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1 IntrodutionOne of the earliest experimental indiations that the nuleon onsists not only ofthree quarks, but also has a gluoni ontribution ame from the measurement ofthe fration of the nuleon momentum arried by the quarks. That this did notsum up to 1 as is required from the energy{momentum sum rule gave evidenefor the existene of the gluon. Denoting hxif as the fration of the nuleonmomentum arried by parton f we haveXq hxiq + hxig = 1 ; (1)where for the quarks f � q = u; d; : : : and for the gluon f � g. Experimentallyhxiu+d � 0:4 so the missing omponent is large � 50% of the total nuleonmomentum. Both hxiq and hxig have similar de�nitions and so analogously tothe de�nition of hxiq we have, with M denoting Minkowski spaehN(~p)j[ bOM(g)�1�2 � 14��1�2 bOM(g)��℄jN(~p)i = 2hxig �p�1p�2 � 14��1�2m2N� ; (2)where OM(g)�1�2 = �trFM�1�FM�2� ; (3)(where O(t) = R d3xO(t; ~x) and with normalisation hN(~p)jN(~p 0)i = 2ENÆ(~p �~p 0)). Note that we an generalise from a nuleon to an arbitrary hadron (averagingover polarisations if neessary). Higher moments an also be onsidered, byinserting ovariant derivatives between the F s. These our when using theWilson operator produt expansion whih relates them to moments of struturefuntions in a twist expansion.There have been many lattie estimates of the quark momentum fration hxiqboth for the nuleon (see e.g. [1, 2℄ for a review) and the pion e.g. [3, 4℄, but fewattempts for the gluon part, hxig [5, 6, 7℄. This is due to the fat that a lattiesimulationmust ompute a quark line disonneted term, whih is extremely noisyand gives a poor signal. These are diret alulations; in this letter we propose anew method using the Feynman-Hellmann theorem, to determine the gradient ofEN as a funtion of a parameter of an operator whih has been introdued intothe ation S ! S(�) = S+�SO. An obvious disadvantage of this method is thatit requires dediated simulations for eah operator of interest, but the gain, aswe shall see, is a muh leaner signal.While the method is general, we shall demonstrate its pratiability here bydetermining hxig in the quenhed ase.2 The Feynman{Hellmann theoremWe �rst briey desribe the Feynman{Hellmann theorem, in a Eulidean formthat will be useful for the ase to be onsidered here. Let S depend on some2



parameter �, so S ! S(�). Now as by de�nition the (Eulidean) orrelationfuntion is given byhN(t)N(0)i� � R [dU ℄N(t)N (0)e�S(�)R [dU ℄e�S(�) ; (4)(the unpolarised ase for the nuleon and where we make the obvious replaementsN by H and N by Hy for other hadrons), then we have���hN(t)N(0)i� = ��N(t)��S(�)�� � h�S(�)�� i��N(0)�� : (5)We now use the transfer matrix formalism on both sides of this equation. Ignoring�nite size e�ets this giveshN(t)N(0)i� = AN(�)e�EN (�)t + exp. smaller terms : (6)so on the LHS of eq. (5),���hN(t)N(0)i� = ��EN (�)�� hN(t)N(0)i� t+ exp. smaller terms : (7)Furthermore, if 
(�) is any operator (loal in time), then using the transfermatrix formalism again the assoiated 3-point funtion giveshN(t)
(�)N(0)i�hN(t)N(0)i� = ( 12EN (�)hN jb
jNi� + exp. small terms 0� � � texp. small terms otherwise : (8)Note that we have inserted a 2EN in the denominator of the RHS to aountfor the mis-math of normalisations, i.e. to agree with those of eq. (2). Henesumming over � also gives a linear term in t. Thus from this equation, replaingP� 
(�) by the operator in the RHS of eq. (5), and together with eq. (7) we havethe Feynman{Hellmann theorem�EN (�)�� = 12EN (�) *N �����:\�S(�)�� :�����N+� ; (9)(where : : : : : means that the vauum term has been subtrated). Thus by suitablyhoosing SO and by identifying numerially the gradient of EN (�) at � = 0 wean determine the desired matrix element.
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3 The lattie method3.1 Gluon operatorsBefore onsidering the lattie, let us �rst Eulideanise the gluon operators1 togive us an indiation of what we might add to the ation. De�ningO�� = �trF��F�� ; (10)(trF 2 = 12F a 2) this then gives the two obvious operator hoies (a) and (b),Oa i = Oi4 = tr( ~E � ~B)iOb = O44 � 13Ojj = 23tr(� ~E2 + ~B2) (11)(OM(g)a ! iOa and OM(g)b ! Ob). The relation to hxig is given byhN(~p)j bOa ijN(~p)i = �2iENpi hxighN(~p)j bObjN(~p)i = 2(m2N + 43~p 2) hxig ; (12)with bOa i = tr(~bE � ~bB)i ; bOb = 23tr(�~bE2 + ~bB2) : (13)Both hoies have their diÆulties: operator (a) always needs a non-zero mo-mentum ~p, while operator (b) requires a deliate subtration between two termssimilar in magnitude.Note that, beause of Eulideanisation (footnote 1) the energy has a negativeE2 term, while the ation (see setion 3.2) has a positive E2 term.3.2 The ationWe now turn to the lattie. We shall use the Wilson gluoni ationS = 13� Xx�<�Re tr �1� U���(x)� ; (14)(i.e. sum over plaquettes), with � = 6=g2. AsRe tr �1� U���(x)� = 14a4g2F a��(x)2 + : : : ; (15)1Our onventions follow [3℄. So EMi = FMi0 ! iFi4 � iEi and BMi = �12�ijkFMjk !12�ijkFjk � Bi.
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this motivates the simplest de�nition of eletri and magneti �eld on eah timeslie as 12Ea 2(�) = 13� 1aX~x i Re tr �1� U�i4(~x; �)�12Ba 2(�) = 13� 1a X~x i<j Re tr �1� U�ij (~x; �)� ; (16)respetively. For the ation we thus takeS(�) = aX� 12 [Ea 2(�) + Ba 2(�)℄� �aX� 12 [�Ea 2(�) + Ba 2(�)℄ ; (17)or in terms of the gauge plaquettesS(�) = 13�(1 + �)Xi Re tr �1� U�i4(~x; �)�+13�(1� �)Xi<j Re tr �1� U�ij (~x; �)� : (18)Of ourse for � = 0, then this redues to the standard ation, eq. (14).3.3 Gluon momentComparing the results of setions 3.1 and 3.2 we see that they an be appliedto operator (b) only; operator (a) would require the lover de�nition of the �eldstrength tensor. Using eq. (11) together with eq. (12) and eq. (9) gives from theFeynman{Hellmann theorem�EN (�)�� = � 12EN (�) hN(~p)j12(�bEa 2 + bBa 2)jN(~p)i� ; (19)whih leads to �EN (�)�� �����=0 = � 32EN �m2N + 43~p 2� hxilatg ; (20)where the lat supersript on hxilatg signi�es that it is now the lattie operator.The vauum term whih appears in setion 2 has been dropped, beauseh0j12(�bEa 2 + bBa 2)j0i = 0 : (21)This follows from rotation symmetry. In the Eulidean vauum the time and spaediretions are equivalent, so the average trae of the hromo-eletri plaquettes,U�i4, is the same as that of the hromo-magneti plaquettes, U�ij , in eq. (16),leading to perfet anellation in eq. (21).5



4 Lattie resultsWe work with quenhed Wilson lover fermions at � = 6:0, sw = 1:769 and � =0:1320, 0:1324, 0:1333, 0:1338, 0:1342 on a 243�48 lattie with antiperiodi timeboundary onditions for the fermion. We have generated O(500) on�gurationsfor eah ensemble. We use standard nuleon interpolating operators together withJaobi smeared soure/sink as in e.g. [3℄. The results were generated using theChroma program suite, [8℄. We have only onsidered the ase ~p = ~0 so eq. (20)redues to hxilatg = � 23amN �amN (�)�� �����=0 : (22)To estimate the gradient at � = 0, we have generated data at � = �0:03333, 0:0,0:03333 whih enables us to straddle the � = 0 point. The raw data results aregiven in Table 1. � � = �0:03333 � = 0 � = 0:033330.1320 1.0033(29) 0.9772(33) 0.9564(34)0.1324 0.9537(30) 0.9283(34) 0.9077(36)0.1333 0.8357(33) 0.8117(40) 0.7923(41)0.1338 0.7649(38) 0.7413(47) 0.7236(47)0.1342 0.7044(47) 0.6799(62) 0.6647(55)Table 1: Nuleon masses, amN , as a funtion of � for �ve quark masses, �, alulatedon ensembles with �xed � = 6:0 and sw = 1:769.In Fig. 1 we plot the nuleon mass, amN , against � for the �ve quark masses.The data show no O(�2) e�ets for the � values hosen. These gradients (at� = 0) together with the nuleon masses (again at � = 0) determine hxilatg fromeq. (22) whih are given in Table 2.� am� hxilatg0.1320 0.55499(48) 0.4826(456)0.1324 0.51745(49) 0.4985(502)0.1333 0.42531(52) 0.5383(644)0.1338 0.36711(55) 0.5620(811)0.1342 0.31433(62) 0.5893(1062)Table 2: The pion mass and hxilatg for the �ve di�erent quark masses.
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Figure 1: The nuleon mass against � for the �ve � values, together with a linear �tfor eah � value.5 RenormalisationAs gluon operators are singlets, they an mix with the quark singlet. Howeverthere exists a ombination of singlet operators with vanishing anomalous dimen-sion. (This is due to the onservation of the energy-momentum tensor, eq. (1).)We follow [6℄ and �rst writehxibareg +Xq hxibareq = 1 +O(a2) ; (23)where hxibareg = Zghxilatg ; hxibareq = Zqhxilatq : (24)Together with the hange to a sheme (here taken as MS)� hxiMSg (�)PqhxiMSq (�) � = � ZMSbare gg(�) 1� ZMSbare qq(�)1� ZMSbare gg(�) ZMSbare qq(�) � � hxibaregPqhxibareq � ; (25)this ompletes the renormalisation proedure. As we are onsidering quenhedQCD only there is a simpli�ation as ZMSbare gg = 1,hxiMSg (�) = hxibareg + [1� ZMSbare qq(�)℄Xq hxibareqhxiMSq (�) = ZMSbare qq(�)hxibareq ; (26)7



(ZMSbare qq(�) is ommon for all the quarks). We thus need to determine Zg, Zqand ZMSbare qq(�). We an �nd Zg by following [10℄ in onsidering an alternativeinterpretation of the ation (18). We motivated this ation by adding a multipleof the gluon x operator to the standard ation, but we ould also write the ationas S = 13�tXi Re tr �1� U�i4(~x; �)�+ 13�sXi<j Re tr �1� U�ij (~x; �)� : (27)whih is the standard way of writing a gluon ation on an anisotropi asymmetrilattie, with di�ering spatial and temporal lattie spaings, as 6= at. This ationhas been studied in detail, in partiular the way in whih the anisotropy � =as=at depends on �s and �t is known both perturbatively and non-perturbatively[11℄. At tree-level the anisotropy is given by �2tree = �t=�s. Zg an be found byomparing the anisotropy atually produed by splitting �s and �t with this tree-level value. The result is Zg = 1� g22 (�� � ) where the anisotropy oeÆients �and � are de�ned in [11℄. Using the perturbative values for �;� [12℄ yields Zg =1� 0:16677g2+ � � � as the 1-loop perturbative Zg. In [9℄ this result was ombinedwith non-perturbative determinations of �;� , [11℄, to give a Pad�e expressionZg = 1� 1:0225g2 + 0:1305g41� 0:8557g2 ; � � 5:7 ; (28)(with an error of � 1%). So for � = 6:0 this gives Zg = 0:748.To estimate Zq we use the results for hxilatg from Table 2 together with thosefor hxilatu , hxilatd from [13℄ (i.e. v2b) together with eqs. (23) and (24). In Fig. 2we plot2 hxilatu + hxilatd against hxilatg . From eq. (23) we would expet that they-interept is given by 1=Zg and the x-interept is given by 1=Zq. At presentwe do not have enough results for a determination, so we shall just hek foronsisteny by �xing the y-interept as 1=0:748 and the x-interept as 1, [6℄.This gives onsisteny so we shall adopt here Zq = 1 together with a 10% error.Also from [13℄, we have for � = 2GeV,ZMSbare qq(� = 2GeV)Zq = ZRGIv2b � [�ZMSv2 (� = 2GeV)℄�1= 1:45� 0:732(9) = 1:06(1) ; (29)where the seond equation uses the notation of that artile (the non-perturbativeRI � MOM sheme is onverted to an RGI form and then bak to the MSsheme). Further values of �ZMSv2 (�) are also given in [13℄. With Zq this thengives ZMSbare qq.2The total ontribution to hxiq from sea quarks has the form Nf � (disonneted term). So,even though the disonneted loop term is itself non-zero, we do not need to onsider it beauseits oeÆient vanishes if we work onsistently in the quenhed approximation.8
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Figure 2: hxilatu + hxilatd against hxilatg for the �ve � values, together with the liney = (1� x)=0:748.6 Results and onlusionWe are now in a position to determine hxiMSg (� = 2GeV). Using the �rst equationin eq. (26) together with eq. (28) (evaluated at � = 6:0) and eq. (29) giveshxiMSg (� = 2GeV). In Fig. 3 we plot using eq. (26), hxiMSg (� = 2GeV) versus(am�)2. This gives a value for hxiMSg (� = 2GeV) ofhxiMSg (� = 2GeV) = 0:43(7)(5) ; (30)as our �nal result, where the �rst error is in the determination of hxilatg and theseond is due to the renomalisation proedure. This is a signi�ant improvementof our previous estimate 0:53(23) based on generating O(5000) on�gurations, [5℄(with error given just for hxilatg ).Diret measurements of gluoni expetation values are notoriously plaguedby noise problems, beause the gluons are bosoni �elds. We have seen herethat a heaper alternative, modifying the gluon ation and using the Feynman-Hellmann theorem to �nd expetation values from mass measurements, workswell. Here we have performed a test alulation in the quenhed ase. Themethod is a generalisation of that used to determine the sigma term (see e.g.[14℄ and referenes therein), �-funtion, e.g. [15℄, or singlet terms, e.g. [16℄. It islearly interesting to repeat this with dynamial fermions.9
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