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I. INTRODUCTION

Top quark is now firmly established by the experiments CDF and DO at the pp collider
Tevatron at Fermilab, with m; = 173.1 + 1.4 GeV, decaying dominantly through the mode
t — bW — by, q7) [1]. At the Large Hadron Collider (LHC), expected to be operational
shortly, one expects a cross section o(pp — ttX) ~ 1(nb) for the LHC centre of mass energy
of 14 TeV [2]. With the nominal LHC luminosity of 10**(cm)?(sec)™!, one expects a ¢t
pair produced per second. The ¢t production cross section for the 10 TeV run of the LHC is
estimated as about 0.4 nb [2], still large enough to undertake dedicated top quark physics.
Thus, LHC is potentially a top factory, which will allow to carry out precision tests of the SM
and enhance the sensitivity of beyond-the-SM effects in the top quark sector. Anticipating
this, a lot of theoretical work has gone into firming up the cross sections for the ¢¢-pair and the
single-top production at the Tevatron and the LHC, undertaken in the form of higher order
QCD corrections [3, 4,15, 6]. Improved theoretical calculations of the top quark decay width
and distributions started a long time ago. The leading order perturbative QCD corrections
to the lepton energy spectrum in the decays ¢t — bW ™ — b(£14) were calculated some thirty
years ago [7]. Subsequent theoretical work leading to analytic derivations implementing the
O(as) corrections were published in [8,19] and corrected in [10]. The order «; contribution to
the top quark decay width dominates the radiative corrections (typically -8.5%). The O(«)
electroweak corrections contribute typically +1.55% |11, 12], the finite W-width effect (-
1.56%) almost cancels the electroweak correction [13]. The next-to-leading order (NLO)
QCD corrections in ay (i.e., a?) were computed as an expansion in (My/m;)?* in [14, 15].
These results were confirmed later by an independent analytic calculation in [16, [17], and
contribute about -2.25% to the top quark decay width.

Our main concern in this paper are the lepton energy distributions from the decays
t — bW — b(lty,) (for £T = eT, ut,77), which are modified from their respective Born-
level distributions in a way specific for each charged lepton due to the QED corrections.
These (QED and QCD) radiative effects have to be taken into account to test the universality
of charged current weak interactions in the top quark sector. Another process which breaks
the charged lepton universality in the decays t — bf*v, is induced by charged Higgses H™*
(for mpg+ < my — my) in the intermediate state, t — bH™ — b(¢T1,), which is expected

to influence mainly the final state b7 v, due to the H"¢"v, couplings. The leading order



in «; corrections to the polarized top quark decay into H*b have been calculated in [18].
We study the effects of the radiative corrections on the 77 -energy distribution in the decay
t—bH" = brtu..

Radiative (QED and QCD) corrections in the top quark decays, such as ¢ — bW+ —
bt vy, with /T = et, u™, 77, involve large logarithms due to the large fermion mass ratios.
For example, in the leading logarithmic approximation (LLA), one encounters the logarith-
mic terms

m? m?
L. =1In <—;> ~ 25.4, L,=In <—;> ~ 14.8, (1)

my,

2 2
L, = In (%) ~91, Ly=In (%) ~ T4,
m2 mj

in the partial decay widths. Hence, in the LLA, radiative corrections to the partial widths

lead to typically large effects
CLe~62%  SL,~36%  —L.~21% @ L,~23% 2)
T T T T

They are included together with the non-logarithmic terms in the estimates undertaken in the
fixed order (in « or o) calculations. However, to get perturbatively reliable results, all terms

of the type (2)"In (Z—E) in the decay t — be'tr,, for example, have to be summed up (the re-
n—1
summed leading log approximation LLA), as well as (2)" In (2—5) (the next-to-leading log

approximation NLLA). Using the well-studied case of the QED radiative corrections to the
purely leptonic decays u~ — v,e~ 7, we show that the structure function (SF) approach [19,
20] (based on the factorisation hypotheses [21]) is the appropriate framework to resum such
terms, enabling us to derive the electron energy spectrum with the radiative corrections taken
into account to all orders of the large logarithms. As a warm-up exercise, and also to set our
notations, we reproduce the well-known results for the QED corrections to the muon decay
p- — e~ 7, [22,123,124,125] and generalise it to all orders of perturbation theory by summing
up the leading logs (¢ In(m7/m2))" (see Section [I). In this context, we also discuss the
polarised muon decay case. The SF approach is applied next to the semileptonic decays of the
top quark t — bW — b(¢T1y), where the QCD and QED radiative corrections to the Dalitz
(double differential) and inclusive lepton energy distributions are worked out. In this, the
QCD-corrected energy distributions are derived in the re-summed leading logarithmic and

next-to-leading logarithmic approximations, but the QED corrections to these distributions



are calculated in the leading logarithmic approximation only. This is discussed in detail in
Section [V1

In many extension of the SM, the Higgs sector of the SM is enlarged, typically by adding
an extra doublet of complex Higgs fields. After spontaneous symmetry breaking, the two
scalar Higgs doublets ®; and ®, yield three physical neutral Higgs bosons (h, H, A) and a
pair of charged Higgs bosons (H*). If my+ < my; — my, one expects measurable effects in
the top quark decay width and decay distributions due to the H*-propagator contributions,
which are potentially large in the decay chain ¢ — bH™ — b(77v,). The two parameters
which determine the branching ratio for this decay are my+ and the quantity called tan 3,
defined as tan § = vy /vy, where vy and vq is the vacuum expectation value of ®; and ®,,
respectively. Of particular interest is the parameter space with large tan 8 (say, tan § > 20)
and my+ < 150 GeV. This mass range is already excluded (for almost the entire tan
values of interest) in the so-called two-Higgs-doublet-models 2HDM due to the lower bound
on mg+ of 295 (230) GeV at the 95%(99%) C.L. from the experimental measurements of
the branching ratio B(B — X,7v) [26], and the order a? estimates of this quantity in the
SM [27]. However, this bound applies only to the 2HDM of type II, in which the Higgs
doublets ®; and ®, couple only to the right-handed down-type fermions (d;g, f;r) and the
up-type fermions (u;g, v;r), respectively. In the minimal supersymmetric standard model
(MSSM), one has a type IT 2HDM sector in addition to the supersymmetric particles, in
particular the charginos, stops and gluinos. Their contributions could, in principle, cancel
that of the charged Higgs bosons in the B — X, + v decay rate. Hence, the 2HDM-specific
constraint on mg+ from B(B — X,7) is not applicable in the MSSM. In our opinion, the
natural embedding of the extra Higgs doublet is in a supersymmetric theory, and hence
we will ignore the lower bound on mpy+ from B(B — X 7). A model-independent lower
bound on mg+ exists from the non-observation of the charged Higgs pair production at
LEPII, yielding my+ > 79.3 GeV at 95% C.L. [26], which we shall use in our numerical
analysis. Thus, a charged Higgs having a mass in the range 80 GeV < mpy+ < 160 GeV is
a logical possibility and its effects should be searched for in the decays t — bHT — 77 v,.
A beginning along these lines has already been made at the Tevatron [28, 29, 130], but a
definitive search will be carried out only at the LHC [31, 132]. We work out the effects of
the radiative corrections to the lepton energy spectra in the decays ¢ — bH™ — b(77v,) in

Section [V].



The 7" leptons arising from the decays W* — 7tv,. and H™ — 7tv, are predomi-
nantly left- and right-polarised, respectively. Polarisation of the 7+ influences the energy
distributions in the subsequent decays of the 7%. Strategies to enhance the H*-induced
effects in the decay t — bW™ — b(7tv;), based on the polarisation of the 77 have been
discussed at length in the existing literature [33, 134, 135, 136, 37]. We work out the ef-
fect of the radiative corrections on such distributions in the dominant (one-charged prong)
decay channels 7+ — 7tv., ptv., af v, and (T, To implement this, we again use the
SF approach [38]. In particular, the inclusive 7% energy spectrum in the decay chain
t = bW HY) = b(tv,) = b(r*v.v, + X), and likewise for the decay chain of the ¢
quark, can be used to search for the induced effects of the H* at the LHC and Tevatron.
Details are given in Section [VI and in Appendix A.

To get the relative normalisation of the decay width ¢ — bH™ with respect to the SM
decay width t — bW, one has to take into account the loop corrections (quantum soft
SUSY-breaking effects). These quantum effects on ¢ — bH™ have been worked out in the
context of the minimal supersymmetric standard model MSSM in a number of detailed
studies (see, for example [39, 40]), and the bulk of them can be implemented by modifying
the b-quark mass, m{°med = m, /(1 + Ay). The specific values of A, depend on the super-
symmetric mass spectrum, and can be calculated using FeynHiggs |41], given this spectrum.
The influence of these corrections on the branching ratio for the decay t — bH™ have been
recently updated in [42], predicting BR(t — bH™') > 0.1 for my+ < 110 GeV in the large-
tan [ region (tan 8 > 40). We shall pick a point in the (tan 5 —mpy+) plane from this study,

allowed by all current searches, for the sake of illustration. We summarise our results in

Section [VIII

II. MUON DECAY: A WARM-UP EXERCISE

We start by discussing the electron energy spectrum in 1 — ev,v, decay. In the Born

approximation, this spectrum is given by the following formula [43]:

dl'p 4
—— = 6r, |22% (1 —x) — §p:172 (3—4dx)|, (3)



where © = 2E,/m,, is the energy fraction of final electron, p is the well-known Michel

parameter [44] and T is the total decay width:

Gim>
r, = K 4
b 19973 7 (4)

where G is the Fermi coupling constant. Using the SF approach [19, [20], we can derive the
electron-energy spectrum with the radiative corrections taken into account to all orders of
the large logarithm:

1

dFRC / dy X dFB (6
= [ —=D|-,0)— (1 —K ) : 5
o , P8 ) g g K W) (5)
) o m:,
= —(L-1 L=In{—L) =10
=211, n(22) ~ 1o,
where I;l—i is the electron spectrum in the Born approximation (B]) which is considered as the

hard sub-process. D (z,3) is the so-called structure function, which describes the virtual

and real photon emission in the leading logarithmic approximation and has the form [38]:
1

The quantities P(™ (z) are the kernels of the evolution equations which are defined by the

following relations:

P (z) = (11tf>+:£3) {ltje(l—x—A)—F (21n(A)+%> 5(1_:6)], (7)
PO () = / d_;/ PO () PO (g)

The structure function D (x, ) defined in this way automatically satisfies the Kinoshita-
Lee-Nauenberg (KLN) theorem [45, 46] on the cancellation of the mass singularities in the
total decay width

1

/de (z,B) = 1. (8)

0

There also exists a smoothed form for the structure function D (z, f):

D@ =20 -97" (1438) 5042 +0 (), g



which sums radiative corrections in all orders of perturbation theory which are enhanced by
the large logarithmic factor L (in ) and is more convenient for numerical evaluation.

The quantity K (z) in (B]) is the so-called K-factor which takes into account the con-
tributions of the radiative corrections which are not enhanced by the large logarithms and
have rather complicated form (see [22] or [47], §147). We note that, contrary to the singular
behaviour (~ In (1 — x)) of K (z) in the limit as x — 1, the quantity

1

Jao (o

T

has a finite limit as © — 1 [48].
Thus, applying the general form of the corrected spectrum (), we obtain the following

form of the electron energy spectrum in the leading logarithmic approximation (LLA):

1 dr’ 2 al 8
—— =22 1l—z—=p(3—14 — |4F, — —pF. 11
T da x [ x gp(?) ﬁ)] + oy [ 1 () 9P 5 (7) ], (11)

where the functions Fj, (x) are the results of the application of the structure function to

the spectrum in the Born approximation:

1 _—
= 20t (=)l (5] 5 (=) (1 5), 12
T
1d
_ Y 9 m (T
E (x _/—y 3—4y) P (—)
(@) = [ L e-a o (2
1- 1 1
:2x2(3—4x)1n< $x>+§6x3—8$2+$+6, (13)

which satisfy the following property:

/d.fUFl’g (x) = 0. (14)

This is a specific form of the general KLN theorem [45, |46].
In concluding this section, we give the double differential distribution for the case of the

polarised muon decay with the radiative corrections in LLA (here we put p = 3/4):

dr

o (s en) = o [3— 20— By(1 - 22) cosf] +

+ o [F3(x) — P, cosOFy(z)], (15)



with P, and 6 being the degree of muon polarisation and the angle between the muon polar-

isation vector and the electron momentum (in the rest frame of the muon). The functions
F3:2(6F1—F2), F4:2(—2F1—|—F2), (16)

have the explicit expressions:

— 5 16

x$+§+4x—8x2+§x3,

1— 1
x—6—4x2+8x3.

1
Fy(z) = 42° (3 —22)In

Fy(r) = 42* (1 —22)1n

T
III. TOP QUARK DECAYS t — b(W*,HT) IN THE BORN APPROXIMATION

Top-quark decays within the Standard Model are completely dominated by the mode
t—=b+ W, (17)

due to Vj, = 1 to a very high accuracy. In beyond-the-SM theories with an extended Higgs

sector, if allowed kinematically, one may also have the decay mode
t—b+H" (18)

where H™ is the charged Higgs boson, which we will consider within the MSSM. The relevant

part of the interaction Lagrangian is [49]:

Ly = ﬁwf [t (pe) {A (1+75) + B (1= 75)} up (py)] +
+ %m iy, () (1 = 5) e ()] (19)

where A, B and C' are model-dependent parameters which depend on the fermion masses

and tan S:
A = mycot 3, B = mytan g, C = m, tanf. (20)

The decay widths of processes (7)) and (I8)) in the Born approximation are well known [49]:

P = =22 (178 M8 (a2 () + (= ) — 283 (20)
64w M2 m, m?’ m?
2 2 172
r = —=— X2 (1,—, — | X
el 64 Mz, my ( "m3’ m%)

X [(mf cot? 8 + mj tan® 6)) (mf +m; — M?_I) — 4mfmg] , (22)



where A (z,y,2) = 2% + 4% + 22 — 2y — 2x2 — 2yz is the triangle function. The total top
quark decay width then reads as:

F?t =iew + i (23)

We now discuss the total top quark decay width including the radiative corrections. In the
total decay width the contribution of the QED corrections containing the large logarithms L
is cancelled (see (§))). The non-enhanced QED corrections are small. The QCD corrections

were calculated in [50, 51] and have the form:

0 Born CD Born CD
Fi,lt{C = Ft—)bVI;rQ + Ft—)bH+Q ) (24)
Qs Ag?
Ffj;?v;%c;jj = Dispow,my (1 + fwon), fwm = 3 (5 - ?> .

IV. THE TOP QUARK DECAY ¢t — bW™' — b(/Tv,) IN THE BORN
APPROXIMATION

The formalism illustrated in Section [[Il can be used to discuss the inclusive semileptonic
decays of the charm, beauty and top quarks. However, the decay distributions from the
the charm and beauty hadrons have in addition important non-perturbative effects, which
usually are modelled in terms of the shape functions. In the case of the top quark decay, since
the top quark lifetime is much shorter than the typical strong interaction time, the decay
dynamics is controlled by perturbation theory. Thus, incorporating the (QED and QCD)
perturbative corrections, one has precise theoretical predictions for the energy spectra of
the decay products to be confronted with data. We start by working out the charged lepton
energy spectra in the decays t — bW ™ — b({*v,), where /T = e u™, 7. To that end, let

us consider the dominant decay in the SM (see Fig.[ a.)):

t(p) = b(py) + WH(q) = b(p) + (€7 (pe) +ve (1)) (25)

and to be specific, we concentrate on the case with /T, = e*v,. The matrix element of this

process in the Born approximation is given by:

2y 1 quq
Mt—)bW*—)b(e*ue) _ .9 Vb L, — plv ) o
Born Z4\/§ q2 . MI%V M MI%V

X [ay (po) 7" (1 +75) we (po)] [te (pe) 7" (1 = 75) e (p1)], - (26)
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b(py) b(ps)
t(pr) t(pr)
€+(p6) \\‘\\ T+(p7')
W (q) H(q) <
Ve(pe) v-(pr)

Fig. 1: Lowest order Feynman diagrams describing the semileptonic decays of the top quark a)

SM, mediated by W, b) BSM, mediated by H*.

where ¢?> = sh‘j;rgw = 87 MZ2,Gr/\/2 is the electroweak coupling constant, fy is the weak

mixing angle, My is the W*-boson mass, and Vj; is an element of the Cabibbo-Kobayashi-
Maskawa (CKM) quark mixing matrix [52, 53]. We note that the contribution of the second
term in the parenthesis is proportional to the electron mass due to the conservation of the
lepton current and can be omitted. The matrix element squared then reads as:

2
AW bt e z 9" Vi

Born - <4\/§(q2 _MI%V

Let us introduce the following notation for the kinematic variables:

)) % (pupy) (pip). (27)

— 2B — 2E. — 2E,
l‘b_mta xe_mta ‘Tll_mta
— I'w _ m _m
’Y_Mwa g_Mi%V, U—m_?a

where E,, E, and E, are the energies of the b-quark, positron and neutrino in the ¢-quark
rest frame, respectively. Ty is the total decay width of the W-boson. In terms of these

variables, the various scalar products can be expressed as:

2(pope) =mi (L=, —m),  2(pop) =m; (1 —xe —n),  2(pepy) = mi (1 +10—x8),
2 (pipe) = mij., 2 (pip) = mix,, 2 (pepy) = mijay.

Since the main contribution to this decay comes from the kinematic region where W -boson
is near its mass-shell we have to take into account its decay width. We use the Breit-Wigner
form of the propagator:

1 1 1 1
% _= .
g2 — MZ,|” |q — ME, +iMwTw > My (1-&(1+n—13))" + 72

(28)
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Thus, the matrix element squared (27) then reads

Mt—)bW*—)b(e*ue) 2 _ 2 (92‘/%)2 Te (1 — Le — 77) 62 (29)
o (1= €&+ =) +72

The phase space volume element with three-particle final state has the standard form:

dﬁb dﬁe dﬁy . m?

d®; = (21) " 0 (pr — o — Pe — Do) 2E,2E,2E, 27w

sdzd,. (30)
The kinematic restrictions are:

0< z. <1-—n,

]-_l‘TS Tp S]-a

Ui

1—$e—77§ Ty Sl_
1—=z,

Y

and the b-quark mass-shell condition fixes the cosine of the angle between the positron and

the neutrino momenta directions Ce, = cos (0,,) = £=

C., =1+ (1—ze—mz,—1). (31)

On using the standard formulae for the decay width

1

dl’ =
2-2mt

|]\4-|2 dq)3; (32)

we obtain for the case of the unpolarised top quark decay t — bW+ — b({*v,) the decay
width:

Ao 0 r z (1 =2 —n) I G ) (33)
dyd - w2 ! 2
xpdy 1-&60+n—a) +v (1_y_yo> 12
where y =141 — zp, 27" =1 —n and yo = 1/£. T'; is the dimensional factor:
G2m5V2
r, = F'%% Vb 34
! 1673 (34)

Now, we calculate the branching ratios of the decays considered above. The branching
ratio of the decay t — bW™' — b({T1y) is obtained from (B3) by dividing it by the total
width of top quark I'*" (see (23)):

t—bWT—b(l1t )
dBr x; (2 — x4 I,
Born — Bt ( [ ) , Bt

dxyda, <1 _ i)Z e

Yo

(35)
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Let us consider the electron energy spectrum. In the Born approximations it has the follow-

ing expression:

Born
drydz,

dBr© dBrt—*bW+—>b(e+Ve) ; dB,rtB—>bW+—>b(e+t7e)
= d
dx, dx, / b
1—z,

= Bz, (" — z.) Py (2e) (36)

e

where

01—y 1 E(mta)—1
[arctan ( ) + arctan ( > )] : (37)

A. QCD radiative corrections

The inclusive electron energy spectrum including the lowest order QCD corrections is

+ etve
B (m» +drgzm)

dz, N Pi,ofzc dz, dz, (38)

where T'{%, is the radiatively corrected total decay width of top quark from (24). This

expression is free from the b-quark mass singularities, hence we can put 7 = 0, which yields:

1 Te
dF(Q)C’D - T 2&5/ dy
(1—¢&y)” +2

= Fy (ze,y), 39
s 5 w (ze,y) (39)

where the function Fyy (z,y) is finite in the limit m;, — 0 and has the form [10]:

Fy (z,y) = 22 (1 —x) [Q + Liy (#) + Lip (%) + %IHQ (11_—31:7)} -

+ 2 [Go+ Lia (3) — Lis (¢) — Lis (%)] +

+-In(l—y) [-B+22)+2y(1+2)+y*] +

+ ln(l—y> [2(9—4z) —2y (1 +2) — y°] +

+¥ln(l—$)+%y(l_@<%+4>' (40)

1
2
1
2
5

This formula is valid for z, < 1. For z, = 1, close to the boundary of the phase space, there

are Sudakov Logarithms due to the limited phase space, and this result becomes unstable



13

Fig. 2: Kinematics depicting the application of the structure function method, which involves
factorisation of the amplitude in the "hard sub-process” (filled circle) and the ”long-distance”

contributions (empty circle) taken into account by the convolution with the structure function

Dy(z, ) (see (42]).

but remains integrable. The electron energy spectrum with the QCD corrections is given
by:

Te

+ etve
dBTtBjTI‘)TZQz% ) Y dy s 20 1, i
d - Ptot 2 9 Te (xe - l‘e) - 3 w (l‘ea y) . ( )
Te Lo ) (1—=&y)" +v T

B. QED radiative corrections in the leading logarithmic approximation

To calculate the QED radiative corrections in the leading logarithmic approximation we
will use the SF method which was illustrated in Section [ (see kinematic scheme in Fig. 2]
a).

The QED radiative corrected spectrum is:

1

T—b(et o, etp,
dBTjB_o):KQ_E)% ) _ 1 / dye D < T 5 > dP?bW+—>b( 1) )
da. Tiohe ) Yo \ye " dye. ’

Te

where the structure function D (x, 3.) was defined in ([]).

The first order QED radiative correction reads as (using the electron energy spectrum in
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the Born approximation (36])):

t—bWt—b(et D, + et e
dBTQ_;DLL;) ( ) — g (L - ) 1 /dye P(l) ﬁ dF?bW i :
da, 2r 7 T T%e ) e Ye dy.
r / d
(6] Ye Te max
= % (Le - 1) F?}éc / Ye P(l) (;) Ye (ye - ye) (I)W (ye)
(6% Ft
= o (Le ) % I (%) ) (43)

where y*** =1 —n, and

I(z) = | % pw <£> y (" —y) P (y) =

Y Y

— By (2) {x(l—x) {m(l;f”) +2] +xln(x)+(1—x)2—%(1—x2)}+

1
2, .2
v [0 g ) - oy o), (a1
where ®yy (z) is given in (37). The contribution of the QCD correction a5 QCD from (3]) is
shown in Fig. 3] and is the same for ¢ = e, yu, 7. The contributions of the QED corrections
is specific to the charged lepton e, u,7 and shown in Fig. Bl The input parameters used
in this figure and subsequently are given in a table in the Appendix. In Fig. @, we show
the electron energy spectrum in the Born approximation and compare it with the (QED +
QCD) radiatively corrected ones.

It is obvious from the foregoing that the QED radiative corrections break the lepton
universality, encoded at the Lagrangian level for the decays t — bW+ — blTv,. Tt is also
clear that the radiative corrections are not overall multiplicative renormalizations and they

distort the Born level distributions in a non-trivial way. To quantify this, we plot the ratios

R..(z) and R, (), defined below, in Fig.

+ +
(FHbW St (5 = %))
R _ Born+QCD+QEDy,1, A
et () (Ft—)bWJr—)b (etre) (x — xe))BornJrQCDJrQEDLLA
+ +
(Ft—mW —b(tTv,) (SC — xT)>
R . Born+QCD+QEDry 1A (45)
ur(z) = (Pt%bw+ﬁb ) (x — ))
#))Born+QCD+QEDr1A



15

0.0141

0.012} E—eYeT

0.010+ - --- QED(x)
0.008} B QED(e)
0.006} L
0.004{ .- ..
0.002} .-\ _

0.000 —
-0.002} \/ \,/
-0.004+

-0.006}
-0.008}
0.019

QCD vs QED

0 01 02 03 04 05 06 07 08 09 10
X

Fig. 3: QCD and QED corrections to the lepton energy spectrum in the decays t — bW —

. . . dBr{) .
b(eTve,7v;). The solid curve is the QCD-correction term —%<2 (i.e. second term from from

d t—bWtT sb(rTvretre)

(@10)), the dashed and dotted curves are the QED-corrections [QFEDLLA from (@3] for

dIT,E

the 71 and e™ in the final state, respectively

As can be seen, the effect of the radiative corrections is very marked for the low-z values
of the lepton-energy spectra (z < 0.3) and it is non-neglible also near the end-point of the
spectra (z > 0.7). This is numerically an important effect and in the precision tests of
the SM in the top-quark sector, which we anticipate will be carried out at the LHC, it is

mandatory to take the radiative distortions of the spectra into account.

V. THE TOP QUARK DECAY ¢t — bH' — b(I*y) IN THE BORN
APPROXIMATION

Let us consider now the top quark decay induced by a charged Higgs boson:

t(p) = b(py) +H" (q) = b(pe) + (£F (pe) + 72 (py)) (46)



16

0.107
0.09¢
0.08%
0.071
0.061
0.05¢
0.04+
0.03¢ Born (via W")

0.02¢ 1 |---- Born (via W*) + RC(z)
0.011 I Born (via W*) + RC(e)

0.00k22=

dBr/dx

X

Fig. 4: Lepton energy spectra from the decays t — bW — b(¢£11;) versus the lepton energy fraction
T = Ze,y,r. The spectrum in the Born approximation (solid curve) is the same for £+ =e™, p*, 77"
(see (33)). The dotted curve is the et-energy spectrum (dBr/dz.) including the (QCD+QED)
radiative corrections for the decay t — bW ™ — b(ev,) (i.e. the contributions from (4I) plus the
QED correction term from (43])). The dashed curve is the 7+-energy spectrum (dBr/dz;) including

the (QCD+QED) radiative corrections for the decay t — bW ™ — b (1v;).

where we will concentrate on ¢ = 7+ (see Fig. [l b). Using the couplings from the La-

grangian (I9) we can write the matrix element of the process (46) in the following form

2V C

ppibH bty 9V -
’ PSAIZ, = M & igTy e (P) (1 08) i (pr)]

% [ (p) {4.(1=29) + B (1459} us ()] (47)

The model parameters A, B, C' are given in (20). Squaring this matrix element yields

C? (A? + B?)
My,

2 2/, )2
Mt*)bH+~)b(T+V'r) _ (g th " 18
B M2+ TS (Dips) (Prpy) (48)

Introducing the kinematic variables:

_ 2E _ 2B, _ @ _

l‘T_mtTa Ty = mtTa y_m_?_1+77_xb7
_ Ty _ Mj mar __

,YH_MH’ yO_mfa Ty _1+777
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Fig. 5: Ratios of the lepton-energy spectra in the decays t — bW™T — b({t1y): Rer(z) =
(dashed

dDt—=bW T —b(rvr) / drt—bW T —b(eve)

_grt=tW T ob(rvr) ) gpt= bW —b(uvy)
dxe /

+
(solid curve), and R, (z) = T,

dzr dx -

curve), quantifying the leading order (QCD and QED) corrections to the lepton universality in

semileptonic top quark decays.

where E; and E,_ are the energies of the final 7 lepton and the neutrino in the ¢-quark
rest frame, respectively. 'y is the total decay width of the charged Higgs boson, and the

Breit-Wigner form of the propagator reads as

1 1 1 1
2 2 . 2 2 212 2 12 = MA 2 : (49)
|¢* — M7 + iMyTy| (¢> — Mz)" + MpTy, H(l_yio> + 9%
Thus the matrix element squared (48) takes the form:
5 2 02 A2 B2 mar __ 1
Mg—>bH+—>b(T+ |7 _ (92‘4(;)2 ( + ) Tp (x JUb) L (50)

My (1_i)2+72 4y3

The decay width of the unpolarised top quark decay t — bH"™ — b(7+7,) then takes the

form:
bHT—=b(rF v, mazx
dF? —b(rtvr) _rH xp (x — 1p) (51)
dryda., N t(1_1>2+ 5
Yo /YH
1 [(C?(A?+ B?) m;
H _ 2 My
Ft — 9113 ( MIA}V > (ng) M?{ (52)
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The branching ratio of this decay is:

dBTtB—)bH+—)b(T+V7—) 0o T (l‘max - .'I,'b) " P{{
dxydx = BB, 2 ’ t = Ttot’ (53)
b T <1 _ y%) + ,-)/%I t
where BY is the branching of the decay H* — 7Fv, [49]:
Uiy
B = Mo, , (54)
PH—)TVT + FH—>c§
2
_ g MH 2 2
FH—)TVT = mmT tan 5,
392MH
FH~>C§ = m (M(Zj C0t25+M§ tan2 5) .

For the numerical values of tan 3 that we entertain in this paper, the branching ratio B¥ = 1,
to a very high accuracy. The dependence of the branching ratio of the decay t — bH™ on
tan 3 is plotted in Fig. We emphasize that in plotting this figure, radiative corrections
coming from the supersymmetric sector are not included. They have been calculated in great
detail in the literature, in particular for the MSSM scenario in [40], and can be effectively
incorporated by replacing the b-quark mass my, in the Lagrangian for the decay t — bH™ by
the SUSY-corrected mass mgere®d = m, /[1 + A,]. The correction A, is a function of the
supersymmetric parameters and, for given MSSM scenarios, this can be calculated using the
FeynHiggs programme [41], which makes use of the results in [40]. In particular, for large
values of tan 3 (say, tan 8 > 20)), the MSSM corrections increase the branching ratio for
t — bH™ significantly though this is numerically not important for tan f = 22, which we
use to numerically calculate the branching ratio for ¢ — bH". We emphasize that in the
analysis of data in the MSSM context, the branching ratio shown here in Fig. [f] has to be
corrected to include the SUSY corrections. This, for example, can be seen in a particular
MSSM scenario in a recent update [42], based on the version FeynHiggs v2.6.2.
The lepton energy spectrum in the Born approximations has the following expression

_ 1
dBTtB_H)H-F_)b(T-FVT) / ; dBrtB—>bH+—)b(T+uT)
Tp

= BB ¥y (z,), (55)

de dZdel'T

1—x,
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tan p

Fig. 6: Lowest order branching ratio for the decay t — bH ™' as a function of tan 8 for M+ = 120
GeV.

where

y(1—vy)

e /dy<1y>2+72

0 Yo

1— 1 —
= yg { Yo [arctan <—> + arctan <x yo)] +
TH TH Yo

+ (2y0—1)ln< il )-;p} (56)

Yo — T

A. QCD radiative corrections

The leading order QCD corrections to the decay t — bH™ — b(77v,) is calculated in
a similar way as for the case of ¢ — W™ — b(77r;). The derivations for the Dalitz

distribution dBr/dxydx, and the T-energy spectrum dBr/dz, are given in Appendix [Bl
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B. QED radiative corrections in the leading logarithmic approximation

To calculate the QED radiative corrections in the leading logarithmic approximation we
will again use the structure function method, which gives:

1

tbHT—=b(rH v, + T,
dBTB_o)rn-i-Q_)E(D : — Bf / @D & 5 dFtBﬁbH i ) (57)
dl‘T Fi’o}tzc y y ’ T dy .

Tr

where the large QED logarithm now is /3, (see ([B])). The first order QED radiative correction

reads as
t—bHT—b(It ) 1 t—bHT bty
dBrgpp,, l _ g(Ll_ ) Bl @Pu) ) dly’ )
dx; 21 ke ) v y dy

Ty

1
Q re d x
— (=) B [P0 (2 e

o Fi:’fm y
z
Q rf
= — (L, —1)=—Lt-—BHr 58

where @y (x) is the Born spectrum defined in (56]) and

= Dy (2) {x+%+1n(x)+21n<1;x>}

x

The contribution of the QED corrections (G8)) is shown in Fig. [l and compared with the
QCD corrections from (B23). In Fig. B we show the lepton energy spectrum in the Born
approximation and compare it with the radiatively corrected one. Contrasting the 7-energy
spectra in this figure with the corresponding spectra in Fig. [ shows that the 7-leptons from
the decay t — bH™ — br'v, are distinctly more energetic. This feature is well known in
the literature. We have calculated here the (QCD + QED) corrections to these spectra and
checked their perturbative stability.
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Fig. 7: QCD and QED corrections to the lepton energy spectrum in the decays t — bH* — br v,
The solid curve is the QCD corrections, i.e. the second term on the r.h.s. of the first line of

Eq. ([B24) divided by the total decay width T'{%, and the dashed curve is the QED corrections
dBrt%bH+—>bT+V7-

—9FPrrA__ from Eq. (B8) for the 7+ in the final state.

dz -

VI. TOP DECAY CHANNELS INVOLVING THE 7 LEPTON

The radiatively corrected charged lepton energy spectra from the decays t — bW+ —
bty (for £t = et ut 7%) and ¢ — bHT — b(77v,) presented here will be helpful in
undertaking precision tests of the SM and in the searches for the H*-induced effects in the
semileptonic decays of the top quark. Integrating these spectra from some experimental
threshold lepton energy, the anticipated enhancement in the branching ratio for the ¢ —
b(7tv,) mode over the other two semileptonic modes ¢ — b(u + v, e"v.) provides the
experimental handle on the H* searches. This is the strategy which is being used at the
Tevatron, where searches have also been made in the decays H* — ¢§ (and in the charge
conjugate modes), but this final state is of interest only in the region tan 5 < 1, which we
do not entertain here. However, as already mentioned in the introduction, the characteristic
polarisation of the 7* produced in the decays W* — 7*v, and H* — 7., which reflects

itself in the energy distributions of the 7*-decay products, can be used to discriminate the
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Fig. 8: Lepton energy spectra from the decays t — bH' — b(77v;) versus the 7 energy fraction

x =z, for M+ = 120 GeV and tan 8 = 22. The solid curve shows the Born spectrum (see (53)))

and the dashed curve is the spectrum including the (QED + QCD) radiative corrections from

Fig. [0 (i.e. QCD corrections are taken from Eq. (B24]) and the QED corrections are taken from

(63).

W#*-induced and H*-induced final states. In this section, we calculate the energy spectra

of the so-called single charged-prong events in 7-decays. The 7*-polarisation effects on the

7% decay products have already been investigated in the literature, in particular in |36, 137],

which we shall make use of, convoluting these spectra with the 7F-energy spectrum from

the decay chain t — b(W*, H") — b(7"v,) calculated by us here. To that end, we consider

the following 7% decay chains

t — b(WT, H) 7w, — jet(b) + v, + v, + 7 + 27°;

5

( ) (
( ) (
t — bW, H" )i, — jet(
( ) (
( ) (

W+, H) 1o, — jet(b) + v, + vy + 1y + 1,

b

W H 7o, — jet(b) + v, + v, + 21t + 17,

Ny — jet(b) + vy + v, + 7

)
)
)+ O v+t
)
)

l=e" put; (60)
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involving the leptons e®, pu*, the 7F, the vector and the axial-vector mesons p™ and a,
respectively, with the subsequent decays of the p™ and a;, as indicated. Keeping in mind the
long-distance nature of the QED interactions, providing the ”large logarithms”, one must
include the structure function associated factors only with the final charged particles-leptons
or pions (see Fig.[2 b and Fig.[IT], a, b). In the rest frame of the top quark, the 7-leptons from
the decays ¢t — b(W™*, H') — b(7"v,) have much larger energy and 3-momentum compared
to ther- mass, i.e. E, > m,. The energy spectrum of the 7-lepton decay products must be
modified to take this into account [36]. For example for the decay 7 — pvv of the 7-lepton
with energy E;, the E,-energy spectrum can be obtained from (&) (see also Eq. (2.8) in
[36]):

1
dBr7, * dBrg x
# - /dcos / cos@dm 5(1_C089)) da
E
3

=P (2)=—(1—2)[5+52—42"— P, (1+2—82")], (61)

where z is the energy fraction of the p in the indicated decay:

z:E:g(l—cosﬂ)zi—j, (62)
r =2FE,/m,, and 6 is the angle between the directions of the 7 and the ;z 3-momenta. The
index a in E, shows the final particle involved. Here, a = p (the expression above holds
also for the et-energy spectrum). We also need the energy spectra for other particles in the

7-lepton decay, i.e. for a = 7t p, a;. The corresponding distributions were obtained in [36]:

for @, (2) see Eq. (2.4) and for ®,,, (2) see Eq. (2.22) in the cited paper.

A. Leptons in final state

For the 77-decay with the leptons in the final state (i.e. a = e™, u™), the final expression

for the lepton energy spectrum in the Born approximation is

dB t—b+-v v+t d TdB t—b(ttur)
TB _/ Y Born (I)l (ﬂ) (63)

dzy Yr dyr Yr

Ty

t—»b('r vr)

where the t-quark decay width [13133;7“ is taken from (B6]) or (B3) and ®; (2) was defined

in (GI). To take into account the QED radiative corrections in LLA we again use the SF
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Fig. 9: Differential branching ratio = P (see ([63)) as a function of the u™

energy fraction z, in the Born approximation (solid curve) and with the QED and QCD radiative

corrections (dashed curve) (see (64])).

approach illustrated in Section [I] (see formula (Bl) and Fig. 2 b). The radiatively corrected

spectrum is then given by

— 1 1
dBTt*)b+VT+VT+V[+Z+ 1 BH d
QEDLLA+QCD _ { ’ T} _yDl (ﬂ,ﬁz> /dxb X

dl‘l B Piolt%C Yy
’ x 2\/ﬁ
ATt b ottt s [2 F
. Mo ( _Of_{_m,p}] (y,xb)}> ,(64)
dzydy ™ |3y (yme —y)

where the first entry in the curly braces is for the decay channels which go via the W*b
intermediate state, and the second entry is for the decays which go via the intermediate
state H*b. The function Fyy (z;, ;) represents the non-leading contributions of the QCD
corrections and was defined in ([@0). The definition of the function Fy (z;,) is given
in (B24). The differential branching ratios from the decay chain ¢ — bW+ — b(rt —
ptv, - v, are shown in Fig. @ and from the decay chain ¢t — bH™ — b(r" — ptv,o;)v, in

Fig. IO
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Fig. 10: Differential branching ratio ~——£& e as a function of the u* energy fraction

x, in the Born approximation (solid curve) and with the QED and QCD radiative corrections

(dashed curve), involving the bH™ intermediate state.

B. Hadrons in the final state

In this case, we have to take into account the decay chain involving the final decays
7T — (7%, pT,al v, with the subsequent decays of the p*- and the ai-mesons into pions.
The 7-energy spectrum is already given above. Consider first the decay 7 — p* 7., in which

case the pt-energy spectrum is given by

1

dBr T dBriy" T L (T
dzx, P ’

(65)

Ty dx, Ty

Zp
where the function ®,(z) describes the conversion of the energetic 7-lepton into the energetic
p-meson. This function was calculated in Ref. [36], which we incorporated in our numerical
calculations. The distribution in the pion energy fraction z, resulting from the p™ — 7 7°

decay takes the form:

1

dBTt—)b+V7—+(T—)177—|—(p—)7T+...)) /d!II dB,rt—>b+1/T+(T—>p+177) T
p T
Jl )

Born Born
dx,

66
T, dx, T, (66)

T
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where the function R,(z) describes the conversion of the energetic p meson into energetic

pions (i.e. p* — 7%70):

1dl’
Rp(f)—f%a T=p T (67)

This function was investigated in [37] (see Fig. 1 in [37]).
The radiative corrections (”large distance contributions”) can be obtained by using the

structure function approach as:

) 1
dBr;%bJruﬁr(T%er(pﬂwf--)) B {LBf} dy» y

tot
Az, ke Yr

T

drt—>b+llr+(7—>l77—+(p—)7r+... )
D, (

s

Za).

Ym

Born

dyx

where Dy (%) is the structure function of the charged pion [54]:
1
Dr (3, B7) = 0 (1 =)+ BPY (2) + B°P) (2) + -+, (69)

(0% m2
= — [In—t —
b 27r<nM2 )
(m)

and the quantities Pz () have the form:

1—2

PO (z) = ( 20 ) :lim[ 22 g1 —z— A+ (2 (A) +2) 61—, (70)

The formula similar to (59) in the case of pions reads as:

@ oy (f)qs(y)=¢<x>{2ln<l—x>+2}+ B 2T 0y @), (1)

Y Y

xT xT
where ¢(z) is any arbitrary function we want to convolute with the structure function
D, (z, ;) in the leading order perturbation theory. The smoothed form of the structure
function D, (z, ;) takes the form:

D7r (xa Bﬂ) = 257r (1 - 2)2&71 (1 + Bﬂ) - Bﬁ + O (ﬁ?r) ' (72)

The energy distribution of the charged pion obtaining from the decay a; — «*... from

the parent 7 decay can be derived analogously.
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Fig. 11: Kinematics of the Structure Function method for the decay a) t — biz,v, 77" and b)

t — byt ot involving a 71 in the final state.
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Fig. 12: Differential branching ratio =2 T (see (63) as a function of the 7+

energy fraction z, in the Born approximation (solid curve) and with the QED and QCD radiative

corrections taken into account (dashed curve) (see (64])).
VII. SUMMARY

In the first part of our paper, we have calculated the QCD and QED radiative corrections
to the semileptonic decays t — bW ™ — bl*Tv, (¢ = e, u, 7) in the SM. Of particular interest
are the charged lepton energy spectra, which we have calculated using the SE approach to

resum the leading order (in QED) and leading and next-to-leading order (in QCD) contri-
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z; in the Born approximation (solid curve), and with the QED and QCD radiative corrections

taken into account (dashed curve), involving the bH intermediate state.

butions. These spectra will be measured accurately at the LHC and will be crucial to check
the lepton (e, p, 7) universality in the semileptonic decays of the top quarks in SM. In doing
this, it will be crucial to take into account the QED and QCD radiative corrections in the
energy spectra. The numerical extent of such corrections is shown in Fig. [l for the ratios

R.; and R,., which is one of our principal results in this paper. The rest of our paper is

e
addressed to the possible effects of a charged Higgs boson H* with My+ < m; — my in
the semileptonic decays of the top quark. To avoid the constraints on My+ coming from
the B — X;v decay, we assume that the Higgs sector is part of a supersymmetric theory.
Except for the SUSY radiative corrections, which can be effectively taken into account by
the supersymmetric renormalisation of the b-quark mass, there are no other effects of the
supersymmetric sector on the decay widths and distributions. We have considered only the
large-tan 3 parameter space of this model, in which case the decays of the H* are dominated

by the final state H* — 7%v,. In Figs. @ and 8, we have contrasted the Born and radiatively

corrected 7-lepton energy spectra from the decays t — b(W+ H*) — 7Fu, for a specific
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Fig. 14: Differential branching ratio = i as a function of the pion energy

fraction z, in the Born approximation (solid curves) and including the QED and QCD radiative
corrections (dashed curves). The upper curves are for the transverse polarisation of the p and the

lower curves correspond to the case where the p is longitudinally polarised.

choice of the parameters Mpy+ = 120 GeV and tan = 22. While the Born level spectra are
well documented in the literature, effects of the radiative corrections on the spectra are, to
the best of our knowledge, new results.

The contribution of an H* in ¢ (#) decays, if allowed kinematically, will enhance the decay
rate for t — br*v, (t — br~1;), which is the main H*-search strategy at the Tevatron.
However, with a much larger tf cross section and the luminosity anticipated at the LHC,
this search strategy can be further strengthened by taking into account the different 7*-
polarisations in the decays W* — 7%y, and H* — 7%v,. As the polarisation information
of the 7% is transmitted to the decay products of the 7%, we have calculated the energy
distributions of the charged particles (e*, u*, 7%, p*, a}) in the single-charge-prong decays of
the 7%, as well as the inclusive charged pion spectra from the decay chains t — b(W=*, H*) —

b(r*,v,) — brt+ X. The results at the Born level are well known in the literature. We have

calculated the perturbative stability of these distributions. The entire effects of the radiative
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Fig. 15: Differential branching ratio ~& i as a function of the pion energy frac-

tion z, in the Born approximation (solid curves) and including the QED and QCD radiative
corrections (dashed curves), involving the bH ™ intermediate state. The upper curves are for the
longitudinal polarisation of the p and the lower curves correspond to the case where the p is

transversely polarised.

corrections presented here can be implemented in existing Monte Carlos, such as PYTHIA
and HERWIG, to provide an improved theoretical profile of the semileptonic decays of the
top quark in the SM and can be combined with FeynHiggs to include the SUSY-related
corrections specific to particular MSSM scenarios.
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APPENDIX A: NUMERICAL VALUES OF THE INPUT PARAMETERS

For our numerical calculations we used the following values of the parameters:



Fig. 16: Differential branching ratio
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as a function of the pion energy

fraction z, in the Born approximation (solid curves) and including the QED and QCD radiative

corrections (dashed curves). The upper curves are for the transverse polarisation of the a; and the

lower curves correspond to the case where the a; is longitudinally polarised.

Parameter Value Parameter Value Parameter Value
a~! 137.035999679 my 171.2 GeV tan 3 40
R 0.1176 my, 4.20 GeV Br (1t — pv,1,)|17.36 x 1072
Me 0.510998910 MeV M, 0.13957018 GeV Br (t — 7v;) [10.91 x 1072
my, 105.6583668 MeV M, 0.775 GeV Br (1 — pv,) |25.52 x 1072
m, 1.77684 GeV r, 0.1462 GeV Br (1 — ayv,) [1.859 x 107!
My 80.398 GeV M,, 1.230 GeV
Iy 2.141 GeV Ly, 0.420 GeV
Mpy 120 GeV Gr  [1.16637 x 1075 GeV >
I 2 GeV g 0.653057




32

0.030
Born(via a, .)
0.025 o
N Born(via a, )
0,020 ---- Born(v?a a”) + RC
- ---- Born(viaa, )+ RC
©
S 0.015
Z.0.010
m
0.005
0.0 01 02 03 04 05 06 07 08 09 10
XTE
t=bH Y b - Em o)
Fig. 17: Differential branching ratio & i as a function of the pion energy frac-

tion z, in the Born approximation (solid curves) and including the QED and QCD radiative
corrections (dashed curves), involving the bH* intermediate state. The polarisation of the a] is

indicated in the figure.

APPENDIX B: RADIATIVE CORRECTIONS TO TOP QUARK DECAY VIA
CHARGED HIGGS

Here we give details of the QCD radiative corrections to the width of t-quark decay
t(p) — b(py) + 7(p;) + v(p,) with the charged Higgs boson in the intermediate state.
The lowest order QCD corrections can be calculated in a similar way as in QED and in

the final result one must do the replacements

_ N1

SC, C
o — ;U F N,

5 B1)

where N, = 3 is the number of quark colours.
We start from the counter-terms associated with the ¢t and b quarks. Taking them into

account yields a multiplicative renormalisation factor in the expression for the differential

width

' — dT'Zy, (B2)
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Fig. 18: Normalised inclusive pion energy spectra from the decays t — b(W+, HT) — b(n™ + X ),
as a function of the pion energy fraction z, in the Born approximation (solid curves) and including

the QED and QCD radiative corrections (dashed curves).

o A2 3. m? 9 m?
Zy=1——|ln—+-In— +> —2In—~ B3
b P R i R vl (B3)

where m; and my, are the masses of top and bottom quark. The auxiliary parameters A and A
are introduced to regularise the ultraviolet (UV) and infrared (IR) singularities, respectively.
Sometimes A is also dubbed as a fictitious "photon (gluon) mass”. The dependence of the
decay width on these parameters will disappear from the final result. The UV-cutoff A will
be absorbed by the coupling constant renormalisation and the IR-cutoff A will be cancelled
by taking into account the emission of the virtual and real gluons.

Virtual corrections associated with the vertex type Feynman diagram require the calcu-

lation of the following integral involving the loop 4-momentum

_ ﬂ Yu(Po — k& +my) (P — k + my)y*
e (e s (e (B4

Using the Feynman prescription of combining the denominators and performing the loop
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momentum integration (here we must impose the ultraviolet cut-off) we arrive at
1 1

A2 d 2 d

2 2
mymy, t px

0
with p2 = z?m} + (1 — z)®>m] + 2(ppy)z(1 — ) and the unit matrix in the Dirac space is

implied. Below we use the explicit form of the 1-fold integrals

1
d 2 2
/_f[l;(l_@;mp_g]:[ : ln(%);
) Pz my myy my

1 1 1 m2 1
I _<1n2y__1n2_t_zm (1__>>]. B6
iy " my 2™ Ty (B6)

The next step consists of the calculation of the contribution arising from emission of real

gluons - soft and hard ones. Standard calculation for the case of soft gluon emission w <

AE, < my (we work in the rest frame of top quark) leads to

dypy o [k (p  p\
dlg  4r2 ] w \pk pok
2AE 2
:9[2(1—1)111 +1+l—12—7r—}, =™ (B7)
i 6 my,

Extracting the factor Z =1+ 3> Sa ~In and using the ultraviolet-regularised quantities we

tZ

can write
Zdl ynren = dI. (B8)

Collecting the contributions of the Born level and the virtual and soft real corrections, we

obtain:
a 3 a 5 1 5 1
' = dl'gll+—(L—-1)(2InA + = —[—InA - =+ =In?y— 21 Lirn(1l — =) —
a0 = dUp[1+ 5 (L= )EIMA+ D) + S A = S Sty — Sy + Lia(l— )
2 1
- - _ 1 B9
G-l (B9)

with A = AEb/Eb, L=1In Z%yA

Note that the term containing In A are connected with the emission from the ”light”
b-quark and the heavy top-quark.

Let us now consider the emission of the hard gluon with momenta k = (w, IZ), ko > AFE.
The relevant phase volume
(2m)* &py &p; &p, Pk,

A, = 54— py — v — pr — k),
"= (am) 28, 2E, 2, 2" P~ v pr = k)
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can be transformed as

: 20, (k
A0y = " dyw, du,drdzdO, s <1 R M) , (B10)
2136 m%
where
2 2 (k
g=— g (7;”), (B11)
my my
and
2dcyd
O, = ade , (B12)
V1= —c— 2+ 200
is the angular phase volume of the 7 lepton, and
c= COS(Ev ﬁb)a €1 = COS(E, ﬁr)a C2 = COS(ﬁTaﬁb)' (Bl?’)

Explicit calculation yields

2 4
/d075<1—x7—x—y+z+ pT(k;Lpb)>: z ., R=+\/(z+y)?—4z. (Bl4)
e xR

and the variable z is bounded by

Tm;
Zm < z < TY, 2 = —2 <L L. (B15)
ymj

Summed over the final spin states, the matrix element squared leads to

druncoll dF 1‘ +y— Z) 1
= d F,+ Fy,+ F. B16
dx, dy T or xx/ dx.,dy (r4+y—2)R (F1+ F2 + F3) ( )

where

v+ (y+x)° 2mijz+y
FIZ - )

Tz m? 22
2y
FZZ_ﬁa
F 2(1+ +)+Z(2+)
= —— )+ — x).
3 z y 2

It is convenient to introduce the small auxiliary parameter o (z, < ¢ < zy ~ 1) and
extract the contribution of the collinear kinematics k||

Only F) gives the contribution in the collinear region (z < o):

1

« dt
choll — % / —dF( )

y(1+A)

1+ 2
(L, —1)+1-2, (B17)
¢ /
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with

2 2AFE
=In miy9 A = )

Tmj mgy

Contribution of Fi from the non-collinear region can be put in the form:

[odt 1+ 4 "
o T xy z
— —dI (¢ L lln— —X(t B18
e | G T [ e (B13)
y(1+4) 0
with
dU(t — 2)t?
Xt z) = -1 B19
2 = Ve =5 (B19)
Note that the second term containing (¢, z) is finite in the limit m;, — 0.
The contribution of the second term (F3) can be cast in the form:
[dt I [ dtdD(t "
T — 3 P! (B20)
s t—y 12 T ) (t—y)?
y(14+A) Y 0

The first term above combined with the term —2dT'(y) In A (see (BY)) gives a quantity which
is finite in the limit A — 0. Emission from the light quark has a form predicted by the
Structure Function approach. Combining all the contributions, we arrive at the following
expression for the QCD corrected double (Dalitz) distribution in the variables z., y:

1

dl’ (y,z,) /dt (TR dl (t,x;) Qs

St [ 2D (Y 5m) S {1 2R B21

v dy 7P PW) G, T (B21)
y

where Fy is the K-factor which contains all the non-enhanced terms. On integrating the

b-quark energy fraction, the mass singularities (5(y) = %= (In(y*m?/m2) — 1)) for m;, — 0

will disappears due to the relation

/ldy/l%D (L.5) i) = /F(t)dt. (B22)

Thus, in an experimental setup involving an averaging over the b-jet production, the resulting
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T-meson energy spectrum fraction is described by the following expression:

1

dl’ dl’
= d B23
dx'r / xbdl'bdl',r, ( )
11—z~
1
dl’ . dPB OZSCF / d dFB y2 1
dtde,  dtdx, T ydyd:z:T t?t—y
t(1+A)
OésCF dFB 5 1 9 5 Int . 1 t
+ - dtd;z:T[ 2+21nt 2lnt 1—¢ Co+Lip |1 n 5 InA

e ()

As anticipated, this expression does not depend on the small auxiliary parameter A < 1.

Thus function Fy (x,, ) is defined as

5 1 5 Int ' 1 ¢
FH(iET,t):CF{§—§ln2t+§lnt—|—1—_t—|—C2—L12<1_¥>_|_§_|_lnA
dFB o 1 dFB y2 1
d ST (- B24
(dtd:rT) X/ Yiyde, 71—y (B24)
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