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AbstratWe study the e�et of ination on gaugino ondensation in supergravity. Unlessthe Hubble sale H is signi�antly below the gaugino ondensation sale, the gauginoondensate is a dynamial variable whih annot be integrated out. For a suÆientlyhigh H, the gaugino ondensate evolves to zero whih in turn leads to dilaton/modulidestabilization. In pratie, this often ours at the Hubble rate about an order ofmagnitude below the gaugino ondensation sale. This e�et is independent of thespei�s of moduli stabilization and thus plaes model independent onstraints oninationary senarios. It also applies more generally to any periods of fast expansionin the early Universe.
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1 IntrodutionGaugino ondensation [1℄ is arguably the most attrative mehanism for reating the hier-arhy between the Plank and eletroweak (EW) sales [2℄-[5℄. Starting with a perturbativegauge oupling at the Plank or string sale, a new sale �, at whih the orresponding gaugegroup beomes strongly oupled, is reated by dimensional transmutation. If these dynam-is break supersymmetry, the EW sale an be generated as �3=M2Pl when supersymmetrybreaking is ommuniated by gravity to the observable setor. This idea �nds support inexpliit string models whih produe the (exat) spetrum of the minimal supersymmetriStandard Model (MSSM) [6℄.If gaugino ondensation is indeed part of reality, it must be ombined with ination [7℄,whih has by now gathered strong observational evidene. The purpose of this paper is tostudy the dynamis of the gaugino ondensate with the bakground of ination or, moregenerally, in the presene of large positive vauum energy. Some faets of this problem havebeen onsidered before. Gaugino ondensation generates a potential for moduli, whih ismodi�ed in the early Universe during ination and reheating. To ensure that moduli do notrun away, ertain onstraints on the reheating temperature [8℄ and the Hubble parametermust be satis�ed. In the latter ase, the situation is model dependent and only partiular(Kahru-Kallosh-Linde-Trivedi-type [9℄) senarios with a spei� hoie of the inaton havebeen studied [10℄. In the present work, we approah this problem from a more generalperspetive based on properties of the gaugino ondensate itself and without speializing toa partiular inationary model or moduli stabilization mehanism. This allows us to obtaina (largely) model independent onstraint on the Hubble rate during ination or any periodof fast expansion.2 Veneziano{Yankielowiz potential in supergravityIn the Veneziano{Yankielowiz approah [1℄, gaugino ondensation is desribed in terms ofthe hiral super�eld U = Tr W �W�, with W� being the gauge multiplet super�eld whihontains the gaugino as its lowest omponent. The low energy e�etive ation for this �eldis derived using symmetries of the system and anomaly anellation. In supergravity, the
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resulting K�ahler potential K and the superpotential W are given by [11℄K = �3 loghe�K=3 � a(UU�)1=3i ;W = 14 U�fS + 23 log(�U)� + ~W : (1)Here we have taken the gauge kineti funtion to be given by the dilaton S1; K and ~Ware the K�ahler potential and the superpotential for other �elds of the system apart from U ;a; f; � are onstants of order one and  is the beta funtion oeÆient = 316�2 C(G) ; (2)with C(G) being the quadrati Casimir of the ondensing gauge group G.We will be studying the dynamis of the ondensate in the region of physial interestU � 1 in Plank units. Changing variables U � u3=(3a)3=2 and expanding the result inpowers of u, we get K = K + eK=3uu� + 16 e2K=3(uu�)2 + ::: ;W = u3(S + 2 logu) + ~W ; (3)where, for simpliity, we have set 4(3a)3=2 = 1, f = 1 and � = (3a)3=2.The supergravity salar potential for this system is given byV = eG(GiG�jGi�j � 3) : (4)Here the subsript l (�l) denotes di�erentiation with respet to the l-th (l-th omplex on-jugate) salar �eld; G is a funtion of the K�ahler potential K and superpotential W :G = K + ln(jW j2), and Gi�j is the inverse of G�ji.To understand the Veneziano{Yankielowiz result, let us start with ~W = 0. At u � 1,the dominant ontribution to the potential is given byV ' eGjGuj2Guu� : (5)The stationary points of this funtion are at W = 0;Wu = 0 and Wuu = 0. The usualVeneziano{Yankielowiz solution orresponds to Wu = 0:umin = e� S2� 13 ; (6)1We are negleting threshold orretions to the gauge oupling.3



whih desribes a supersymmetri vauum with massive exitations. (More preisely, for anSU(N) group there are N vaua whih di�er by a phase fator in u; this, however, is notimportant for our purposes.) The solution to Wuu = 0 is a loal maximum atumax = e� S2� 56 : (7)Finally, u = 0 formally orresponds to another supersymmetri hirally invariant vauum,Fig. 1. However, the Veneziano{Yankielowiz potential annot be trusted at u ! 0. Theexistene of a supersymmetri hirally invariant vauum is not allowed by general onsid-erations [12℄ and also inonsistent with the Witten index theorem [13℄ (see also [14℄). Theinterpretation of the state at u = 0 remains ontroversial and it has been onjetured thatit orresponds to a non-supersymmetri (unstable) state [15℄2. In any ase, the Veneziano{Yankielowiz potential is trustable around the SUSY minimum (6) and sine the loal max-imum is lose to it, umax = umin=pe, the existene of a potential barrier between the SUSYvauum and some other state at u� umin is also expeted to be reliable.In the SUSY vauum (6), the gaugino ondensate orresponds to a heavy �eld and an beintegrated out. This reates an e�etive superpotential for the dilaton, whih is a neessaryingredient for addressing the problem of dilaton/moduli stabilization. However, in the earlyUniverse this proedure is not always onsistent: if the expansion rate of the Universe islose to or greater than the gaugino ondensation sale, the ondensate remains a dynamial�eld whose evolution has to be taken into aount. To address this issue, in the next setionwe study the behavior of the ondensate in the presene of large vauum energy.3 Inlusion of an inatonConsider the system of the dilaton, gaugino ondensate and an extra �eld � whih generateslarge vauum energy (\inaton"). This system an be desribed by Eq.(1), and onsequentlyEq.(3), with K = K(S) +K(�) ;~W = ~W (�) ; (8)2We are grateful to M. Shifman for larifying this point.
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where ~W (�)� u3(S+2 log u). Sine u� 1, one an expand the salar potential in powersof u. Inluding terms up to forth order, we getV = V0 + 23 eK=3V0 uu� (9)+ �eK ~W ��K�1S �SK �S � 23 �K�1S �S jKSj2 +K�1��� jK�j2 +K�1���K�W ��= ~W � � 3�� u3 + h::�+ e2K=3����u2(3S + 6 logu+ 2)���2 + 13 V0 (uu�)2�+ :::Here the vauum energy is given byV0 = eK�K�1S �S j ~WKSj2 +K�1��� j ~WK� +W�j2 � 3j ~W j2� : (10)We see that the ondensate reeives mass of order the Hubble sale (V0 = 3H2) as expetedfrom general onsiderations [16℄. The O(u3) ontribution is an analog of the A{term, whilethe O(u4) terms inlude the Veneziano{Yankielowiz potential jWuj2 and an extra ontribu-tion proportional to V0. Note that the potential for the anonially normalized ondensateis obtained by the resaling u = e�K=6~u.For a suÆiently large H, the mass term will dominate and the ondensate will quiklyevolve to zero, ~u � e�Ht~u0. This is intuitively lear sine the Hubble expansion is analogousto \heating up" the ondensate to temperature of order H (see, e.g. [17℄). To determine theritial expansion rate, we need to �nd V0 at whih the Veneziano{Yankielowiz minimumdisappears. A suÆient ondition for the absene of loal extrema (apart from u = 0) is thatthe urvature of the potential in the u; u� diretion be non-negative,V 2u�u � VuuV�u�u � 0 : (11)We are interested in the ase when the vauum energy V0 is dominated by the inatonF-term, F � � F S ; (12)where F i = eG=2Ki�jG�j, whih orresponds to domination of the seond term in (10). Thenthe O(u3) ontribution in Eq.(9) is (up to a phase)� 23 pV0 eK=2K�1=2��� K� u3 : (13)Consider �rst the ase K�1=2��� K� � O(1). Then the ubi term is suppressed by the loopfator . Further, the O(u4) term proportional to V0 is small ompared to the Veneziano{Yankielowiz piee jWuj2 and an be negleted. As a result, the non-negative urvature5



ondition amounts approximately to23 eK=3V0 + e2K=3jWuuj2 � e2K=3jWuuuWuj � 0 : (14)Although this inequality annot be solved exatly, one an estimate the ritial V0 = 3H2ritby requiring non-negative urvature at the loal maximum of the Veneziano{Yankielowizpotential umax, where Wuu = 0. For a anonially normalized ~u = eK=6u, we then haveHrit �  j~umaxj : (15)This agrees with our numerial results. Note that the ubi term in (9) is at most O(H~u3),while the quadrati and the Veneziano{Yankielowiz piees around umax are O(H2~u2) andO(2~u4), respetively, suh that for H >  j~umaxj the quadrati term dominates.For K�1=2��� K� � 1, the ubi term is important and Eq.(11) givesHrit �  ��K�1=2��� K� ~umax�� : (16)The potential for the gaugino ondensate in the presene of positive vauum energy isillustrated in Fig. 1.

u umax min0 uFigure 1: The gaugino ondensate potential as a funtion of vauum energy. The solid(green) urve represents the Veneziano{Yankielowiz potential (H = 0), while the dotted(red) and the dashed (blue) urves orrespond to H < Hrit and H & Hrit, respetively.
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4 Disussion and generalizationsWe �nd that, unless K�1=2��� K� � 1 , the Veneziano{Yankielowiz minimum disappears atthe Hubble rate a loop fator below the gaugino ondensation sale. This is natural as thefeatures of the Veneziano{Yankielowiz potential are due to the loop{indued term 2 loguand, onsequently, the urvature of the potential at the maximum is loop{suppressed. Inphenomenologially interesting ases, the ondensing gauge group is of intermediate size, e.g.SU(5), suh that  = O(10�1) and the ritial Hubble rate is about an order of magnitudebelow the gaugino ondensation sale.This means that for H > Hrit the ondensate will evolve to zero within a few Hub-ble times. Consequently, the dilaton superpotential approahes a onstant and the dilatonpotential attains a run{away form eK � onst (17)with the onstant of order H2. The dilaton will thus quikly (within a few Hubble times)evolve to weak oupling S � 1. Needless to say, this senario is phenomenologially una-eptable and the onstraint H < Hrit must be satis�ed.3This onlusion applies regardless of the spei�s of the dilaton stabilization mehanism.Indeed, the essential ingredient for dilaton stabilization is the superpotential due to gauginoondensation whih beomes unavailable at H > Hrit. Consider, for example, the K�ahlerstabilization sheme [18℄,[19℄ with K(S) = � log(S + �S) + �Knp(S). The loal minimum inS is obtained due to anellations between the K�ahler orretions and the gaugino onden-sation superpotential. Sine the latter is not available as the gaugino ondensate evaporates,generially no loal minima appear during ination and the dilaton runs away. Further, inthe raetrak models [20℄,[21℄ one sums over di�erent ondensates in Eq.(1):a(UU�)1=3 !Xi ai(UiU�i )1=314 U�fS + 23 log(�U)�! 14 Xi Ui�fiS + 2i3 log(�iUi)� : (18)Eah one of them attains mass of order H2 during ination and is destabilized at the Hubblerate greater than the largest Hrit (in fat, a loal minimum in S disappears even if only3Note also that asH dereases, uwill settle in the \wrong" vauum whih is separated from the Veneziano{Yankielowiz minimum by a large potential barrier. 7



some of the ondensates evaporate). The potential beomes � H2=(S + �S) and the dilatonruns away.It is important to note that our result applies not only to ination but more generally toany periods of fast expansion in the early Universe. This is beause the slow roll ondition isnot essential and the time sale for the evolution of u and S is given by a few Hubble times.Also, an extension to multiple inatons K(�)! K(�i); ~W (�)! ~W (�i) is straightforward.Finally, we have taken the gauge kineti funtion to be given by the dilaton. This anreadily be generalized to other ases, e.g. in KKLT-type models [9℄ one replaes S ! T withT being the K�ahler modulus, K(T ) = �3 log(T + �T ) ;W = u3(T + 2 logu) + ~W ; (19)where ~W = W0 + ~W (�) and W0 is the onstant superpotential used to stabilize T . Tohave low energy supersymmetry, this onstant must be adjusted to be very small, O(10�13).Again, for large positive vauum energy, the gaugino ondensate aquires mass and quiklyevolves to zero, whih leads to disastrous onsequenes. This happens regardless of thedetails of the \uplifting" mehanism whih adjusts the vauum energy after ination.Let us now disuss our main assumptions. To establish evaporation of the gaugino on-densate at high H, we have relied (1) on the shape of the Veneziano{Yankielowiz potentialaround the SUSY minimum, whih is quite reliable, and (2) on the K�ahler potential of theform (UU�)1=3 for small U . The latter is in fat not neessary and our onlusion wouldhold more generally for K�ahler potentials whih an be brought to the anonial form by ahange of variables U ! f(U) with f(0) = 0 (and non-singular salar potential). In thisase, the ination{indued mass term is positive and the ondensate evolves to zero. This�ts the intuitive piture that the gaugino ondensate vanishes at high de Sitter temperature.We have also assumed that ination is driven by the inaton � and the dilaton does notplay any signi�ant role in it. If this is not the ase, F � � F S, the O(u3) term proportionalto K�1S �SK �S in Eq.(9) beomes important and an generate a loal minimum at u > 0 duringination. Then the gaugino ondensate will evaporate only for H � umax. In this ase,ination does not amount to a bakground for the evolution of the ondensate sine there issigni�ant superpotential interation between the dilaton and the ondensate.Let us remark that realisti vaua with broken supersymmetry after ination are pos-sible due to the presene of extra �elds in Eq.1. In this ase, the onstraints of Ref. [22℄8



an be satis�ed, for example, when SUSY breaking is dominated by matter{like �elds [23℄.(Alternatively, one an use non-perturbative orretions to the K�ahler potential [18℄,[19℄.)One a dilaton stabilization mehanism is employed, the VY vauum orresponds to a loalminimum in the S�U plane, so the usual proedure of integrating out the ondensate is jus-ti�ed. The ritial Hubble rate for a spei� model depends on whih �eld gets destabilized�rst. For instane, S an run away to weak oupling S !1 due to positive vauum energy.Thus, during ination, the dilaton may be destabilized before U is, depending on the size ofthe barrier separating the loal minimum in the S diretion from the run-away minimum.For instane, in the Kallosh-Linde model [10℄ this barrier is large, so U is destabilized beforeS is, while in the usual raetrak model it is the dilaton that gets destabilized �rst. In anyase, the model{independent bound derived in this paper applies regardless of the modulistabilization mehanism.Finally, a omment on loop orretions is in order. In the vauum, supersymmetry (andR-symmetry) is broken, so one expets SUSY breaking loop orretions. These are governedby m23=2=16�2 and an only be relevant to the dilaton diretion, whose mass is � O(m3=2)(see e.g. [8℄). Suh orretions are subleading and sine the preise value of the dilaton massis unimportant for our purposes, we neglet these e�ets.5 ConlusionWe have studied the behavior of the gaugino ondensate in the presene of large vauumenergy. If the expansion rate of the Universe is lose to or higher than the gaugino on-densation sale, the ondensate annot be integrated out. We �nd that for Hubble ratesabove a ritial value, the gaugino ondensate evolves to zero whih leads to dilaton/modulidestabilization. When the vauum energy is dominated by the inaton (�) other than the�eld (S) produing the gauge oupling for the ondensing gauge group, the ritial Hubblerate is given by Hrit � maxf1; ��K�1=2��� K���g  j~umaxj (20)with ~umax = eK=6�S=(2)�5=6 and  being the one loop beta funtion oeÆient. Thus, itis typially an order of magnitude below the orresponding gaugino ondensation sale.This result is independent of the spei�s of moduli stabilization and thus provides a usefulonstraint on inationary models. It also applies more generally to any periods of fastexpansion in the early Universe. 9
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