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Regge limit of R-urrent orrelators in AdS SupergravityJ. Bartels1, J. Kotanski1, A.-M. Mishler1, V. Shomerus21 II. Institute Theoretial Physis, Hamburg University, Germany2 DESY Theory Group, Hamburg, GermanyAugust 17, 2009AbstratFour-point funtions of R-urrents are disussed within Anti-de Sitter supergravity. In par-tiular, we ompute Witten diagrams with graviton and gauge boson exhange in the highenergy Regge limit. Assuming validity of the AdS/CFT orrespondene, our results apply toR-urrent four-point funtions of N = 4 super Yang-Mills theory at strong oupling.

DESY�09�118

1 IntrodutionStudies of the Regge limit for sattering amplitudes go bak to the 1960ies when experiments startedto explore the high energy regime of quantum �eld theories. In Quantum Chromodynamis (QCD),the weak oupling limit of the Regge limit turned out to be dominated by the BFKL Pomeron[1, 2, 3℄ whih represents a bound state of two reggeized gluons. More general, high energysattering amplitudes in QCD an be written in terms of reggeon �eld theory with reggeizedgluons [4℄ as the fundamental degrees of freedom. The BFKL Pomeron is an intriguing startingpoint for analyzing both the NLO orretions [5, 6, 7℄ to the BFKL kernel and for generalizingthe BFKL equation to the more omplex BKP states in the t hannel [8, 9, 10℄. In the ontext oflarge-N limits, the BFKL Pomeron represents the leading approximation of the elasti satteringamplitude (olor singlet exhange). The BKP states have been found to be integrable for large N[11, 12, 13℄, and these links of high energy QCD with integrable models have raised hopes for atleast partial solutions.Investigations of the planar Regge limit were mostly performed perturbatively, i.e. for small 'tHooft oupling �. Up until 1997, strongly oupled gauge theory has remained largely inaessible,at least with analytial tools. The situation has hanged through the disovery of the AdS/CFTorrespondene [14, 15, 16℄. It relates many interesting superonformal gauge theories to stringtheories in Anti-de Sitter bakgrounds. The simplest example of suh a orrespondene involvesN = 4 supersymmetri Yang-Mills theory in four spae-time dimensions. This theory is an attra-tive toy model. While being severely onstrained by its symmetries, the leading Regge asymptotisis idential to that of QCD. The dual desription is given by type IIB string theory on AdS5�S5.Even though the latter is very di�ult to solve ompletely, alulations may be performed for largeradius R of AdS5 using the approximate desription through lassial supergravity. Aording tothe AdS/CFT orrespondene, the supergravity limit of string theory is dual to gauge theory atstrong oupling �!1.In Quantum Chromodynamis, the sattering of eletromagneti urrents provides a reliableenvironment for studying the Pomeron [17, 18℄: at large virtuality of the external photons, the QCDoupling onstant is small, and the use of perturbation theory is justi�ed. N = 4 super Yang-Millstheory ontains lose relatives of eletromagneti urrent [19℄, namely the R-urrents whih belongto the global SUR(4) group. Therefore, is seems natural to further explore the Pomeron, within theAdS/CFT orrespondene, by investigating four-point orrelators of R-urrents in N = 4 super1
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Yang-Mills theory. In the weakly oupled regime, the relevant orrelation funtions have beeninvestigated [20℄. Similar to the QCD ase, in the high energy limit the sattering amplitude hasthe form of a onvolution of the two R-urrent impat fatorsAPAPB (s; t) = is Z d2k(2�)3�PA(Q2A;k; q � k) 1k2(q � k)2�PB (Q2B ;k; q � k) ; (1.1)where k, q are two-dimensional transverse momentum vetors with t = �q2, Q2A and Q2B are thevirtualities of the two inoming R-urrents (for simpliity we take the virtualities of the outgoingurrents to be idential to the inoming ones). Heliity is onserved, and PA, PB denote thepolarizations of the two inoming external urrents (transverse or longitudinal). The impat fators�A, �B for the R-urrents in N = 4 have been alulated expliitly [20℄. When inluding higherorder orretions in the leading logarithmi approximation the two gluon propagators are replaedby the BFKL Green's funtionAPAPB (s; t) = is Z i1�i1 d!2�is! Z d2k(2�)3 d2k0(2�)3��PA(Q2A;k; q � k)G(k; q � k;k0; q � k0;!)�PB (Q2B ;k0; q � k0); (1.2)and the leading singularity in the ! plane is loated at !0 = 4N�s ln 2=�. It may be worthwhileto reall that the high energy behavior (1.2) also allows to address the short distane behavior ofthe operator produt of the R-urrents: by onsidering the limit Q2A � Q2B (like in deep inelastieletron proton sattering), the BFKL Green's funtion an be used to derive, in partiular, theanomalous dimension of the leading twist two gluon operator expanded around the point ! = 0.As we realled in the previous paragraph, the limit of strong oupling is determined by lassialsupergravity. Tehniques for the relevant supergravity omputations were developed starting from[15℄. They have been applied to alulate many two- and three-point orrelation funtions [21, 22,23, 24℄ as well as four-point orrelators [25, 26, 27, 28, 29, 30, 31, 32, 33, 34℄. Just as in the aseof weak oupling, most of the supergravity amplitudes possess unpleasant divergenies whih mustbe renormalized [35, 36, 37, 38, 39, 40, 41, 42, 43℄. In evaluating the Regge limit of four-pointamplitudes we atually meet a pleasant surprise. It turns out that UV-divergent terms do notontribute to the high energy Regge limit of sattering amplitudes. The main reason is that, inthe Regge limit, the oordinates of the R-urrents on the boundaries are well separated from eahother, thus avoiding the ultraviolet divergenies. Therefore, none of the alulations performedbelow requires holographi renormalization.In this paper we alulate the high energy limit for the four-point orrelation funtion of R-urrents at strong oupling, restriting ourselves to the leading term, i.e. in the supergravityregime. We evaluate ontributions from graviton and gauge boson exhange in the bulk andshow that the leading Regge asymptotis is determined entirely by the t-hannel exhange of bulkgravitons. All other amplitudes, inluding those from s- and u-hannel exhange of gravitons andof gauge bosons, are suppressed by at least one power of the energy. Let us mention that thereexist a variety of other approahes to high energy sattering at strong oupling [44, 45, 46, 47, 48℄,[49, 50, 51℄ and [52, 53, 54, 55℄. Our work has a somewhat di�erent take in that is fouses onR-urrents. Furthermore, the results are obtained by thoroughly analyzing the underlying Wittendiagrams, without any shortuts or additional assumptions.Let us brie�y desribe the ontent of the following setions. We shall begin with a more expos-itory part in whih some of the relevant bakground material is presented. In order to de�ne thehigh energy limit in Setion 2.1 all relevant propagators must be transformed to momentum spae.Setion 3 is devoted to a rather detailed alulation of the graviton exhange. The orrespondingsattering amplitude is proportional to the square of the total energy, s2 [56℄. The properties ofthe amplitude are investigated in some detail. In partiular, after performing an inverse Fouriertransform on the transverse momenta of the proess, we �nd a simple losed expression in on�gu-ration spae. The resulting expression for the Regge limit of the graviton exhange an be writtenrather ompatly in terms of a salar propagator of AdS3. Moreover, we determine the expansion2



oe�ients for the amplitude written as a series in the exhanged momentum. We also investigatethe dependene of the forward sattering amplitude on the virtualities of the proess. In Setion 4we alulate the Regge limit of gauge boson exhange for general values of the exhanged momen-tum. As expeted for the exhange of a vetor boson, the amplitude is proportional to the totalenergy s.2 De�nitions and ingredients from supergravityIn this seond setion we shall formulate our main task we address and we provide the basiingredients that are required for its ompletion. After a short review on the alulation of R-urrent orrelators from supergravity, we list all the neessary building bloks. These inlude thebulk-to-bulk propagators for gravitons and gauge bosons in Anti-de Sitter spae.2.1 Formulation of the ProblemWe onsider N = 4 super Yang-Mills (SYM) theory in four dimensional Eulidean spae. Letus pik one of its R-urrents by Jj with j labeling the spaial diretions, i.e. j = 1; : : : ; d = 4.~x = (x1; x2; x3; x4) denotes the four dimensional Eulidean vetor. We are interested in evaluatingthe Fourier transform of the four-point orrelator,i(2�)4Æ(Xi ~pi)Aj1j2j3j4(~pi) = Z  4Yi=1 d4xi e�i~pi�~xi! hJj1(~x1)Jj2 (~x2)Jj3(~x3)Jj4(~x4)i : (2.1)Due to the onservation of the R-urrent, i.e. �jJj = 0, the ontration of the quantity A with oneof the four external momenta vanishes trivially. We an solve these Ward identities expliitly byprojeting the sattering amplitudes,A�1�2;�3�4(j~pij; s; t) =Xji �(�1)j1 (~p1)�(�2)j2 (~p2)�(�3)j3 (~p3)��(�4)j4 (~p4)�Aj1j2j3j4(~pi) ; �i = L;� ; (2.2)with appropriate polarization vetors ��ij (~pi) satisfying pji �(�i)j (~pi) = 0 along with an orthonormalityondition. A set of polarization vetors with the required properties is spelled out in appendixA (eq. (A.2)). For any given hoie of polarizations, the resulting sattering amplitude an onlydepend on the two Mandelstam variables s and t.The perturbative omputation of the full sattering amplitude in gauge theory and supergravityis possible, though a rather tedious exerise. In this study we shall only be interested in the Reggelimit of the sattering amplitude A(s; t) of the proess 1 + 2 ! 3 + 4, i.e. in the limit wherethe total energy is muh larger than the momentum transfer and the virtualities of the externalurrents. In Eulidean notation we haves = �(~p1 + ~p2)2 ;�t = (~p1 + ~p3)2 ; (2.3)and j~p1j, j~p2j (j~p3j and j~p4j) are the virtualities of the inoming (outgoing) urrents. In order totake the limit we are interested in, namelyj~pij2 ;�t� s ; (2.4)we have to go, via Wik rotation, to the Minkowski spae.Our aim here is to alulate the amplitude (2.1) in the limit of in�nite 't Hooft oupling (theweak oupling limit has been addressed in [20℄). To this end we make use of the onjeturedAdS/CFT orrespondene [14℄ between IIB string theory on AdSd+1 spae and N = 4 SU(N)super Yang-Mills theory. An e�ient alulation an only be performed in the limit of large N(planar limit). At the same time we send the 't Hooft oupling � = g2YMN to in�nity. In thisregime, the full string theory on AdSd+1 is well approximated by lassial supergravity.3



The AdS/CFT orrespondene omes with a presription to ompute orrelation funtions inthe d-dimensional quantum �eld theory [15, 16℄. To be more preise, soures �0 of operators insuper Yang-Mills theory orrespond to the boundary values of supergravity �elds in AdSd+1, i.e�j�AdS � �0. For an n-point funtion we havehJ(1)J(2) : : : J(n)iCFT = !n ÆnÆ�0(1) : : : Æ�0(n) exp(�SAdS [�[�0℄℄)���0=0 ; (2.5)where the fator !n omes from the relative normalization of soures to �0 values and the nor-malization of the ation [23℄. On the right hand side, SAdS denotes a lassial supergravity ationthat is evaluated with �xed boundary values of �.Before we an spell out the supergravity theory we onsider, let us brie�y �x some onventionsonerning the Anti-de Sitter spae AdSd+1. Its Eulidean ontinuation is parameterized by z0 > 0and ~x with oordinates xi enumerated by the Latin indies i = 1; : : : ; d. The metri is given byds2 = 1z20 (dz20 + d~x2) ; (2.6)where d~x2 an be related to the metri of Minkowski spae by Wik rotation. The boundary ofthe Anti-de Sitter spae is at z0 = 0. Our omputations will be performed for d = 4, the ase thatis relevant for QCD.Our supergravity alulations an be trunated onsistently to a theory involving �utuationsof the metri on AdSd+1 along with �utuations of an U(1)R gauge �eld A�. The latter is relatedto the gauge theory R-urrents through the AdS/CFT orrespondene. The relevant supergravityation reads S = 12�2 Z dd+1zpg(�R+�) + Sm ; (2.7)with R being the salar urvature and where the ovariant matter ation is [21, 23, 57, 33℄Sm = 12�2 Z dd+1zpg �14F��F�� + ik24pg "�����F��F��A� �A�J� + : : :� : (2.8)Here 2�2 = 15�2R3=N2 , R denotes the radius of AdS5, and F�� is the �eld strength of the gauge�eld A, as usual. Throughout this note, Greek indies refer to the (d + 1)-dimensional spae, i.e.they take values from 0 to d. Latin subsripts, on the other hand, parameterize diretions alongthe Eulidean d-dimensional boundary of AdSd+1. Repeated indies are always summed over afterthey have been lowered. To lower indies we use the d + 1-dimensional metri. The oe�ient kof the Chern-Simons is an integer.Evaluation of the four-point orrelation funtion of R-urrents using eq. (2.5) along with eq.(2.7) is, in priniple, rather straightforward. In pratie, we an use a very onvenient and intuitivediagrammati proedure that was �rst proposed byWitten [15℄ and then developed further by manyother authors. In our ase, the omputation of the relevant Witten diagrams requires only threebasi building bloks. These inlude the bulk-to-bulk propagators for the graviton and the gaugeR-bosons as well as the bulk-to-boundary R-boson propagator. They are onneted by vertieswhih an be inferred form eqs. (2.7) and (2.8). The diagrams that shall be analyzed beloware plotted in Fig. 1. We are only interested in their leading Regge behavior. Sine the regime(2.4) is haraterized through momenta, it is neessary to transform the various propagators tomomentum spae. In order to make our presentations reasonably self-ontained, we shall list theFourier transform of the basi building bloks in the following three subsetions.2.2 Bulk-to-bulk propagator of the gauge bosonLet us begin by disussing the Fourier transform of the bulk-to-bulk gauge boson propagator.Aording to [58℄, its oordinate spae representation is given byG��0(z; w) = �(����0u)F (u) + ����0S(u) ; (2.9)4
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wFigure 1: Witten diagrams for the graviton and boson exhange in the t�hannel, respetivelywhere �� is the derivative with respet to z� and ��0 denotes derivatives with respet to theomponents w�0 . The propagation of the physial omponents are desribed by the massive salarpropagator F with mass parameter m2 = �(d� 1),F (u) = � �d�12 �(4�)(d+1)=2 [u(2 + u)℄�(d�1)=2 = � �d�12 �(4�)(d+1)=2 �d�1 1Xk=0 �(k + d�12 )�(d�12 )�(k + 1)�2k : (2.10)The funtion S(u), on the other hand, is a gauge artifat. We shall not need its form below. Theso-alled hordal distane variable u, �nally, is de�ned byu � (z � w)22z0w0 ; � = 11 + u = 2w0z0z20 + w20 + (~z � ~w)2 ; (2.11)where (z � w)2 = Æ��(z �w)�(z �w)� is the so-alled �at Eulidean distane. In spelling out theFourier transform, we distinguish two di�erent ases aording to whether the seond index �0 isparallel or transverse to the boundary of AdSd+1. In the �rst ase where �0 = j, the result of theFourier transform readsG�j(z0; w0; ~q) = Z d4x ei~q�~xG�j(z0; w0; ~x) = q�qj ~S + 1Xk=0 21�d(z0w0)d=2�1�(k + d=2)�(k + 1)�"Æ�j �z20w20~q24$20 �k+d=4�1=2K2k+d=2�1(j~qj$0)� Æ�0 i2qjw0 �z20w20~q24$20 �k+d=4�1K2k+d=2�2(j~qj$0)# ;where ~x = ~z � ~w and ~S is the Fourier transform of S. Moreover, we introdued the funtion$0 = $0(z0; w0) =pw20 + z20 . Here and below, Km(x) denotes the modi�ed Bessel funtion.In the seond ase, when �0 = 0, the Fourier transform of the gauge boson's bulk-to-bulkpropagator reads,G�0(z0; w0; ~q) = Z d4x ei~q�~xG�0(z0; w0; ~x) = q�q0 ~S + 1Xk=0 21�d(z0w0)d=2�1�(k + d=2)�(k + 1)�"Æ�0 $20z0w0 �z20w20~q24$20 �k+d=4�1=2K2k+d=2�1(j~qj$0) + Æ�j i2qjz0�z20w20~q24$20 �k+d=4�1K2k+d=2�2(j~qj$0)�Æ�0(k + d2 � 1)�z20w20~q24$20 �k+d=4�1K2k+d=2�2(j~qj$0)# :The symbol q0 in the �rst term on the right hand side denotes the derivative q0 � i�0 with respetto z0. 5



2.3 Bulk-to-boundary propagator of the gauge bosonFollowing [15℄, let us now onsider the bulk-to-boundary propagator of the gauge boson in Lorentz-like gauge. It is given by the simple expressionG�j(z; ~x) = NdÆ�j zd�20((~z � ~x)2 + z20)d�1 �NdÆ�0 12(d� 2) ��~xj zd�30((~z � ~x)2 + z20)d�2 ; (2.12)where the normalization Nd = (d�2)�(d)2�d=2(d�1)�(d=2)is hosen suh that the bulk-to-boundary propagator Gjl(z; ~x)! ÆjlÆ(d)(~z � ~x) in the limit wherez0 is sent to z0 = 0. The formula we state here is valid for dimensions d > 2.Performing a Fourier transform in the spaial oordinate ~x on the boundary, we obtainG�j(z0; ~p) = Z dz ei~p�(~z�~x)G�j(z; ~x) = NdÆ�jzd�20 2�d=2�(d� 1) � j~pj2z0�d=2�1Kd=2�1(z0j~pj)�NdÆ�0ipjzd�30 �d=2�(d� 1) � j~pj2z0�d=2�2Kd=2�2(z0j~pj) :(2.13)This expression simpli�es onsiderably when we set d = 4. In this ase, the normalization N4 takesthe form N4 = 2=�2 and thereforeG�j(z0; ~p) = z0 [Æ�j j~pjK1(z0j~pj)� ipjÆ�0K0(z0j~pj)℄ : (2.14)2.4 Bulk-to-bulk propagator of the gravitonFinally, we turn our attention to the bulk-to-bulk propagator of the graviton. Aording to [58℄this quantity reads asG��;�0�0 = (����0u ����0u+ ����0u ����0u)G(u) + g��g�0�0 H(u) + : : : (2.15)Here the dots : : : stand for terms of the form ��X where � = �; �0; �; �0. These turn out not toontribute to our omputation below. Furthermore, G is the massless salar propagatorG(u) = 2d�dCd 2F1(d=2; (d+ 1)=2; d=2+ 1; �2) = �� d+12 �d 1Xk=0 � �d+12 + k�2(d+ 2k)�(k + 1)�2k ; (2.16)where Cd = � �d+12 �(4�)(d+1)=2d :The funtion H , �nally, is given by the following two expliit formulasH(u) = � 2G(u)(d� 1)�2 + 2(d� 2)�(d� 1)2 2Cd(2�)d�1 2F1((d� 1)=2; d=2; d=2+ 1; �2) (2.17)= � 2(d� 1) �d�2� d+12 1Xk=0 � �d+12 + k�2(d+ 2k)�(k + 1)�2k + (d� 2)(d� 1) �d�3� d+12 1Xk=0 � �d�12 + k�2(d+ 2k)�(k + 1)�2k :Before studying the Fourier transform, we evaluate the quantity����0u = 1z0w0 Æ��0 + (z � w)�z0w20 Æ�00 + (w � z)�0z20w0 Æ�0 � (z � w)22z20w20 Æ�0Æ�00: (2.18)Let us antiipate that only the �rst of these terms does atually ontribute to the high energybehavior. With this is in mind we fous on the relevant part by de�ningG(1)��;�0�0(z0; w0; ~x) � � 1(z0w0)2 Æ��0Æ��0 + 1(z0w0)2 Æ��0Æ��0�G(u): (2.19)6



Its Fourier transform is easily omputed and readsG(1)��;�0�0(z0; w0; ~q) = Z d4x ei~q�~xG(1)��;�0�0(z0; w0; ~x) = (Æ��0Æ��0 + Æ��0Æ��0) (2.20)� 1Xk=0 (z0w0)2k+d�2�(k + d=2 + 1)�(k + 1) � j~qj24$20�k+d=4K2k+d=2($0j~qj) ;where ~x = ~z � ~w, as before. Subleading terms an be obtained in a similar way, but they will notbe needed in the present ontext. We �nally mention that, for large jqj, the Fourier transform ofthe funtion G(u) goes as 1=jqj2 [48℄.3 Graviton exhange in the high energy limitThe aim of this setion is to ompute and analyze high energy limit of the sattering amplitudeA(s; t) introdued in the previous setion. Sine we are interested in the AdS5 ase, we shall setd = 4 from now on. We swith to Minkowski metri g = diag(+;�;�;�). However, for simpliitywe ontinue using our previous notation: i.e. ~pj now stands for the four vetor (pj;4; pj;1; pj;2; pj;3)with j~pj j2 = �p2j;4 + p2j;1 + p2j;2 + p2j;3 = �p2j , Latin indies ontinue to run from 1 to 4 (where thefourth omponent denotes Minkowski 'time'), and Greek indies run between 0 and 4.The �rst subsetion ontains the main results on the high energy limit. In the seond subsetionwe make an attempt to re-interpret the result as oming from a orrelation funtion in AdS3.Finally, we investigate in some detail the properties of the forward sattering at in�nite 't Hooftoupling.3.1 The graviton exhangeLet us begin by omputing the ontribution to the four-point funtion of R-urrents that is obtainedfrom the exhange of a single graviton in the t-hannel (left �gure in 1). Aording to the rules ofthe AdS/CFT orrespondene, this quantity is given by1IGR = 14 Z d4zdz0z0 Z d4wdw0w0 T(13)��(z)G��;�0�0(z; w)T(24)�0�0(w) : (3.1)We shall refer to T(ij) as the stress-energy tensor. It is determined through the bulk-to-boundarypropagators of the gauge boson and it ontains the oupling between gauge bosons and gravitons.T(13)�� = z20�[�G�℄j1 (z; ~x1)�[�G�℄j3 (z; ~x3) + z20�[�G�℄j1(z; ~x1)�[�G�℄j3(z; ~x3)�12z20Æ���[�G�℄j1(z; ~x1)�[�G�℄j3(z; ~x3) : (3.2)Note that T satis�es the four-dimensional Ward identity by onstrution. We shall see belowthat only the �rst two terms of T(13)�� ontribute to the high energy behavior of the amplitude.Performing the Fourier transform of the expression (3.1) we obtain~IGR(~pi) = Z Yi d4xi e�iPj ~pj �~xj IGR(~xi) = (2�)4 Æ(4)(Xi ~pi) (3.3)� 14 Z dz0z0 Z dw0w0 ~T(13)��(z0; ~p1; ~p3) ~T(24)�0�0(w0; ~p2; ~p4)G��;�0�0(z0; w0; ~p1 + ~p3) ; (3.4)where T(13)�� = 1(2�)8 Z d4p1d4p3 ei~p1�(~x1�~z) ei~p3�(~x3�~z) ~T(13)�� : (3.5)1The orrelation funtions and amplitudes are alulated up to multipliative onstants, whih an be easilyrestored from the ation (2.7). 7



Before we analyze whih terms give the leading ontributions to the high energy behavior, we reallthat we still need to ontrat our amplitude with the appropriate polarization vetors~IGR�1;�2�3;�4 = Xji�(�1)j1 (~p1)�(�2)j2 (~p2)�(�3)j3 (~p3)��(�4)j4 (~p4)�(~IGR)j1j2j3j4 : (3.6)Sine the amplitude (3.4) satis�es the Ward identities assoiated with the onservation of R-urrents, we are allowed to shift the polarization vetors (A.2) by the momenta of the orrespondingpartiles. If we allow for this additional freedom, the polarization vetors may be brought into theform displayed in eq. (A.4) of the Appendix. We note that ontrations of these shifted polarizationvetors with any tensor annot give additional powers of the energy s. Hene, we an determinethe dominant terms of the sattering amplitude before we atually swith to the polarization basis.After these remarks let us look bak at the form of the stress-energy tensor T . Eah of thethree terms ontains two derivatives whih are replaed by momenta after Fourier transformation.These are ombined with two more momentum omponents from the seond stress-energy tensor.Therefore, we an at most obtain terms whih are of the order s2. But this requires that momentumomponents of ~p1 and ~p3 are ontrated with momentum omponents ~p2 and ~p4. Terms in whih~p1 is ontrated with ~p3, on the other hand, are learly subleading. This implies that we androp the term in the seond line of eq. (3.2) and it explains why we had previously introduedthe quantity G(1) in our disussion of the bulk-to-bulk propagator for the graviton. In fat, G(1)ontains all terms of the propagator that an ontribute to the leading high energy behavior. Wean summarize the results of our disussion through the following two formulas~G(1)ij; i0j0(z0; w0; ~q) � 4s2(z0w0)2 �p2ip1i0p2jp1j0 + p2ip1j0p2jp1i0� ~G ; (3.7)~T(13)��(z0; ~p1; ~p3) � z40(Æ�k1Æ�k3 + Æ�k1Æ�k3)p1k1p3k3 �� �p1j1p3j3K0(z0j~p1j)K0(z0j~p3j)� Æj1j3 j~p1jj~p3jK1(z0j~p1j)K1(z0j~p3j)� (3.8)for the high energy limit of the graviton bulk-to-bulk propagator and the stress-energy tensor,respetively. Here and throughout the rest of the paper, � means equality up to terms that aresubleading in the high energy limit. Note that the graviton propagator has exatly the form thatis expeted in the Regge limit: for the exhange of a spin one gauge boson it is well-know that theleading high energy behavior omes from a partiular t-hannel heliity state. If j (j0) denote theupper (lower) Lorentz indies of the t-hannel exhange propagator and p1 (p2) the large momentaat the upper (lower) vertex, this dominant heliity state ontributes through the tensor2p2jp1j0s : (3.9)In eq. (3.7) we see that the leading behavior of the graviton exhange an be interpreted as the(symmetrized) tensor produt of two spin one bosons. Furthermore, as we will demonstrate belowthe �rst and the seond term within the square braket in the last line of eq. (3.8) orrespond tolongitudinal and transverse polarization of the R-boson, respetively.If we now substitute the two expressions (3.8) and (2.20) bak into the amplitude (3.4) and usethat (~p1 � ~p2)(~p3 � ~p4) � s2=4, we arrive at the high energy limit of the graviton exhange:~IGRRegge = (2�)4Æ(4)(Xi ~pi) s22 Z dz0 Z dw0�j1j3(p1; p3; z0)�(j~p1 + ~p3j; z0; w0)�j2j4(p2; p4;w0)(3.10)where �(j~p1 + ~p3j; z0; w0) = 1Xk=0 z2k+50 w2k+50�(k + 1)�(k + 3) � j~p1 + ~p3j24$20 �k+1K2k+2(j~p1 + ~p3j$0) ; (3.11)�j1j3(~p1; ~p3; z0) = Xm=0;1 ~Wmj1j3(~p1; ~p3)Km(z0j~p1j)Km(z0j~p3j) ;8



while ~Wm1j1j3(~p1; ~p3) = (Æj1j3 j~p1jj~p3jÆm1;1 � p1j1p3j3Æm1;0) : (3.12)This formula has reminisent of eq. (1.1) where �jajb plays a role of an impat fator while �(j~p1+~p3j; z0; w0) is the analog of a propagator.It is onvenient to swith to the heliity basis: by ontration with the polarization vetorsfrom eqs. (A.4) and (A.3) and making use of the orthonormality of the transverse polarizations weobtain ~Wm1�1�3(~p1; ~p3) = Xj1;j3 �(�1)j1 (~p1)�(�3)j3 (~p3)� ~Wm1j1j3(~p1; ~p3)� j~p1jj~p3j(Æm1;1Æ�1;hÆ�3;h + Æm1;0Æ�1;LÆ�3;L) ; (3.13)i.e. the �rst term with m1 = 1 only ontributes to the transverse polarizations h = �, whereasm1 = 0 belongs to the longitudinal polarization. From eq. (3.13) we learn that heliity is onserved:�1 = �3. As we also see in eq. (3.13), the quantity ~W�1;�3 in the heliity basis only depends uponthe virtualities of the external urrents. Consequently, also the �impat fator� in the heliity basis��1�3(j~p1j; j~p3j; z0) = Xm=0;1 ~Wm�1�3(~p1; ~p3)Km(z0j~p1j)Km(z0j~p3j) ; (3.14)only depends on the virtualities.With these expressions our sattering amplitude �nally reads:AGR�1�2�3�4(s; t) = s22 Z dz0dw0��1�3(j~p1j; j~p3j; z0) �(j~p1 + ~p3j; z0; w0) ��2�4(j~p2j; j~p4j;w0) : (3.15)The amplitude (3.15) is proportional to s2. To be omplete, one also has to onsider theexhange of the graviton in the s- and u- hannels. In these ases the last term of the stress-energytensor (3.2) is also important. Counting powers of momenta in the stress-energy tensor one mightat �rst expet to get additional ontributions of order s2. But, unlike in the t-hannel exhangethat we have disussed at length, the s- and u-hannel exhanges of the graviton are suppressedby an additional fator s�1 that omes in through the graviton propagator itself. Therefore, thereis no need to analyze suh ontributions to the amplitude any further.Equation (3.15) should be ompared with the weak oupling result (1.1). Again we have thestruture of two impat fators � whih depend upon the virtualities of the external urrents,onneted by an exhange propagator � and onvoluted by a two-dimensional integration. Thepower of s re�ets the spin of the exhanged graviton. On the gauge theory side, in the weakoupling limit, the amplitude is given by the exhange of two gluons, and higher order orretionsin g2 replae the two gluon exhange by the BFKL Green's funtion, modifying the power of s from1 to 1 + !0. On the string side it has been argued that, due to the reggeization of the graviton,the power behavior s2 of the graviton exhange will be modi�ed to s2�� where � = O(1=p�).However, in order to ompute �, one has to go beyond the supergravity approximation used inthis paper.3.2 Going bak to on�guration spaeIn the previous subsetion we determined the leading Regge asymptotis for the Fourier transformof the four-point orrelator of R-urrents. The result was expressed in terms of the four momenta~pi and it involved an in�nite summation in the onstrution of the kernel funtions �. In priniple,one might attempt to perform the inverse Fourier transform and to re-phrase our result as anexpression for the four-point orrelator of R-urrents. But the answer turns out to be ratherompliated.We will therefore take a di�erent route and perform an inverse Fourier transform exlusivelyin the transverse momenta. To make this more preise, we �x a partiular frame: working inthe Minkowski metri g�� = diag(1;�1;�1;�1) we take the large momenta along the 3-axis. We9



introdue the light-like referene vetors pA = (p; 0; 0; p) and pB = (p; 0; 0;�p) with s = 4p2,and the transverse momentum vetors pi;? = (0; pi;1; pi;2; 0) (i = 1; :::; 4), q? = (0; q1; q2; 0) withp2i;? = �p2i , q2 = �q2. Throughout this subsetion, we adopt the four vetor notation pi =(pi;4; pi;1; pi;2; pi;3), and we take the momenta p3 and p4 to be outgoing. Momenta in bold faerefer to the 2-dimensional transverse spae. For large s we �ndp1 =  1 + Q22 + p22;? � 12 (p1;? + p2;?)2s ! pA � Q21 + p21;?s pB + p1;? ;p2 = �Q22 + p22;?s pA + 1 + Q21 + p21;? � 12 (p1;? + p2;?)2s ! pB + p2;? ;p3 =  1 + Q24 + p24;? � 12 (p3;? + p4;?)2s ! pA � Q23 + p23;?s pB + p3;? ;p4 = �Q24 + p24;?s pA + 1 + Q23 + p23;? � 12 (p3;? + p4;?)2s ! pB + p4;?with p1;? � p3;? = p4;? � p2;?. Here we introdued the virtualities Q2i = j~pij2, and for themomentum transfer t we havet = (p1;? � p3;?)2 + (Q22 �Q24 + p22;? � p24;?)(Q23 �Q21 + p23;? � p21;?)s + : : : � �q2 : (3.16)We now ompute the two-dimensional Fourier transform with respet to q:IGRT;Regge = 1(2�)8 Z Yi d2pi Yi ei(x1�p1+x2�p2�x3�p3�x4�p4)�(2�)2Æ(2)(p1 + p2 � p3 � p4)AGR�1�2�3�4(s; t) : (3.17)Here, the two dimensional transverse vetors xi de�ne the positions in transverse spae of thesattering R-urrents. In partiular, the di�erene b = 12 (x1 + x3) � 12 (x2 + x4) is the impatparameter. The subsript T indiates that the Fourier transform has been performed in the trans-verse spae only. In alulating the two-dimensional Fourier transform we reall that s and j~pij arekept �xed so that the integration over transverse momenta only e�ets the arguments of the deltafuntion and the variable t = �j~p1 + ~p3j2 in eq. (3.16). The result isIGRT;Regge � Æ(2)(x1 � x3)Æ(2)(x2 � x4) (3.18)�s22 Z dz0z20 Z dw0w20��1�3(j~p1j; j~p3j; z0)G�=3;d=2(�u) ��2�4(j~p2j; j~p4j;w0):(3.19)The variable �u = (1� ��)=�� is related to a 3-dimensional analogue of our variable � through�� = 2z0w0z20+w20+b2 :The funtion G that appears in formula (3.18) is obtained as a speial hoie of the salar Green'sfuntion in AdSd+1 [59, 60, 61, 62℄G�;d(u) = 2� �(�)�(�� d2 + 12 )(4�)(d+1)=2�(2�� d+ 1)�� 2F1(�2 ; �+12 ; �� d2 + 1; �2) : (3.20)Our parameters � = 3 and d = 2 are assoiated with a salar of mass m2 = �(� � d) = 3 inAdS3. Standard properties of hypergeometri funtions allow to simplify the expression for thispartiular propagator to read G�=3;d=2(�u) = 2� ��2 � 2p1� ��24���p1� ��2 : (3.21)10
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lower one that of the target. Sine in the Witten diagram approximation our sattering amplitudehas no imaginary part, we annot ompute a ross setion; nevertheless, it may be instrutive toanalyze the power behavior in r. Introduing the saling variable xbj � Q2A=s, and ombining, ineq. (3.25), the power r�4 of ~XPAPB (r) with the fator s2 in front of the integral, we �nd for larger the leading behavior AGRPAPB � � 1xbj�2 ; (3.28)for (PAPB)= LL and TL, whereas AGRPAPB � � 1xbj�2 ln r2 ; (3.29)for the ases LT and TT. As we have indiated after eq. (1.1), the limit r2 = Q2A=Q2B ! 1 isonneted with the short distane behavior of the produt of the R-urrents J(~x1) and J(~x3).It may be of interest to ompare this behavior with the large r = QA=QB behavior of theweak oupling limit of the forward sattering amplitude in N = 4 SYM in eq. (1.1). For larger = QA=QB , the maximal power of logarithms in r omes from the region of strongly orderedtransverse momenta: Q2A � k2 � Q2B . In addition, the impat fators �A and �B , dependingupon the polarization of the external urrents, may ontain logarithms of the type lnQ2A=k2 andlnk2=Q2B. From [17, 18℄ we take:�A;PA(Q2A;k2) � 8<: Q2Ak2 ln Q2Ak2 : PA = Tk2Q2A : PA = L�B;PB (Q2B ;k2) � ( ln k2Q2B : PB = Tonst : PB = L : (3.30)This leads to APAPB � 8>><>>: TT � ln3 r2 : (PAPB) = (TT )TL � ln2 r2 : (PAPB) = (TL)LT � ln2 r2 : (PAPB) = (LT )LL � ln r2 : (PAPB) = (LL) ; (3.31)and the onstants are omposed of the oe�ient funtions and anomalous dimensions. Returningto the graviton exhange amplitude, it is suggestive to assoiate the ln r2 modi�ation also withanomalous dimensions: it would be interesting to perform a systemati operator analysis of thestrong oupling limit.In the last part of this setion we would like to determine the region in the integration over z0and w0 from whih the four amplitudes ~X reeive their dominant ontributions. Let us onsiderthe integrands of the funtions ~XPP 0 whih we now write as~XPP 0 = Z 10 dzB Z 10 dwB ~JPP 0 : (3.32)As one an see from eq. (3.26), the integrand is �nite at zB = 0 and wB = 0, and due to theBessel funtions it falls o� exponentially at in�nity. One therefore expets, for QA � QB , the mainontribution to the integrals to ome from the region where zB and wB are of order unity. Thereare two kinds of maxima: �rst, there is a 'ridge' along the diagonal line zB = wB , resulting from�-funtions in eq. (3.26). Seond, there are loal maxima away from the diagonal. Maxima alongthe ridge are found from the ondition�x ~JPAPB (zB = wB = x)jx=xPAPB = 0; (3.33)whih has the form:0 = 2(mA +mB +3)KmA(rx)KmB (x)� 2vKmA(rx)KmB+1(x)� 2rxKmA+1(rx)KmB (x) ; (3.34)13
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exhanged graviton ouples to the gauge boson moves lose to the boundary, for both polarizationsPA =T and PA =L. For the lower vertex we see a di�erene between transverse and longitudinalpolarization of the target urrent: in the former ase, w0 � 1=QA beomes small, in the latter asew0 remains onstant of the order 1=QB.4 Gauge boson exhange in the high energy limitIn the following pages we shall brie�y analyze ontributions from gauge boson exhange in thebulk. In analogy to the ase of graviton exhange, the leading ontribution arises from the t-hannel exhange of the gauge boson. Not surprisingly, this leading term is linear in s and, hene,subleading when ompared to the graviton exhange.We restrit ourselves to the abelian part of the SU(4) group. The oupling of the external gaugeboson to the exhanged bulk boson then proeeds only through the Chern-Simons interation termZ ddzdz0"�������A�(z)��A�(z)A�(z) : (4.1)Using one more the standard rules of the AdS/CFT orrespondene, we an determine the am-plitude for boson exhange in t�hannel to be of the formICS = Z d4zdz0 Z d4wdw0"�1�2�3�4�5"�1�2�3�4�5�[�1G�2℄j1(z; ~x1)�[�3G�4℄j3(z; ~x3)�G�5�5(z; w)�[�1G�2℄j2(w; ~x2)�[�3G�4℄j4(w; ~x4) ; (4.2)where the partial derivatives � ating on z and w, respetively. There are similar amplitudesinluding derivatives on the bulk-to-bulk propagator. But all these ontributions to the full t-hannel exhange turn out to be idential, as a result of the Bianhi identity. As in the ase of thegraviton exhange, we perform the Fourier transform, i.e.ICS = 1(2�)16 Z d4p1d4p2d4p3d4p4 ei~p1 �~x1 ei~p2�~x2 ei~p3�~x3 ei~p4�~x4 ~ICS : (4.3)After tedious alulations one �nds that, in the high energy limit, the main ontribution omesfrom Eq. (4.2) with both nonzero �5 = m 6= 0 and �5 = n 6= 0, i.e.ICSRegge = 4 Z d4zdz0 Z d4wdw0"0�2�3�4m"0�2�3�4n�[0G�2℄j1(z; ~x1)�[�3G�4℄j3(z; ~x3)� Gmn(z; w)�[0G�2℄j2(w; ~x2)�[�3G�4℄j4(w; ~x4)+�~x1 $ ~x3j1 $ j3�+�~x2 $ ~x4j2 $ j4�+�~x1 $ ~x3; ~x2 $ ~x4j1 $ j3; j2 $ j4 � : (4.4)The Fourier transform of this expression is given by~ICSRegge = (2�)4Æ(4)(~p1 + ~p2 + ~p3 + ~p4) ~WCSj1j3j2j4��Z dz0z30 Z dw0w30 j~p3jK1(z0j~p3j)K0(z0j~p1j)� 1Xk=0 K2k+1(j~qj$0)�(k + 2)�(k + 1) �z20w20 j~qj24$20 �k+1=2 j~p4jK1(w0j~p4j)K0(w0j~p2j))+�~p1 $ ~p3j1 $ j3�+�~p2 $ ~p4j2 $ j4�+�~p1 $ ~p3; ~p2 $ ~p4j1 $ j3; j2 $ j4 � ; (4.5)15



where the polarization tensor ~W takes following form~WCSj1j3j2j4 � tsp1j1p2j2Æj4j3 � sj~p1j2j~p2j2(Æj2j3Æj1j4 � Æj1j2Æj3j4) + sp1j1p2j2qj3qj4�sj~p1j2p2j2 (Æj1j4qj3 � Æj3j4qj1)� sj~p2j2p1j1(Æj3j4qj2 � Æj2j3qj4) (4.6)with ~q = ~p1 + ~p3, as before. Going to the polarization base (A.4) the tensor ~WCS gets replaed by~WCS�1�3;�2�4(~pi) = Xj1;j2;j3;j4 �(�1)j1 (~p1)�(�2)j2 (~p2)�(�3)j3 (~p3)��(�4)j4 (~p4)� ~WCSj1j3j2j4(~pi) (4.7)� �sj~p1j2j~p2j2((~�(�1)T � ~�(�4)�T )(~�(�2)T � ~�(�3)�T )� (~�(�3)�T � ~�(�4)�T )(~�(�1)T � ~�(�2)T ))= �sj~p1j2j~p2j2(2Æ�1;�2 � 1)Æ�1�3Æ�2�4 ;where �i are possible transverse polarizations. Putting this bak into our expression (4.6) we havenow expressed the Regge limit in terms of the kinematial invariants s; t; j~pij. The whole amplitudeis proportional to s, as we antiipated at the beginning of this setion. Therefore, it is subleadingwhen ompared to the ontribution from t-hannel graviton exhange. We also note that only thetransverse polarization ontributes to the Regge limit of the t-hannel exhange of gauge bosons.Furthermore, the heliity is onserved in the high energy limit.As in the ase of graviton sattering (we an perform two-dimensional Fourier transform in thetransverse momenta to getICST;Regge = Æ(2)(x1 � x3)Æ(2)(x2 � x4)WCS�1�3�2�4� Z dz0z20 Z dw0w20 j~p3jK1(z0j~p3j)K0(z0j~p1j) G�=2;d=2(~u) j~p4jK1(w0j~p4j)K0(w0j~p2j)+�~p1 $ ~p3�1 $ �3�+�~p2 $ ~p4�2 $ �4�+� ~p1 $ ~p3; p2 $ ~p4�1 $ �3;�2 $ �4� (4.8)with WCSj1j3j2j4 � s de�ned similarly to Wm1j1j3 and the salar propagator G�;d that was spelledout in eq. (3.20). Finally, we would like to provide an expression for the forward limit, i.e. whenj~p1 + ~p3j = j~qj ! 0. In this limit, the terms in the urly brakets of eq. (4.5) givef: : :g = � 12 Z dz0 Z dw0j~p3jK1(z0j~p3j)K0(z0j~p1j) (�(w0 � z0)z40w20 + �(z0 � w0)z20w40)� j~p4jK1(w0j~p4j)K0(w0j~p2j) : (4.9)Thus, for ~p1 = �~p3 ~p2 = �~p4, we are left with~ICSforward = (2�)4Æ(4)(~p1 + ~p2 + ~p3 + ~p4)(8 ~p1 � ~p2) (Æj1j2Æj3j4 � Æj2j3Æj1j4)� Z dz0 Z dw0z30w30 j~p1j3K0(z0j~p1j)K1(z0j~p1j) G�=1;d=0(û) j~p2j3K0(w0j~p2j)K1(w0j~p2j) :(4.10)The salar propagator G in the seond line is de�ned through eq. (3.20). It assumes the followingform G�=1;d=0(û) = 12z0w0 (�(w0 � z0)z20 + �(z0 � w0)w20) : (4.11)We onlude that the exhange of the gauge bosons in the t�hannel an give ontributions tothe sattering amplitude at most proportional to s, and it is of the same order as subleading termsof the graviton exhange.
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5 SummaryThe aim of this work was to alulate in the Regge limit the sattering amplitude of R-urrentsfor N = 4 SYM theory at strong oupling. We make use of the AdS/CFT onjeture whih mapsthis amplitude on four-point orrelation funtions of R-bosons in supergravity whih live in theAnti-de Sitter spae. We have omputed Witten diagrams of graviton and boson exhanges in thet�hannel. Similar to gauge theories, the exhange of highest spin dominates, i.e. the leadingontribution omes from the (real-valued) Witten diagram with graviton t-hannel exhange. Thison�rms the duality between the two-gluon exhange in N = 4 SYM and the graviton exhangein the strong oupling region. On the gauge theory side, the sum of leading energy logarithmsreplaes the two gluon exhange by the BFKL Pomeron. On the strong oupling side, it has beenargued that the s2 behavior of the graviton exhange is replaed by s2�� where � = O(1=p�):however, the omputation of this orretion� annot been done in the supergravity approximationused in the present paper. For spin-1 boson exhange, whih is due to the Chern-Simons verties,we found the expeted high behavior proportional to s; heliity is onserved, and amplitude withlongitudinally polarized bosons are subleading for large s.For the graviton exhange we have found that, in the transverse (2 + 1)�dimensional on�gu-ration spae, one an re-formulate the sattering amplitude as the exhange of an e�etive �eld,build from a salar �eld with dimension � = 3.We have also analyzed how the graviton exhange amplitude depends upon the virtualities ofthe external urrents. For large r2 = Q2A=Q2B, the power behavior is the same as the leading twistbehavior on the weak oupling side, and the appearane of a logarithm, ln r2, hints at the preseneof an anomalous dimension in a short distane expansion. A systemati study should be done ina separate paper.The virtualities of the external urrents determine the distane of the verties away from theboundary. In partiular, we have analyzed in some detail the limit r ! 1, i.e. the analogue of'deep inelasti sattering' where the virtuality of the upper R-urrent is muh larger than the lowerone: in this ase, the distane of the upper 'impat fator' from the boundary is small, of the order1=r. A similar result has been found in [49, 50, 51℄.We view our results as a �rst step towards a systemati alulation of the Regge limit of thesattering amplitude at strong oupling. In partiular, in order to obtain a nonzero imaginary part,one has to go beyond the tree approximation of Witten diagrams. In [44, 45, 46, 47℄ a semilassialapproximation of string theory has been proposed. Another possible line of investigation mightfollow the lassial paper of Amati et. al [63℄ in whih string theory in �at spae has beeninvestigated.AknowledgmentsWe are grateful for disussions with A. H. Mueller, L. Motyka and in partiular with I. Papadim-itriou. This work was supported by the grant of SFB 676, Partiles, Strings and the Early Universe:�the Struture of Matter and Spae-Time� and the grant of the Foundation for Polish Siene.A Eulidean polarization vetorsThe polarization vetors ~�(i)k (~pj) should satisfy~pj � ~�(i)(~pj) = 0 ; ~�(i1)(~p) � ~�(i2)(~p)� = (�)Li1;i2 Æi1i2 ; (A.1)
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where Li1;i2 = 1 when ij is longitudinal (L) and 0 when ij is transverse (h = �). The star denotesomplex onjugation. One of the possible solutions reads as~�(L)(~p1) = 1j~p1j(~p1 + 2j~p1j2s ~p2) ; ~�(h)(~p1) = ~�(h)T + 2~p1 � ~�(h)Ts ~p2 ;~�(L)(~p2) = 1j~p2j(~p2 + 2j~p2j2s ~p1) ; ~�(h)(~p2) = ~�(h)T + 2~p2 � ~�(h)Ts ~p1 ;~�(L)(~p3) = 1j~p3j(�~p1 � 2j~p3j2s ~p2 + ~q) ; ~�(h)(~p3) = ~�(h)T + 2(~p1 � ~q) � ~�(h)Ts ~p2 ;~�(L)(~p4) = 1j~p4j(�~p2 � 2j~p4j2s ~p1 � ~q) ; ~�(h)(~p4) = ~�(h)T + 2(~p2 + ~q) � ~�(h)Ts ~p1 ; (A.2)plus subleading terms whih do not ontribute. We denote the transfered momenta ~q = ~p1 + ~p3while �(�)T = 1p2(0; 1;�i; 0) : (A.3)In Eq. (A.2) we have shown only the leading terms in s. Using the Ward identity one an shift thepolarization vetors to~�(L)(~p1) = 2j~p1js ~p2 ; ~�(h)(~p1) = ~�(h)T + 2~p1 � ~�(h)Ts ~p2 ;~�(L)(~p2) = 2j~p2js ~p1 ~�(h)(~p2) = ~�(h)T + 2~p2 � ~�(h)Ts ~p1 ;~�(L)(~p3) = � 2j~p3js ~p2 ; ~�(h)(~p3) = ~�(h)T + 2(~p1 � ~q) � ~�(h)Ts ~p2 ;~�(L)(~p4) = � 2j~p4js ~p1 ; ~�(h)(~p4) = ~�(h)T + 2(~p2 + ~q) � ~�(h)Ts ~p1 : (A.4)The resulting vetors (A.4) do not satisfy eq. (A.1). For amplitudes whih satis�es the Wardidentity the ontration with polarization vetors of eq. (A.4) gives the same results as with eq.(A.2). Moreover, sine their ontration with other tensors an not produe additional powers ofs, they are muh simpler in use. Changing the sign of the metri and performing the Wik rotationone an get the similar polarization vetors in the Minkowski spae.B Momentum spaeFollowing [23℄, Feynman integrals I in momentum spae an be alulated using the Shwingerrepresentation, i.e.Im(x0; ~q1) = Z dd~x1 ei~q1~x1 1(x20 + ~x21)m+1 = Z dd~x1 ei~q1~x1 � 1�(m+ 1) Z 10 d��m e��(~x21+x20)�= �d=2�(m+ 1) Z 10 d��m�d=2 e��x20 e� ~q214�= 2�d=2�(m+ 1) � j~q1j2x0�m+1�d=2Km+1�d=2(x0j~q1j) : (B.1)For integer positive � the modi�ed Bessel funtion reads asK�(u) = 1=2(u=2)�� ��1Xk=0 (� � k � 1)!k! (�u2=4)k + (�1)�+1 ln(u=2)(u=2)� 1Xk=0 (u2=4)kk!(� + k)!+(�1)�1=2(u=2)� 1Xk=0( (k + 1) +  (� + k + 1)) (u2=4)kk!(� + k)! : (B.2)18



C The resummed ontribution to the graviton propagatorThe sum de�ned in eq. (3.11) with q = j~p1 + ~p3j and $0 =pw20 + z20 has a following form�(z0; w0) = 1Xm=0 q2mUm = 1Xk=0 z2k+50 w2k+50�(k + 1)�(k + 3) � q24$20�k+1K2k+2(q$0)= z50w502$40 1Xm=0 (�1)2mq4m$4m024m�(2m+ 1) 1Xk=m �(2k + 2� 2m)�(k + 1)�(k + 3) z2k0 w2k0$4k0�q2z50w5023$20 1Xm=0 (�1)2mq4m$4m024m�(2m+ 2) 1Xk=m �(2k + 1� 2m)�(k + 1)�(k + 3) z2k0 w2k0$4k0� ln(q$0=2)z50w50q424 1Xm=0 (q=2)4m�(3 + 2m) mXk=0 $4m�4k0�(2m� 2k + 1) (�1)2kz2k0 w2k0�(k + 1)�(k + 3)� ln(q$0=2)z50w50q626 1Xm=0 (q=2)4m�(4 + 2m) mXk=0 $4m�4k+20�(2m� 2k + 2) (�1)2kz2k0 w2k0�(k + 1)�(k + 3)+q4z50w5025 1Xm=0 (q=2)4m�(2m+ 3) mXk=0 $4m�4k0�(2m� 2k + 1) (�1)2kz2k0 w2k0�(k + 1)�(k + 3)�( (2m� 2k + 1) +  (2m+ 3))+q6z50w5027 1Xm=0 (q=2)4m�(2m+ 4) mXk=0 $4m�4k+20�(2m� 2k + 2) (�1)2kz2k0 w2k0�(k + 1)�(k + 3)�( (2m� 2k + 2) +  (2m+ 4)) := 1Xm=0 q4m �T (1)m + q2T (2)m + q4T (3)m + q6T (4)m + q4T (5)m + q6T (6)m � (C.1)where T (1)m = 2�4mw2m+50 z2m+502 (w20 + z20)2 3F2�1; 1; 32 ;m+ 1;m+ 3; 4w20z20(w20+z20)2��(m+ 1)�(m+ 3)�(2m+ 1) ; (C.2)and T (2)m = �2�4m�2w2m+50 z2m+502(w20 + z20) 3F2� 12 ; 1; 1;m+ 1;m+ 3; 4w20z20(w20+z20)2��(m+ 1)�(m+ 3)�(2m+ 2) : (C.3)Moreover, T (3)m = �2�4m�4 (w0z0)2m+52�(2m+ 3)2 ln ��w20 + z20� q2=4�C(�2m�2)2m �w20 + z202z0w0 � ; (C.4)and T (4)m = 2�4m�6 (w0z0)2m+62�(2m+ 4)2 ln ��w20 + z20� q2=4�C(�2m�3)2m+1 �w20 + z202w0z0 � ; (C.5)where C(k)2m are Gegenbauer C polynomials. The last terms useT (5)m = mXk=0 (w20 + z20)2m�2k�(2m� 2k + 1) (�1)2kz2k+50 w2k+50�(k + 1)�(k + 3) ( (2m� 2k + 1) +  (2m+ 3))25�(2m+ 3) ; (C.6)19



and T (6)m = mXk=0 (w20 + z20)2m�2k+1�(2m� 2k + 2) (�1)2kz2k+50 w2k+50�(k + 1)�(k + 3) ( (2m� 2k + 2) +  (2m+ 4))27�(2m+ 4) : (C.7)Performing the sum over k in eqs. (C.1) and (3.22) one an alulate the �rst few terms of theexpansion in q, i.e. U0 = T (1)0 = �(z0 � w0)14z0w50 + �(w0 � z0)14w0z50 ; (C.8)whih determines the forward limit. Similarly,U1 = T (2)0 = �(z0 � w0)w50z048 (w20 � 3z20) + �(w0 � z0)w0z5048 (z20 � 3w20) (C.9)reprodues the next-to-forward ontribution whih appears at order q2.Thus, summing all terms suppressed by q4 one getsU2 = T (1)1 + T (3)0 + T (5)0 = �(z0 � w0)w50z0286 �w40 � 8z20w20 + 18z40 � 12z40 ln �z20q2 e2E =4��+�(w0 � z0)z50w0286 �z40 � 8w20z20 + 18w40 � 12w40 ln �w20q2 e2E =4�� : (C.10)Terms suppressed by q6 read as followsU3 = T (2)1 + T (4)0 + T (6)0 = �(z0 � w0) z0w5021090 �w60 � 15z20w40 + 90z40w20 + 170z60�60z40 �z20 + w20� ln �z20q2 e2E =4��+ �(w0 � z0) w0z5021090 �z60 � 15z40w20 + 90w40z20 + 170w60�60w40 �w20 + z20� ln �w20q2 e2E =4�� : (C.11)Similarly, terms suppressed by q8 giveU4 = T (1)2 + T (3)1 + T (5)1 = �(z0 � w0) z0w50216335 �w80 � 24z20w60 � 270z40w40 + 1420z60w20 + 645z80�60z40 �3z40 + 8w20z20 + 3w40� ln �z20q2 e2E =4��+�(w0 � z0) w0z50216335 �z80 � 24w20z60 + 270w40z40 + 1420w60z20 + 645w80�60w40 �3w40 + 8z20w20 + 3z40� ln �w20q2 e2E =4�� : (C.12)Referenes[1℄ E. A. Kuraev, L. N. Lipatov, and Vitor S. Fadin. Multi - Reggeon Proesses in the Yang-MillsTheory. Sov. Phys. JETP, 44:443�450, 1976.[2℄ E. A. Kuraev, L. N. Lipatov, and Vitor S. Fadin. The Pomeranhuk Singularity in NonabelianGauge Theories. Sov. Phys. JETP, 45:199�204, 1977.[3℄ I. I. Balitsky and L. N. Lipatov. The Pomeranhuk Singularity in Quantum Chromodynamis.Sov. J. Nul. Phys., 28:822�829, 1978.[4℄ V. N. Gribov. A Reggeon diagram tehnique. Sov. Phys. JETP, 26:414�422, 1968.[5℄ Vitor S. Fadin and L. N. Lipatov. BFKL pomeron in the next-to-leading approximation.Phys. Lett., B429:127�134, 1998. 20
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