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Abstra
tWe study the e�e
t of in
ation on gaugino 
ondensation in supergravity. Unlessthe Hubble s
ale H is signi�
antly below the gaugino 
ondensation s
ale, the gaugino
ondensate is a dynami
al variable whi
h 
annot be integrated out. For a suÆ
ientlyhigh H, the gaugino 
ondensate evolves to zero whi
h in turn leads to dilaton/modulidestabilization. In pra
ti
e, this often o

urs at the Hubble rate about an order ofmagnitude below the gaugino 
ondensation s
ale. This e�e
t is independent of thespe
i�
s of moduli stabilization and thus pla
es model independent 
onstraints onin
ationary s
enarios. It also applies more generally to any periods of fast expansionin the early Universe.
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1 Introdu
tionGaugino 
ondensation [1℄ is arguably the most attra
tive me
hanism for 
reating the hier-ar
hy between the Plan
k and ele
troweak (EW) s
ales [2℄-[5℄. Starting with a perturbativegauge 
oupling at the Plan
k or string s
ale, a new s
ale �, at whi
h the 
orresponding gaugegroup be
omes strongly 
oupled, is 
reated by dimensional transmutation. If these dynam-i
s break supersymmetry, the EW s
ale 
an be generated as �3=M2Pl when supersymmetrybreaking is 
ommuni
ated by gravity to the observable se
tor. This idea �nds support inexpli
it string models whi
h produ
e the (exa
t) spe
trum of the minimal supersymmetri
Standard Model (MSSM) [6℄.If gaugino 
ondensation is indeed part of reality, it must be 
ombined with in
ation [7℄,whi
h has by now gathered strong observational eviden
e. The purpose of this paper is tostudy the dynami
s of the gaugino 
ondensate with the ba
kground of in
ation or, moregenerally, in the presen
e of large positive va
uum energy. Some fa
ets of this problem havebeen 
onsidered before. Gaugino 
ondensation generates a potential for moduli, whi
h ismodi�ed in the early Universe during in
ation and reheating. To ensure that moduli do notrun away, 
ertain 
onstraints on the reheating temperature [8℄ and the Hubble parametermust be satis�ed. In the latter 
ase, the situation is model dependent and only parti
ular(Ka
hru-Kallosh-Linde-Trivedi-type [9℄) s
enarios with a spe
i�
 
hoi
e of the in
aton havebeen studied [10℄. In the present work, we approa
h this problem from a more generalperspe
tive based on properties of the gaugino 
ondensate itself and without spe
ializing toa parti
ular in
ationary model or moduli stabilization me
hanism. This allows us to obtaina (largely) model independent 
onstraint on the Hubble rate during in
ation or any periodof fast expansion.2 Veneziano{Yankielowi
z potential in supergravityIn the Veneziano{Yankielowi
z approa
h [1℄, gaugino 
ondensation is des
ribed in terms ofthe 
hiral super�eld U = Tr W �W�, with W� being the gauge multiplet super�eld whi
h
ontains the gaugino as its lowest 
omponent. The low energy e�e
tive a
tion for this �eldis derived using symmetries of the system and anomaly 
an
ellation. In supergravity, the
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resulting K�ahler potential K and the superpotential W are given by [11℄K = �3 loghe�K=3 � a(UU�)1=3i ;W = 14 U�fS + 2
3 log(�U)� + ~W : (1)Here we have taken the gauge kineti
 fun
tion to be given by the dilaton S1; K and ~Ware the K�ahler potential and the superpotential for other �elds of the system apart from U ;a; f; � are 
onstants of order one and 
 is the beta fun
tion 
oeÆ
ient
 = 316�2 C(G) ; (2)with C(G) being the quadrati
 Casimir of the 
ondensing gauge group G.We will be studying the dynami
s of the 
ondensate in the region of physi
al interestU � 1 in Plan
k units. Changing variables U � u3=(3a)3=2 and expanding the result inpowers of u, we get K = K + eK=3uu� + 16 e2K=3(uu�)2 + ::: ;W = u3(S + 2
 logu) + ~W ; (3)where, for simpli
ity, we have set 4(3a)3=2 = 1, f = 1 and � = (3a)3=2.The supergravity s
alar potential for this system is given byV = eG(GiG�jGi�j � 3) : (4)Here the subs
ript l (�l) denotes di�erentiation with respe
t to the l-th (l-th 
omplex 
on-jugate) s
alar �eld; G is a fun
tion of the K�ahler potential K and superpotential W :G = K + ln(jW j2), and Gi�j is the inverse of G�ji.To understand the Veneziano{Yankielowi
z result, let us start with ~W = 0. At u � 1,the dominant 
ontribution to the potential is given byV ' eGjGuj2Guu� : (5)The stationary points of this fun
tion are at W = 0;Wu = 0 and Wuu = 0. The usualVeneziano{Yankielowi
z solution 
orresponds to Wu = 0:umin = e� S2
� 13 ; (6)1We are negle
ting threshold 
orre
tions to the gauge 
oupling.3



whi
h des
ribes a supersymmetri
 va
uum with massive ex
itations. (More pre
isely, for anSU(N) group there are N va
ua whi
h di�er by a phase fa
tor in u; this, however, is notimportant for our purposes.) The solution to Wuu = 0 is a lo
al maximum atumax = e� S2
� 56 : (7)Finally, u = 0 formally 
orresponds to another supersymmetri
 
hirally invariant va
uum,Fig. 1. However, the Veneziano{Yankielowi
z potential 
annot be trusted at u ! 0. Theexisten
e of a supersymmetri
 
hirally invariant va
uum is not allowed by general 
onsid-erations [12℄ and also in
onsistent with the Witten index theorem [13℄ (see also [14℄). Theinterpretation of the state at u = 0 remains 
ontroversial and it has been 
onje
tured thatit 
orresponds to a non-supersymmetri
 (unstable) state [15℄2. In any 
ase, the Veneziano{Yankielowi
z potential is trustable around the SUSY minimum (6) and sin
e the lo
al max-imum is 
lose to it, umax = umin=pe, the existen
e of a potential barrier between the SUSYva
uum and some other state at u� umin is also expe
ted to be reliable.In the SUSY va
uum (6), the gaugino 
ondensate 
orresponds to a heavy �eld and 
an beintegrated out. This 
reates an e�e
tive superpotential for the dilaton, whi
h is a ne
essaryingredient for addressing the problem of dilaton/moduli stabilization. However, in the earlyUniverse this pro
edure is not always 
onsistent: if the expansion rate of the Universe is
lose to or greater than the gaugino 
ondensation s
ale, the 
ondensate remains a dynami
al�eld whose evolution has to be taken into a

ount. To address this issue, in the next se
tionwe study the behavior of the 
ondensate in the presen
e of large va
uum energy.3 In
lusion of an in
atonConsider the system of the dilaton, gaugino 
ondensate and an extra �eld � whi
h generateslarge va
uum energy (\in
aton"). This system 
an be des
ribed by Eq.(1), and 
onsequentlyEq.(3), with K = K(S) +K(�) ;~W = ~W (�) ; (8)2We are grateful to M. Shifman for 
larifying this point.
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where ~W (�)� u3(S+2
 log u). Sin
e u� 1, one 
an expand the s
alar potential in powersof u. In
luding terms up to forth order, we getV = V0 + 23 eK=3V0 uu� (9)+ �eK ~W ��K�1S �SK �S � 2
3 �K�1S �S jKSj2 +K�1��� jK�j2 +K�1���K�W ��= ~W � � 3�� u3 + h:
:�+ e2K=3����u2(3S + 6
 logu+ 2
)���2 + 13 V0 (uu�)2�+ :::Here the va
uum energy is given byV0 = eK�K�1S �S j ~WKSj2 +K�1��� j ~WK� +W�j2 � 3j ~W j2� : (10)We see that the 
ondensate re
eives mass of order the Hubble s
ale (V0 = 3H2) as expe
tedfrom general 
onsiderations [16℄. The O(u3) 
ontribution is an analog of the A{term, whilethe O(u4) terms in
lude the Veneziano{Yankielowi
z potential jWuj2 and an extra 
ontribu-tion proportional to V0. Note that the potential for the 
anoni
ally normalized 
ondensateis obtained by the res
aling u = e�K=6~u.For a suÆ
iently large H, the mass term will dominate and the 
ondensate will qui
klyevolve to zero, ~u � e�Ht~u0. This is intuitively 
lear sin
e the Hubble expansion is analogousto \heating up" the 
ondensate to temperature of order H (see, e.g. [17℄). To determine the
riti
al expansion rate, we need to �nd V0 at whi
h the Veneziano{Yankielowi
z minimumdisappears. A suÆ
ient 
ondition for the absen
e of lo
al extrema (apart from u = 0) is thatthe 
urvature of the potential in the u; u� dire
tion be non-negative,V 2u�u � VuuV�u�u � 0 : (11)We are interested in the 
ase when the va
uum energy V0 is dominated by the in
atonF-term, F � � F S ; (12)where F i = eG=2Ki�jG�j, whi
h 
orresponds to domination of the se
ond term in (10). Thenthe O(u3) 
ontribution in Eq.(9) is (up to a phase)� 2
3 pV0 eK=2K�1=2��� K� u3 : (13)Consider �rst the 
ase K�1=2��� K� � O(1). Then the 
ubi
 term is suppressed by the loopfa
tor 
. Further, the O(u4) term proportional to V0 is small 
ompared to the Veneziano{Yankielowi
z pie
e jWuj2 and 
an be negle
ted. As a result, the non-negative 
urvature5




ondition amounts approximately to23 eK=3V0 + e2K=3jWuuj2 � e2K=3jWuuuWuj � 0 : (14)Although this inequality 
annot be solved exa
tly, one 
an estimate the 
riti
al V0 = 3H2
ritby requiring non-negative 
urvature at the lo
al maximum of the Veneziano{Yankielowi
zpotential umax, where Wuu = 0. For a 
anoni
ally normalized ~u = eK=6u, we then haveH
rit � 
 j~umaxj : (15)This agrees with our numeri
al results. Note that the 
ubi
 term in (9) is at most O(
H~u3),while the quadrati
 and the Veneziano{Yankielowi
z pie
es around umax are O(H2~u2) andO(
2~u4), respe
tively, su
h that for H > 
 j~umaxj the quadrati
 term dominates.For K�1=2��� K� � 1, the 
ubi
 term is important and Eq.(11) givesH
rit � 
 ��K�1=2��� K� ~umax�� : (16)The potential for the gaugino 
ondensate in the presen
e of positive va
uum energy isillustrated in Fig. 1.

u umax min0 uFigure 1: The gaugino 
ondensate potential as a fun
tion of va
uum energy. The solid(green) 
urve represents the Veneziano{Yankielowi
z potential (H = 0), while the dotted(red) and the dashed (blue) 
urves 
orrespond to H < H
rit and H & H
rit, respe
tively.
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4 Dis
ussion and generalizationsWe �nd that, unless K�1=2��� K� � 1 , the Veneziano{Yankielowi
z minimum disappears atthe Hubble rate a loop fa
tor below the gaugino 
ondensation s
ale. This is natural as thefeatures of the Veneziano{Yankielowi
z potential are due to the loop{indu
ed term 2
 loguand, 
onsequently, the 
urvature of the potential at the maximum is loop{suppressed. Inphenomenologi
ally interesting 
ases, the 
ondensing gauge group is of intermediate size, e.g.SU(5), su
h that 
 = O(10�1) and the 
riti
al Hubble rate is about an order of magnitudebelow the gaugino 
ondensation s
ale.This means that for H > H
rit the 
ondensate will evolve to zero within a few Hub-ble times. Consequently, the dilaton superpotential approa
hes a 
onstant and the dilatonpotential attains a run{away form eK � 
onst (17)with the 
onstant of order H2. The dilaton will thus qui
kly (within a few Hubble times)evolve to weak 
oupling S � 1. Needless to say, this s
enario is phenomenologi
ally una
-
eptable and the 
onstraint H < H
rit must be satis�ed.3This 
on
lusion applies regardless of the spe
i�
s of the dilaton stabilization me
hanism.Indeed, the essential ingredient for dilaton stabilization is the superpotential due to gaugino
ondensation whi
h be
omes unavailable at H > H
rit. Consider, for example, the K�ahlerstabilization s
heme [18℄,[19℄ with K(S) = � log(S + �S) + �Knp(S). The lo
al minimum inS is obtained due to 
an
ellations between the K�ahler 
orre
tions and the gaugino 
onden-sation superpotential. Sin
e the latter is not available as the gaugino 
ondensate evaporates,generi
ally no lo
al minima appear during in
ation and the dilaton runs away. Further, inthe ra
etra
k models [20℄,[21℄ one sums over di�erent 
ondensates in Eq.(1):a(UU�)1=3 !Xi ai(UiU�i )1=314 U�fS + 2
3 log(�U)�! 14 Xi Ui�fiS + 2
i3 log(�iUi)� : (18)Ea
h one of them attains mass of order H2 during in
ation and is destabilized at the Hubblerate greater than the largest H
rit (in fa
t, a lo
al minimum in S disappears even if only3Note also that asH de
reases, uwill settle in the \wrong" va
uum whi
h is separated from the Veneziano{Yankielowi
z minimum by a large potential barrier. 7



some of the 
ondensates evaporate). The potential be
omes � H2=(S + �S) and the dilatonruns away.It is important to note that our result applies not only to in
ation but more generally toany periods of fast expansion in the early Universe. This is be
ause the slow roll 
ondition isnot essential and the time s
ale for the evolution of u and S is given by a few Hubble times.Also, an extension to multiple in
atons K(�)! K(�i); ~W (�)! ~W (�i) is straightforward.Finally, we have taken the gauge kineti
 fun
tion to be given by the dilaton. This 
anreadily be generalized to other 
ases, e.g. in KKLT-type models [9℄ one repla
es S ! T withT being the K�ahler modulus, K(T ) = �3 log(T + �T ) ;W = u3(T + 2
 logu) + ~W ; (19)where ~W = W0 + ~W (�) and W0 is the 
onstant superpotential used to stabilize T . Tohave low energy supersymmetry, this 
onstant must be adjusted to be very small, O(10�13).Again, for large positive va
uum energy, the gaugino 
ondensate a
quires mass and qui
klyevolves to zero, whi
h leads to disastrous 
onsequen
es. This happens regardless of thedetails of the \uplifting" me
hanism whi
h adjusts the va
uum energy after in
ation.Let us now dis
uss our main assumptions. To establish evaporation of the gaugino 
on-densate at high H, we have relied (1) on the shape of the Veneziano{Yankielowi
z potentialaround the SUSY minimum, whi
h is quite reliable, and (2) on the K�ahler potential of theform (UU�)1=3 for small U . The latter is in fa
t not ne
essary and our 
on
lusion wouldhold more generally for K�ahler potentials whi
h 
an be brought to the 
anoni
al form by a
hange of variables U ! f(U) with f(0) = 0 (and non-singular s
alar potential). In this
ase, the in
ation{indu
ed mass term is positive and the 
ondensate evolves to zero. This�ts the intuitive pi
ture that the gaugino 
ondensate vanishes at high de Sitter temperature.We have also assumed that in
ation is driven by the in
aton � and the dilaton does notplay any signi�
ant role in it. If this is not the 
ase, F � � F S, the O(u3) term proportionalto K�1S �SK �S in Eq.(9) be
omes important and 
an generate a lo
al minimum at u > 0 duringin
ation. Then the gaugino 
ondensate will evaporate only for H � umax. In this 
ase,in
ation does not amount to a ba
kground for the evolution of the 
ondensate sin
e there issigni�
ant superpotential intera
tion between the dilaton and the 
ondensate.Let us remark that realisti
 va
ua with broken supersymmetry after in
ation are pos-sible due to the presen
e of extra �elds in Eq.1. In this 
ase, the 
onstraints of Ref. [22℄8




an be satis�ed, for example, when SUSY breaking is dominated by matter{like �elds [23℄.(Alternatively, one 
an use non-perturbative 
orre
tions to the K�ahler potential [18℄,[19℄.)On
e a dilaton stabilization me
hanism is employed, the VY va
uum 
orresponds to a lo
alminimum in the S�U plane, so the usual pro
edure of integrating out the 
ondensate is jus-ti�ed. The 
riti
al Hubble rate for a spe
i�
 model depends on whi
h �eld gets destabilized�rst. For instan
e, S 
an run away to weak 
oupling S !1 due to positive va
uum energy.Thus, during in
ation, the dilaton may be destabilized before U is, depending on the size ofthe barrier separating the lo
al minimum in the S dire
tion from the run-away minimum.For instan
e, in the Kallosh-Linde model [10℄ this barrier is large, so U is destabilized beforeS is, while in the usual ra
etra
k model it is the dilaton that gets destabilized �rst. In any
ase, the model{independent bound derived in this paper applies regardless of the modulistabilization me
hanism.Finally, a 
omment on loop 
orre
tions is in order. In the va
uum, supersymmetry (andR-symmetry) is broken, so one expe
ts SUSY breaking loop 
orre
tions. These are governedby m23=2=16�2 and 
an only be relevant to the dilaton dire
tion, whose mass is � O(m3=2)(see e.g. [8℄). Su
h 
orre
tions are subleading and sin
e the pre
ise value of the dilaton massis unimportant for our purposes, we negle
t these e�e
ts.5 Con
lusionWe have studied the behavior of the gaugino 
ondensate in the presen
e of large va
uumenergy. If the expansion rate of the Universe is 
lose to or higher than the gaugino 
on-densation s
ale, the 
ondensate 
annot be integrated out. We �nd that for Hubble ratesabove a 
riti
al value, the gaugino 
ondensate evolves to zero whi
h leads to dilaton/modulidestabilization. When the va
uum energy is dominated by the in
aton (�) other than the�eld (S) produ
ing the gauge 
oupling for the 
ondensing gauge group, the 
riti
al Hubblerate is given by H
rit � maxf1; ��K�1=2��� K���g 
 j~umaxj (20)with ~umax = eK=6�S=(2
)�5=6 and 
 being the one loop beta fun
tion 
oeÆ
ient. Thus, itis typi
ally an order of magnitude below the 
orresponding gaugino 
ondensation s
ale.This result is independent of the spe
i�
s of moduli stabilization and thus provides a useful
onstraint on in
ationary models. It also applies more generally to any periods of fastexpansion in the early Universe. 9



It would be interesting to further study the 
osmologi
al evolution of the dilaton-gaugino
ondensate system in
luding a ba
kground matter or radiation 
omponent, to determinewhi
h initial 
onditions lead to dilaton stabilization [24℄.A
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