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N = 2 Superonformal Symmetry in Super Coset ModelsThomas Creutzig, Peter B. R�nne, Volker ShomerusDESY Theory Group, DESY Hamburg, Notkestrasse 85, D-22603 Hamburg, Germany�(Dated: April 2009)We extend the Kazama-Suzuki onstrution of models withN = (2; 2) world-sheet supersymmetryto osets S=K of supergroups. Among the admissible target spaes that allow for an extension toN = 2 superonformal algebras are some simple Lie supergroups, inluding PSL(NjN). Our generalanalysis is illustrated at the example of the N = 1 WZNW model on GL(1j1). After onstrutingits N = 2 superonformal algebra we determine the (anti-)hiral ring of the theory. It exhibits aninteresting interplay between world-sheet and target spae supersymmetry.PACS numbers: 11.25. HF; 11.25.-w; 11.25. Sq.
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1. INTRODUCTIONSigma models with target superspaes have appearedin a large variety of physis problems, ranging fromN = 4 super Yang-Mills theory to disordered eletronsystems. In this note we are partiularly interested intheories for whih an expliit N = 1 superonformalsymmetry on the world-sheet gets enhaned to N = 2.A few basi examples have been disussed in the litera-ture. These inlude the supersymmetri sigma model onthe so-alled twistorial Calabi-Yau CP 3j4 that featuredin Witten's work [1℄ on twistor string theory (see e.g. [2{7℄). Sigma models on Calabi-Yau superspaes were alsoonjetured to desribe the mirror partner of string the-ory on rigid Calabi-Yau manifolds [8, 9℄. This makes itseem worthwhile to look for more general onstrutionsof suh models.Quantum �eld theories with N = 2 superonformalsymmetry possess an intimate and well known relationwith topologial �eld theories. In N = (2; 2) superon-formal models, the hiral Virasoro �eld T is part of amultiplet involving two fermioni �elds G� with onfor-mal weight hG = 3=2 and a bosoni U(1) urrent U withrelationsG+(z)G�(w) � =3(z � w)3 + U(w)(z � w)2 + (T + 12�U)(w)(z � w)U(z)G�(w) � �G�(w)(z � w) ; U(z)U(w) � =3(z � w)2 :The same algebra is satis�ed by the anti-hiral partners�T ; �G� and �U . Given this struture, one may go through aproess of twisting. It results in two di�erent topologialonformal �eld theories that are known as the A- andB-model, respetively.In [10℄ (see also [11℄ for earlier related work), Kazamaand Suzuki desribed a simple onstrution providing�Eletroni address: thomas.reutzig�desy.de,peter.roenne�desy.de,volker.shomerus�desy.de

many key examples of world-sheet theories with N = 2superonformal symmetry. They started from an N = 1Wess-Zumino-Novikov-Witten (WZNW) model for theoset spae S=K and investigated under whih onditionsthe N = 1 symmetry ould be extended to an N = 2superonformal algebra. Within the list of ases theyworked out are the N = 2 minimal models. These fea-ture as building bloks for Gepner's onstrution of stringtheory on Calabi-Yau manifolds. Our aim here is to gen-eralize the analysis of Kazama and Suzuki to the ase ofoset superspaes S=K where both S and K an be Liesupergroups. Following [12, 13℄, we shall desribe theN = 2 superonformal algebras in terms of supersym-metri Manin triples. Among the resulting N = (2; 2)theories, we �nd one family of partiular interest: It isshown that the N = 1 WZNW models on the simplesupergroups S = PSL(NjN) (with trivial denominatorK = feg) possess an N = 2 superonformal symmetry.A related observation for an N = (1; 1) model on thebosoni base of PSL(2j2) was made and studied by sev-eral authors [14{16℄.Let us briey desribe the ontent of this note. Inthe next setion we shall outline the onstrution of K-gauged N = 1 WZNW models on a supergroup S. Asin the ase of bosoni targets, the S=K oset model anbe realized within the WZNW model on the produt su-pergroup G = S � K. We ontinue by introduing thenotion of a Manin triple for supergroups G and provide afew examples of this algebrai struture. From the dataof a Manin triple we shall onstrut the �elds G� and Uof the N = 2 superonformal algebra in setion 4. Therewe also disuss possible deformations of the N = 2 super-onformal algebra. In setion 5 we onsider S = GL(1j1)and K = feg as a simple example in whih we an easilydetermine the hiral ring. The latter is shown to onsistof �elds in atypial multiplets of the target spae super-symmetry gl(1j1). Finally, we disuss a few extensionsand open problems.2. GAUGED N = 1 WZNW MODELSWZNW models on oset superspaes with N = 1world-sheet supersymmetry possess a manifestly super-
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2symmetri formulation in terms of super�elds of the formG = exp(i��) g exp(�i����) : (1)Here, g = g(z; �z) is a �eld that takes values in the super-group S and � = �ata is a Lie super-algebra valued �eld.The omponents �a are fermioni for even generators ta,i.e. when jaj = 0, and they are bosoni otherwise. Themultiplets �a and ��a eah transform in the adjoint of theLie superalgebra s of S. One may now use the super�eldG along with the ovariant derivatives on the world-sheetgiven byD = �i ��� � 2�� and �D = �i ���� � 2���� (2)to build the usual ation of the WZNW model on thesupergroup. Writing down the ation also requires �xingsome non-degenerate invariant bilinear form (�; �) on theLie superalgebra s. When written in omponents, theation beomesSN=1WZNW[G℄ = S0WZNW[g℄ + (3)+ 12� Z d2z (�; ���) + (��; � ��) :In our notation, the level k of the model is absorbed intothe de�nition of the bi-linear form (�; �). The formula forthe WZNW ation on the S-valued �eld g has the usualform, but with the bi-linear form (�; �) shifted by half theKilling form h�; �i, i.e. (�; �)0 = (�; �) + 12 h�; �i. The Killingform is onstruted and normalized in the standard fash-ion. In ase the Killing form is proportional to (�; �),the shift of the bilinear form simply amounts to shiftingthe level by the dual Coxeter number. The global tar-get supersymmetry of the N = (1; 1) theory gives rise toholomorphi urrents Ja and �Ja whih satisfy the usualsuper-symmetri urrent algebra at level k. These ur-rents inlude terms that are onstruted out of the �elds�a and ��a. For a simple Lie superalgebra s, the totalentral harge of the model is = (k � h_s ) sdim sk + 12 sdim s = �32 � h_sk � sdim s :The seond term is the ontribution from the �elds�a. Note that all these �elds possess onformal weighth� = 1=2 so that eah fermioni omponent of � on-tributes Æ = 1=2 to the entral harge while eah bosoniomponent subtrats the same amount.The gauged WZNW model of Lie groups has been de-sribed in e.g. [17{23℄. The formulation extends imme-diately to Lie supergroups. Let A = A(z; �z; �; ��) and�A = �A(z; �z; �; ��) be a set of gauge �elds that take valuesin some Lie subsuperalgebra k of the Lie superalgebra s.Then the gauged N = 1 WZNW ation isS[G;A; �A℄ = SN=1WZNW[G℄ + 1� Z d2zd2� �(A;G�1 �DG)�(DGG�1; �A) + (A; �A)� (G�1AG; �A)� :

This ation is invariant under the following gauge trans-formation G ! HGH�1 ;A ! Ad(H)A�H�1DH ;�A ! Ad(H) �A�H�1 �DH (4)for H 2 K. Thus the above ation desribes an N =(1; 1) world-sheet supersymmetri S=K superoset. It isonvenient to gauge �x this symmetry suh thatA = DHH�1 ; �A = �D �H �H�1 : (5)Thereby, we an embed our oset model into the N = 1WZNW model on the produt supergroup S �K,Z DGDAD �A e�S[G;A; �A℄ = J Z DGDH e�S[G℄+S[H℄for some onstant J as explained in [23℄. The gauge�xing proedure requires to introdue additional ghost�elds. They ome in four di�erent kinds. There aredim k
�0 fermioni ghosts and dim k

�1 bosoni ones, eahontributing a entral harge  = �2 and  = +2, respe-tively. These all have N = 1 superpartners, i.e. there aredim k
�0 bosoni ghosts with entral harge  = �1 anddim k
�1 fermioni ones with entral harge  = 1. Tak-ing all these into aount, the ghost setor ontributesghosts = �3 sdim k so that the total entral harge is(S=K) == �32 � h_sk � sdim s+�32 + h_

kk � sdim k� 3 sdim k= �32 � h_
sk � sdim s��32 � h_

kk � sdim k :The total Virasoro �eld Ttotal = Ts�k + Tghost possessesan N = 1 superpartner Gtotal. Both these �elds de-send to the state spae of the oset model. The latteris obtained by omputing the ohomology of the BRSToperator Q. One may show that Ttotal and Gtotal are inthe same ohomology lass as the Virasoro element TS=Kand its superpartner GS=K in the oset onformal �eldtheory. Details on how this works in N = 1 WZNWosets S=K of bosoni groups an be found in [24, 25℄.The generalization of these onstrutions to supergroupsis entirely straightforward. In the ase of Lie groups,Kazama and Suzuki used the urrent symmetry to showthat some of the N = 1 WZNW osets admit an N = 2superonformal algebra [10℄. Their onstrution may alsobe embedded into the produt theory. In fat, it suÆesto show that the N = 1 superonformal algebra of theWZNW model on S �K admits an extension to N = 2.The orresponding �elds of the N = 2 superonformalalgebra reeive additional ontributions from the ghostsetor to form a total N = 2 algebra whose basi G�total



3and Utotal reside in the same ohomology lass as the as-soiated �elds in the oset model. Our goal is to extendthe analysis of Kazama and Suzuki to the ase in whih Sand K are Lie supergroups. Aording to the remarks wehave just made, all we need to do is to exhibit an N = 2superonformal algebra in the N = 1 WZNW model onthe produt S �K.3. SUPER MANIN TRIPLESThroughout this paper, g denotes a (not neessarilysimple) Lie super-algebra with a non-degenerate super-symmetri invariant bilinear form ( � ; � ). In our applia-tion to the WZNW oset S=K, the Lie superalgebra g isgiven by g = s � k. The form on g is determined by theform ( � ; � )s on s that we use to onstrut the ation. On
g = s� k it is given by((X1; Y1); (X2; Y2)) = (X1; X2)s � (Y1; Y2)sfor all Xi 2 s and Yi 2 k � s. As we shall show below,possible N = 2 extensions of the N = 1 superonfor-mal algebra in the S=K WZNW model are lassi�ed byspeial triples (g; a+; a�). Here, a� denote two Lie sub-algebras suh that

g = a+ � a� : (6)We all suh a triple (g; a+; a�) a super Manin triple ifthe Lie subsuperalgebras a� are isotropi, i.e.(a�; a�) = 0 : (7)For later use we also introdue the subspae a0 of the Liesuperalgebra g by
a0 := fx 2 g j (x; y) = 08 y 2 [a+; a+℄[[a�; a�℄g: (8)Super Manin triples ontain all the struture onstantswe shall employ later to de�ne the �elds that generatethe N = 2 super Virasoro algebra. Before we extrat therequired onstants, let us disuss one series of suh superManin triples that will beome partiularly importantbelow.Example: The most important super Manin triples weshall exploit arise from Lie superalgebras g = s, i.e.K = feg . Let us suppose that the even part g

�0of g splits into two bosoni subalgebras g
�0 = g

�0a � g
�0bof equal rank. This ondition applies to the Lie su-peralgebras g = gl(njn); psl(njn); sl(njn � 1) and g =osp(2n + 1j2n); osp(2nj2n). In all these examples, thebilinear form of the Cartan subalgebra of one of thesesubalgebras is positive de�nite while the other one is neg-ative de�nite (with a proper hoie of real form). Con-sequently, we an perform an isotropi deomposition ofthe Cartan subalgebra

h = h+ � h� : (9)

In order to extend the deomposition of h to an isotropideomposition of g we reall that any Lie superalgebraadmits a triangular deomposition into the Cartan sub-algebra h, the subalgebra of the positive root spaes n+and the subalgebra of negative root spaes n�:
g = n� � h� n+ : (10)Hene the triple (g; a+ = h+ � n+; a� = h� � n�) is asuper Manin triple, i.e. it satis�es the ondition (7). Wealso note that the derived subalgebras [a�; a�℄ of a� areontained in n� and onsequently,

a0 � h : (11)There exist many other super Manin triples, in partiularwhen the Lie superalgebra g is not simple.Before we an turn to the N = 2 superonformal al-gebra we need to extrat a few struture onstants thatharaterize the super Manin triple. Let us pik somebasis xi of the Lie superalgebra a+. With the help of ourbi-linear form (:; :) we an then �x a dual basis xi of a�suh that (xi; xj) = Æji . Our hoie of basis implies thatthe Lie braket takes the following form[xi; xj ℄ = ijkxk[xi; xj ℄ = f ijkxk[xi; xj ℄ = kijxk + f jkixk : (12)Here, the �rst two equations involve the struture on-stants ijk and f ijk of a+ and a�, respetively. The lastequation follows from the �rst two. Let us also intro-due the projetion operators �� : g ! a� from the Liesuperalgebra g to the two summands a�.In addition to the struture onstants  and f , ouronstrution of the N = 2 algebra will involve a speialelement ~� 2 g that is de�ned through~� : = �[xi; xi℄ = (�1)if ikixk + (�1)ikiixk : (13)The Jaobi identities for the two Lie subsuperalgebras
a� as well as for the full Lie superalgebra g imply that~� 2 a0 and [~�+; ~��℄ = 0 ; (14)where ~�� = ��~� 2 a� is the image of ~� under theprojetion map ��. The element ~� determines a mapD = ��+[~�; :℄ : a+ ! a+. When ating on the basiselements xi it readsDxi : = ��+[~�; xi℄ = Dli xlwhere Dli : = (�1)mn mnlfmni : (15)The supertrae of the map D is related to the length of~� through str(D) = �(~�; ~�) : (16)Any Lie superalgebra admits a anonial (often degen-erate) graded symmetri invariant bilinear Killing form.



4Sine it also appears in the struture onstants of theurrent algebra, we shall briey evaluate the Killing formthrough the struture onstants  and f . For any givenhoie of the basis, the Killing form readshXa; Xbi = �(�1)nCnamCmbn : (17)When both Xa; Xb are in the same Lie subsuperalgebra
a�, the Killing form on g redues to twie the Killingform of a�,hxi; xji = �2(�1)nnimmjn = �ij (18)hxi; xji = �2(�1)nfnimfmjn = �ij : (19)When the two elements Xa and Xb are taken from dif-ferent subsuperalgebras a�, the Killing form readshxi; xji = �ij = 2Aji +Djiwhere Aji = (�1)mnnimfnjm : (20)The matrix D was de�ned in eq. (15). This terminatesour preparations.4. N = 2 SUPERCONFORMAL ALGEBRALet us begin by introduing the basi �elds and theiroperator produt expansions. If we denote by Ji(z) andJ i(z) the hiral aÆne urrents orresponding to the gen-erators xi and xi, their operator produts are [26℄Ji(z)Jj(w) � 12�ij(z � w)2 + ijkJk(w)(z � w)Ji(z)Jj(w) � Æij + 12�ji(z � w)2 + f jkiJk(w) + kijJk(w)(z � w)J i(z)Jj(w) � 12�ij(z � w)2 + f ijkJk(w)(z � w) (21)where hxi; xji = �ij et. are the entries of the Killingform we determined at the end of the previous setion.The terms involving � arise beause we had to shift themetri by the Killing form in eq. (3). Operator produtexpansions of the �elds �i and �i take the form�i(z)�j(w) � 0�i(z)�j(w) � Æij(z � w)�i(z)�j(w) � 0 : (22)All these �elds have onformal weight h(�i) = 1=2 =h(�i). The pair �i and �i form a bosoni � systemwith  = �1 when jij = 1 and they generate a fermionib system of entral harge  = 1 when jij = 0.Let (g; a+; a�) be a super Manin triple of a Lie super-algebra g suh that the ondition (7) holds. We now want

to build a U(1) urrent U , the Virasoro �eld T and twofermioni urrents G� of weight h = 3=2 suh that theyobey the algebra of an N = 2 superonformal symmetry.We begin with the urrent U ,U(z) = :�i�i: +~�kJk + ~�kJk +Dij :�j�i: : (23)Here, we have extrated the numbers ~�i and ~�i from ourelement ~� 2 g through~�k := (~�; xk) = (�1)ikii~�k := (~�; xk) = (�1)if iki :The Virasoro tensor T takes the usual formT (z) = 12(:J iJi: +(�1)i :JiJ i: + :��i�i: � :�i��i:)(24)as a sum of the Sugawara tensor of the aÆne superalgebraat level k + h_ and the Virasoro tensor of the free �elds�i and �i. Finally, we introdue the two super-urrentsby [39℄G+(z) = Ji�i � 12(�1)i+ijijk :�i�j�k:G�(z) = J i�i � 12(�1)j+ijf ijk :�i�j�k: : (25)We laim that (U; T;G�) form an N = 2 superonformalalgebra of entral harge = 32 sdim g+ 3 strD : (26)For simple Lie supergroups g, strD = �h_ sdim g=3k sothat the value of the entral harge agrees with whatwe had spelled out in setion 2. The �elds T;G� and Uextend the N = 1 superonformal symmetry of the S�KWZNW model. In fat, the Virasoro �eld T = Ts�k andits N = 1 superpartner G = G+ + G� = Gs�k agreewith the N = 1 superonformal struture of the WZNWon the produt S � K. As we explained at the end ofsetion 2, all �elds must be augmented by the standardontributions from the ghost setor before they desendto the desired N = 2 superonformal algebra of the osetmodel.In order to prove the laim that the four urrents T; Uand G� form an N = 2 superonformal algebra one hasto ompute their operator produts. This has been donearefully in [27℄. After inserting the operator produts(21) and (22) of the onstituent �elds J(z) and �(z), theresulting expressions an be simpli�ed with the help ofthe Jaobi identity, as in the ase of bosoni groups G.For the key example of a super Manin triple that wedesribed in the previous setion, strD = 0 and hene theentral harge of the assoiated N = 2 superonformalalgebra is given by  = 32 sdim g. Some of the super-osets that admit a super Manin triple are listed in atable below, along with the entral harge.



5S K �S=K�GL(njn) GL(n�mjn �m) 0GL(njn) SL(n�mjn �m� 1) 0PSL(njn) PSL(n�mjn�m) 0PSL(njn) SL(n�mjn �m� 1) -3SL(~njn) ~n > n SL(~n�mjn �m) 0TABLE I: Inomplete list of N = 2 superonformal super-osets S=K with entral harge �S=K�. In all ases we as-sume that n > m � 0.There exist more N = 2 superonformal algebras,whih are obtained from the previous ones through a de-formation by an element � in a0. Consider an element� = pixi+qixi 2 a0 where pi; qi are Grassmann elementsof grade jij. It follows from the very de�nition of a0 thatthe omponents pi and qi must satisfyijkqk = f ijkpk = 0 : (27)We employ the element � to deform the �elds of theN = 2 superonformal algebra as followsU�(z) = U(z) + pi Ii(z)� (�1)iqi I i(z)T�(z) = T (z) + 12(pi �Ii(z) + (�1)iqi �I i(z)) (28)where we used the following set of level k Lie superalgebraurrentsIi = Ji � (�1)i+ijijk :�j�k: �12(�1)ikf jki :�j�k:I i = J i � (�1)j+ijf ijk :�j�k: �12(�1)ijjki :�j�k: :The expressions for the deformed superurrents G� area bit simpler G+� = G+ + qi ��iG�� = G� + pi ��i : (29)Sine we want G� to remain fermioni under the defor-mation, we required � to be bosoni. The entral hargeof the deformed algebra is� = � 6(�1)iqipi :The deformed N = 2 struture extends a deformation ofthe original N = 1 superonformal algebra. It is rele-vant in partiular for the disussion of models that areobtained from the WZNW model by Hamiltonian redu-tion.

5. THE N = 1 WZNW MODELS ON GL(1j1)In the following setion we would like to illustrate ouronstrutions in the simplest model, the N = 1 WZNWmodel on the supergroup GL(1j1). The GL(1j1) WZNWmodel has been disussed in [28{33℄. The Lie superalge-bra gl(1j1) is generated by elements E;N;  � suh that[N; �℄ = � � ; [ +;  �℄ = Eand E ommutes with all other generators. It omesequipped with an invariant bilinear form (:; :) whose non-vanishing entries are(E;N) = k ; ( +;  �) = k :Written in terms of the various omponent �elds, theation of the N = 1 GL(1j1) WZNW model isS = 12� Z d2z �k�X ��Y + k�Y ��X + �Y ��Y++ 2eY �+ ��� + �N ���E + �E ���N++ �+ ���� � �� ���+ + ��N� ��E++ ��E� ��N + ��+� ��� � ���� ��+� : (30)
Note the additional term �Y ��Y whih is not present inthe usual N = 0 WZNW model on GL(1j1). This termis due to the shift of the bi-linear form by the Killingform (see our omment in setion 2). The Lie supergroupGL(1j1) is not simple but solvable and its superalgebrahas a degenerate but non-zero Killing form with the onlynon-vanishing entry beinghN;Ni = 2 :The model (30) has a gl(1j1) urrent algebra symmetrygenerated by four urrents JE ; JN ; J�. Their N = 1superpartners will be denoted by �E ; �N ; ��. We notethat the Cartan algebra of gl(1j1) has two generators Eand N whih are isotropi. Hene, we an introdue asuper Manin triple (gl(1j1); a+; a�) through
a+ : = span(E; +) ; a� : = span(N; �) : (31)It follows that the subspae a0 is spanned by E;N and �. We shall work with the basis x1 = E=pk; x2 = +=pk and x1 = N=pk; x2 =  �=pk suh that the onlynon-vanishing struture onstants aref122 = � 1pk = �f212 :Consequently, the element ~� takes the form ~� = �E=kand hene D = 0. Aording to our general formulas, theU(1)-urrent U and the two super-urrents G� are given



6by U = �N�E + ���+ � JEpkG+ = JE�N + J+��G� = JN�E + J��+ � 1pk�E�+�� : (32)One an onstrut another anti-holomorphi N = 2 su-peronformal algebra out of the anti-holomorphi ur-rents, exatly in the same way as we did in the holomor-phi ase.As we have briey reviewed in the introdution, theN = 2 superonformal algebra determines two topologi-al onformal �eld theories that are obtained through A�and B�twist. The physial states of the B-twisted modelform the so-alled (; ) ring while those of the A-twistedmodel are in the (; a) ring. We would like to determinethese two state spaes for the example at hand. Let usreall that any representative � of a (; ) or (; a) statemust obey2�(�) + �u(�) = 2��(�) + ��0�u(�) = 0 (33)where �(�); ��(�); u(�) and �u(�) are the onformal di-mensions and U(1)-harges of the �eld �. States in the(; ) ring orrespond to � = 1 = �0 while those in the(; a) ring are assoiated with � = 1 = ��0.All representatives of the (; ) and (; a) ring are basedon the omponents of the �elds�n+1 =  einY i�einYi+einY �+einY! for n 2 R : (34)These orrespond to harmoni funtions on the super-group GL(1j1), i.e. to funtions that are annihilated by(some power of) the Laplaian. Only the �rst olumn isin the kernel of QB = G+0 and �QB = �G+0 . The omplete(; ) ring is then spanned by produts of the form�einY ; i+einY �� �1; �N ; ��N ; �N ��N� :Let us note that operators involving the bosoni �elds�� and ��� ontribute to the kernel of QB and �QB , butnot to the ohomology sine they are exat. For the (; a)ring, a similar analysis an be performed. In this ase,the kernel of QA = G+0 and �QA = �G�0 in the spae ofatypial �elds (34) ontains the onstant funtion only.The (; a) ring is then represented by the following four�elds �1; �N ; ��E ; �N ��E� :It is not diÆult to verify (see e.g. [30℄) that neither the(; ) nor the (; a) ring depend on the level k. We alsonote that many states satisfying eqs. (33) are not part ofthe hiral ring of the model. This is in sharp ontrast tothe situation in unitary models [34℄.

6. CONCLUSIONS AND OPEN PROBLEMSIn this work we exhibited N = 2 superonformal sym-metries for a large lass of N = 1 WZNW models. Ouronstrutions generalize previous studies of bosoni mod-els [10, 11℄ to the ase of target superspaes. One of themain new features is the existene of N = 2 superon-formal symmetry in N = 1 WZNW models of simplesupergroups suh as PSL(NjN) or OSP(2N+1j2N). Asa onrete example, we analyzed the N = 1 WZNWmodel on GL(1j1) and omputed its (anti-)hiral ring.The ontributions to the (anti-)hiral ring were all asso-iated with states in atypial representations of the targetspae supersymmetry. This feature is expeted to extendto higher supergroup target spaes.The ase of PSL(NjN) is partiularly interesting. SinePSL(NjN) possess vanishing dual Coxeter number, theorrespondingWZNWmodel an be deformed away fromthe WZ point while preserving onformal symmetry [35,36℄. In other words, the WZNW models on PSL(NjN)are speial points in a one-parameter family of onformal�eld theories with unbroken global symmetry. The sameholds for the N = 1 version of these models. Giventhat those deformed models still possess hiral Virasoro�elds, one may wonder about the fate of the N = 2superonformal symmetry. We believe that the �elds G�and U also remain hiral under the deformation. Theissue will be addressed in forthoming work.Among the oset theories with non-trivial denomi-nator, the superspae generalization of N = 2 min-imal models are of partiular interest. The ompatand non-ompat versions are given by the two osetsPSL(1,1j2)/SL(1j2) and PSL(1,1j2)/SL(1,1j1). Both the-ories possess entral harge  = �3, regardless of theirlevel.There are a number of other extensions of the presentwork that deserve a loser investigation. One of them isto inorporate world-sheets with boundary. The N = 1WZNW models on the supergroups PSL(NjN), GL(NjN)and SL(N-1jN), for example, are all known to possesstwo families of maximally symmetri boundary ondi-tions [37℄. In [27℄, one of them was shown to desend tothe A-twisted model while the other is onsistent with theB-twist. Cosets with non-trivial denominator possess ariher struture. Finally, one might also wonder whethersome of the N = (2; 2) theories we disussed here allowfor N = (4; 4) superonformal symmetry. The answerturns out to be positive. We shall desribe the exatonditions and onsequenes in a forthoming paper.AknowledgmentsWe thank Niolas Behr, Nathan Berkovits, ConstantinCandu, Manfred Herbst, Kentaro Hori, Vladimir Mitev,David Ridout, Hubert Saleur and in partiular YasuakiHikida for onversations and omments.
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