18a)Hn0 (M; g) := Ker �d : 
n0 (M; g)! 
n+10 (M; g)�Im �d : 
n�10 (M; g)! 
n0 (M; g)� = Hn0 (M;R) 
 g : (5.18b)We �rst observe that �([f ℄; [h℄) = hf;G ePhi� (V ) = ZM hf; �G ePhi
g
= 0 ; (5.19)for all f 2 Ker0(Ky) = Ker0(Æ), implies in parti
ular thatZM hk; �dG ePhi

g
= 0 ; (5.20)for all k 2 
20(M; g). From the non-degenera
y of RM h � ; � � ig we then obtain dG ePh = 0, su
h that G ePhde�nes an element in H1(M; g). The Hodge-dual �f for f 2 Ker0(Æ) de�nes an element in HD�10 (M; g) andthus �([f ℄; [h℄) = 0 for all f implies that G ePh 
orresponds to the trivial element in H1(M; g) by Poin
ar�eduality (see e.g. [BT95℄), i.e. G ePh = d� for some � 2 C1(M; g). This in turn implies that the ne
essary
ondition for weak non-degenera
y found in Corollary 5.3 is suÆ
ient in the 
ase at hand.In parti
ular, for any spa
etime with 
ompa
t Cau
hy surfa
es we have G = bG and thus for thelinearised Yang-Mills �eld with A0 = 0 the spa
e (E ; �) is symple
ti
. We next provide a simple exampleof a spa
etime for whi
h G � bG is a proper subset, thus � is degenerate by Corollary 5.3. Let us takeMinkowski spa
e RD with 
at metri
 g and remove the light 
one of the origin 0 2 RD , i.e. we 
onsiderthe globally hyperboli
 spa
etime M := RD n J(f0g) with the indu
ed metri
. We further take two 
losedballs (with stri
tly positive radius) B1 � B2 � RD 
entred at 0 in RD and denote BM1 := B1 \M andBM2 := B2 \M . Let us now take a fun
tion � 2 C1(M; g) su
h that 0 6= � = w 2 g is a 
onstant on J(BM1 )and � = 0 on M n J(BM2 ). The di�erential d� is then an element in 
1s
(M; g) and thus d� 2 bG. It remainsto show that there is no ~� 2 C1s
 (M; g) su
h that d� = d~�. In order to show this, let us 
onsider the smoothembedding � : (0;1)!M � RD given in Cartesian 
oordinates onM � RD by x 7! �(x) = (0; x; 0; : : : ; 0).Pulling ba
k the one-form d� and integrating over (0;1) we �nd by Stokes theoremZ(0;1) ��(d�) = Z(0;1) d��(�) = �w 6= 0 ; (5.21)while doing the same for d~� with ~� 2 C1s
 (M; g) results in 0. Thus, G � bG is a proper subset for the modelunder 
onsideration and � in (E ; �) is degenerate. For a physi
al interpretation of this degenera
y we referto [DHS12℄.
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henkelExample 5.8 (Linearised general relativity). If the globally hyperboli
 spa
etimeM has 
ompa
t Cau
hysurfa
es the weak non-degenera
y of the pre-symple
ti
 stru
ture for linearised general relativity on Ein-stein manifolds has been shown by Fewster and Hunt [FH12, Theorem 4.3℄. The analysis of the non-
ompa
t
ase is to our best knowledge not yet 
ompletely understood.As it has been argued above, the positivity of a fermioni
 gauge �eld theory a

ording to De�nition 4.2is a physi
ally and mathemati
ally motivated 
ondition. We will study this aspe
t for our two examplesof fermioni
 gauge �eld theories in detail.Example 5.9 (Toy model: Fermioni
 gauge �eld). We give a simple proof that the fermioni
 toy modelintrodu
ed in Example 3.9 is not of positive type. For this proof we do not need the expression of � on aCau
hy surfa
e (5.11), but we will work with � as given in (4.7). Our strategy is as follows: We assumethe existen
e of a f 2 Ker0(Ky) su
h that ��[f ℄; [f ℄� > 0 and then expli
itly 
onstru
t an f 0 2 Ker0(Ky)su
h that ��[f 0℄; [f 0℄� < 0. For this we 
hoose a basis of the symple
ti
 ve
tor spa
e �R2m ; 
�, su
h that
 takes the standard form 
 = 0BBBBB� 0 1 0 0 : : :�1 0 0 00 0 0 10 0 �1 0... . . .
1CCCCCA : (5.22)We further 
onsider the 2m� 2m-matrix B = 0BBBBB�0 1 0 0 : : :1 0 0 00 0 0 10 0 1 0... . . .

1CCCCCA : (5.23)Let now f 2 Ker0(Ky) be su
h that ��[f ℄; [f ℄� > 0. Then de�ning f 0 := Bf we have f 0 2 Ker0(Ky), sin
eKy = Æ and B 
ommutes. Using that BT
B = �
 and also that B 
ommutes with G eP and the Hodgeoperator, we obtain��[f 0℄; [f 0℄� = ZM f 0T ^
 �G eP f 0 = ZM fT ^ BT
B �G eP f = ���[f ℄; [f ℄� < 0 : (5.24)6 Positivity of the Rarita-S
hwinger gauge �eldWe derive a suÆ
ient 
ondition for the positivity of the Rarita-S
hwinger gauge �eld and prove that this
ondition is satis�ed on a large 
lass of spa
etimes.Theorem 6.1. Consider the Rarita-S
hwinger gauge �eld (M;V;W; P;K; T ) de�ned in Example 3.10.Then the following statements hold:(i) For all f1; f2 2 Ker0(Ky) and on a Cau
hy surfa
e � as in Theorem 2.1�([f1℄; [f2℄) = Z� vol� � y1�j�  �2 j� � 1D � 2 = 1yj� = 2j�� ; (6.1)where  i := G eP fi 2 Sol, i = 1; 2, and = := 
� �.(ii) Let us assume that for all  2 Sol satisfying 
� � = 0 there exists an � 2 �1(W ) su
h that=r� = 0 on M ; (6.2a)
iri� = �
i i on � ; (6.2b)and �j� is vanishing on the (possibly empty) boundary of �, whereas r�j� is bounded. Then (E ; �) isa pre-Hilbert spa
e, i.e. � is positive de�nite.
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etimes 21(iii) Let D � 4 and let M be asymptoti
ally 
at in the following sense [PT81℄: There is a t 2 R, su
hthat in a 
anoni
al foliation given by Theorem 2.1 the Cau
hy surfa
e (�; gt) is 
omplete. Further,there is a 
ompa
t set C � �, su
h that � n C is the disjoint union of a �nite number of subsets�1; : : : ; �N of �, ea
h di�eomorphi
 to the 
omplement of a 
ontra
tible 
ompa
t set in RD�1 . Underthis di�eomorphism, the Riemannian metri
 gt on �b, b = 1; : : : ; N , should be of the form(gt)ij = Æij + aij (6.3)in Cartesian 
oordinates xi of RD�1 , where aij = O(r�D+3), �kaij = O(r�D+2), and �l�kaij =O(r�D+1). Furthermore, the se
ond fundamental form (extrinsi
 
urvature) hij of ftg � � shouldsatisfy hij = O(r�D+2), �khij = O(r�D+1).In this 
ase (E ; �) is a pre-Hilbert spa
e.(iv) Let M 
ontain 
ompa
t Cau
hy surfa
es. In a 
anoni
al foliation given by Theorem 2.1 let there be at 2 R, su
h that the indu
ed Dira
 operator on ftg �� has a trivial kernel.In this 
ase (E ; �) is a pre-Hilbert spa
e.Proof. Proof of (i): The prin
ipal symbol of the Rarita-S
hwinger operator (3.21) reads �P (�) �� = =�Æ�� �
��� . Hen
e, ^(�P (n[) )� = =n � + 1D�2
�=n= and by (5.12) we have�([f1℄; [f2℄) = h 1;  2iSol = Z� vol� h�P (n[) 1j� ;  2j�iV= Z� vol� �h=n �1 j� ;  2�j�iW � 1D � 2 h=n = 1j� ; = 2j�iW�= Z� vol� � y1�j�  �2 j� � 1D � 2 = 1yj� = 2j�� ; (6.4)where the last identity follows by arguments used in Example 5.6.Proof of (ii): We see from (6.1) that positivity in parti
ular holds if for all  2 Sol we 
an set 
� � = 0and  0 = 0 on � by a suitable 
hoi
e of gauge �xing (re
all that in our 
onventions the metri
 is positivede�nite on spa
elike ve
tors). It is 
onvenient to perform su
h a gauge �xing in two steps. First, let 0 2 Sol be arbitrary. Using a G-gauge transformationK� with � 2 �1s
 (W ), we de�ne  � :=  0�+(K�)� = 0� +r��� 12
� =r�. Demanding 
� � = 0 leads to the equation=r� = 2D � 2 
� 0� ; (6.5)whi
h 
an be solved for � 2 �1s
 (W ), e.g. by imposing a trivial initial 
ondition. Thus, any  0 2 Sol isG-gauge equivalent to a  2 Sol satisfying 
� � = 0. Using Proposition 5.1 (ii) and (6.1) we obtain afterthis gauge transformation �([f1℄; [f2℄) = h 1;  2iSol = Z� vol�  y1�j�  �2 j� : (6.6)Given su
h a  2 Sol with 
� � = 0 we perform a se
ond gauge transformation to set the zero-
omponent 0 = 0 on �, while preserving the 
-tra
e 
ondition 
� � = 0 on M . The 
-tra
e 
ondition is preservedby the gauge transformation K�, � 2 �1(W ), if and only if =r� = 0 on M . Using this and demanding thatthe zero 
omponent of the gauge transformed se
tion vanishes leads us to the equation (6.2b). We assumethat a solution � 2 �1(W ) of (6.2) exists, for all  2 Sol with 
� � = 0, and that �j� is vanishing on ��whereas r�j� is bounded.Noti
e that we do not demand that � is an element in �1s
 (W ), nor that K� 2 �1s
 (V ). It thus remainsto show that the inner produ
t h ; iSol is also gauge invariant under su
h extended gauge transformations,more pre
isely that (note that gr�� = gr���1 = r�� due to (6.2a))Z� vol� h�P (n[)�� � j� ; (r��)j�iW (6.7)
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henkelvanishes for all � 2 �1(W ) whi
h vanish at �� and all  2 �1(V ) whi
h are bounded on � and satisfyP = 0. To this avail, we note that the 
ovariant derivative r� 
ompatible with the Riemannian metri
gt on � and r 
ompatible with g are related by [Wa84, Lemma 10.2.1℄r�� T�1����k�1����l = ��1�1 � � ���k�k��1�1 � � ���l�l���r�T�1����k�1����l ; (6.8)where ��� := Æ�� + n�n� is the proje
tor to the tangent bundle on �. Sin
e n��P (n[)�� = 0 we have��� �P (n[)�� = �P (n[)�� and we 
an repla
e r in (6.7) by r� . Integration by parts is well-de�ned underthe assumptions on  and �. Using again (6.8) in order to repla
e r� by r and proje
tors ��� , thestatement follows by applying the Leibniz rule and using the equation of motion P = 0.Proof of (iii): The �rst equation (6.2a) for � 
an be solved for arbitrary initial 
onditions �j� as =ris Cau
hy-hyperboli
, while the se
ond equation (6.2b) is an ellipti
 
onstraint equation for su
h initial
onditions, whose solvability in general depends on the topology of � and the properties of gt. We shallnow use a generalisation of [PT81, Theorem 4.2℄ to prove this solvability under our hypotheses. Let R � 1be large enough su
h that ea
h �b � RD�1 (we omit the di�eomorphisms �b ! RD�1 n ~C , with suitable
ontra
tible 
ompa
t ~C � RD�1 , here and in the following) 
ontains the exterior of the ball BR of radiusR. For ea
h b and ea
h r � R, we set �b;r := �b nBr and �x a smooth fun
tion � on � su
h that � � 1,� = r in �b;2R and � = 1 in � n �SNb=1�b;R�. Let now s 2 f0; 1g and let k�ks;Æ;p, � 2 �1s
 (W )j� , denotethe weighted Sobolev norm k�ks;Æ;p := sk�Æ+1r��kp + k�Æ�kp ; (6.9a)where r� is the spin 
onne
tion on � andk�kp := �Z� vol� ��y��p=2�1=p : (6.9b)By Hs;Æ;p we denote the 
ompletion of �1s
 (W )j� with respe
t to k � ks;Æ;p. Let us �rst 
onsider the 
aseD = 4. By [PT81, Theorem 4.2℄, the map
iri =: D : H1;Æ;p ! H0;Æ+1;p (6.10)is an isomorphism with a bounded inverse D�1, if p = 2, Æ = �1 or p � 2, 0 < Æ < 2� 3=p. Furthermore,D�1 maps se
tions in H0;Æ+1;p \ �1(W ) to se
tions in H1;Æ;p \ �1(W ). This proves that (6.2b) has aunique solution and that � 2 �1(W ). The required de
ay/boundedness properties of �j� and r�j� followby the arguments used in the proof of [PT81, Proposition 5.3℄. This implies that the 
ondition in (ii) isful�lled and thus (E ; �) is a pre-Hilbert spa
e for the asymptoti
ally 
at 
ase in D = 4.One 
an straightforwardly generalise [PT81, Theorem 4.2℄ to the 
ase D > 4 by noting that the partof the proof of the said theorem whi
h is 
on
erned with the invertability of D for p = 2, Æ = �1 
an bestraightforwardly generalised to D > 4 as all inbetween steps are still valid in higher dimensions and withthe steeper de
ay of aij , �kaij and hij . At the same time, these parameters are suÆ
ient to guarantee therequired de
ay/boundedness properties of �j� and r�j� for D > 4. Hen
e, the 
ondition in (ii) is ful�lledand (E ; �) is a pre-Hilbert spa
e for the asymptoti
ally 
at 
ase in general D � 4.Proof of (iv): The ellipti
 di�erential operator 
iri on � is formally skew-adjoint with respe
t tothe inner produ
t h ; �i = R� vol�  y �, see [PT81, Se
tion 3℄ and note the di�erent Cli�ord algebra
onventions used by the authors. Thus, the trivial kernel of 
iri implies a trivial kernel of its formal adjoint,and the solvability of (6.2b) for all sour
e terms is guaranteed by the general theory of ellipti
 operators onve
tor bundles over 
ompa
t Riemannian manifolds, see e.g. [LM89, Chapter III℄ or Donaldson's le
turenotes [Don08, Se
tion 3℄. Ellipti
 regularity implies that �j� 2 �1(W )j� . This �j� 
an be used as initial
ondition for solving (6.2a) and the resulting se
tion � 2 �1(W ) satis�es the required properties, sin
e �is 
ompa
t. Hen
e, the 
ondition in (ii) is ful�lled and (E ; �) is a pre-Hilbert spa
e.
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etimes 23To 
lose, we present an example of a Ri

i-
at globally hyperboli
 spa
etime M with spin stru
tureon whi
h the Rarita-S
hwinger gauge �eld is not of positive type. Let us take M = R � TD�1, with TD�1denoting the D�1-torus, equipped with the 
at metri
 g = �dt2 +PD�1i=1 d'2i . Here t 2 R denotes timeand 'i 2 [0; 2�) are the angles on the torus. We 
hoose the trivial spin stru
ture on M , in parti
ular thereexists a global basis of �1(V ). The equation of motion for the Rarita-S
hwinger gauge �eld (3.21) reads(P )� = 
��� � � 
��� � = 0. Noti
e that, in parti
ular, all 
onstant se
tions  � � 
onst solve thisequation and thus belong to the spa
e Sol. We obtain for su
h se
tionsh ;  iSol = (2�)D�1 � y� � � 1D � 2 = y = � ; (6.11)where (2�)D�1 is the volume of the torus. Choosing  � 6= 0 su
h that  0 = 0 and 
i i = 0 we obtain thath ;  iSol = (2�)D�1  yi i > 0. On the other hand, 
hoosing  i = 0 and  0 6= 0 we obtainh ;  iSol = �(2�)D�1 D � 1D � 2  y0 0 < 0 : (6.12)We note that if we equip M = R � TD�1 with one of the 2D�1 � 1 non-trivial spin stru
tures [Bar00℄,the indu
ed Dira
 operator on the torus TD�1 has a trivial kernel. Thus, the Rarita-S
hwinger gauge �eldis of positive type by Theorem 6.1 (iv). This shows an interesting 
orrelation between the 
hoi
e of spinstru
ture and the positivity of the Rarita-S
hwinger gauge �eld.A
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les with the Cosmos".A Spinor and gamma-matrix 
onventionsWe review some aspe
ts of spinors in higher dimensions following [VP99℄, being mainly interested in properties of Majoranaspinors. Let D mod 8 = 2; 3; 4 and we denote by �ab = diag (�;+;+; : : : ;+)ab the D-dimensional Minkowski metri
. The 
-matri
es 
a, a = 0; : : : ; D�1, are 
omplex 2bD=2
�2bD=2
-matri
es satisfying the Cli�ord algebra relations f
a; 
bg = 2 �ab.We take the timelike 
-matrix to be antihermitian 
0y = �
0 and the spatial 
-matri
es hermitian 
iy = 
i, for alli = 1; : : : ;D � 1. We further �x � := i
0 whi
h satis�es �y = �. There exists a 
harge 
onjugation matrix C, whi
h isantisymmetri
, i.e. CT = �C, in the dimensions we are 
onsidering, see Table 1 in [VP99℄. Further properties are Cy = C�1and, for all a = 0; : : : ;D � 1, 
aT = �C
aC�1 : (A.1)We de�ne the 
harge 
onjugation operation on spinors � 2 C 2bD=2
 by�
 := �� C� �� ; (A.2)where � denotes 
omponent-wise 
omplex 
onjugation. This operation squares to the identity, �

 = �, for all �. A Majoranaspinor is de�ned by the reality 
ondition �
 = � and the spa
e of Majorana spinors is a real ve
tor spa
e of dimension 2bD=2
.For every Majorana spinor � the Dira
 adjoint equals the Majorana adjoint, � := �y� = �TC, and thus the hermitianstru
ture �� on Dira
 spinors equivalently reads for Majorana spinors�� = �TC� = ��TC� ; (A.3)where in the last equality we have used that CT = �C. We thus have a non-degenerate R-bilinear antisymmetri
 map �TC�on the spa
e of Majorana spinors. However, this map takes values in the purely imaginary numbers iR and therefore shouldbe res
aled by the imaginary unit in order to take values in the reals R.Referen
esBar00. C. B�ar, \Dependen
e on the spin stru
ture of the Dira
 spe
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