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Abstract. We investigate the constraints on Supersymmetry (SUSY) arising from available precision mea-
surements using a global fit approach. When interpreted within minimal supergravity (mSUGRA), the data
provide significant constraints on the masses of supersymmetric particles (sparticles), which are predicted
to be light enough for an early discovery at the Large Hadron Collider (LHC). We provide predicted mass
spectra including, for the first time, full uncertainty bands. The most stringent constraint is from the mea-
surement of the anomalous magnetic moment of the muon. Using the results of these fits, we investigate to
which precision mSUGRA and more general MSSM parameters can be measured by the LHC experiments
with three different integrated luminosities for a parameter point which approximately lies in the region
preferred by current data. The impact of the already available measurements on these precisions, when
combined with LHC data, is also studied. We develop a method to treat ambiguities arising from different
interpretations of the data within one model and provide a way to differentiate between values of different
digital parameters of a model (e. g. sign(u) within mSUGRA). Finally, we show how measurements at
a linear collider with up to 1 TeV centre-of-mass energy will help to improve precision by an order of
magnitude.

PACS. 11.30.Pb Supersymmetry — 12.60.Jv Supersymmetric models — 14.80.Ly Supersymmetric partners
of known particles

1 Introduction
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by the absence of strong flavour-changing neutral currents
and electric dipole moments of the electron and neutron)
and on the (effective) universality of the first two genera-
tions reduce the number of parameters to 18 (MSSM18).
Still, it is a formidable experimental challenge to recon-
struct 18 parameters simultaneously from future measure-
ments. An alternative but less rigorous approach is to con-
front specific theoretical models of SUSY breaking (which
typically reduce the number of free parameters signifi-
cantly) directly with data. Among the most prominent

The Large Hadron Collider (LHC) will be the first col-
lider to directly probe physics at the TeV energy scale,
the Terascale. The LHC is supposed to provide first beam
collisions in autumn 2009. Despite its tremendous success,
the Standard Model (SM) of particle physics exhibits a
number of shortcomings which — according to the belief of
many — might be remedied by new physics showing up at
the Terascale. One very popular extension of the SM is Su-
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persymmetry (SUSY) [1]. Among the virtues of SUSY are
the elimination of the hierarchy problem, it can provide
natural candidates to explain dark matter in the Universe
and it allows for the unification of the gauge couplings at
the scale of grand unification. Since no supersymmetric
particles (sparticles) have been discovered to date, SUSY
cannot be an exact symmetry of Nature at experimen-
tally accessible energies. Unfortunately, the mechanism of

==——SUSY breaking is unknown. This ignorance is efficiently

parametrised in the Minimal Supersymmetric Standard
Model (MSSM) [2,3] by the introduction of all possible
soft SUSY-breaking terms into the Lagrangian with min-
imal sparticle content in a phenomenological way. While
the most general MSSM Lagrangian introduces around
100 new parameters, mild assumptions on the absence of
flavour-non-diagonal and CP-violating terms (motivated

of such models are minimal Supergravity (mSUGRA) [4,
5,6,7,8] and Gauge Mediated SUSY Breaking (GMSB) [9,
10,11,12].

If new phenomena which are compatible with SUSY
are discovered at the LHC — which we assume in this
work — one of the major challenges will be to find out
the underlying model and to measure its parameters as
precisely as possible. Several studies have already been
performed to investigate the precision with which SUSY
model parameters can be derived from measurements at
the LHC and how much is gained by combining them with
data from the International Linear Collider (ILC) (see
e. g. [13,14,15,16]). So far these studies assume an accu-
racy for the used observables which will only be attainable
with a fairly large integrated luminosity. Thus they reflect
the situation in which we might be in several years from
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now or — for studies including ILC measurements — even
later.

In this paper we test the compatibility of various SUSY
models with presently available data and constrain the
corresponding parameters. Subsequently a projection of
the present situation to the LHC era and beyond is per-
formed to obtain a possible time evolution of the precision
on SUSY parameters for nSUGRA and MSSM18. The fits
are performed using Fittino [17] version 1.5.0. The spar-
ticle properties for a given set of Lagrangian parameters
are calculated using SPheno version 3.0beta [18] which is
interfaced with Fittino via the SUSY Les Houches Ac-
cord [19,20]. Previous work into this direction is found in
[14],[21]-[45].

In this paper, presently measured “low energy” (LE)
observables are subjected to a global fit of the mSUGRA
and GMSB model based on Markov Chain Monte Carlo
techniques. To accomplish this, we take advantage of a
recent compilation of up-to-date theoretical calculations
of precision observables within the MSSM [44]. Also, for
the first time, we combine future LHC measurements with
LE observables to determine their impact in particular in
the early phase of LHC data taking and within models
with a large number of parameters such as the MSSM18.

This paper is organised as follows: in Section 2 we
define and discuss the present and future measurements
which serve as input to the global fit. We also describe
briefly the computer codes employed to obtain precise the-
oretical predictions as a function of the SUSY parameters
the data are confronted with. In Section 3, we outline in
some detail the different methods used to estimate the
SUSY parameters from a global x? variable. The advan-
tages and disadvantages of the two main methods, Markov
Chains and Toy Fits with Simulated Annealing, are dis-
cussed. We describe an approach to discriminate between
different values for discrete parameters of the models and
illustrate this approach for the parameter sign(u) of the
mSUGRA model. Also, a new method to deal with am-
biguities arising from different interpretations of the data
within the same model is discussed. In Section 4, the re-
sults of the different fits are presented. In Section 4.1, the
constraints on mSUGRA and GMSB parameters are de-
rived from available measurements, including observables
from K- and B-decays, the anomalous magnetic moment
of the muon (g — 2),, precision electro-weak data from
colliders and the value of the relic density of cold dark
matter of the Universe, 2cpyvh?. We also determine the
most sensitive observables, (g—2),, and 2cpmh? and show
the effect of their exclusion from the fit. For the best fit
point, we calculate the corresponding mass spectra of all
sparticles. For the first time, the uncertainties on the pa-
rameters are converted into error bands on the sparticle
masses. In Section 4.2, the results from fits to LHC data
with integrated luminosities of 1, 10, 300 fb~' are dis-
played for an mSUGRA model point (SPS1a) which leads
to a collider phenomenology similar to that of the best fit
point. In Section 4.3, we LE data with future LHC data.
We also show that by this, a stable fit of the MSSM18 can
be achieved and the masses of most sparticles can be pre-

dicted. Finally, in Section 4.4 we investigate how precision
measurements of sparticles at a linear electron-positron
collider like the ILC with up to 1 TeV of centre-of-mass
energy will turn SUSY into precision physics. The paper
ends with conclusions in Section 5.

2 Measurements and Predictions

In this section, we describe the present and future experi-
mental data which we confront with the SUSY parameter
space. We use three different sets of measurements in an
incremental way. These three sets are

1. ”Low energy” observables: existing experimental data
which have the potential to constrain the allowed
SUSY parameter space;

2. Simulated LHC measurements: expected SUSY mea-
surements for the parameter set SPSla at the LHC
experiments ATLAS and CMS for three different inte-
grated luminosities;

3. Simulated ILC measurements: expected SUSY mea-
surements at the ILC running at /s = 500 GeV and
/s = 1000 GeV.

These measurements are briefly discussed in the fol-
lowing sections. Finally, the codes used for the theoretical
calculations are described in Section 2.4.

2.1 Low Energy Observables

While no direct evidence for SUSY particles has been
found to date, these particles contribute to higher order
corrections to measured physical observables in a well-
defined and calculable way if SUSY is realised in Nature.

The measurements which are exploited to obtain con-
straints on the allowed SUSY parameter space, can be
grouped in four classes:

1. Rare decays of B- and K-mesons;

2. The anomalous magnetic moment of the muon;

3. Precision measurements and the Higgs boson mass
limit from high energy colliders: LEP, SLC, and Teva-
tron;

4. The relic density of cold dark matter in the Universe.

For reasons of comparability, the same measured val-
ues have been used for the fit as in [44] although some
of them, e. g. the mass of the top quark have been up-
dated meanwhile. The exploited measurements and their
values are summarised in Table 1. In the next sections
these measurements are briefly described and limitations
on their interpretation in terms of SUSY are discussed.

2.1.1 Rare Decays of B and K mesons

A strong constraint on new physics can be derived from
flavour physics experiments, especially at the B-factories.
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Table 1: Available measurements from B-factories, kaon experiments, LEP, SLC and the Tevatron, as well as the
measurement of (¢ —2), and the cold dark matter relic density. Correlations amongst the electro-weak precision
observables as given in [46] are studied for the fit to the existing measurements. No effect of the correlations on the

allowed parameter regions is found.

Observable Experimental Uncertainty Exp. Reference
Value stat syst

B(B — sv)/B(B — 57)sum 1.117 0.076 0.096 [47]
B(Bs — pp) < 4.7x1078 [47]
B(Bg — ££) < 2.3x1078 [47]
B(B — tv)/B(B = TV)sm 1.15 0.40 [48]
B(Bs — X0)/B(Bs — Xf)sm 0.99 0.32 [47]
Amp, /AmE 1.11 0.01 0.32 [49]
Amp, /Ampy 1.09 0.01 0.16 [47,49]
Amp, /Amjsgl\;[ ’ ’ ’ )
Aege [AeFM 0.92 0.14 [49]
B(K — uwv)/B(K — pv)su 1.008 0.014 [50]
B(K — nvi)/B(K — mvi)su <45 [51]
af® —a;M 30.2x10°*° 8.8x107"° 2.0x107"° [52,53]
sin Gog 0.2324 0.0012 [46]
Iz 2.4952 GeV 0.0023 GeV 0.001 GeV [46]
R 20.767 0.025 [46]
Ry 0.21629 0.00066 [46]
R. 0.1721 0.003 [46]
A, () 0.0992 0.0016 [46]
A (c) 0.0707 0.0035 [46]
Ay 0.923 0.020 [46]
A, 0.670 0.027 [46]
Ay 0.1513 0.0021 [46]
A, 0.1465 0.0032 [46]
A (1) 0.01714 0.00095 [46]
Ohad 41.540 nb 0.037 nb [46]
m, > 114.4 GeV 3.0 GeV [54,55,56]
Qcpuh 0.1099 0.0062 0.012 [57]
1/cem 127.925 0.016 [58]
Gr 1.16637x107°GeV™2 | 0.00001x107°GeV ™2 [58]
o 0.1176 0.0020 [58]
mz 91.1875 GeV 0.0021 GeV [46]
mw 80.399 GeV 0.025 GeV 0.010 GeV [58]
my, 4.20 GeV 0.17 GeV [58]
my 172.4 GeV 1.2 GeV [59]
ms, 1.77684 GeV 0.00017 GeV [58]
me 1.27 GeV 0.11 GeV [46]

The reasons for that are two-fold: First, the flavour struc-
ture of the SM is remarkably exactly realised in Na-
ture [60]. The apparent absence of CP-violation or flavour
changing neutral currents beyond the SM severely con-
strains models of new physics with additional flavour mix-
ing. In this paper, we only study flavour-diagonal SUSY
models which by construction fulfil these constraints. Sec-
ond, the exact knowledge of branching fractions of rare
decays, which are helicity suppressed or occur only at loop
level with heavy particles in the loop, strongly constrains
also flavour-diagonal models of new physics.

While the observables used here can be precisely mea-
sured (within the statistical limitations of the experi-
ment), their prediction in the SM or in SUSY is often

accompanied with theoretical uncertainties. The assumed
systematical uncertainties on the theoretical predictions
are listed in Table 1. They are added in quadrature to the
experimental uncertainties. Amongst the most important
constraints are the recent measurements of B, oscillations
at the Tevatron, the branching fraction B(B — Tv) and
the inclusive branching fraction of radiative penguin de-
cays, B — s7v of the B meson.

2.1.2 Anomalous Magnetic Moment of the Muon
Although the anomalous magnetic moment of the elec-

tron (g9 — 2). = 2a. is measured approximately a factor
of 200 more precisely than the anomalous magnetic mo-



4 Philip Bechtle et al.: Constraining SUSY models with Fittino using measurements before, with and beyond the LHC

ment of the muon (g — 2), = 2a,, the sensitivity to new
physics of the anomalous magnetic moment of the muon
is typically enhanced by a factor of (m,/m.)? ~ 43000,
and represents a much stronger constraint. While its mea-
surement is undisputed, there is ongoing debate about the
exact value of the SM prediction for (9—2),,. The reason is
the fact that the non-perturbative contribution from the
hadronic vacuum polarisation has to be extracted from
other experiments such as low-energy eTe™ scattering at
BES [61] or from 7 lepton decays [62,63,64]. Due to these
uncertainties, the fit in Section 2.1 is performed with and
without using (g — 2), as an observable.

2.1.3 Measurements from High Energy Colliders

The measurements of the Z boson mass and width and of
its couplings to left- and right-handed fermions in produc-
tion and decay, the hadronic cross-section on the Z pole,
and the W boson and top quark mass serve to constrain
the properties of particles contributing at loop level. Due
to their high precision and due the absence of any ambi-
guity in the interpretation of the measurement (as e. g. in
the case of the relic density of cold dark matter) these
measurements represent an important input to the fit.

As outlined in [46], there are correlations within the
LEP and SLD asymmetry measurements in the heavy
flavour sector, respectively, and within the Z pole observ-
ables. The effect of these correlations on the SUSY fit
results have been tested for the baseline fit to the mea-
surements from Table 1 as outlined in Section 4.1.1.

In addition and for completeness, we also use the mea-
surements of the bottom and charm quark and tau lepton
masses and the measurement of the strong coupling con-
stant a as input to the fit.

2.1.4 Limit on the SM Higgs Boson Mass

The exclusion of a Higgs boson with SM-like properties
below m;, = 114.4GeV at 95% C.L. represents an im-
portant constraint on SUSY since at leading order, the
lightest CP-even Higgs boson has a mass below mz. Only
due to radiative corrections, its mass can be raised up to
at most approximately 135-140 GeV [65].

For a fit of the general MSSM to the existing data, the
SM limit on the Higgs boson mass cannot be employed
since for a given my, the gauge and Yukawa couplings of
the lightest CP-even SUSY Higgs boson can deviate sig-
nificantly from their SM values. Furthermore, additional
decay channels, e. g. h = AA may occur.

As shown in [55], the experimental limits obtained for
specific parameter choices can be as low as my > 90 GeV
within the general CP-conserving and even lower for the
CP-violating case.

In mSUGRA, however, it has been shown that such
deviations cannot be realised [66]. For GMSB, such a gen-
eral analysis is not available, but it has been checked that
the model points selected by the fits in Section 4.1 do al-
ways maintain sin?(f — a) ~ 1, where tan § is the ratio

of the two Higgs vacuum expectation values and a the
mixing angle of the two CP-even neutral Higgs bosons.
This ensures a SM-like production of the lightest Higgs
boson and the absence of additional decay modes such as
h — AA. Therefore, we can safely employ the SM limit
on the Higgs boson mass in this study.

In principle, the full statistical information,
i. e. CLgyp(mp) on the compatibility of the search
result with a SM Higgs boson of mass my could be
exploited and converted into a contribution to the 2
function of the global fit. However, due to the theoretical
uncertainty of 3 GeV on the prediction of the Higgs boson
mass within SUSY, the use of this information would not
have a significant impact on the results.

The recent exclusion of the SM Higgs in a small mass
region around 160 GeV by the Tevatron experiments [67]
is not considered since the SUSY models under study do
not allow my, above approximately 135 GeV [65].

2.1.5 Cold Dark Matter Relic Density

The results from the WMAP satellite on temperature fluc-
tuations of the cosmic microwave background together
with various other cosmological constraints have estab-
lished a cosmological standard model, in which approxi-
mately 23% of the total energy of the Universe is con-
tained in cold dark matter (CDM). This is expressed in
the fit in terms of 2cpmh?. While the presence of dark
matter is relatively undisputed, its nature is still unknown.
If SUSY is R-parity conserving and the lightest SUSY par-
ticle (LSP) is neutral and sufficiently heavy to contribute
to cold dark matter (or if a metastable neutral sparticle
exists with a lifetime comparable to the lifetime of the
Universe), it contributes to dark matter through its relic
density, and it can make up all or part of the cosmolog-
ically observed dark matter. Therefore, in the fits shown
later (see Section 2.1), the observable 2cpyh? is used in
different ways or not at all as a constraint.

2.2 LHC Observables

As a case study, we assume that SUSY is realised with
parameters as specified in the SPS1a parameter set of [68].
In Section 4.1), it will be shown that this bulk region
point leads to a collider phenomenology rather similar to
the best fit point obtained from low energy measurements.

For the SPS1a point, SUSY particles will be copiously
produced at the LHC and a rather rich set of independent
observables related to the masses and branching fractions
of SUSY particles can be reconstructed. Many detailed
experimental studies for this point (or phenomenologically
similar points) exist.

A direct reconstruction of SUSY particle masses at
the LHC is difficult due to the escaping LSPs. Therefore,
where ever possible, we use observables which can be di-
rectly measured as input to the global fit. Such observ-
ables are the positions of kinematic edges and endpoint
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of invariant mass spectra. Where mass peaks can be re-
constructed, those are used as well. Also, two ratios of
branching fractions are employed.

Measured production rates are not considered in this
study for two reasons: First, the prediction of rates has
rather large theoretical uncertainties, in particular if the
production mechanism involves the strong force. Second,
the calculation of the theoretical prediction — if realistic
experimental cuts are taken into account — is very time
consuming since usually Monte Carlo techniques have to
be used to obtain these predictions. Furthermore, the in-
herent statistical fluctuations of Monte Carlo predictions
easily cause oscillations during the x? minimisation which
destabilise the result.

Three different integrated luminosities are considered
separately to define the sets of accessible observables and
their statistical and systematic errors: 1 fb™", 10 fb™!
and 300 fb~'. A centre-of-mass energy of 14 TeV is as-
sumed throughout. Most of the statistical uncertainties
are taken from [13]. Where ever results for the specified
integrated luminosities are not available, reasonable inter-
polations/extrapolations are used. Dominant experimen-
tal systematic errors are expected to arise from the uncer-
tainty of the lepton energy scale (LES) and the jet energy
scale (JES). The LES uncertainty is assumed to be 0.2%
for an integrated luminosity of 1 fb~* and 0.1% for higher
integrated luminosity. For the JES uncertainty, 5% (1%)
are assumed for 1 fb™" (> 1 fb™'). We assume that the
energy scale uncertainties directly translate into equally
large relative uncertainties on the positions of endpoints
in mass spectra in case of fully leptonic or fully hadronic
final states. Following [69], half of the relative JES un-
certainty is assumed as uncertainty on the endpoint for
invariant mass spectra involving both leptons and jets.
Uncertainties on the endpoints related to the JES and
the LES are considered 100 % correlated between differ-
ent measurements. Table 2 summarises all employed LHC
observables together with their assumed uncertainties.

For the SPS1a point, it is possible to reconstruct suffi-
ciently long decay chains of subsequent two-body decays,
such that mass information can be extracted in a model
independent way. However, it is necessary to assign the
observed decay products to the correct SUSY particles
from which they originate. The full combinatorics for de-
cay chain ambiguities is not yet considered in this analy-
sis. We assume that all decay chains are correctly identi-
fied. As a new approach to check the possible impact of
misidentifications, we study the impact of a wrong assign-
ment of an endpoint to its SUSY particles on the global fit
as a case study. A more comprehensive analysis of these
effects remains to be done.

Most information on SUSY particle masses within the
SPS1a point can be obtained from the decay chain

d> — qxX3 = ql=0E — gt 0 Y, (1)

where ¢ denotes either electrons or muons. In total there

are five different measurable invariant mass combinations

possible for this decay chain: mj;**, My, m}?g, m?{}?ﬁw)
and my s ) (for their definition see e. g. [69]).

Similar to my,;**, it is also possible to measure the end-
point m,, where the electrons/muons are replaced by tau
leptons. The ratio of the total number of events in the myy
and the m,, distributions (corrected for efficiency differ-
ences) provides a measurement of

B(X3 — lrt) x B(lr — %30
B(x3 = 7it) x B(f1 = x{7)"

(2)

Apart from the myg, endpoint there is also one addi-
tional mg, measurement included. It originates from )22
decays instead of 3. Decays of X3 do not provide a visi-
ble my, endpoint since it is mostly Higgsino for the con-
sidered benchmark point and therefore the couplings are
too small. There are several Y decay chains providing two
oppositely charged leptons. Of all possibilities, the chain is
chosen which provides the largest my, endpoint within the
SPS1a scenario. This is the case for X — (=0F — (+0~X9.
The other endpoints are unlikely to be measurable due to
the superimposed spectra from the other di-lepton decay
channels.

Similar to the ¢ — 7 replacement it is also possible
to exchange light-flavoured jets ¢ with b-flavoured jets b.
This yields a separate m}?;es measurement.

Jets which carry b-flavour also play an important role
in obtaining information about the gluino mass. In SPS1a,
the gluino decays via § — ¢gq where ¢ can be any quark
flavour. Due to combinatorial background, gluinos can be
reconstructed best, if one focuses on

G — Dby o — DOXS — DOELE — Db XY (3)

From this decay chain, the gluino mass can be recon-
structed by calculating the invariant mass of the YJbb sys-
tem, provided that the ¥3 momentum is known. Due to
the invisible x?, the Y3 momentum cannot be measured
directly, but in the chosen scenario it can be approximated
reasonably well by [13]

P9~ (1-228) (@
? M
It turns out that the gluino mass estimate from this ap-
proach is highly correlated with the assumed Y mass,
such that effectively mz — mgo is measured. Similarly
mg —my and mg —mg, can be determined by measuring
the difference between the invariant mass of the ¥3bb and
the x3b system. The ratio of the total number of events in

the b; and 52 mass peaks can be used to determine

B(§ — bab) x B(by — %3b)
B(§ — bib) x B(by — x3b)

(5)

The “stransverse mass” mps [70,71] is used to extract
information on the g and the £ mass. The exploited
decay chains are Gr — ¢qx° and £ — £x9, respectively.
1, is studied in direct electro-weak di-slepton produc-
tion via an s-channel Z/v exchange. It turns out that the
endpoint of the mps spectrum depends on the assumed



6  Philip Bechtle et al.: Constraining SUSY models with Fittino using measurements before, with and beyond the LHC

o and

X{ mass in such a way that roughly ,/m2 — 2mfz
1

m%L

Stop and shottom sector information is obtained by a

measurement of the endpoint of the invariant mass spec-
trum of the tb system from the decay chains

- mezo are measured, respectively.
1

g — th — thyi (6)
G — bby — thyT. (7)

The variable mjj used in our fits is a branching fraction
weighted average my, endpoint for decay (6) and (7) to ac-
count for the possibility that the two endpoints might be
too close to each other to be experimentally distinguish-
able.

To reconstruct charginos, the decay chain

qr = aXiv = W — qqq? (8)

is exploited. The chargino mass is obtained from the in-
variant mass of the gqx) system where the two quarks
come from the W decay. The momentum of {9 is recon-
structed (up to a two-fold ambiguity) using a technique
described in detail in [72].

The most precise determination of the Higgs boson
mass for the considered mass range is obtained from mea-
surements of the invariant mass of the four-lepton system
in the decay h — ZZ — €T¢=¢*'¢~" and the di-photon
mass of the decay h — 77. The top mass is measured
from a combination of several different final states and
techniques, the most precise of which is a kinematic fit for
the semi-leptonic final state, where one W decays hadron-
ically and the other W leptonically.

2.3 ILC Observables

At a future linear electron positron collider like the ILC,
a huge variety of precise measurements of SUSY parti-
cle properties from their electro-weak pair-production pro-
cesses.

In this paper, in order to illustrate the potential of a
linear collider, a subset of the observables used in [15]
is used. All expected mass measurements of [13] are
used together with the expected measurements of ab-
solute Higgs branching fractions and a large variety of
cross-sections times branching fraction measurements of
all kinematically and statistically accessible SUSY final
states. In contrast to [15], only measurements at /s =
500 and 1000GeV and at polarisations (P,-,P,+) =
(£80 %, F60 %) are used, assuming a long running time
of the ILC with £ = 500fb™" on each polarisation at
/s =500GeV and at /s = 1 TeV, respectively. The crite-
ria used for the selection of expected cross-sections times
branching fraction measurements is outlined in [15].

2.4 Theoretical Predictions

Different theoretical codes have been used for the predic-
tion of the observables. The low energy observables are

calculated by a selection of codes combined in the so-
called Mastercode [44]. The RGE running of the parame-
ters of the high-scale models down to the SUSY breaking
scale are accomplished with SoftSUSY [73]. Subsequently,
the observables of the Higgs sector and for (¢ — 2), are
accomplished with FeynHiggs [74,65,56]. The flavour ob-
servables are calculated with SuperIso and other codes
based on [75,76]. The electro-weak precision observables
are derived in [77,78] and the cold dark matter relic den-
sity is calculated by Micromegas [79].

The SUSY mass spectrum for the LHC measurements,
all direct sparticle decay branching fractions and the cross-
sections for ILC are calculated with SPheno [18].

The known systematic uncertainties for the presently
available observables are included and listed in in Table 1.

Systematic uncertainties for the LHC predictions are
estimated from the difference of the predictions between
different RGE codes and from scale variations. The differ-
ences between RGE codes like SoftSUSY and SPheno are
generally within the statistical and systematical measure-
ments of the LHC measurements for £"* = 1 and 10fb ™!,
effectively making the LHC fits relatively robust against
theoretical uncertainties on the order of 10 — 20 GeV [80,
81], which is in the order of magnitude of the jet energy
scale uncertainties. For £ = 300fb™" the experimental
systematic uncertainties are expected to be smaller than
the estimate of the theoretical uncertainties, especially in
case of my,, however improvements on the precision of the
predictions can be expected until the LHC has acquired
£ = 300fb ' Theoretical uncertainties will be included
for all luminosities into the fit at a later stage. Neverthe-
less we cross-checked the influence of an additional 3 GeV
uncertainty on my, due to unknown higher-order correc-
tions for some of our results and found that it does not
have a significant effect on the fit results for high-scale
models.

A special case is the prediction of 2cpmh? in GMSB
models. Since the gravitino is typically a very light LSP in
GMSB with a mass in the order of several MeV, it repre-
sents more hot than cold dark matter. Therefore 2cpah?
is not used as an observable for GMSB.

For the fits with ILC, theoretical uncertainties could
play a major role, because the experimental precision as-
sumed in [15] is smaller than the current theoretical un-
certainties even in the gaugino and squark sector, where
uncertainties of around 1 GeV are expected [80]. How-
ever, the possible increase in theoretical precision until
the existence of the ILC is yet unknown, hence theoretical
uncertainties will be introduced into the fits with ILC at
a later time.

Fittino and the calculator programs for the predictions
are interfaced using the SUSY Les Houches Accord [19].

3 Parameter Estimation

In order to asses the consistency of a theoretical prediction
(defined by a set of parameters within a specific SUSY
model) for a given set of measurements the following x>
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Table 2: LHC observables which serve as input to the fits. The shown nominal SPS1a values have been calculated
with SPheno. Most of the statistical uncertainties are taken from [13]. Where numbers for the specified luminosities
are not available, some interpolations/extrapolations are used. Uncertainties on the endpoints related to the jet energy
scale (JES) and the lepton energy scale (LES) are considered 100 % correlated among different measurements.

Observable Nominal Uncertainty
Value | 1fb~" 10fb~' 300fb™' LES; LESips00 JES: JESi0300  Syst.

mn 109.6 14 0.1 0.1
my 172.4 1.1 0.05 0.01 15 1.0
m s 180.2 11.4 1.8

m2 —2m2, 148.8 1.7 0.1 6.0

L X1

mg — myo 507.7 13.7 2.5 5.1 10.0

mZ, —2m?, 531.0 19.6 6.2 1.1 22.7 4.5 10.0

1
mg — mg, 88.7 1.5 0.9
mg m52 56.8 2.5 0.6
mi (mg, myg, my,) 80.4 1.7 0.5 0.03 0.16 0.08
m}“lax(mizla, m~g,mzL) 280.6 12.6 2.3 0.28
mf‘fx(mf((l), mig,mH) 83.4 12.6 4.0 0.73 4.2 0.8 5.7
my (Mg, mg, , myg) 452.1 13.9 4.2 1.4 22.7 4.5
mi" (mg,,, mg, , myg) 318.6 7.6 3.5 0.9 16.2 3.2
my, S (mge,myg,my mg;) | 396.0 5.2 4.5 1.0 19.9 4.0
migy® (mgo, meg, mz, ,mg,) | 215.6 26.5 4.8 1.6 10.8 2.2
migy® (mgo, meg,mz,,mg ) | 195.9 19.7 3.6 2.0
myy, (my, Mg, Mk, My, my, ) 359.5 43.0 13.6 2.5 18.0 3.6
BOGlnOxB(Er-510) 0.076 | 0.009  0.003 0.001 0.008
B(13—>F1m)xB(F1=2x]7) ‘ ‘ : : :
B(g—bab)xB(ba—X5b)
BB ai) 0.168 0.078
is used: assignment of kinematic edges in LHC mass spectra to the

x? = (M — O(P)) covy} (M — O(P)) + limits.  (9)

Here M is a vector containing the list of measurements,
O(P) a vector with the theoretical predictions for these
observables for a given point in parameter space P. covas
is the covariance matrix specifying the uncertainties and
correlations of the measurements M. In addition to the
actual measurements M, limits on observables can be
specified (e. g. the limit on the SM Higgs mass in case
of the fit of a model which ensures the presence of a SM-

like Higgs boson). This is incorporated for m lower (LL)

LEL/LL in the following way

or upper (UL) limits
m [ (0;(P) — LYY)? /o2 for O;(P) > LV
limits = » ¢ (LF = 0;(P))*/o?  for O;(P) < Lt
i=1 0 for LYY > 0;(P) > Lt
(10)
where o; specifies how steeply the limit is rising once it is
reached.

Being measurements M and covy; are independent of
the theoretical model they are confronted with. Contrary
to that O(P) depends on the model and it even depends
on the interpretation of the data within a given model
due to ambiguities in the mapping of an observed final
state to its physical origin within the model (e. g. the

decays of the respective SUSY particles). The covariance
matrix covys is the sum of the statistical, systematical
and theoretical covariance matrices, where the former is
diagonal for independent measurements and the latter two
can contain off-diagonal elements describing correlations.
Using the x? expression of Equation 9, the following tasks
can be addressed:

— find the absolute minimum y?, i. e. the parameter
point of a given model which fits the data best;

— determine the P-value of the data given a best fit pa-
rameter point of a model;

— find secondary minima which could be confused with
the absolute minimum;

— derive the probability that a secondary minimum of
the x2 surface of the exact observables in a given model
turns into the absolute minimum of the experimentally
observed y? surface due to statistical and systematical
uncertainties of the experimental observables;

— derive the parameter uncertainties and correlations
around the absolute minimum, with and without tak-
ing ambiguities in the interpretation of the data into
account;

— derive the probability that due to the statistical and
systematical uncertainties of the experimental data the
true model of new physics is yielding a worse P-value
than an alternative, wrong model of new physics;
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— derive predictions for most probable values of observ-
ables (and their expected variations) which are not
used in the fit.

In the following, the statistical techniques used for these
tasks are introduced. Their application is described and
their advantages and shortcomings are discussed. We also
propose an approach to estimate the uncertainties on pa-
rameters in the presence of different ambiguous interpre-
tations of the data within the same model.

In this paper, Gaussian uncertainties are assumed both
for statistical and systematic uncertainties. For system-
atic and theoretical uncertainties, there are other possi-
ble choices. For example, box-shaped contributions to the
x? (instead of a quadratic function) are investigated else-
where [45]. Given the general uncertainty on systematic
and theoretical errors, we assume here that the final re-
sult does not depend on such subtle differences. In fact, a
larger effect can arise from unknown correlations among
the systematic and theoretical errors.

The x2 hyper-surface for all considered SUSY models
is highly non-trivial. As already shown in [17], gradient-
based algorithms for global minimisation like MINUIT [82]
are insufficient for most of the problems under study.
Rather more elaborate methods, based on Markov Chain
Monte Carlo and Toy Fits algorithms are exploited to ef-
ficiently scan the multi-dimensional parameter space.

3.1 Minimisation and Scanning Techniques

Two different parameter estimation techniques are used
in the following, a Markov Chain Monte Carlo and Toy
Fits. These are briefly described in the following sections.
Strong emphasis is laid on ensuring that the global mini-
mum is found, that the errors are accurate, that the result
is stable against different starting values, and that the
sampling of the parameter space is fine-grained enough.
This means that as many N-dimensional parameter com-
binations (where N is the number of parameters of the
problem) as possible are actually scanned at least within
the range of x? — x2,;, < 6 (approximately corresponding
to the two-dimensional 95 % uncertainty interval around
the best fit point). These two techniques are chosen be-
cause they are complementary in the way the uncertainties
are defined and in the assumptions made for the definition
of the uncertainties. An agreement in the uncertainties be-
tween the two methods provides a further strong evidence
for the validity of the result.

3.1.1 Markov Chain Monte Carlo

The advantage of the Markov Chain Monte Carlo method
is that it allows to obtain an efficient scan of the x? surface
around its minima. Furthermore, it can be easily arranged
that the sampling density in parameter space directly pro-
vides a likelihood distribution for the SUSY parameters in
the Bayesian approach (see e. g. [39], [41]).

A Markov chain is a sequence of points x; (i = 1,...,n)
in parameter space. Each of these points z; has an asso-
ciated likelihood L(z;). For our study we use

2
L = exp (—%) )

Using the Metropolis algorithm [83], a new point @1
which is randomly chosen according to a proposal proba-
bility density is added to the chain if L(z,11) > L(zn).
Otherwise it is accepted with probability £(z,11)/L(xy).
If the new point x,41 is not accepted, the old point z,,
is added to the end of the chain again and the process
continues. The result is — under weak assumptions — inde-
pendent of the specific choice of the proposal probability
density function in the limit of infinite statistics. However,
for finite statistics (even for order of 10 million parame-
ter points for a typical 9-parameter model) the efficiency
of the sampling strongly depends on the proposal distri-
bution. Fittino implements the choice of box-shaped or
Gaussian proposal distributions, where the width of the
box or Gaussian can be adapted for each parameter. For
each model and observable set, a set of pre-runs with sev-
eral thousand points per chain is used to adapt the width
parameters of each parameter individually such that the
ratio of accepted and rejected points in the chain lies be-
tween 0.8 and 1.2, for which the best scanning efficiency is
expected. This procedure takes the initial uncertainties on
each parameter from the pre-run into account and is re-
peated manually until the result converges. For the results
presented in this paper, only Gaussian proposal distribu-
tions are used.

The resulting Markov Chain can be interpreted in two
different ways. In the Bayesian interpretation, it can be
shown [84] that, if the proposal probability density is prop-
erly chosen, the sampling density of points z; is propor-
tional to the likelihood distribution £, which in turn is
proportional to the posterior probability in the case of flat
priors (as assumed in this paper). Therefore, the best fit is
obtained at the parameter point with the highest sampling
density o< Lmax. The error on an individual parameter
(or a subset of D parameters) is derived by integrating
(“marginalising”) the sampling density over all parame-
ters apart from the parameter(s) under study. The result-
ing D-dimensional distribution can then be interpreted in
terms of —21In £ + 21In L,ax, where L.y is the likelihood
for the parameter point with the highest likelihood. The
10 uncertainty of a one-dimensional parameter distribu-
tion is defined by the region within —21In £+21n L. = 1.
In this interpretation, the marginalised £ is the proba-
bility distribution of the true parameter value given the
measurement. 68 % of this distribution is contained within
lo.

(11)

The Bayesian interpretation has to be handled with
care for two independent reasons. First, the outcome can
have a strong dependence on the chosen prior probability.
This is e. g. exemplified in [85]. Second, for very complex
parameter spaces with many parameters (typically 8 to 18
in the case of the fits presented here) one needs to check
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Fig. 1: tan 8 sampling behaviour of Markov chain using LE and LHC measurements for an integrated luminosity of

1 fb~! within mSUGRA for two different starting points.

carefully that the sampling has not only reached all rel-
evant areas of the parameter space, but that in addition
the sampling is completely in equilibrium, i. e. that the
likelihood is really proportional to the sampling density.
This problem is exemplified in Fig. 1, which shows the ini-
tial behaviour of two Markov Chains scanning same model
space (MSUGRA) and the same measurements but with
different starting points in the parameter tan . While
above n ~ 3000 no dependence on the starting point can
be observed in this example, below n = 3000 the point
density is obviously not proportional to the likelihood.
Therefore including this region into the calculation of the
point, density would distort the result unless the Markov
Chain length is so large that this region has negligible im-
pact. For all results presented in this paper which employ
the Bayesian interpretation of the Markov Chain, two dif-
ferent starting values have been chosen. Only points for
large enough n are included in the chain analysis such that
the projections of each parameter distribution are consis-
tent within statistics.

While this is possible for cases with well-measured and
thus strongly constraining observables and a small num-
ber of parameters (e. g. fits of a high-scale SUSY model
like mSUGRA using LE and LHC measurements), this

approach fails for more challenging problems like fits of
an 18-dimensional more general MSSM. There are around
20 million points in a combination of several Markov
Chains with different starting points. These can not be
checked efficiently for the effect shown in Figure 1. Neither
is it technically possible to provide sufficiently long chains
due to computing limitations. Therefore, the Bayesian in-
terpretation is used in this paper only in the case of fits
of the mSUGRA model to the LHC data for illustration.

The Frequentist interpretation of the Markov Chain is
used as a default in this paper. It does not make use of
the sampling density directly, but employs only the ob-
tained x? values found in the chain for each parameter
point. The best fit point is directly defined by the pa-
rameter point with the lowest x> = x2., (or equivalently
the point with the largest likelihood £ = Liax). To ob-
tain uncertainties for a subset of parameters this approach
scans over all parameters except for those under study
and chooses the scanned parameters such that £ is max-
imised for each point in the studied parameter subspace.
This procedure yields a profile likelihood. The 10 (20)
uncertainties in the one-dimensional case are defined by
Ax? = x> = x%,, = 1(4) and, in the two-dimensional
case, by Ax? = x? — x2:, = 2.3(5.99) [86]. In the limit
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Fig. 2: Frequentist interpretation of Markov chain fitting
mSUGRA using only LE measurements for two different
starting points.

of Gaussian parameter distributions, i. e. a locally linear
relation between measurements and parameters, the 1o
environment for a given set of measurements covers an
area which contains the true parameter point in 68 % of
all possible experimental outcomes.

This approach has several advantages over the
Bayesian interpretation. First, it does not depend on prior
distributions, since the likelihood in the hidden dimen-
sions is not integrated. Instead the Markov Chain is sim-
ply used an efficient scanning technique for the parameter
space: for each bin in the histogram of the parameter(s)
under study the point with the lowest x? is chosen. Sec-
ond, it is sufficient to scan different regions in parameter
space with different granularity, as long as the obtained
point, density is fine enough to derive a smooth surface.
This approach requires significantly less points than the
Bayesian approach.

In order to test if the sampling density is sufficient
to derive a smooth Y2 surface, the following procedure
is used. For each result presented in this paper, at least
two different parameter points in the parameter space are
chosen as starting point. These starting points are chosen
individually for each fit after an initial Markov Chain run
such that they lie approximately 20 away from the esti-
mated best fit point. Then, Markov Chains are computed
for each of the two starting points. An example for the
comparison of the two results can be found in Figure 2.
For a fit to be accepted, it is required that the differences
in the shape and area of the 1 ¢ and 2 ¢ regions are within
the differences of the binning, which is derived for each
chain separately by dividing the observed 2 ¢ region into
25 x 25 bins. This procedure to ensure the robustness of
the results turned out to be very important, in particular
in the case of more complex fits, e. g. the MSSM fit to LE
and LHC measurements and the mSUGRA fit to LE mea-
surements. In these cases, several million sampling points
turned out to be required.

The results of the Bayesian and Frequentist interpreta-
tions are compared for the case of mSUGRA fitted to LHC
measurements. For more complex fits there is not enough
confidence in the results of Bayesian interpretation for the
reasons explained above (see also [85]).

As described above, the uncertainties on the model
parameters can be derived from the Ax? values of each
parameter point. It is important to note that the identifi-
cation of Ax? = 1 with the 68 % uncertainty region is tech-
nically only true for problems with Gaussian uncertainties
of the observables and linear dependencies between pa-
rameters and observables, hence for Gaussian parameter
distributions. As visible already from Figure 2, this as-
sumption is not fulfilled for all fits. Furthermore, for the
interpretation of the fit result and especially for the deriva-
tion of conclusions on RGE running of parameters or the
prediction of other observables which are not yet used in
the fit, it is important to also derive correlations between
the model parameters. The derivation of linear correla-
tion coefficients can be achieved by interpreting the ob-
tained x? surface of each combination of two parameters
of the model as a numerical version of the Hesse-matrix of
the problem. Normally, e. g. in MINUIT, the Hesse ma-
trix is of course an approximation of the true x? surface.
Hence the correlation coefficient can be calculated from
the two-dimensional histogram of —Ay? for each param-
eter combination. For practical reasons the histogram is
constrained to the region of Ax? < 5.99, corresponding to
the two-dimensional 95 % uncertainty region around the
best fit point. This is justified because the linear correla-
tion coefficient are an approximation of the full non-linear
correlations and are dominated by the area around the
minimum.

The Frequentist analysis of the parameter space using
Markov Chains could be further refined using MINUIT
around the x? minimum found in the Markov Chains in
order to better determine the position of the absolute min-
imum, independent of binning effects. However, in prac-
tice each set of Markov Chains with sufficient sampling of
the Ax? < 5.99 region, as required above, ensures a suffi-
ciently fine sampling around the absolute minimum, such
that no significant improvement of a further refinement of
the minimum in a MINUIT minimisation can be seen.

While Markov Chains provide a powerful tool for the
study of complex parameter fits, there are a few short-
comings which make it desirable to cross-check the results
with an alternative technique and to provide solutions for
tasks which cannot be solved by Markov Chain Monte
Carlos. First, it would be desirable to use a method which
is independent of both the problem of priors (as the case
in the Bayesian interpretation) or assumptions on (local)
linearity of measurements and parameters (as the case in
the Frequentist interpretation).

Second, the Markov Chains cannot be used to study
how well a certain model can be distinguished from an-
other model by the data, or how one interpretation of the
observables is distinguished from another interpretation
within the same model. Markov Chains just supply the
P-value of the best fit point of each model or each inter-
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pretation. They do not provide the probability to get a
better P-value for the “wrong” model than for the “cor-
rect” model under the assumption that one of the models
is realised.

3.1.2 Toy Fits and Simulated Annealing

In addition to the Markov Chain analysis, Toy Fits are
used to obtain an independent estimate of the parame-
ter uncertainties and to compare different models or data
interpretations quantitatively. The Toy Fit analysis con-
sists of two steps. First, Markov Chains or minimisation
through Simulated Annealing (for a description of the im-
plemented algorithm of Simulated Annealing see [17]) is
used to find the absolute x> minimum of a given problem.
Second, Monte Carlo Toy data are created around the ob-
servables corresponding to best fit point. In the first step,
the best fit parameters P, are determined. Then the set
of observables M, corresponding to this set is calculated.
This set is then used to create N different MC Toy sets of
pseudo-measurements M ; (i. e. other possible experimen-
tal outcomes which are consistent with that parameter
set) by smearing around M, according to the Gaussian
uncertainties and correlations as defined in cov,s. For each
of the N MC Toy sets M; a fit is performed using Sim-
ulated Annealing followed by a MINUIT minimisation at
the minimum of the Simulated Annealing fit. This proce-
dure yields a set of N “best fit” parameter points P;. The
distributions and correlations of P; are then interpreted
as the expected distributions of all possible experimental
outcomes given the best fit parameter set P,.

In contrast to the Frequentist interpretation of the
Markov Chain Monte Carlo, the uncertainties and corre-
lations can be directly calculated from the (co-)variances
of P;. Therefore, the results represent an estimate for the
expected distribution of all possible results (including all
possible non-Gaussianities). They even include possible
secondary x? minima, which are turned into the absolute
minimum for a subset of the observable set M ;, where sta-
tistical and systematic uncertainties of the measurements
can invert the order of the different y? minima.

Toy Fits allow for a robust cross-check of the validity
of the results: For problems which are sufficiently Gaus-
sian the distribution of the x?2; values has to be consis-
tent with a y? distribution for n — m degrees of freedom,
where n is the number of observables and m is the num-
ber of parameters. This criterion is checked by fitting the
x? distribution to each x?2,; histogram and requiring that
the fitted number of degrees of freedom agrees with the
expectation for the problem within 2 ¢ for a fit to be ac-
cepted.

In addition, as for Markov Chains, starting values for
the parameters have been varied and the result is required
to be independent of the starting value up to statistical
fluctuations.

However, there is also a disadvantage of the Toy Fits
with respect to the Markov Chains. In case of two different
x? minima very far apart from each other (with respect
to the parameter uncertainties, and with a very high x>

barrier in between) which both have almost identical min-
imal x2, one set of Toy Fits with one given starting point
P, of the fits would not necessarily find both minima, re-
quiring possibly more than two different starting points.
In the limit of infinite computing power this can be over-
come by starting the individual Toy Fits from randomised
positions within the parameter space in order to scan for
additional minima. If additional minima with acceptable
P-values are found and if the x? barriers between them are
too high to be traversed within one minimisation, different
sets of Toy Fits with starting values around the different
minima can be directly treated as different models using
the prescription proposed in Section 3.2. This also allows
to assign a numerical value to the parameter uncertainties
stemming from the different minima.

3.2 Model Discrimination and Ambiguities

All techniques discussed above are directed towards deter-
mining the uncertainties of the parameters of one model in
the presence of a given set of data with one fixed interpre-
tation of the data. In this paper a new method is proposed
to use Toy Fits to solve the two remaining tasks, namely to
measure how often fluctuations of the data lead to wrongly
identifying a different model than the true model as the
model with the best P-value, and determining how ambi-
guities in the mapping between measurements (i.e. edges
in LHC mass spectra) and predicted observables, translate
into the uncertainties of the model parameters.

The first of these problems cannot be answered di-
rectly by using the P-value. It represents the probability
that the given experimental data are observed given a cer-
tain model with certain best fit parameters, and hence can
be used to determine which models (or which interpreta-
tions of the data in a given model) are acceptable and
which models are rejected by the data due to their low
‘P-value. However, it cannot be used to determine how
likely it is to obtain a certain P-value for a given model
if the data are actually caused by another model. Such
a situation can occur often for not very well constrained
problems, as e. g. visible in Sections 4.1.1, 4.1.3 and 4.3.1.
This question can be answered by the Toy Fits directly by
fitting an arbitrary number of different models (or differ-
ent interpretations of the data in the same model) j with
different predictions O(P?) to the same set of smeared
measurements M ;. Then the probability p,, to prefer the
“wrong” models over the “correct” model, from which the
observable set M, is derived, can be directly determined
by counting how often one of the “wrong” models achieved
a better x2., than the “correct” model. Since in reality
the “correct” model is not known, this interpretation can
be repeated for each model which yields a reasonable P-
value. Examples using this procedure are presented in Sec-
tion 4.3.1.

The second problem can be solved directly using the
simultaneous Toy Fit method proposed above. The uncer-
tainty of a model parameter is defined and measured as the
square root of the variance of the parameter distribution.
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Each entry P; in the Toy Fit parameter distributions cor-
responds to one individual best fit point for one model,
one interpretation of the data and one individual set of
smeared measurements M ;.

In the presence of several interpretations of the data
(or e. g. different possible values of a discrete parameter
of the model, i. e. in all cases where different model/data
combination can be fitted with the same parameters and
the same measurements) the distributions of the P; can
be exchanged against the distribution of the P’, where
for each smeared simulated Toy measurement 4 the model
or interpretation j yielding the best fit is chosen which
yields the best x2. This is the natural extension of the
method exploited usually in Toy Fits and described in
Section 3.1.2; since in the presence of one given set of
measurements M ; all remaining ambiguities of the inter-
pretation of the data would be tested and for the final
result the interpretation with the lowest x? (i. e. highest
P-value) would be chosen. The uncertainty stemming from
the ambiguities is then taken into account by not citing
the parameter uncertainties of the best fit interpretation of
the data only, but by citing the uncertainty including the
possibility that a different interpretation would have been
chosen as the one with the best P-value, as proposed here.
Note that this interpretation naturally leaves the parame-
ter distribution P; unchanged if only one model is always
yielding the best P-value, i. e. if the method proposed
above determines that there is 0 % probability to prefer a
“wrong” model over the “correct” model. An application
of this method is presented in Section 4.3.1.

4 Results

In this chapter, results are presented in terms of allowed
areas in the SUSY parameter space. Also, allowed regions
for SUSY particle masses are calculated from the fitted
parameters.

In Section 4.1, the high-scale SUSY models mSUGRA
and GMSB are tested against presently available mea-
surements. Predictions for discovery at the LHC and the
expected range of SUSY masses are presented. In Sec-
tion 4.2, the constraint from LHC observables are stud-
ied alone. In Section 4.3, the expected measurements at
the LHC are combined with already available observables.
Here both mSUGRA and a more general 18-parameter
MSSM are studied. Finally, in Section 4.4, the impact of
SUSY precision measurements at the ILC together with
£t = 300fb~" of LHC data is studied, in particular for
the general MSSM.

4.1 Present Low-Energy Observables

Several studies of the mSUGRA parameter space in the
light of different sets of available measurements have been
performed recently [44,85]. In this section, parts of these
studies are repeated and extended. Emphasis is laid on
understanding the impact of the most important observ-
ables on the parameter uncertainties, and on the study

Table 3: Result of the fit of the mSUGRA model with
sign() = +1 including four additional SM parameters
to all measurements listed in Table 1. The minimum x?

value is 20.6 for 22 degrees of freedom, corresponding to
a P-value of 54.4%.

Parameter Best Fit Uncertainty
sign(p) +1

Qs 0.1177 £ 0.0020
1/aem 127924 =+ 0.017

mz (GeV) 91.1871 £ 0.0020

me (GeV) 1724 £+ 1.09

tan 8 132 £+ 7.2

M, /5 (GeV) 3315 =+ 86.6

My (GeV) 76.2 el

Ao (GeV) 383.8 =+ 647

of the uncertainties of SUSY particle mass predictions.
The methods outlined in Section 3 are used to extract pa-
rameter correlations. The impact of the SM parameters is
also studied. In addition, a comparison of the predicted
mSUGRA sparticle spectrum with a GMSB spectrum is
presented.

In order to study the effect of the different observ-
ables, first a baseline fit with all observables from Table 1
is performed. In order to accommodate the uncertainties
of the most important observables, (g —2), in terms of its
SM prediction, and 2cpah? in terms of its origin, several
other fits are then shown. Additionally, these observables
are treated in different ways, removed one by one or re-
moved simultaneously.

4.1.1 Fits of the mSUGRA Model

The mSUGRA (or sometimes the CMSSM, which has p
as additional free continuous SUSY parameter) scenario
is the best studied SUSY scenario at colliders. For the
purpose of this paper, it is appealing to study it in detail
using the low energy observables, since experimental stud-
ies of possible LHC measurements are available from AT-
LAS [87] and CMS [88] for several well studied mSUGRA
parameter points. Knowing the allowed parameter space
using the already existing observables allows the selection
of a mSUGRA scenario studied at LHC which is within
the currently experimentally allowed parameter region.
The baseline fit is performed using all measurements
from Table 1, i. e. assuming that the current predictions
for the SM contribution to (g — 2), are correct and that
the cold dark matter in the Universe is entirely caused by
the relic density of SUSY LSPs, which in the mSUGRA
scenario has to be the lightest neutralino x9. For all fits
in this paper, if not stated otherwise, all parameter points
with charged stable LSPs are excluded from the fit. The fit
has been performed using the Markov Chain Monte Carlo
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technique described in Section 3.1.1 and applying the Fre-
quentist interpretation. Using two different starting values
of the Markov Chains, approximately 20 million points
per chain have been tested with consistent results for the
different starting points. The sampling density around the
minimum is large enough such that an additional MINUIT
minimisation is not necessary. The x2 minimum of 20.6
for 22 degrees of freedom, corresponding to a P-value of
54.4 %, can be determined with good precision from the
distribution of the sampled points. The P-value is signifi-
cantly larger than the P-value of the SM fit [89] of around
18 %, which does not include the limits from direct Higgs
searches. With the direct Higgs search limit included, the
P-value is 17 % [45]. However the analysis of the variable
pulls explained below shows that this is not directly due to
a better description of the SM precision variables, which
cause the moderate to low P-value of the SM fit. It can
be seen that mSUGRA provides an excellent description
of the presently available precision data.

Correlations among the observables of Table 1, as de-
scribed in Section 2.1.3, are studied in a separate fit. While
the minimal y? is lowered by 1.1 due to the correlations,
the results of the allowed parameter regions for the fit in-
cluding correlations are identical to those of the baseline
fit without correlations in the input observables. The rea-
son for that lies in the fact that (¢ — 2), and Qcpumh?®
(which are uncorrelated) constrain the parameter space
more strongly than any other combination of variables
(see Section 4.1.2). Therefore there is no significant im-
pact of the correlations among the electroweak precision
observables.

The result of the baseline fit is given in Table 3. Due
to the deviation of (¢ — 2), from the SM prediction to-
wards larger values, a positive sign of yu is preferred, which
is chosen for this fit. A comparison with sign(u) = —1
is shown below. It can be seen that moderate values of
tan 3 between 5 and 20 are preferred. The gaugino mass
parameter M/, is expected in the range of 200 GeV to
400 GeV, while a low scalar mass parameter M, between
50 GeV and 150 GeV is preferred. The universal trilinear
coupling Ag is not very well constrained and is expected
to be between —300 GeV and 1000 GeV. As it is shown
below, this region of parameter space is very favourable
for early discoveries at LHC and for a rich phenomenol-
ogy at ILC. In Table 3, as well as in the following tables,
we quote symmetrical uncertainties whenever upper and
lower uncertainties agree within 20 %, and asymmetrical
uncertainties are given otherwise. It should be noted that
the probability densities for the fitted parameters are usu-
ally not Gaussian, i. e. that the one-dimensional 2 ¢ un-
certainty at Ax? = 4 are not twice the 1o uncertainty at
Ax? =1.

Note that the uncertainty of the SM parameters ex-
actly corresponds to the uncertainties of the measure-
ments to which the given parameter is 100 % correlated
(see Table 1). This means that the direct measurement of
the parameters is so precise that the additional observ-
ables from Table 1 do not play any role in their determi-

nation, which has consequences for their correlations with
other parameters.

It also has to be noted that G is omitted from Ta-
ble 3, since G is measured so precisely that virtually no
effect of the inclusion of G into the fit can be observed.
This has been checked using a second baseline fit including
G, which yields identical results for the other SM param-
eters and the mSUGRA parameters. Hence G has been
omitted from all subsequent fits to save computing effort.
For completeness however, it is included in the discussion
of the parameter correlations.

In addition to the parameter uncertainties, it is im-
portant to study the parameter correlations. Calculating
uncertainties of quantities derived from the parameters
does not only depend on the absolute value of the un-
certainties, but also on the correlations. The prescription
proposed for the calculation of correlations from Markov
Chain Monte Carlos in Section 3.1.1 is used for the re-
sults in Table 4. It is interesting to note that while there
are significant, correlations among the mSUGRA parame-
ters, there is no correlation in excess of 10 % between any
SM parameter and any mSUGRA parameter. In addition,
there are hardly any correlations among the SM param-
eters themselves. The reason for this is the fact that ev-
ery SM parameter can be measured using an observable
to which the parameter is correlated 100 %. This ensures
that each SM parameter is fixed by itself to a strong pre-
cision (due to the impressive success of the SM precision
measurements) without any impact of any other param-
eter. It should be noted however, that the correlations
of Table 4 are the linear correlations of the parameters
within the two-dimensional 2 o area. For some choices of
observables (e. g. without the use of (g — 2),, see below)
the preferred parameter space exhibits strong non-linear
correlations, restricting the reliability of this method to
well-constrained fits like the baseline fit described here.

The individual pull of each observable is shown in Fig-
ure 3. Again it can be seen that the SM parameters can
all be fitted individually exactly to the values of their
corresponding observables. When comparing the result
with the SM fits in [89,45], the main difference is that
my, is not a free parameter anymore, but a function of
the SUSY parameters. This has the effect that the elec-
troweak precision observables can be satisfied with a sig-
nificantly larger P-value than for the SM fit. The pre-
ferred value of my is 113.3 GeV and this is below the
95 % CL lower limit of the SM Higgs boson searches, which
are applicable to mSUGRA, as outlined in Section 2.1.4.
The preferred value is within 1/3 of 10 of the theoreti-
cal uncertainty with respect to the 95% CL lower limit
at my > 114.4 GeV, and even within approximately 1o
of the lowest mass point where the C'L of the combined
searches is 0.5 at around mj, = 116.5 GeV. The latter is
corresponding to the mean value of a “measurement” of
my, if the searches are interpreted as such [54].

It can be observed that apart from the change in my,
the fit results are remarkably similar to the SM fit. This
is due to the decoupling of the sparticles heavier than the
electro-weak scale from the processes contributing to the
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Table 4: Correlations of the mSUGRA model and the SM parameters (with sign(u) = +1) using all measurements
listed in Table 1. Very small correlations between SM and mSUGRA parameters is observed while there is significant

correlation among the mSUGRA parameters.

Parameter Qs Gr 1/ctem mz me tan 3 M, s My Ap

Qs 1.000 —0.005 0.006 —-0.003 —-0.007 —0.003 —0.005 —0.013 —0.009

Gr 1.000 —0.003 —0.001 —-0.003 —0.002 —0.022 0.007 —0.006

1/cem 1.000 —0.008 0.006 —0.001 —0.003 0.009 0.007

mz 1.000 —0.0348 0.053 0.035 0.046 0.029

my 1.000 0.075 0.088 0.075 0.093

tan 1.000 0.358 0.833 0.457

M, 1.000 0.449 0.236

My 1.000 0.632

Ap 1.000

MSUGRA fit to LE as shown. in Fhe profile !ikelihood plots obtainesi us?ng the

- 724210 1724 Frequentist interpretation of the Markov Chains in Fig-
m, 424017 4.2 ure 4. The SM parameters have been suppressed due to
m, 91.1875+0.0021  91.1871 their negligible correlations with themselves and with the
as 0117600020 = 01177 mSUGRA parameters (see Table 4). The plots show the
G 1.1663710 "+ 107" 11663710 two-dimensional 95 % CL allowed region of the fits in blue
o, 127.925 + 0.016 127.924 . 5 . .
m > 1144 113.3 (correqundu}g to Ax? = 5.99) .and the one-dimensional
aggd 4154 +0.04 41.48 68 % region in red (corresponding to Ax? = 1). There
Al 0.01714 £0.00095  0.01644 are two reasons why the unusual choice of showing the
Ar 0.1465 £ 0.0032 0.1480 Ax? =1 curve in a two-dimensional plot has been made.
2.0 8:231)?0%0%3021 8:;47180 First because by this the one-dimensional uncertainties
Ay 0.923 + 0.02 0.935 of Fhe .parameter.s can be dlrect‘ly read off from the Plot,
Al 0.0707 + 0.0035 0.0742 which is not possible for the choice of the two-dimensional
Ay 0.0992 +0.0016 0.1038 68 % CL area at Ayx? = 2.3. Second, the two-dimensional
SC 8’2123?3)83066 8'323 " 95 % CL area gives a good indication of the experimentally
R,b 20.767 £ 0.025 20.746 allowed area, while two-dimensional 68 % CL area leaves
r, 24952 £ 2.51 2495.1 a large room for parameter points outside the 68 % con-
SinB 0.2324 +£0.0012 0.2314 tour. The most common projection is shown in the upper
gw gol-gggfg-ggs gol-ifl*g left plot, which compares the allowed region in My and
(g[_’g)u 30210°+9010%° 255107 M > between the baseline fit described above and a fit
BR(b - sy) 1.117+0.122 1.009 requiring only 2ineoh® < 2onsh?, as described below in
BR(b- 1) 115204 0.96 Section 4.1.2. It can be seen that on the upper left side
EEEES:IC()SH) 232;36351 . 2‘320 the allowed region is directly adjacent to the excluded re-
B, 092 +0.14 1.03 gion where 7 is the LSP, which is excluded from the fit
A(m,) 1.11+0.32 1.03 because a stable charged LSP is in conflict with cosmo-
B/ B, 109016 1.00 logical measurements. The results also show that on the

1 2
(Meas.-Fit)/ o

Fig. 3: Pull for low energy observables used in the
mSUGRA parameter fit using the observables from Ta-
ble 1 and the best fit point from Table 3.

precision measurements, hence rendering the result very
SM-like. It can be seen that while rendering my, naturally
heavier, nSUGRA does not mitigate the tension in some
of the SM precision observables.

Apart from looking at the numerical results of the
baseline mSUGRA fit, it is interesting to study the allowed
parameter regions in detailed two-dimensional projections
of each mSUGRA parameter against another parameter,

20 level M/, < 800GeV and My < 600 GeV is expected,
yielding relatively light sparticles and hence good discov-
ery prospects for the LHC. The upper right plot shows
the projection of tan 3 versus My, showing that on the
2 0 level tan 8 values are allowed between 3 and 50. This
means that in a full simultaneous fit of all parameters
tan 3 is not constrained strongly. This implies that a wide
variety of different signatures is possible, as outlined in
more detail below. In the middle plot on the right side it
can be seen again that Ag is not constrained very strongly,
leaving a lot of room for the phenomenology of the third
generation. However, this has only a small effect on the
discovery prospects at LHC, since both tan § and Ay have
limited effects on the first two generations and the gaugi-

nos, which are most important for the discovery modes at
the LHC.
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observables are included. For the full lines, the measured relic dark matter density is only regarded as an upper limit
of the predicted SUSY dark matter density. All other observables remain the same.
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Fig. 5: Allowed mSUGRA parameter space from Table 3
overlaid upon the expected ATLAS discovery reach using
1 fb~* of data at /s = 14 TeV [87].

The direct comparison of the allowed parameter space
of the baseline fit with the expected discovery reach of
the ATLAS experiment is shown in Figure 5. The AT-
LAS discovery reach plot is calculated for tan f = 10 and
Ag = 0GeV. Although the central values of the baseline
fit of these parameters do not exactly agree with these
settings, it is justified to compare the fit results with the
ATLAS discovery reach plot. This is the case because first
the fixed values in the discovery reach plot are within the
uncertainties of the fit and second because the discovery
reach depends mainly on the gluino and first generation
squark masses. These are very insensitive to Ay and not
very sensitive to tan J due to the absence of mixing on tree
level. The lines in Figure 5 correspond to the boundaries
of the 50 discovery region. The most sensitive search is
expected to be an inclusive measurement of the effective
mass spectrum of 4 jets and missing transverse energy.
It can be seen that almost the entire mSUGRA parame-
ter space allowed at 95% CL is observable already with
1 fb~! of well-understood data at /s = 14TeV of the
ATLAS experiment [87].

From the Markov Chain results, also the probabil-
ity densities for the sparticle masses can be deduced. In
Figure 6 the expected masses of the Higgs bosons and
sparticles are shown for the baseline fit. The red lines
indicate the masses corresponding to the best fit pa-
rameter point. The dark (light) blue regions denote the
one-dimensional 68 % (95%) CL area, corresponding to
the Ax? < 1 (Ax? < 4) region around the absolute
minimum. The expected spectrum shows several distinct
features: The Higgs boson mass is well constrained to
mp = 113.3 £ 2.5GeV, just above the LEP exclusion
bound. The lightest SUSY particle (LSP) is the stable
X1 at mge = 130 £ 35 GeV with a relatively small mass
difference to the next-to-lightest SUSY particle (NLSP)
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Fig. 6: SUSY mass spectrum as predicted by mSUGRA
parameter fit to low energy measurements with sign(u)
fixed to +1.

71 at mz, = 140 £ 25GeV, with the mass difference be-
tween NLSP and LSP being rather precisely constrained:
mz, —mgo = 9.5 £ 2.5GeV. If mSUGRA is realised in
Nature, this would provide challenging experimental con-
ditions for precision measurements at the LHC, since the
very small mass difference between NLSP and LSP would
provide many final states with very soft particles, domi-
nated by 7-leptons, as the last reconstructable particles in
the SUSY decay chain. In comparison with the discovery
reach from Figure 5 it can be seen that mSUGRA would
allow for relatively easy discovery in inclusive channels
but difficult precision measurements in exclusive recon-
struction of SUSY cascades.

Furthermore, all light neutralinos, charginos and slep-
tons are expected well below m =~ 600 GeV. The squarks
and the gluino could be found below 1.6 TeV. The heavy
Higgs bosons are expected below mpg/4 < 1.2TeV and
would be challenging to discover even with more than
10fb~! of luminosity at the LHC, since tan 3 is not large
enough [87].

The baseline fit uses a fixed value of the discrete pa-
rameter sign(u) = +1, since this choice is preferred by
the positive deviation of the measured anomalous mag-
netic moment of the muon a®**® from the SM prediction.
However, the difference in the overall agreement, between
the choice of sign(u) = +1 and sign(u) = —1 has to be
assessed with a global fit to the same observables as used
by the baseline fit, but for sign(u) = —1. The result of the
this fit (again using Markov Chains) is shown in Table 5.

Due to the tension in ajP — aEM of 3.40, the minimal

x? of the fit rises to 31.09, corresponding to a P-value
of 9.4 %, compared to 54.4 % for the baseline fit. This re-
sult shows that sign(u) = —1 is disfavoured but not ex-
cluded. The preferred parameter regions for both choices
of sign(p) = —1 show similar preferred values for tan g
and M, 5. For sign(u) = —1, much larger values of M,
are preferred.
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Table 5: Result of the fit of the mSUGRA model with
sign() = —1 including four additional SM parameters
to all measurements listed in Table 1. The minimum y?
value is 31.1 for 22 degrees of freedom, corresponding to
a P-value of 9.4 %.

Parameter Best Fit Uncertainty
sign(u) -1

Qs 0.1177 £ 0.0018
1/cem 127924 + 0.014

mz (GeV) 91.188 £ 0.0022

me (GeV) 1725 £+ 1.02

tan 3 9.6 iy

M5 (GeV) 125.1 o0

My (GeV) 2313.5 ot

Ap (GeV) —29.1 £+ 2048

The two-dimensional projections of the mSUGRA pa-
rameters for sign(u) = —1 are given in Figure 7. In
contrast to the baseline fit, where one continuous two-
dimensional 95 % CL area is observed, two distinct areas
are found for sign(u) = —1. One is located at large M/,
and small My, while the other one exhibits the opposite
signature. The reason is that in both regions the negative
SUSY contribution to (g — 2),, is reduced, while a correct
contribution to the cold dark matter relic density is pre-
served. The region of both large M, /, and My is therefore

cut out by the constraint of 2cph?.
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Fig. 8: SUSY mass spectrum as predicted by mSUGRA
parameter fit to low energy measurements with sign(u)
fixed to —1.

As before, the result can also be expressed in terms of
the preferred sparticle masses. Fig 8 shows the best fit and
the 68 % and 95 % CL areas of the observable masses for
the mSUGRA fit with sign(u) = —1. Since large My and
small M /5 is preferred over large M /5 and small Mo, as
visible in Figure 7, the expected gaugino masses in this
scenario are small. With mgo = 55"[}8 GeV a very light
LSP is predicted just above the LEP mSUGRA limit of
mgo > 47 GeV [90]. In contrast to the baseline fit, heavy
sleptons and squarks are expected due to the large value of
My. The gluino is predicted to be lighter than all squarks
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and sleptons such that it decays via three-body decays to
two jets and the LSP.

No tension between the predicted lightest Higgs boson
mass with the LEP limits is present for sign(u) = —1.
The obtained Higgs mass value is m; = 118.3 £ 3 GeV
well above the LEP bound at mj; > 114.4, GeV and also
above the preferred LEP Higgs mass of mj =~ 116.5 GeV.

In addition to the mass spectrum and the important
mass differences, the expected dominant sparticle decay
modes can be studied. A selection of branching fractions
of the mSUGRA parameter points preferred by the base-
line fit is shown in Table 6. The central values correspond
to the best fit, the uncertainties are given by Ayx? < 1
with respect to the best fit. It can be generally observed
that the uncertainties of the expected branching fractions
are very large, often close to 100 %. Also, there are only
few sparticles with only one relevant decay mode. There-
fore a rich phenomenology with many competing decay
modes can be expected at the LHC. Branching fractions
of the electro-weak gauginos are typically largest for the
third generation, with smaller contributions from the first
and second generation. In connection with the small mass
difference between mz, and myo, the larger branching frac-
tions into 7 leptons compared to other leptons represent
a challenge for the measurement of ratios of branching
fractions and di-tau mass endpoints.

Following the expected decay chains, the gluino decays
into squarks with a slight but not dominant preference for
by /2. Generally, the branching fractions into the spartners
of the right-handed degrees of freedom are larger by al-
most a factor of 2 than the branching fractions into the
left-handed counterparts. The right squark ¢g decays into
%1gq almost exclusively. As expected, the decay of the gy,
is predicted to be more complex with decays into ¥9¢ and
qu’ . The chargino has a preference for decays into 7yv,,
but includes significant contributions of decays into sneu-
trinos and into Y)W=*. The %3 has a similarly rich spec-
trum of decays, with a dominance of 7,7, but with small
contributions of sneutrinos, other leptons and x{h° and
X1 Z°. The sleptons exhibit branching fractions of close to
100 % into X9 and the corresponding lepton.

The results of the baseline mSUGRA fits with
sign(uz) = +1 and —1 provide clear predictions for the
expected measurements at the LHC. However, there are
several interesting questions which remain. First, it re-
mains to be assessed which measured observables con-
strain the parameter space and the regions of LHC ob-
servables in which way, i. e. which features of the mea-
surements dominate the prediction of parameters and fu-
ture observables. Second, as outlined in Section 2.1, the
interpretation of some of the measurements in terms of
mSUGRA is not necessarily unique. Third, alternative
SUSY breaking models may predict other features for the
LHC. These questions are addressed in the next sections.

Table 6: Expected branching fractions of the SUSY par-
ticles in the mSUGRA model with sign(u) = +1. The
results shown for the first generation are also valid for the
second generation.

Decay Mode  Expected Branching Fraction Uncertainty
X3 = AT 0.46  *9-58
XS = Ur vy 0.076  15-0%
Y3 - ére 0.040 0934
X3 = xth 0.036 X505
X8 = X2 0.018 5518
X3 — ére 0.00018  *o-12 ¢
XS — Tor 0. *oom
X = fvs 0.40 335
XE = bege 0.15 *5-19
XE = oy T 0.15 1519
X oW 012 150
XE = fovs 0o *+ou
G—iiru 0.052 9939
G — ipu 0.094 15:9%
G—dpd 0.051  *59%
g — drd 0.093 593
G— it 0.000 F92%6
G — ot 0 1—8.056
G — bib 0179 199z
G — bab 011 *59%
ér — Xle 1 f

er = )2(1)3 1 i—8.23
&L — )de 0 1—8.085
=0T 1+
72— X7 0.99 OO
Ty o XOT 0.0007  £5:000
P2 = X vr 0.0044  *000%,
ir — Xiu 0.008  +5-009
L = X3u 031 *0:5061
L = Xid 0.64 X000
ir — Xid 0.025  +9:0992
i = Xu 0.99 0060
ir — X3u 0.0078 35003
i — 0t 0.18 *oom
i1 — X3t 0.15 15998
i = xifb 0.51 *92L
t — xib 0.15 Tt
by — Xt 0.37 05
by — %3 0.25 TohZ
by = HW* 0.043 +5:29,
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4.1.2 Fits of mSUGRA to Low-Energy Observables with
reduced Sets of Observables

In this section, the baseline fit with sign(u) = +1 is mod-
ified by fitting the same parameters to reduced sets of
observables. As described in Section 2.1, both 2cpyh?®
and (g —2), suffer from uncertainties concerning their in-
terpretation in terms of SUSY. In this section we show
that these observables provide the strongest constraints
in the parameter space, therefore the uncertainty in the
interpretation of these observables has to be evaluated for
the predicted parameter space and collider observables.

For Qcpwmh? there is very little doubt about the mea-
surement, itself. However, the cosmological measurement
of the cold dark matter relic density does not imply that
the SUSY LSP is solely responsible for the dark matter.
Therefore, we study three different possibility: First, a
stable neutral SUSY LSP in the context of a R-parity
conserving model is the only source of 2cpyh?, and the
process of the LSP production after the Big Bang and
the freeze-out of the LSP is completely understood, as
e. g. implemented in [79]. This is assumed for the baseline
fit in Section 4.1.1. Second, the SUSY LSP contributes
to dark matter, but other unknown additional sources of
dark matter are not excluded. This scenario is tested in
this section by requiring that the LSP is stable and neu-
tral and that the predicted cold dark matter relic density is
smaller or equal than the observed one {2neoh? < 2obsh?>.
This still includes the assumptions that the mechanisms of
CDM creation are understood. Third, additional features
like a CDM creation different from the current under-
standing, or a meta-stable LSP, could cause differences be-
tween the measured CDM relic density and the predicted
CDM relic density. The maximal effect of such uncertain-
ties are tested by removing 2cpyh? from the observables
in the fit.

Similarly, three different scenarios can be distinguished
concerning (g — 2),, where there is an ongoing debate
about uncertainties on the SM prediction (see e. g. [91,92,
93,94]). Therefore, in addition to the baseline fit, which
uses the current mean value of measurements and the SM
and SUSY prediction from [53], deducing the hadronic
corrections from eTe™ collision data, three other options
are tested. First, in order to show the importance of the
(9 — 2), measurement, it is removed from the observables
used in the fit. Second, it is assumed for illustration that
the current deviation between SM prediction and measure-
ment is a statistical deviation or a insufficiency in the SM
prediction, i. e. that there is no visible SUSY contribution
to (¢ — 2),. Third, the prediction deducing the hadronic
corrections from 7 decay data [94] is used. Several com-
binations of the above mentioned possibilities are studied
in the following.

Since the composition of the cosmos and its dynamics
are a very dynamic field of study, it is a strong assump-
tion that only the LSP contributes to cold dark matter.
Therefore, a fit of mSUGRA with the preferred choice of
sign() = +1 is performed requiring 2iheoh?® < Qopsh?
and leaving all other observables unchanged. In this fit,
Pineoh? does not contribute to the x? for 2ineoh® <
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Table 7: Result of the fit of the mSUGRA model with
sign(p) = +1 including four additional SM parameters to
all measurements listed in Table 1 except 2cpmh?, for
which only 2iheoh? < 2opsh? is required. The minimum

x? value is 20.4 for 21 degrees of freedom, corresponding
to a P-value of 49.3%.

Parameter Best Fit Uncertainty
sign(u) +1
Qs 0.1176 £ 0.0025
1/aem 127.925 =+ 0.020
z (GeV) 91.1866 £ 0.0021
me (GeV) 1722 £+ 1.1
tan 9.0 Lt
M, 5 (GeV) 303.4 B
My (GeV) 27.6 07
o (GeV) 143.2 R
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Fig. 9: SUSY mass spectrum as predicted by mSUGRA
parameter fit to low energy measurements, requiring
Dtheoh? < 2onsh? with sign(u) fixed to +1.

Qobsh? and contributes (2ineoh® — Qobsh?) /T oepynz for
Dtneoh® > opsh®. The result of this fit is shown in Ta-
ble 7. The overall x? of the fit improves marginally with
respect to the baseline fit. The preferred regions of tan 3,
My and Ay move to slightly smaller values, but the varia-
tions are not large compared to the uncertainties. M re-
mains almost unchanged. The uncertainties increase with
respect to the baseline fit, but the order of magnitude re-
mains the same. The two-dimensional 95 % CL areas of the
parameter projections are increasing, but no qualitatively
new features are observed, as seen in the overlay of param-
eter regions with the baseline fit in Figure 4. Therefore, for
this modification of the baseline fit, the predicted collider
observables do not differ significantly from the baseline fit.

In Figure 9, the predicted Higgs boson and sparticle
mass ranges are shown. The observed mass ranges are very
similar to those observed in Figure 6. While the overall
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Table 8: Result of the fit of the mSUGRA model with
sign(u) = 41 including four additional SM parameters to
all measurements listed in Table 1 except 2cpmh>. The
minimum y? value is 20.4 for 21 degrees of freedom, cor-
responding to a P-value of 49.3 %.

Parameter Best Fit Uncertainty
sign(p) +1
Qs 0.1177 £+ 0.0019
1/cem 127.924 + 0.014
mz (GeV) 91.1870 4+  0.0022
me (GeV) 1722 + 0.83
tan 3 10.9 21
M5 (GeV) 316.2 tians
My (GeV) 45.1 BT
Ap (GeV) 209.1 el
I Predicted Mass Spectrum of SUSY Particles LEno  Q ]
2000
800 - - 1o Environment
1 —
? 1600; - 20 Environment
‘;‘ 1400i Best Fit Value
%) C
] - —
= 1200 —
<@ C —
S 1000 =
© C
S 800
2 600
2 c
g 400:*
& 200F
L N Y Y

| L1 |
W ATHOH X X X X % T T, 2 8,8, 5,6, T, T, §
Fig. 10: SUSY mass spectrum as predicted by mSUGRA

parameter fit to low energy measurements except 2cpah?
with sign(p) fixed to +1.

range of masses remains similar, there are subtle changes
in the mass differences, which are explained below.

Removing 2cpah? completely from the list of observ-
ables does not, change the fit result significantly. The best
fit point is identical within the 1o uncertainty with the
best fit point for 2neoh® < 2obsh>. The fit result is pre-
sented in Table 8. Again the uncertainties increase with re-
spect to the baseline fit and the fit with 2iheoh® < 2obsh>,
but the order of magnitude of the results and single pa-
rameter uncertainties remain unchanged. This is exempli-
fied in Figure 11, which shows the direct comparison of
the fit results with and without 2cpymh?. The increase in
correlation through the addition of 2cpyh? is clearly vis-
ible. The predicted mass ranges in Figure 10 are similar
to Figure 9.

While the overall range of the accessible parameter
space is not affected very strongly by including or exclud-
ing the constraint on 2cparh? in the presence of the other
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Fig. 12: Region in the space of the LSP mass mgo and
msz, which for most parameter points is the NSLP, as
predicted by a mSUGRA model compatible with existing
data. Using all constraints, only a area with small mnr.sp —
misp remains.

strong observables from Table 1, there is a strong influ-
ence of 2cpmh? on the mass differences between the spar-
ticles. This is shown in Figure 12 using the prediction for
mgo and mz, . If no requirements on the LSP are made at
all, i. e. if also charged LSPs are allowed, a large area of
chargino and stau masses are allowed. The requirement of
a neutral LSP excludes the upper left area in Figure 12,

where mz < myo. The remaining area is allowed with-

out applying further constraints on 2cpyh?. It exhibits
a wide range of mass differences between LSP and NLSP,
between 0 GeV and 450 GeV. The additional constraint
of Qneoh? < 2opsh? severely constrains this mass differ-
ence. Only a small band close t0 {2iheoh? = 2opsh? re-
mains, with mz —mgo < 22GeV at 95% CL. As already
outlined in the discussion of the baseline fit, this result
has significant impact on the expected exclusive collider
measurements. This shows that the correlations among
the parameters changes in a significant way if 2cpah? is
included into the fit, while the overall range of parameter
uncertainties remains similar.

The result of a mSUGRA fit to the observables from
Table 1, but with ai** = aiM is shown in Table 9.
This shows the allowed mSUGRA parameter space for
sign(p) = +1 in case the difference between measurement
and theoretical SM prediction of a, = (¢ — 2),/2 should
vanish in the future, either due to statistical fluctuations
or due to systematic shifts in the prediction because of a
different treatment of the hadronic corrections. The pre-
ferred parameter space in this case changes dramatically
with respect to the baseline fit, in contrast to the fits with
different treatments of f2cpmh?. The best fit value of M, /2
moves to 903 GeV, but with large uncertainties towards
smaller values. In contrast, the preferred value of M re-
mains small, but with very large uncertainties towards
larger values. The parameter tan § does not change dra-
matically, and Ay is basically unconstrained.
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Fig. 11: Region in the space of the mSUGRA scenario allowed by fits with and without 2cpyh?. It can be seen that

Ncpvh? increases the parameter correlations, but leaves the one-dimensional projections in a similar range.

Table 9: Result of the Fit of the mSUGRA model with
sign(p) = 41 including four additional SM parameters to
all measurements listed in Table 1, but with ajj* = aiM.
The minimum x? value is 19.7 for 22 degrees of freedom,
corresponding to a P-value of 60.2%.

Parameter Best Fit Uncertainty
sign(u) +1

Qs 0.1174 £ 0.0021
1/cem 127927 £ 0.017

myz (GeV) 91.1874 £ 0.0020

my (GeV) 17250 £+ 1.19

tan 8 74 ot

My/5 (GeV) 903.6 e

My (GeV) 180.1 %

Ap (GeV) 956.9 T hoies

This has significant consequences for the expected
sparticle masses, as shown in Figure 13. In comparison
to the prediction for the baseline fit, the situation changes
dramatically. The gluino and squarks tend towards masses
between 500 GeV and 3500 GeV, severely reducing the
expected production cross-section of colour-charged spar-
ticles. In contrast to the heavy squarks, the slepton and
electro-weak gaugino masses remain in the range below
500 GeV.

The change with respect to the baseline fit is also vis-
ible in the allowed parameter space in the detailed two-
dimensional projections, as shown in Figure 14. Two dis-
tinct parameter regions both for the 1o and the 20 en-
vironment can be seen in several parameter projections,
together with a tendency towards larger values of the
mass parameters My and M/, and hence higher values
of the expected sparticle masses, especially for the case of

sign(u) = —1.
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Fig. 13: SUSY mass spectrum as predicted by mSUGRA
parameter fit to low energy measurements with af® =

aEM and with sign(u) fixed to +1.

If the positive deviation of the measurement of a,
from the SM prediction is removed, there is no remaining
clear preference among the measured observables for ei-
ther sign(p) = +1 or —1. The fit of the mSUGRA scenario
with a®® = a5 and sign(p) = +1 yields a minimal x? of
19.7, while the fit with sign(u) = —1 yields x2,, = 19.1
for 22 degrees of freedom. The results of the latter fit are
shown in Table 10. The best fit values of M, , and My are
strongly different between the two results, but the uncer-
tainties span similar areas. No significant differences are
obtained for tan 8 and Aj.

The expected sparticle masses and uncertainties for
the mSUGRA fit with a7P = aEM and sign(p) = —1
are shown in Figure 15. In contrast to the result for
sign(p) = +1, very light gauginos are expected due to the
low value of Mjy. The best fit result for the squark masses
is at around 1800 GeV at a similar level, but the uncer-

tainty does not extend to much higher values. Especially
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Table 10: Result of the fit of the mSUGRA model with
sign(u) = —1 including four additional SM parameters to
all measurements listed in Table 1, but with % = a3M.
The minimum y2 value is 19.1 for 22 degrees of freedom,
corresponding to a P-value of 64.0 %.

Parameter Best Fit Uncertainty
sign(u) -1

Qs 0.1175 £+ 0.0018
1/cem 127929 £+ 0.018

mz (GeV) 911872 £  0.0022

mq (GeV) 17225 + 1.14

tan 3 11.65 o

M,y (GeV) 129.9 st

My (GeV) 1760.1 s

Ao (GeV) 62.1 30163

for the sleptons there are two distinct regions predicted,
which is a consequence of the prominent distinct allowed
regions in the My and M,/ distributions shown in Fig-
ure 14. Again, the gluino is expected to be lighter than
the squarks, leading to decay signatures strongly different
from the chain of several two-body decays expected for
the baseline fit.

In order to explore the significance of (g — 2), for the
fit result, Table 11 shows the result of the mSUGRA fit
with sign(u) = +1 to the observables from Table 1 ex-
cluding (¢ — 2),. Due to the lower minimal x? of 19.5
than the fit with a® = aEM, no secondary minima are
observed, therefore smaller allowed regions in M, are ob-
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Fig. 15: SUSY mass spectrum as predicted by mSUGRA
parameter fit to low energy measurements with ajf® =

aiM and with sign(u) fixed to —1.

tained for the fit without a;*? than with a7 = aiM. The
comparison of Table 11 with the results of the baseline fit
in Table 3 shows that (¢ — 2), represents an important

constraint, but that the remaining observables still favour
SUSY in the mass range below 1 TeV.

For illustration of the difference between the SM pre-
dictions of (g — 2), from ete™ and 7 data, the fit of
mSUGRA using the predicted SM value and uncertain-
ties from [94] is shown in Table 12 and the corresponding
mass spectrum in Figure 16. The mean value of the spar-
ticle masses and mSUGRA parameters is compatible with
the result of the baseline fit within their uncertainties, but
the 95 % CL area of the predicted sparticle masses ranges
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Table 11: Result of the fit of the mSUGRA model with
sign(s) = +1 including four additional SM parameters
to all measurements listed in Table 1 except (g — 2),.
The minimum x? value is 19.47 for 21 degrees of freedom,
corresponding to a P-value of 55.5%.

Parameter Best Fit Uncertainty
sign(p) +1

Qs 0.1177 £ 0.0019
1/cem 127925 £ 0.015

myz (GeV) 91.1875 £ 0.0020

my (GeV) 1725 £+ 1.1

tan 3 7.5 the

My GeV) sz o

My (GeV) 72.2 0

Ap (GeV) 270.0 Hleezs

Table 12: Result of the fit of the mSUGRA model with
sign(u) = 41 including four additional SM parameters to
all measurements listed in Table 1, using the predicted
SM-value of (g — 2), from [94]. The minimum x? value
is 19.6 for 22 degrees of freedom, corresponding to a P-
value of 60.6%. The fit results of the SM parameters are
consistent with the other fits in this section.

Parameter Best Fit Uncertainty
sign(u) +1

tan 3 7.9 15,8

M5 (GeV) 350.3 FE51.06

My (GeV) 65.9 s

Ap (GeV) 100.4 tasa!
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Fig. 16: SUSY mass spectrum as predicted by mSUGRA
parameter fit to low energy measurements using the pre-
dicted SM-value of (g — 2), from [94] with sign(u) fixed
to +1.
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parameter fit to low energy measurements except (g — 2) L
with sign(u) fixed to +1.

up to around 3 TeV, in contrast to the baseline fit wit hits
upper limit at 1.6 TeV at 95% CL.

The impact of the two most stringent observables
Qcpmh® and (g — 2), is compared in Figure 17. The
dark blue areas indicate the two-dimensional 95 % CL al-
lowed parameter region for the fit without 2cpyrh?, show-
ing that the remaining observables constrain the allowed
mSUGRA parameter space to regions below 700 GeV both
in My and M, /5, accesible at LHC. The light blue region
indicates the allowed parameter space for the fit without
(9 —2),. It can be seen that the two constraints are com-
plementary. Without (g — 2),, significantly larger values of
My and M, /, are allowed, but there is a narrower allowed
band at low My and M /3, caused by the constraint from

Ncpmh? favouring the co-annihilation region.

Since the uncertainties of the mSUGRA parameters
for the fit without (¢ — 2), in Figure 17 extend to much
larger values of the mass parameters, also the maximal
values of the sparticle masses allowed at 95% CL are in-
creasing significantly with respect to the baseline fit or
the fit without 2apyh?. This is visible in Figure 18. This
result shows again, similar to the result for a2 = a3M,
that (¢—2), plays a major role in constraining the allowed
mSUGRA sparticle masses to values below 1.6 TeV in the
baseline fit.

The previous results show that 2cpyh? has a strong
role in constraining the size of the uncertainties, but does
not affect the best fit result or the shape of the predicted
sparticle mass spectrum. On the other hand, (g —2), has
a decisive impact on the shape of the allowed parameter
regions, the best fit values of the parameters, their uncer-
tainties and hence on the predicted particle spectrum. The
prediction of a rich sparticle spectrum in the kinematic
range accessible by the LHC however remains stable for
all explored fits including or excluding either 2cpyh? or
(g9 — 2),, which is a very encouraging result for the dis-
covery potential of LHC. The question remains whether
there are other observables among those shown in Table 1
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Fig. 17: mSUGRA parameter regions compatible with all low energy measurements except (a) (¢ — 2), and (b)
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level and one-dimensional 68 % confidence regions are shown. From the latter 1o uncertainties for individual parameters
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which constrain the mSUGRA parameter space. This is
addressed by removing both Q2cpmh? and (g — 2), from
the fit and looking for remaining constraints. The result
of this fit with sign(u) = +1 is shown in Table 13. The
results show that the uncertainties increase strongly with
respect to the baseline fit as well as with respect to the fits
without either 2cpwmh? or (g — 2),. This shows both the
complementarity of the 2cpvh? and (g — 2),, constraints,
respectively, and the lack of other strongly constraining
observables in Table 1. Since no significant constraints on
low-energy SUSY can be placed anymore without these
observables, the corresponding fit with sign(u) = —1 is
omitted.

A comparison of the size of the allowed parameter
space in the My and M,/ projections, for the fits with-
out 2epmh?, (9 — 2), and without both is shown in Fig-
ure 19. For the fit without both observables the Markov
Chains does not completely explore the two-dimensional
2 0 uncertainty space, hence the uncertainty region is to
be interpreted as a lower bound on the uncertainties. This
could be remedied by using significantly larger statistics
in the Markov Chains. For the result shown here this is
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Fig. 19: mSUGRA parameter regions compatible with
the collider precision observables from Table 1 and with
the requirement of a neutral LSP, but without any require-
ment on 2cpmh? and (g — 2),, overlaid with the allowed
parameter regions using only no 2cpyh? or no (g — 2),.
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Table 13: Result of the fit of the mSUGRA model with
sign(u) = 41 including four additional SM parameters to
all measurements listed in Table 1 except 2cpmh?® and
(9 — 2),. The minimum x? value is 19.5 for 20 degrees
of freedom, corresponding to a P-value of 49.1%. Due to
the very weak remaining constraint on the SUSY param-
eter space, in this fit a complete coverage of the possible
two-dimensional 2 o parameter space can not be ensured
within the available statistics. Hence the uncertainties are
to be treated as lower boundaries on the uncertainties.

Parameter Best Fit Uncertainty
sign(u) +1

Qs 0.1179 4+ 0.0021
1/cem 127.925 £ 0.015

mz (GeV)  91.1876 &  0.0022

my (GeV) 1724 + 12

tan 3 7.4 e

M5 (GeV) 432.6 ori

My (GeV) 64.3 e

Ap (GeV) 387.8 Hoabio
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Fig. 20: SUSY mass spectrum as predicted by mSUGRA
parameter fit to low energy measurements except (g — 2) "
and 2cpmh? with sign(p) fixed to +1.

not done, since the results show clearly that SUSY within
the reach of the LHC or the ILC is not ensured without
using QCDMh2 and (g — 2)#'

A part of the allowed sparticle mass spectrum is shown
in Figure 20. The 1 ¢ allowed ranges of all particles apart
from the lightest Higgs boson, neutralino and chargino
extend well beyond a mass of 4 TeV. Hence no discovery
at LHC or ILC can be predicted apart from the SM-like
lightest SUSY Higgs boson, which is difficult to be dis-
tinguished from the SM Higgs boson at the LHC [95].
The allowed mass range of the lightest Higgs boson is
mp = 114.01'%4 GeV, showing that the precision data still
has a tendency to push the Higgs mass towards the lowest

values allowed by the direct searches. At the same time,
the push is not strong enough to exclude that the light
Higgs boson mass is close to the theoretically allowed up-
per limit at around m{"®® < 135 GeV in this scenario.

No detailed effect of other observables is tested due
to the failure of the remaining observables to constrain
the mSUGRA parameter space to the region accessible
with the next generation of collider experiments. How-
ever, this does not mean that the precision observables
or the flavour physics data will not have a decisive role
in helping to understand SUSY once sparticles are dis-
covered. The reasons for the strong impact of the preci-
sion data are demonstrated in Section 4.3. If a Higgs bo-
son is discovered, the precision of its mass measurement
will be much better than the precision of oy, ~ +3 GeV
obtained from the low-energy, cosmological and precision
data. Therefore a further improvement on the uncertain-
ties of the precision observables would be beneficial for an
ultimate cross-check of the collider data below and above
the electro-weak scale.

In addition, Figure 20 shows a very clear impact of the
precision and flavour physics observables and especially of
the Higgs searches at LEP in form of an implicit lower
bound on the sparticle masses above or around the cur-
rent direct search limits (e. g. [90,96,97,98]). The lightest
neutralino mass is expected above 45 GeV, the lightest
chargino mass above 100 GeV, and the 7 mass above
110 GeV. A small region with a chargino NLSP is allowed
at the 2 ¢ level, with most points featuring a 7, NLSP.

4.1.3 Fits of the GMSB Model

The mSUGRA scenario studied so far has the strong ad-
vantage that it solves a very large amount of experimen-
tal and theoretical challenges of the SM. In addition, it
is very well studied at colliders, making it an ideal test-
ing ground. Therefore it is the main SUSY scenario stud-
ied in this paper. However, it is not the only way how
SUSY can be broken at the expected Grand Unified The-
ory scale of around Aqut ~ 10'6 GeV. As an example of
a different SUSY breaking mechanism, Gauge Mediated
Supersymmetry Breaking (GMSB) [11] is explored. It has
the disadvantage that it includes a very light gravitino in
the range of mgs ~ O(1 — 10MeV) as LSP, which leads
to hot dark matter. This is difficult to be reconciled with
structure formation in the Universe [99,100]. Therefore,
Rcpmhb? is not included in the analysis.

In GMSB, there are four continuous variables: tan § =
v2 /vy is the ratio of the Higgs vacuum expectation val-
ues, A is universal mass scale of SUSY particles at the
GUT scale, Mpess denotes the mass scale of the messen-
ger gauge particles between the SUSY breaking sector and
the visible sector, and Cygray is the scale of the gravitino
coupling. In addition, there are two discrete parameters,
namely sign(u) and the number of messenger fields N;. As
before, separate fits are performed for different values of
the discrete parameters. A selection of the results is shown
in Table 14. It can be seen that there is a similar sensitivity
to sign(u) through the positive value of a¢*® —a;™. There
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Table 14: Result of the fit of the GMSB model with different values of sign(u) and Ny including four additional SM
parameters to all measurements listed in Table 1 except 2cpyh?. The minimum x? value is 19.30 for 21 degrees of
freedom, corresponding to a P-value of 56.5 %. The uncertainties correspond to the entry for sign(p) = +1 and N5 = 1.

Parameter Best Fit | Best Fit | Best Fit Best Fit | Best Fit Uncertainty for
N5 =1,sign(p) = +1
sign(p) +1 -1 +1 +1 +1
N5 1 1 2 3 4
tan (3 19.2 19.4 17.9 18.3 18.5 e
A (GeV) 87050 | 307629 53284 40080 32643 raleno
Mumess (GeV) 431752 | 334662 | 688567 | 1.038 x 10° | 539328 T1rax10°
Clarav 411.4 446.1 885.5 460.1 | 3368.1 e
Yoo 19.3 31.0 19.4 19.5 19.5
is, however, no sensitivity to N5, since all performed fits GMSB fit to LE
with N5 = 1,2,3,4 achieve the same value of x2,; = 19.5,
. m, 172.4+1.2 172.4
corresponding to a P-value of 56.5 %. It can be seen that m, 424017 42
no sensitive limit can be placed on Myess and Cyray, while m, 91.1875+0.0021  91.1872 l
tan  and A can be constrained. Since the prediction for  a, 01176£00020 01174
tan 3 and A is stable for different areas in Mp,ess and Ciray, Gﬁ 1.16637 107 +10™" 1.16637 10°
the remaining large uncertainty does not affect the con- ~ %m 127.925£0016  127.922
ined regi for tan 8 and A given the existing mea- T > 1144 133
strained reglons for ‘ g g a2, 41.54+0.04 41.48
surements. This shows an interesting complementarity to A 0.01714 +0.00095  0.01640
the expected LHC measurements, where constraints can- A, 0.1465 + 0.0032 0.1479
not be set on tan3 and Cgray Or Mmess alone, but on A 0.1513 £0.0021 0.1479
; A 0.67 +0.027 0.67
Cyrav X Mgess [IQI] tlhfl“(;ggh the measurement of sparticle A 0923 £ 0,09 0035
masses and gaugino lifetimes. Ab 0.0707 £ 0.0035 0.0741
The pull of the individual variables with respect to the AP 0.0992 £ 0.0016 0.1037
best fit result of the fit with sign(u) = +1 and N5 =11is R 0.1721+0.003 0.1722
shown in Figure 21. The obtained pattern is very simi-  Rv 0.21629+ 0.00066  0.21602
. . . R, 20.767 + 0.025 20.743
lar to the pattern for the mSUGRA scenario, which again r 24952 5 251 24949
confirms that the tension of the SM with the electro-weak g . 0.2324 +0.0012 0.2314
precision observables cannot be remedied by Supersym- — m,, 80.399 + 0.027 80.375
metry, apart from moving the Higgs boson mass close to  (@-2), 3.0210°£9.010"° 295107
or above the experimental limit. The prediction of GMSB ~ BR(P-sy)  1117+0.122 1.109
is mp, = (113.5 & 2) GeV, very similar to mSUGRA BR(b-m) ~115:04 091
h : ) Very : BR(B,— XJI) 0.99+0.32 0.99
The allowed parameter range in tan 5 and A is shown  BRK - Iv) 1.008+0.014 0.999
in Figure 22 for different values of Nj. It is interesting to  &m, 0.92+0.14 1.02
observe that, as already visible in Table 14, the predictions (M) 1.11+0.32 1.02
BBy, 1.09+0.16 1.00

and hence x2,;, remains unchanged for different values of
N5. There are different preferred parameter regions in A,
leaving A x N5 approximately unchanged. Intermediate
values of tan 3 are preferred, but neither large nor high
values can be excluded at the 2o level.

The predicted sparticle spectrum is also insensitive
to Nj itself, as shown in Figures 23 to 26, where an al-
most perfect agreement between the spectra for different
values of Nj is shown. Generally the expected spectrum
looks similar to the expected mSUGRA spectrum. This is
a strong hint that given the existing measurements, Su-
persymmetry generally provides for the prediction of a
rich observable particle spectrum at the LHC, indepen-
dent of the SUSY breaking mechanism. In GMSB, there
is a tendency towards higher values of the squark and

1 2
(Meas.-Fit)/ o

Fig. 21: Pull for the low energy observables used in the
GMSB parameter fit with N5 = 1 and sign(u) = +1, using
the observables from Table 1 and the best fit point from
Table 14.

gluino masses with respect to mSUGRA, but the differ-
ence in the predictions is not decisive enough to base a
distinction between the scenarios on the mass hierarchies

for scenarios with similar visible parts of the decay chains
in GMSB and mSUGRA.
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Fig. 22: GMSB parameter regions with sign(y) = +1
and different values of N5 compatible with the existing
data from Table 1 except 2cpmh?.
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Fig. 23: SUSY mass spectrum as predicted by GMSB pa-
rameter fit to low energy measurements except Qcomh?
with Ny fixed to 1 and sign(p) = +1.
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Fig. 24: SUSY mass spectrum as predicted by GMSB pa-
rameter fit to low energy measurements except 2cpnh?®

with Nj fixed to 2 and sign(u) = +1.
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Fig. 25: SUSY mass spectrum as predicted by GMSB pa-
rameter fit to low energy measurements except Qcomh?
with N5 fixed to 3 and sign(p) = +1.
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Fig. 26: SUSY mass spectrum as predicted by GMSB pa-
rameter fit to low energy measurements except Qcomh?
with Nj fixed to 4 and sign(u) = +1.

4.1.4 Conclusions for SUSY Scenarios at Colliders

The results show that Supersymmetry, broken at the GUT
scale, offers several possibilities to fit the existing preci-
sion data. In the mSUGRA breaking scenario, all param-
eters can be constrained and the existing data from cosmo-
logical, low-energy, flavour physics and precision collider
sources clearly prefer parameter ranges which are acces-
sible at the next generation of collider experiments. It is
shown that as expected 2cpyh? and (g — 2), provide for
the most sensitive constraints among the available mea-
surements. Even if individual, very sensitive, variables are
removed, or if deviations between data and the SM pre-
diction are assigned to unknown systematic uncertainties,
a clear constraint in the accessible mass regions remains.
Only voluntarily removing both 2cpyh? and (g — 2),, si-
multaneously from the list of observables used in the fit,
removes the experimental constraint to the parameter re-
gion accessible at the LHC.
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The best fit parameter spectrum and the uncertain-
ties from present data clearly prefers a SUSY scenario
with a rich phenomenology both at the LHC and the
ILC. At the 10 level, all Higgs bosons, gauginos (apart
from the gluino) and all sleptons are expected below
m < 600 GeV. The squarks and gluinos are expected be-
low m < 900 GeV. While this provides for relatively early
discovery at the LHC, the rich expected spectrum with
many concurrent production and decay modes will con-
tribute to a challenging reconstruction of the LHC ob-
servables sensitive to SUSY masses and branching frac-
tions. In particular, a very small mass difference between
the neutralino LSP and the NLSP, which is the 7, of
mnLsp — mrsp < 22 GeV at the 95% CL level leads to
dominating decays of the gauginos into final states with
T leptons. However, the exact branching fractions cannot
be predicted with strong precision.

4.2 Expected LHC Measurements

Based on the results of the previous section, we now in-
vestigate the prospects for the determination of SUSY
parameters from future LHC measurements. Within the
mSUGRA model, the preferred parameters from existing
LE measurements and constraints clearly point towards
rather light sparticle masses. In order to be consistent with
the measured dark matter relic density, co-annihilation of
the LSP and the NLSP has to contribute to the dark mat-
ter annihilation process. For this process to be efficient,
the mass difference between NLSP and LSP has to be
rather small. For the best fit point, within mSUGRA, the
difference m(71) — m(x?) is only 8 GeV, and the differ-
ence m(ég) — m(xY) is 22 GeV. No detailed experimen-
tal studies for LHC prospects are available for this spe-
cific parameter point. However, detailed studies exist for
the SPS1a parameter point with parameters tan g = 10,
Ap = —100 GeV, M, = 250 GeV, My = 100 GeV,
sign(p) = +1 [68]. These parameters taken at face value
lead to a significantly larger dark matter relic density
due to mass differences m(7) — m(x}) = 37 GeV and
m(ér) —m(x}) = 47 GeV. Apart from this difference, the
collider phenomenology of SPSla is very similar to that
of the best fit point. The smaller mass differences lead to
softer spectra for the final state leptons, which is a small
caveat to be kept in mind in the following analysis and
should serve to trigger more optimisation of soft lepton
identification within the LHC experiments. We assume in
the following as a plausible scenario that SUSY is realised
with electro-weak scale parameters derived from the high-
scale SPS1a parameters and will be discovered by the LHC
experiments. As input measurements we use the observ-
ables specified in Section 2.2 for three different integrated
luminosities. If taken at face value, the lightest Higgs bo-
son mass in SPSla calculated with SPheno is 109 GeV,
slightly below the LEP exclusion. Given the theoretical
uncertainty as well as the strong dependence of m, on the
top quark mass we do not consider this as an inevitable
constraint. Technically, we set the LEP Higgs mass limit
slightly below 109 GeV for the luminosity scenarios where

Table 15: Result of the fit of the mSUGRA model to the
expected LHC observables for 1 fb—!.

Parameter Best Fit Uncertainty
sign(p) +1

tan 3 9.1 £+ 3.7

Ao (GeV) —131.8 =+ 7421

Mo (GeV) 100.2 £+ 4.2

M5 (GeV) 249.7 = 6.7

no Higgs boson has been found yet at the LHC and we
assume that a 109 GeV Higgs boson could be discovered
at the LHC with similar sensitivity as for 115 GeV.

4.2.1 mSUGRA Fit with fixed sign(u)

The good agreement in collider phenomenology be-
tween SPSla and the mSUGRA best fit point offers the
possibility to use the wealth of Monte Carlo studies per-
formed for this benchmark point to attempt a projection
of the SUSY model discrimination power and parameter
constraints to the LHC era. This is done by performing
fits to Toy data which have been obtained by smearing
the observable values according to a Gaussian around the
nominal SPSla values as explained in Section 3. In the
top four plots in Figure 27 the distributions for the fit-
ted parameters from these Toy Fits are shown assuming
i > 0 for integrated luminosities of 1 fb~!, 10 fb~! and
300 fb—!. The fitted central values and their uncertainties
are obtained from a Gaussian fit to the parameter distri-
butions. The corresponding values are listed in Table 15,
16 and 17. The two bottom plots of Figure 27 display, as
examples, the y? distributions from the Toy Fits for the
smallest and largest considered luminosity. The fact that
the x2 distributions are in very good agreement with the
expectations for the respective degrees of freedom provides
confidence that the x? minimisation algorithm works re-
liably.

Already with 1 fb~! of LHC data it is possible to con-
strain the scalar mass parameter M, and the gaugino mass
parameter M/, to the level of a few percent due to the
already relatively precise measurements of the endpoints
of the ¢q and the ¢/q invariant mass spectra. For the de-
termination of M, /2 also the m7 s measurement in events
with §r — ¢x! decays is important. tan 3 and Ay are more
difficult to determinee. For tan 3, approximately 40 % pre-
cision and for Ay only an order of magnitude estimate is
obtained. With 1 fb~! the best constraints on these pa-
rameters come from measurements involving third gener-
ation particles, in particular from myj.

The increased precision on My for an integrated lumi-
nosity of 10 fb~! mainly comes from more precise mea-
surements of the endpoints of the g spectra. For M,
also new sensitive measurements become available with
a larger data sample, in particular mz — mgo. The mea-
surement of myj still remains important to constrain tan 3
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Table 16: Result of the fit of the mSUGRA model to the
expected LHC observables for 10 fb— 1,

Parameter Best Fit Uncertainty
sign(p) +1

tan 3 10.08 £+ 0.84

Ao (GeV) -98.0 £ 529

My (GeV) 100.1 £+ 2.1

My ,s (GeV) 250.1 £+ 1.2

Table 17: Result of the fit of the mSUGRA model to the
expected LHC observables for 300 fb—!.

Parameter Best Fit Uncertainty
sign(p) +1

tan (8 998 £+ 0.35

Ap (GeV) —-100.2 + 11.1

My (GeV) 100.0 £ 0.39

M, ;5 (GeV) 250.0 £+ 0.30

and Ap. In addition m}}** from X9 decays provides valu-
able additional information on tan 3 and Ay at 10 fb—!.
For tan 8 also the ratio of branching fractions (2) starts
to contribute.

With 300 fb~! of LHC data it will finally be possible to
constrain My and M /, down to (a few) permille level. The

.. . . - high
driving factor is an increased precision on m,,*", m}oqw and

—in case of M/, — also on my7*. Similarly the improve-
ment on Ag can be traced back to better measurements
of those observables which already provide the best con-
straints for 10 fb~!, namely m}}** from x§ decays and m}.
tan 3 at 300 fb~! is mainly controlled by measurements
of quantity (2) and the lightest Higgs mass my,. For tan
(Ag) a relative precision of approximately 4 % (11 %) is
finally achieved from the given list of observables.
Concerning the most constraining observables men-
tioned above it should be noted that they might be very
sensitive to small changes of the input measurements.
Therefore they ought to be taken with some care and
should not be generalised without further cross-checks.

4.2.2 Determination of sign(u)

For the LHC fit results described above, we have not yet
discussed how to find the correct sign of p. Using the
technique described in Section 3.2, we also checked how
well the sign of p can be determined from LHC data.
This is done by performing Toy Fits for each sign of pu
to the identical set of Toy data. Figure 28 shows the x?
correlations obtained from such fits. If we choose the
value for sign of 4 which yields the best x? for a given set
of LHC measurements we can estimate the probability
to make the wrong choice by counting the number
of Toy Fits below the red bisecting line in Figure 28
and normalise it to the total number of Toy Fits. The
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Fig. 29: x? correlations obtained from fits to the same
Toy data set for two different interpretations of mjp;**.

corresponding numbers can be read off the plots. Already
with 1 fb~! there is a good chance to extract sign(u)
correctly. The probability for a wrong choice is less than
5 %. Based on 10 fb~! or more of LHC data, sign(u) can
be determined with negligible error probability.

4.2 3 First Investigation of Chain Ambiguities

All the above LHC fit results are based on the idealised as-
sumption that one knows the contributing decay chain for
a given mass spectrum. In reality this is, of course, not the
case. Therefore there are in general various possible decays
which can contribute to a specific mass spectrum. In the
context of this study we do not yet address this problem
systematically. A fully realistic analysis, taking the full
combinatorics for such chain ambiguities into account, can
be performed when data are present. Here we constrain
ourselves to the case where we check the impact of mis-
interpreting a single observable to test the methodology.
To accomplish this we perform fits to the same Toy data
set for each possible interpretation of a mass spectrum.
As an example we allow for two different interpretations
of one particular di-lepton endpoint as either (correct)
mp™ (mgo, mgo,my ) or (wrong) mg*(mgo,myo,my_)
for the case of 10 fb~' of integrated luminosity.

Figure 29 shows the x? correlations obtained from fits
to the same Toy data set for these two different interpre-
tations of m};**. If one always chooses the interpretation
which yields the smallest minimal y? the probability to
make a wrong decision is approximately 23 %. Figure 30
shows the mSUGRA parameter distributions from Toy
Fits assuming the correct endpoint assignment (blue), the
wrong interpretation (red) and the distribution which is
obtained if the one with the lowest minimal x? is always
chosen (black). It is apparent that this chain ambiguity
has some impact on the reconstructed parameters leading
to a bias on the mean and to systematically larger values
for the uncertainties on the parameters, but these effects
are rather small compared to the uncertainty on the
parameters. While this observation certainly cannot be
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generalised to arbitrary ambiguities in the decay chains,
the principal method can always be applied. Depending
on the result of the x? comparison, the ambiguity can
be either translated into increased parameter errors
or certain hypotheses can be discarded if they yield
significantly worse 2.

4.3 Role of Low Energy Observables in the LHC Era

Now we address the question to which extent low en-
ergy measurements still contribute to the determination
of SUSY parameters once LHC results become available.
We perform this study for two different SUSY models,
namely mSUGRA and MSSM18. The input observables
for these analyses comprise all the low energy observables
listed in Table 1 in addition to the LHC observables of
Table 2. To ensure a consistent set of “measurements” for
these analyses, nominal SPS1a values are used for the low
energy observables instead of the actually measured val-
ues.

4.3.1 mSUGRA Fit

The fit results of the mSUGRA Toy Fits using low en-
ergy and LHC observables for the three different lumi-
nosities are shown in Figure 32. The corresponding fitted
mSUGRA parameters and the corresponding correlation
coefficients are summarised in Tables 18, 19, 20, 21, 22
and 23. As described in Section 4.2 tan and Ay are
rather weakly constrained by LHC measurements alone
at low luminosity. For these parameters the addition of
low energy measurements clearly improves the situation.
At 1 b~ (g —2), is an important additional measure-
ment, constraining tan 8 and Ag. For My, the cold dark
matter relic density 2cpamh® becomes the most sensitive
observable followed by m?;gh, the most important LHC
quantity. The precision on M, 5 is still dominated by the
LHC “measurements” listed in Section 4.2. Nevertheless
some improvements are also achieved for this parameter,
mainly due to (g — 2),.

At 10 fb~! and above the role of low energy measure-
ments is largely repressed by LHC observables such that
the precision on the mSUGRA parameters for increasing
luminosity asymptotically approaches the precision ob-
tained from LHC observables alone.

These results can be used to derive the complete SUSY
particle mass spectrum assuming the mSUGRA model
and the best fitting parameters. Figure 33 shows the mass
spectrum for an integrated LHC luminosity of 1 fb~! as
obtained from low energy and LHC observables. The re-
spective mean and most probable values are indicated in
black and red. 10, 20 and 3 o uncertainties are indicated
by the blue bands. It should be noted that the masses
derived in this way are model dependent statements and
not direct mass measurements. While the masses of the
light Higgs boson, the light gauginos and the sleptons can
already be constrained quite well, the masses of the heavy
Higgs bosons, the heavy gauginos and the squarks are still

Table 18: Result of the fit of the mSUGRA model to low
energy and LHC observables for 1 fb—!.

Parameter Best Fit Uncertainty
sign(p) +1

tan 3 10.2 £+ 23

Ao (GeV) —-76.3 + 184

Moy (GeV) 1006 + 3.4

Table 19: Correlation coefficients for the fitted parame-
ters of the mSUGRA model to the expected low energy
and LHC observables for 1 fb—!.

tan 3 Ao Moy M,y
tan 3 1.000 0.534 —0.405 0.793
Ap 0.534 1.000 —0.184 0.493
My —0.405 —0.184 1.000 —0.077
Mo 0.793 0.493 —0.077 1.000

quite imprecise. The situation improves significantly if one
goes to a luminosity of 10 fb~! (see Figure 34). Increas-
ing the luminosity to 300 fb~! (Figure 35) again means a
clear increase in precision with respect to the 10 fb—! re-
sult. This means that stringent spectroscopic tests of the
mSUGRA model will be possible using the experimentally
accessible sparticles and precise mass predictions are fea-
sible for those SUSY particles which cannot be directly
probed at the LHC.

In addition to Toy Fits we also perform a Markov
Chain analysis. Figure 36 shows the quantity Ax? =
—2In(L) + 2In(Lmax) for all possible mSUGRA param-
eter pairs for the three considered LHC luminosities of
1fb=1/10 fb=1/300 fb~! (left/middle/right). £ is the two-
dimensional profile likelihood and L,.x the global maxi-
mum of the likelihood. The black dotted contours repre-
sent Ax? = 1 contours. The results are in good agreement
with those obtained from the Toy Fits and nicely show the
partly strong correlation between the parameters which is
also reflected in Tables 19, 21 and 23.

For illustrative purposes Figure 37 shows the outcome
of the same Markov Chain for the parameter pair Ap-
tan  using Bayesian statistics. The lines again indicate
Ax? = —21n(L) 4+ 21n(Lmax) contours but this time £ de-
notes the marginalised posterior probability (using a flat
prior probability). Compared to the results derived from
the profile likelihood the contour lines are more jagged for
the same Markov Chain length. Apart from these fluctu-
ations good agreement between the results derived from
the marginalised posterior probability and those from the
profile likelihood (shown in Figure 36) is found.

4.3.2 MSSM18

So far, we only considered SUSY models with specific
assumptions on the SUSY breaking mechanism, namely
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Fig. 31: Discrimination power of the expected low-energy and LHC results from Table 1 and 2 for £ = 1fb

and £ = 10fb*
(sign(p) = +1 and sign(pu) =
is observed.

Table 20: Result of the fit of the mSUGRA model to low
energy and LHC observables for 10 fb=1.

Parameter Best Fit Uncertainty
sign(p) +1

tan 3 10.0 £ 0.79

Ap (GeV) —-99.1 £+ 483

Mo (GeV) 1000 £+ 1.9

M, ;5 (GeV) 250.1 £+ 1.1

Table 21: Correlation coefficients for the fitted parame-
ters of the mSUGRA model to the expected low energy
and LHC observables for 10 fb—!.

tan 3 Ao Mo Mo
tan 3 1.000 0.805 —0.328 0.415
Ao 0.805 1.000 —0.483 0.548
My —0.328 —0.483 1.000 0.241
My, 0.415 0.548 0.241 1.000

Table 22: Result of the fit of the mSUGRA model to low
energy and LHC observables for 300 fb—!.

Parameter Best Fit Uncertainty
sign(u) +1
tan 3 10.00 £+ 0.36
o (GeV) —99.1 £ 12.0
My (GeV) 100.00 £+ 0.39
M, ;5 (GeV) 250.01 =+ 0.33
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in a 2-dimensional plot of the minimal x? values of simultaneous Toy Fits of two different models
—1). In comparison with Figure 28 a clear increase in separation power for £ = 1 !
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Fig. 33: SUSY mass spectrum consistent with the exist-
ing low-energy measurements from Table 1 and the ex-
pected LHC measurements from Table 2 at £ = 1fb~*
for the mSUGRA model. The uncertainty ranges represent
model dependent uncertainties of the sparticle masses and
not direct mass measurements. This is especially visible for
the heavy Higgs states A, H and H*, for which no direct
measurement, is expected in the SPS1a scenario.

mSUGRA and GMSB (for the fits to low energy measure-
ments). As shown in Section 4.3.1 the LHC measurements
together with LE measurements allow to derive tight con-
straints on the mSUGRA parameters if sufficient lumi-
nosity is accumulated at the LHC. In this section we in-
vestigate if it is possible to relax the strong constraints
imposed on sparticle masses and couplings by the require-
ment of a specific breaking scenario. If it will be possible
to measure the parameters of a more general model, like
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Fig. 34: SUSY mass spectrum consistent with the exist-
ing low-energy measurements from Table 1 and the ex-
pected LHC measurements from Table 2 at £ = 10fb™!
for the mSUGRA model. The uncertainty ranges represent
model dependent uncertainties of the sparticle masses and
not direct mass measurements. With respect to Figure 33,

a clear increase in precision is observed.

Table 23: Correlation coefficients for the fitted parame-
ters of the mSUGRA model to the expected low energy
and LHC observables for 300 fb—'.

tan 3 Ao Mo Mo
tan 8 1.000 0.356 0.178 0.134
Ao 0.356 1.000 —0.266 0.673
My 0.178 —0.266 1.000 0.391
M,;, 0.134 0.673 0.391 1.000

e. g. the MSSM18, at the electro-weak scale, properties of
SUSY breaking models could be investigated in a bottom-
up approach [102].

The results of a Markov Chain analysis of the MSSM18
model using LE and LHC observables with an integrated
luminosity of 300 fb~! are shown in Table 25. Most pa-
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Fig. 35: SUSY mass spectrum consistent with the ex-
isting low-energy measurements from Table 1 and the
expected LHC measurements from Table 2 at LMt =
300fb ! for the mSUGRA model. The uncertainty ranges
represent model dependent uncertainties of the sparticle
masses and not direct mass measurements. With respect

to Figure 34, again a clear increase in precision is observed.

rameters can be determined to the level of a few per-
cent, except for third generation sfermion mass parame-
ters, the trilinear coupling parameters X, = A, — utan 3,
Xy = Ap — ptan B and X; = Ay — pcot 8 and the Higgs
parameters tan  and m 4. The precision on the Higgs pa-
rameters tan $ and m 4 suffers from the fact that for the
analysed benchmark point SPS1a the heavy Higgs bosons
are not directly accessible at the LHC.

Whereas for the mSUGRA fit to LE and LHC observ-
ables the impact of LE observables is almost negligible for
300 fb ! of LHC data, the situation for the MSSM18 is dif-
ferent. For some parameters the most stringent constraints
still come from LE measurements. The most prominent
examples are B(B — sv) and (g — 2),. B(B — sv) is
sensitive to the charged Higgs boson mass m g+ which in
turn is tightly connected to the fitted SUSY parameter
ma. (g — 2), provides the most sensitive constraints on
M;—L and X.,—.
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Fig. 38: SUSY mass spectrum consistent with the ex-
isting low-energy measurements from Table 1 and the
expected LHC measurements from Table 2 at £ =
300fb~* for the MSSM18 model. The uncertainty ranges
represent model dependent uncertainties of the sparticle
masses and not direct mass measurements.

The obtained MSSM18 fit result can again be trans-
lated into a corresponding sparticle mass spectrum. This
spectrum is presented in Figure 38. Again the masses in
this Figure are model dependent predictions and do not
represent direct mass measurements. Compared to the
corresponding result for the more constrained mSUGRA
model (Figure 35), some of the sparticle masses have sig-
nificantly larger uncertainties in the MSSM18. This is par-
ticularly pronounced for the heavy Higgs boson masses,
which are — as stated above — not directly accessible at
the LHC for the considered SUSY benchmark point.

Although not studied explicitly for the MSSM18, one
may expect that chain ambiguities may have a larger im-
pact for this model than in the mSUGRA case. Since
MSSM18 has more independently adjustable parameters,
different decay chain interpretations can be more easily
matched with the model due to the increased flexibility.

4.4 Low-Energy Observables, LHC and Expectations
for ILC

The results of the previous sections show that the expected
data of the LHC allow to obtain rather precise constraints
on the mSUGRA parameters once sufficient luminosity is
accumulated. However, for the MSSM18 scenario, the con-
straints severely diminish due to the increased theoretical
freedom. The parameter uncertainties typically increase
by a factor of 10 or more. Therefore an extrapolation of
the SUSY parameters from the electro-weak scale to the
GUT scale is afflicted with large uncertainties, if only low-
energy, flavour physics, electro-weak precision, cosmolog-
ical and LHC observables are used.

The expected measurements at the International Lin-
ear Collider, however, could dramatically increase the
experimental precision of the measurements of sparticle

Table 24: Result of the fit of the mSUGRA model to the
existing measurements and to the expected results from
LHC with £"* = 300fb~" and ILC.

Parameter Nominal value Fit Uncertainty
tan g3 10 9.999 =+ 0.050

M, /5 (GeV) 250 249999 £+ 0.076

Mo (GeV) 100  100.003 =+ 0.064

Ap (GeV) —-100 —100.0 £+ 24

masses and couplings. In addition to just increasing the
experimental precision, the ILC is also expected to de-
liver a wealth of measurements of absolute branching frac-
tions and cross-sections, many cross-section times branch-
ing fraction measurements, and many model-independent
measurements of quantum numbers and CP-properties.
This expected wealth of data, especially in a SUSY sce-
nario with a rich phenomenology below a mass scale of
500 GeV, as predicted by the present measurements in
Section 4.1, will strongly enhance the knowledge from the
LHC due to the expected complementarity of ILC and
LHC results [13].

In this section, first the expected precision on the pa-
rameters of the mSUGRA model is studied, followed by a
detailed comparison of the results of the MSSM18 fit us-
ing only LE and LHC data with those obtained using LE,
LHC and ILC data. Finally, the increase in precision is
used to predict the cosmic cold dark matter relic density
Ncpmh? from collider data, from fits excluding 2cpamh?
itself from the list of observables.

4.4.1 mSUGRA

Using the same available and expected measurements as
in the fit using £ = 300fb~" of LHC luminosity in Sec-
tion 4.3.1, plus the expected ILC measurements discussed
in Section 2.3, the fit of the mSUGRA model to the data
of the SPS1a scenario is shown in Table 24. The compari-
son with the results without ILC in Table 22 shows the in-
crease in precision by a factor of 5 to 10. However, the pure
increase in precision for the fit of a high scale scenario is
not the only improvement using ILC. First, possible devi-
ations of the SUSY breaking implemented in Nature from
a given GUT-scale SUSY breaking scenario, involving as-
sumptions on unification, are much more visible using also
ILC data. Second, the high accuracy and especially the
larger variety (covering couplings, mixings, masses, widths
and quantum numbers) and stronger model independence
of the measurements allow to fit more general models of
New Physics. This makes it possible to study the SUSY
breaking mechanism using a bottom-up instead of a top-
down approach.
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4.4.2 MSSM18

As discussed in Section 4.3.2, the fit of the MSSM param-
eters at the SUSY breaking scale allows a bottom-up test
of SUSY breaking and is independent of any assumptions
about physics at the GUT scale. Section 4.3.2 showed that
for the MSSM18 model, the parameter uncertainties from
fits to existing data and expected LHC data are larger by
at least one order of magnitude with respect to the fits of
the mSUGRA scenario.

Table 25 shows a comparison of the parameter uncer-
tainties of the fits of the MSSM18 model using LE data
in combination with £ = 300fb " of data at the LHC
(LE4+LHC300) and the latter plus the expected ILC re-
sults (LE4+LHC300+ILC). The results of Markov Chain
Monte Carlo scans and Toy Fits are in good agreement,
therefore just the Markov Chain result is shown. For most
parameters, the uncertainties decrease by approximately
one order of magnitude. Interestingly, the increase in pre-
cision is not only limited to those parameters which are
linked directly to observables at tree level. For example
it is expected that the uncertainties of the gaugino mass
parameters M; and M, are significantly decreased at ILC
due to the increased precision on the )2(1) /2 and )2% masses
and the additional information from precise measurements
of cross-sections times branching fractions for different po-
larisations. Also, the precision of the heavy Higgs sector
parameter m 4 is expected to increase dramatically, since
the heavy Higgs bosons A, H and H* are not expected
to be discovered at the LHC in this scenario, but to be
precisely measured at the ILC [13]. In contrast to those
measurements, no additional experimental information is
obtained on the gluino mass or the heavier squark masses
at ILC. In any case, with the exception of Mj,, all pa-
rameter uncertainties improve dramatically. The reason
for this behaviour is the strong decrease of correlations.
For example, the by /2 masses are determined by Mj, and
M, , but also by the off-diagonal elements m; X, with
Xp = Ay — ptan 8. Due to the strong increase in the de-
termination of p and tan 8 from the measurements in the
Higgs sector (where also A plays a role in loop effects)
and the gaugino sector, also the precision of the param-
eter Mj_ is strongly improved, although no direct mea-
surement in the sbottom sector is made at the ILC in
this scenario. This example highlights the importance of
precision measurements for the detailed unravelling of the
SUSY spectrum, and it is an example of the complemen-
tarity of LHC and ILC.

The resulting derived spectrum of sparticle masses is
shown in Figure 39. It represents a very strong improve-
ment over the results without ILC in Figure 38. The Higgs
sector exhibits the strongest improvement due to the di-
rect observation of heavy Higgs states. Apart from the
squark mass mg, , solely governed by the parameter Mj,,
the uncertainties of all other derived masses increase dra-
matically.

As a final test of the agreement between cosmology and
collider data, and as a showcase for the predictive power
of precision collider measurements, additional fits with-
out 2cpmh® are performed with and without the use of
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ILC using the Toy Fit technique. The resulting predicted
values of 2cpmh?® are shown in Figure 40 and compared
with the present and expected experimental precision of
Qcpmh? from the WMAP [57] and Planck [103] data. The
prediction of 2cpyh? from collider data without ILC in
the MSSM18 model shows a long non-Gaussian tail down
to Rcpmh® = 0. The Gaussian core of the distribution is
one order of magnitude wider than the expected precision
from the Planck satellite. Therefore witout ILC, the relic
density constraints inferable from particle physics within
the MSSM18 model do not match the precision of cosmo-
logical measurements.
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Table 25: Results of the Markov Chain MC analysis of the MSSM18 model using low energy observables, expected

LHC results for £t = 300 fb~! and ILC.

Parameter Nominal value ILC Fit OLE+LHC300 OLE+LHC300+ILC
M;, (GeV) 19431 194315 + 64 0.068
MZR (GeV) 135.76 135.758 £+ 10.5 0.071
M;, (GeV) 193.52 193.46 £+ 43.0 0.33
Ms, (GeV) 133.43 133.45 + 38.2 0.35
M;, (GeV) 527.57  527.61 + 3.4 0.64
Mg, (GeV) 509.14 509.3 £ 9.0 9.0
M (GeV) 504.01 5042 + 333 2.4
M;, (GeV) 481.69 4816 + 155 15
M, (GeV) 409.12 409.2 + 1038 1.6
tan 3 10 10.01 =+ 3.3 0.29
1 (GeV) 355.05  355.02 + 6.2 0.88
X, (GeV) —3799.88 —3795.1 + 3053.5 46.6
X; (GeV) —526.62 —526.8 <+ 299.2 4.7
X, (GeV) —4314.33 —4252.1 + 5393.6 728.7
M; (GeV) 103.15 103.154 + 3.5 0.046
M, (GeV) 192.95 19295 + 5.5 0.11
Ms (GeV) 568.87 568.66 =+ 6.9 1.65
ma (GeV) 359.63  360.07 + *li& 1.83

In contrast to that, the result including ILC for
the MSSM18 scenario achieves a relative precision on
(2P h2) /(28835 h2) of 0.2 %, which is an order of magni-
tude more precise than the expected Planck accuracy. An
agreement between the collider result and the cosmolog-
ical measurement would provide strong hints that SUSY
LSPs make up the vast majority of dark matter and would
allow to make predictions for direct dark matter search
experiments. For comparison, the achievable accuracy on
the relic density is also shown assuming mSUGRA. The
uncertainty is improved again by a factor of two.

In summary, for a SUSY scenario in agreement with
the present cosmological, low-energy and collider data, the
ILC would tremendously improve the theoretical under-
standing of a SUSY model by improving the precision
of bottom-up determinations of SUSY parameters with-
out assumptions on unification and breaking mechanisms
at the GUT scale. The precision would ensure that cos-
mological implications of New Physics could be predicted
with a precision significantly better than the current and
expected cosmological measurements.

5 Conclusions

We have performed a comprehensive study of current and
future uncertainties and correlations of the parameters of
supersymmetric models, i. e. the mSUGRA and GMSB
model as well as the MSSM18.

For the case of LE data presently available we confirm
the results of [44] leading to the conclusion that within
the mSUGRA model, sparticles are predicted to be light
enough for an early discovery at the LHC. In particular,
the squark and gluino masses, which determine the major

production cross-sections at the LHC are below 1 TeV at
68 % CL and below 1.6 TeV at 95 % CL. The most sensi-
tive measurements are the muon anomalous magnetic mo-
ment (g —2), and the cold dark matter density Q2cpavh?.
For (g — 2), the results rely on the calculation of the
hadronic vacuum corrections based on e*e™ cross-section
data. Sparticle masses are less constrained for scenarios
where the SM prediction of (g — 2), is closer to its mea-
sured value. This is currently the case for the prediction
based on 7-data for the hadronic vacuum corrections [94],
where the heaviest sparticles are expected below 1.4 TeV
at 68% CL and 3 TeV at 95% CL. With no deviation of
(9 — 2),, sparticles are still constrained to lie below ap-
proximately 2 (3.5) TeV at 68 (95) % CL. A good fit of
the data (excluding 2cpyh?) can also be achieved within
GMSB yielding sparticle masses approximately below 1.2
(2.0) TeV at 68 (95) % CL. This result shows that the
feature of light sparticles is not exclusively true within
mSUGRA, although it may not be true within the gen-
eral MSSM. Furthermore the LE data and the value of
Ncpmhb? in particular point towards a small mass differ-
ence of the LSP and the NLSP which is 7. The mass of
the lightest Higgs boson is predicted to be just above the
exclusion of the LEP experiments.

For the SPSla parameter point, which provides a
phenomenology rather similar to the region preferred by
the LE fit we determined the prospects for parameter
measurements at the LHC for a complete set of experi-
mentally accessible and well-studied observables. Within
mSUGRA, a coarse determination of the parameters can
already be achieved with an integrated luminosity of 1
fb~!. The precision can be significantly improved when LE
data are combined with the early LHC measurements. For
300 fb~!, a precision of better than 1 % can be achieved
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on Mo and M /,. The parameter tan 3 (Ag) can be de-
termined to 3.5 (11) % precision. At high luminosity the
impact of LE data becomes small.

For the MSSM 18, parameter determination is signifi-
cantly more difficult and requires larger integrated lumi-
nosity. Nevertheless, for 300 fb~! a decent determination
of all sparticle masses can be achieved to a few percent
precision with the exception of t5, 75 and the heavy Higgs
bosons. Here the inclusion of LE data still has significant
impact, in particular in constraining third generation spar-
ticles. With a linear collider like the ILC operating at up
to 1 TeV, the MSSM 18 can be reconstructed with a preci-
sion increased by approximately one order of magnitude.

It should be noted that the bulk region of the MSSM
as exemplified in the SPS1la parameter point is certainly
favourable for the prospects of parameter measurements
at both the LHC and the ILC. For the LHC, various
experimental studies of different parameter points exist,
however no full analysis of more difficult regions exists
to date. In particular in regions where long decay chains
with charged leptons are suppressed, the reconstruction of
SUSY parameters will be substantially more difficult and
imprecise. However, given the constraints from LE data,
such scenarios appear less likely. Given the smaller mass
difference between sleptons and the lightest neutralino ob-
served in the fit to the LE data when compared with
SPS1a, a more detailed comprehensive experimental study
of co-annihilation points at LHC would be beneficial.

In addition to these quantitative results we proposed
some new methodological approaches to take care of am-
biguities in the assignment of experimental observables to
physical final states. It was shown, that in some cases these
ambiguities may be translated into the uncertainty on the
parameters when the ambiguities cannot be resolved sta-
tistically. We have also shown that the Bayesian and Fre-
quentist interpretation of Markov Chain Monte Carlo lead
to very similar results for fits including LHC data when
flat priors are used in the Bayesian approach. For fits of
LE data only, however, the two interpretations do not nec-
essarily agree. It is observed that the Bayesian approach,
which includes marginalisation of the hidden parameters
requires a prohibitive amount of computing power. In such
cases, only the Frequentist interpretation is exploited.

In the future, the technologies presented in this paper
will be applied to a larger variety of models and finally to
real data from the LHC. In addition, the proposed treat-
ment of the assignment ambiguities will be extended to
further possible self-consistent interpretations of the data
and the resulting effect on parameter uncertainties and
possible exclusions of assignments will be evaluated. It
also is expected to be important to evaluate the effect
of theoretical uncertainties stemming e. g. from missing
higher order effects and differences between different im-
plementations of RGE running in more detail. In addi-
tion to the uncertainties itself, the evaluation of correla-
tions among theoretical uncertainties could be relevant.
Finally, if SUSY is realised in Nature, sparticles could be
discovered before the discovery of a SUSY Higgs boson.
Therefore, the implementation of present and future lim-

its on Higgs boson production in arbitrary models of New
Physics, using [104] could be important.
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