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Abstra
tWe 
onstru
t the Killing spinors for a 
lass of supersymmetri
 solutionsof type IIB supergravity that are invariant under the non-relativisti
S
hr�odinger algebra. The solutions depend on a �ve-dimensional Sasaki-Einstein spa
e and it has been shown that they admit two Killing spinors.Here we will show that, for generi
 Sasaki-Einstein spa
e, there are spe-
ial sub
lasses of solutions whi
h admit six Killing spinors and we deter-mine the 
orresponding superisometry algebra. We also show that for thespe
ial 
ase that the Sasaki-Einstein spa
e is the round �ve-sphere, thenumber of Killing spinors 
an be in
reased to twelve.
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1 Introdu
tionConsider the 
lass of type IIB supergravity solutions of [1℄ given byds2 = ��1=2 h2 dx+dx� + h �dx+�2 + dx22 + dx23i+ �1=2 ds2 (CY3)F = (1 + �10) dx+ ^ dx� ^ dx2 ^ dx3 ^ d��1G = dx+ ^W (1.1)where F is the self-dual �ve-form, G is the 
omplex three-form and the dilaton andaxion vanish. Here � and h are s
alars and W is a 
omplex two-form de�ned on theCalabi-Yau three-fold CY3 that satisfy r2CY� = 0r2CY h+ jW j2CY = 0dW = d �CY W = 0 (1.2)where jW j2CY � 12WmnW �mn with indi
es raised with respe
t to the CY3 metri
.Our fo
us will be on 
ases where the CY3 is a 
one over a �ve dimensional Sasaki-Einstein spa
e SE5 and the harmoni
 fun
tion � has a sour
e at the apex of the
one: ds2 (CY3) = dr2 + r2 ds2 (SE5)� = r�4 : (1.3)When W = h = 0 this gives the well known AdS5�SE5 
lass of solutions des
ribingD3-branes sitting at the apex of the 
one. We will be most interested in the 
asewhere the deformation W is given byW = d �r2�� (1.4)where � is a 
omplex one-form dual to a Killing ve
tor on SE5, and h is obtainedby solving the se
ond equation in (1.2). This parti
ular 
lass of solutions, for thespe
ial 
ase ofW being real, was also independently dis
overed in [2℄ using a solutiongenerating te
hnique.An interesting feature of this 
lass of solutions is that they are invariant under theS
hr�odinger algebra [1℄[2℄. The 
urrent interest in these solutions is that they mightprovide a good holographi
 des
ription of non-relativisti
 systems that are invariantunder su
h symmetry [3℄[4℄. The prin
ipal aim of this paper is to 
arry out a 
arefulstudy of the supersymmetry preserved by these solutions, building on the observations1



of [1℄[2℄. In parti
ular, we will see that for spe
ial sub
lasses of solutions �xed by(h, �), there is the possibility of extra \supernumerary" Killing spinors. In manyways, the analysis is reminis
ent of the supersymmetry enhan
ement that o

urs forplane wave solutions [5℄[6℄. Note that in addition to the papers [1℄[2℄ supersymmetri
solutions of type IIB or D = 11 supergravity with S
hr�odinger or S
hr�odinger(z)symmetry, where z is the dynami
al exponent, have also been dis
ussed in [15℄-[18℄.For a general CY3 (i.e not ne
essarily a 
one) and with W = h = 0 the solutions(1.1), (1.2) des
ribe D3-branes transverse to the CY3 and preserve, generi
ally, four\Poin
ar�e" supersymmetries satisfying
D3" = "; rCY " = 0 (1.5)where we have de�ned the D3-brane proje
tion
D3 � i�+�23 : (1.6)Here we are using a light 
one frame and rCY is the Levi-Civita 
onne
tion onR1;3 � CY3. As shown in [1℄ when the two-form W on CY3 is primitive and with no(0; 2) 
omponent (i.e. just (1; 1) and/or (2; 0) 
omponents) then two of these Killingspinors, satisfying the additional proje
tion �+� = 0, are preserved, and furthermorethe fun
tional form of the Killing spinors are the same as those for the W = h = 0solutions.When the CY3 is a 
one, as in (1.3), and W = h = 0 the solutions are AdS5�SE5solutions and, generi
ally, in addition to the four Poin
ar�e supersymmetries thereare an extra four \super
onformal" supersymmetries. Re
all that if one takes theLie derivative of the Poin
ar�e Killing spinors with respe
t to the spe
ial 
onformalKilling ve
tors, one obtains the spe
ial 
onformal Killing spinors. Here we will studythe possibility of an analogous enhan
ement of supersymmetry when W 6= 0. We willfo
us on the 
ase when W is of the form given in (1.4) when we know the solutionsare invariant under the S
hr�odinger algebra. In parti
ular, these solutions posses aKilling ve
tor 
orresponding to spe
ial 
onformal transformations and naively onemight think that after taking the Lie-derivative of the two Poin
ar�e supersymme-tries satisfying �+" = 0 mentioned above, one would obtain new super
onformalsupersymmetries. We will show that this is in fa
t not the 
ase and that the Liederivative vanishes. However, we shall see that for spe
ial 
hoi
es of (h,�) there 
anbe two additional Poin
ar�e supersymmetries, with �+" 6= 0 and whose fun
tionalform depends on W , and that the Lie derivative of these give rise to two additional
2



super
onformal supersymmetries. Generi
ally, then, one has six supersymmetries1whi
h 
an be viewed as deformations of four Poin
ar�e and two spe
ial 
onformal su-persymmetries. We will also show that for the spe
ial 
ase when the SE5 is a roundS5 the supersymmetry 
an be enhan
ed to eight Poin
ar�e and four spe
ial 
onformalsupersymmetries.Having 
onstru
ted the expli
it Killing spinors we 
an use them to study thesuperisometry algebra using the te
hnique of [7℄[8℄. In parti
ular, the Grassmannodd-odd part of this algebra is obtained by 
onstru
ting Killing ve
tors as bi-linearsin the Killing spinors. The odd-even part of the algebra is obtained by taking theLie derivative of the Killing spinors with respe
t to the Killing ve
tors. The resultingsuper-S
hr�odinger algebras that we obtain are 
onsistent with those2 found in [9℄. Thetwo Poin
ar�e supersymmetries found in [1℄ are \kinemati
al" supersymmetries, withanti-
ommutator giving the 
entral number operator of the S
hr�odinger algebra. Thetwo new Poin
ar�e Killing spinors that we �nd here are \dynami
al" supersymmetries,with anti-
ommutator giving the non-relativisiti
 Hamiltonian H and they lead to apositive spe
trum for H.We will also brie
y 
onsider the more general 
lass of solutions (1.1), (1.2),(1.3) when W is of the form W = d(rz�) for z > 2. This 
lass of solutions hasS
hr�odinger(z) symmetry, where z is the dynami
al exponent. We shall �nd whilethere 
annot be any super
onformal supersymmetries, for spe
ial sub
lasses of solu-tions it is possible to have dynami
al supersymmetries in addition to the kinemati
alsupersymmetries found in [1℄.The plan of the rest of the paper is as follows. In se
tion 2 we analyse in detailthe 
onditions for supersymmetry. We have summarised some of the 
al
ulationsin se
tion 2.4 where we also present some expli
it examples. Se
tion 3 studies thesuperisometry algebra and se
tion 4 brie
y 
on
ludes. Appendix A 
ontains someuseful results about CY3 
ones, appendix B a te
hni
al derivation arising in se
tion2, and appendix C a brief dis
ussion of the z > 2 solutions.2 Constru
tion of Killing spinorsWe will now 
arry out our analysis of the Killing spinor equations for the 
lass ofsolutions given above in (1.1) and (1.3). We will fo
us on the 
ase when W = d(rz�)1Note that solutions of D = 11 supergravity with S
hr�odinger symmetry and six Killing spinorswere also found in [18℄.2For other work on super-S
hr�odinger algebras see [10℄-[14℄.3



with z = 2, reserving some 
omments about the 
ase when z > 2 to the appendix.Our main results are summarised in se
tion 2.4.The 
onditions for these solutions to admit IIB Killing spinors " are given byDM"+ i16=F�M"+ 116 (�M=G+ 2 =G�M) "� = 0 (2.1)=G" = 0 (2.2)where e.g. =F � 15!�P1:::P5�P1:::P5 . We will use the orthonormal frame given by e+ =��1=4dx+, e� = ��1=4(dx� + 12hdx+), e2 = ��1=4dx2, e3 = ��1=4dx3, ea = �1=4fa,where fa is an orthonormal frame for the CY3 metri
: fafa = ds2(CY3). The gamma-matri
es with D = 10 tangent spa
e indi
es, �A = f�+, ��, �2, �3, �ag, satisfyf�A;�Bg = 2�AB (with e.g. �� = +1) and indi
es 
an be raised and lowered usingthe tangent spa
e metri
 �. We are using the 
onventions of type IIB supergravitygiven in [19℄ and in parti
ular �11" = �" where �11 � �+�23456789. We �nd it
onvenient to work in basis in whi
h the gamma-matri
es are real and "
 = "�.It will be helpful to introdu
e some further notation. We let xm be 
oordinates onthe CY3, and we will write xm = (r; x�) where x� are 
oordinates on SE5. Similarlyfor the orthonormal frame on the CY3 
one we write fa = (dr; r �f�) where �f� is anorthonormal frame for the SE5 metri
: �f� �f� = ds2(SE5). Correspondingly we alsowrite �a = (�r;��) (with e.g. (�r)2 = (��)2 = 1). We emphasise that for formsde�ned on the CY3 spa
e tangent spa
e indi
es will always refer to the frame fa so,for example, d� = (d�)afa. Furthermore for su
h forms we use the slash notation tomean e.g. =W � 12Wab�ab; =�� � (d�)a�a (2.3)(note that this di�ers by a fa
tor of �1=4 from the slash notation used for the ten-dimensional �elds in (2.1), (2.2).) Similarly tangent frame indi
es on � and itsderivatives will refer to the frame �f� e.g. � = �� �f�. Unless otherwise stated, allgamma-matri
es will be understood to be tangent spa
e gamma-matri
es �A satisfy-ing f�A;�Bg = �AB.2.1 Analysis for M = �; 2; 3Let us 
onsider the Killing spinor equation (2.1) when the 
oordinate index M =�; 2; 3. It will be 
onvenient to de�ne XI = (x�; xi), with i = 2; 3. For these
oordinates, the Killing spinor equation (2.1) takes the form�I" = r2 (1� 
D3) �r�I"� r216�+=W�I�� : (2.4)4



This easily gives �I�J" = r332�I�Jf(1� 
D3)�r;�+=Wg"� (2.5)and hen
e, after anti-symmetrising on I and J ,f(1� 
D3)�r;�+=Wg"� = 0�I�J" = 0 : (2.6)We thus 
an write " = "0 + xI"I with "0 and "I depending on x+ and the CY3
oordinates xm. Substituting ba
k into (2.4) we obtain the unique solution" = "0 + r2�r(xI�I) (1 + 
D3) "0 � r216�+=W (xI�I)"�0 : (2.7)We next de
ompose "0 into eigenvalues of 
D3. It will turn out to be 
onvenient todo this in the following way: "0 = r�1=2�r�+ + r1=2�� (2.8)where 
D3�� = ��� (2.9)and �� depend only on the 
oordinates x+; xm.It is now helpful to substitute (2.7),(2.8) into (2.2). The terms that are depen-dent and independent of the 
oordinates xI must ea
h separately vanish and afterproje
ting with (1=2)(1� 
D3) we dedu
e that�+=W�� = 0 (2.10)�+=W��� = 0 (2.11)�+=W�r�+ = 0 (2.12)and that the ten-dimensional Killing spinor 
an be written as" = r1=2�� + �r�1=2�r � r1=2(xI�I)� �+ � r3=216 �+=W (xI�I)�r��+ : (2.13)Observe that with W = d(rz�) (2.10), (2.12) imply for any z that�+(����)�+ = 0 : (2.14)
5



2.2 Analysis for M = mWe next 
onsider (2.1) for M = m. It is useful to de�nerCYm " = (�m + 14!CYmab�ab)" : (2.15)where !CY is the spin 
onne
tion on the CY3 with respe
t to the frame fa. We nextnote that sin
e the CY3 is a 
one we haverCYm (2r�r) = rCYm (=�r2) = 2�afam (2.16)where fa � famdxm. After separately 
onsidering the xI dependent and independent
omponents and proje
ting with (1=2)(1� 
D3), we �nd that the M = m 
omponentof (2.1) gives rise to three equationsrCYm �+ + 116�+=W (�afam)��+ � r16�+rCYm =W�r��+ = 0 (2.17)rCYm �+ + 18�r�+=W (�afam)�r��+ + 116�r(�afam)�+=W�r��+ = 0 (2.18)rCYm �� + 18�+=W (�afam)��� = 0 : (2.19)Note that these imply �+rCYm �� = 0 (2.20)and then using (2.10)-(2.12) we get�+rCYm =W�� = �+rCYm =W��� = 0 : (2.21)Next, using the fa
t that for z = 2 we have[rCYm =W;�r℄ = 2rCYm War�a = 0; (2.22)where in the last step we used (A.6), and 
ombining with (2.21) we dedu
e that thelast term in (2.17) vanishes. Therefore, we 
an solve (2.17) by writing�+ =  + � r16�+=W�r �+ (2.23)rCYm  + = 0 (2.24)with  + satisfying 
D3 + = i + and 
onstraints arising from (2.10)-(2.12):�+=W + = �+=W �+ = �+=W�r + = 0 : (2.25)Note that we 
ould solve (2.19) in a similar way, but we delay doing that for amoment. 6



The 
ompatibility of (2.17) and (2.18) imply that�+ [�=W�� � 2�r=W���r + �r��=W�r℄ �+ = 0 (2.26)whi
h implies that �+ �rSE� ���� + 2���r � ������r� �+ = 0 : (2.27)2.3 Analysis for M = +We now 
onsider (2.1) for M = +. We �nd�+"+ r2��r(1 + 
D3)"+ hr4 �+r(1 + 
D3)"+ r24 �+=�h"+r28 �+��=W"� + r216���+=W"� = 0 : (2.28)After substituting in the expression for " given in (2.13), isolating the terms dependingon xI and then proje
ting with (1=2)(1� 
D3) we are led to �+�+ = 0 (2.29)�+�� + ���+ + r4=W�r��+ + �+�r4=�h�r + h2� �+ � r16���+=W�r��+ = 0 (2.30)�+=�h�+ + =W��+ � r16�+=W=W ��r�+ = 0 (2.31)�+=�h�� + =W��� = 0 : (2.32)We would now like to argue that �+ + = 0. We start by substituting (2.23) into(2.14) to obtain �+(����) + = 0 : (2.33)Di�erentiating this and using rCYm  + = 0 we obtain�+ ����r �rSE� ����� + = 0 (2.34)(one 
an use (A.4) to obtain this). After 
ontra
ting with ��� we get�+ �j�j2�r � ���rSE� ����� + = 0 : (2.35)We next substitute (2.23) into (2.31) to get�+ h=�h� r8=W=W ��ri + + =W �+ = 0 : (2.36)
7



From (1.2) we dedu
e that the two terms have di�erent s
alings with respe
t to rand hen
e must separately vanish�+ h=�h� r8=W=W ��ri + = 0=W � + = 0 : (2.37)Next using also that �+=W + = 0 the �rst equation implies that�+ �=�h + 2r �j�j2�r + ���rSE� ������ + = 0 (2.38)and after using (2.35) we dedu
e that�+=�h + = 0 (2.39)and hen
e that �+ + = 0 : (2.40)Using this result, we �nd that (2.29)-(2.32) simplify 
onsiderably. After substi-tuting (2.23) we now �nd that �+ + = 0 (2.41)�+�� + �� + + r4=W�r �+ = 0 (2.42)=W �+ = 0 (2.43)�+=�h�� + =W��� = 0 : (2.44)We solve (2.42) as �� =  � � x+ ��� + + r4=W�r �+� (2.45)where  � is independent of x+. Compatibility with (2.19), and using (2.22) (forz = 2), then implies rCYm  � + 18�+=W�m �� = 0 : (2.46)From (2.10) we also dedu
e that =W + = 0 : (2.47)Returning now to (2.44) we �nd that�=�h� r8=W=W ��r� + = 0 (2.48)�+=�h � + =W �� = 0 : (2.49)
8



Observe that (2.46) 
an be solved by taking � = �� � r8�+=W�r��� (2.50)with rCYm �� = �+=W�� = �+=W ��� = 0 : (2.51)After substituting into (2.49), we obtain�+ �=�h� r8=W=W ��r� �� + =W��� = 0 : (2.52)After noting from (1.2) that there are two terms with di�erent s
aling behavioursunder s
alings of r, we dedu
e that�+ �=�h� r8=W=W ��r� �� = 0 (2.53)=W��� = 0 : (2.54)2.4 SummaryWe now summarise our analysis so far. For z = 2 the most general Killing spinor 
anbe written as a sum of \Poin
ar�e" and \super
onformal" Killing spinors3:" = "P + "S (2.55)where "P = r1=2�� � 18r3=2�+=W�r��� (2.56)"S = r�1=2 ��r � rxi�i � rx+�+� �+ � 14x+r3=2=W�r��+: (2.57)where xi = (x2; x3). The spinors �� only depend on the CY3 
oordinates and satisfythe following 
onditions: rCYm �� = 0 (2.58)�+ �=�h� r8=W=W ��r� �� = 0 (2.59)�+=W�� = =W ��� = 0 (2.60)rCYm �+ = 0 (2.61)�=�h� r8=W=W ��r� �+ = 0 (2.62)=W�+ = =W ��+ = 0 (2.63)
D3�� = ���; �+�+ = 0 : (2.64)3We have relabelled  + of the last se
tion as �+.9



In order to get a supersymmetri
 solution we also need to ensure that the equationsof motion (1.2) are satis�ed. If W = d(r2�) then d �CY W = 0 is equivalent to �being a Killing ve
tor on the SE5 as we dis
uss in appendix A. Thus we just need toimpose r2CY h+ jW j2CY = 0.In 
arrying out further analysis, it is illuminating to make a 4+6 de
ompositionand write the ten dimensional Gamma matri
es as�u = �u 
 I8�8; u = +;�; 2; 3 (2.65)�a = �D3 
 
a (2.66)where �D3 = i�+��� 2� 3. �11 = �D3
(7) where 
(7) = i
456789 and so we 
an write thespinors �� as �� = q� 
 �+ (2.67)with q� being 
onstant spinors on R1;3 su
h that �D3q� = �q�, �+q+ = 0 and �+a 
ovariantly 
onstant spinor on CY3 of positive 
hirality (see appendix A for moredetails on our 
onventions).At this stage it is worth pausing to re
over the results found in [1℄. In thatpaper Killing spinors with �+ = 0 and �+�� = 0 were 
onsidered. As in [1℄, theabove 
onditions for supersymmetry then redu
e to rCYm �� = =W ��� = 0. Clearly theformer is satis�ed with �� as given in (2.67), while the latter 
ondition is satsi�edif the two-form W on CY3 has no (0; 2) form pie
es i.e. it 
onsists of (1; 1) andprimitive and/or (2; 0) two-forms. Note that the fun
tional form of these Killingspinors is exa
tly the same as those for W = 0 and that they 
omprise two Poin
ar�eKilling spinors. For the spe
ial 
ase of the �ve-sphere, for a generi
 W with no (0; 2)pie
es with respe
t to one of the 
omplex stru
tures on R6 , there are again just twoPoin
ar�e Killing spinors that satisfy this 
ondition. However, there is the possibilityof spe
ial W that satisfy this 
ondition for other 
omplex stru
tures. In parti
ular,for W that live in R4 � R6 there 
an be four Poin
ar�e Killing spinors.We now look for spe
ial 
hoi
es of W and h whi
h give rise to additional Killingspinors. Given the de
omposition (2.67), we want to allow �+q� 6= 0 and so our
onditions boil down to solving the following equations on the CY3 
one�=�h� r8=W=W �
r� �+ = 0 (2.68)=W�+ = =W ��+ = 0 : (2.69)Here all gamma-matri
s are those on CY3, 
a. The 
onditions (2.69) now require thatW = d(r2�) is ne
essarily of type (1,1) and primitive on the CY3 
one. Solving (2.68)10



for h leads to additional 
onstraints on W . Let us summarise the result (a few moredetails are presented in appendix B). De�ne a one-form � on the SE5 spa
e given by� � iLSE5�� � (2.70)where the notation means that we are taking the Lie-derivative with respe
t to theve
tor �eld whi
h is dual, with respe
t to the SE5 metri
, to ��. For h we takeh = �r2 �j�j2SE + 12(�SE)���� ; (2.71)where �SE is the one-form on SE5 dual to the Reeb Killing ve
tor. It is interestingto observe that the expression for h is a
tually negative de�nite. This 
an be seen bywriting it as h = �2jS(0;1)j2CY (2.72)where S(0;1)m � (1=2) (Sm + iJmnSn) andS � r2� (2.73)is a one-form dual to a Killing ve
tor on CY3. Finally, we also need to impose thatr2CY h + jW j2CY = 0. As we dis
uss in appendix B this is guaranteed if the two-formV = dL (2.74)is primitive on the CY3 where we have introdu
edL = r2� (2.75)whi
h is a one-form dual to a Killing ve
tor on CY3. In appendix B we also showthat V is in fa
t (1,1).We have shown that these spe
ial 
lasses of S
hr�odinger invariant solutions ad-mit Killing spinors of the form (2.55), (2.56), (2.56) where the spinors �� are fun
-tions of the CY3 
oordinates xm only, and satisfy rCYm �� = 0, 
D3�� = ��� and�+�+ = 0. For a generi
 SE5 spa
e, these solutions preserve six supersymmetries,four \Poin
ar�e" Killing spinors "P and two \super
onformal" Killing spinors "S. Thenumber of supersymmetries being preserved is very suggestive that the superisometryalgebra is the ones dis
ussed in [9℄. In the next se
tion we will 
on�rm this.For the spe
ial 
ase when SE5 = S5, with 
one R6 , we 
an get further enhan
ementof supersymmetry. In parti
ular, if the two-form W is not generi
 but is a two-formon R4 2 R6 then the 
onditions =W�� = =W ��� = 0 that we imposed 
an be satis�ed11



by twi
e as many Killing spinors satisfying rCYm �� = 0. This leads to preservationof twelve supersymmetries, eight "P and four "S.We 
on
lude this se
tion by presenting some simple examples for the 
ase of S5.Expli
itly we let (z1; z2; z3) be 
omplex 
oordinates on R6 and takeW = (
1d�z2 + 
2 d�z3) ^ dz1 + (
3d�z3 + 
4d�z1) ^ dz2 + (
5d�z1 + 
6d�z2) ^ dz3 (2.76)where 
i are 
omplex 
onstants. After writing W = d(r2�) where � is de�ned on S5,we �nd that2S � r2� = 
1(�z2dz1 � z1d�z2) + 
2(�z3dz1 � z1d�z3) + : : :2S(0;1) = �(
1z1 + 
6z3)d�z2 � (
4z2 + 
5z3)d�z1 � (
2z1 + 
3z2)d�z3 (2.77)giving h = � j
1z1 + 
6�z3j2 � j
2�z1 + 
3�z2j2 � j
4�z2 + 
5�z3j2 : (2.78)One 
an dire
tly 
he
k that r2CY h + jW j2CY = 0 and hen
e we indeed have a super-symmetri
 solution generi
ally preserving six supersymmetries. An interesting spe
ial
ase is when 
1 = 
3 = 
5 � 
 and 
2 = 
4 = 
6 = 0. We then haveW = 
(d�z2 ^ dz1 + d�z3 ^ dz2 + d�z1 ^ dz3)h = � j
j2 r2 (2.79)and we see that h is 
onstant on the �ve-sphere. Another interesting spe
ial 
ase isif one takes 
2 = 
3 = 
4 = 
5 = 
6 = 0, sin
e the two-form W = 
1d�z2 ^ dz1 thenlives in R4 � R6 and the solution preserves twelve supersymmetries. Note that forthis 
ase h = �j
1j2jz1j2 and it vanishes on the lo
us z1 = 0. We 
an also obtainsimple solutions with W real by, for example, taking the real part of the two-form in(2.76). To illustrate, a solution with twelve supersymmetries is obtained if we takeW = 
1d�z2 ^ dz1 + 
:
: and then h = �j
1j2(jz1j2 + jz2j2) whi
h now vanishes alongthe lower-dimensional lo
us z1 = z2 = 0.3 Superisometry algebraIn this se
tion we will analyse the superisometry algebra for the 
lass of S
hr�odingerinvariant solutions dis
ussed in se
tion 2.4 for a generi
 SE5, preserving six super-symmetries. 12



3.1 Killing ve
torsWe begin by presenting the Killing ve
tors that leave the solution invariant. These
orrespond to the Hamiltonian H, spatial translations Pi, the number operator N ,Galilean boosts Gi, spatial rotations M , the dilatations D, the spe
ial 
onformaltransformations K, whi
h together generate the S
hr�odinger algebra, and the R-symmetry of SE5. Expli
itly we have:H =�+Pi =�iN =��Gi =� x+�i + xi��M =x2�3 � x3�2D =r�r � xi�i � 2x+�+K =� 2 x+ xi�i � 2 �x+�2 �+ + �xixi + 1r2� �� + 2 x+r �rR =� (3.1)where � is the R-symmetry Killing ve
tor on SE5 manifold (see appendix A formore dis
ussion on SE5 spa
es). For spe
ial 
hoi
es of SE5 there 
ould be additionalKilling ve
tors.Using the ten-dimensional metri
, we 
al
ulate the dual one-forms, whi
h we willdenote by the same letters hoping that this won't 
ause any 
onfusion:H =r2(dx� + hdx+)Pi =r2dxiN =r2dx+Gi =r2 ��x+dxi + xidx+�M =r2 �x2dx3 � x3dx2�D =1rdr � r2xidxi � 2r2 x+ �dx� + h dx+�K =r2��2 x+ xidxi � 2 �x+�2 �dx� + h dx+�+ �xixi + 1r2� dx+�+ 2 x+r drR =�SE (3.2)and �SE is the Reeb one-form on the SE manifold.A
tually, it is not immediately obvious that the a
tion of the Reeb Killing ve
tordoes in fa
t leave the solution invariant for our 
hoi
e of W and h, both of whi
h13



depend on the 
oordinates of the SE5 spa
e. The K�ahler-form on the CY3 
one 
anbe written as J = r dr ^ � + 12r2 d�SE (3.3)Using this, the (1,1) 
ondition on W = d(r2�) then implies thatd��� = �(�SE)� (d�SE)� ��� + (�SE)� (d�SE)� ��� + 14 (d�SE)� � (d�SE)� � (d�)��(3.4)with indi
es raised with respe
t to the metri
 on SE5. After using that j�SEj2 = 1and that �� is a Killing ve
tor on SE5 we dedu
e thatL� � = 0 (3.5)and it then follows that the Reeb ve
tor still generates a symmetry of the solution.3.2 Killing spinor bilinearsWe �rst observe that if "1 and "2 are two type IIB Killing spinors then the ten-dimensional one-form �"1�M"2dxM + 
:
: (3.6)is dual to a Killing ve
tor [20℄. In the following we will 
al
ulate su
h bilinearsinvolving "P and "S. In 
arrying out these 
al
ulations one heavily uses the proje
tion
onditions satis�ed by ��. We write�11 = �i�+�23� �i�4:::9� � 
D3
(7) (3.7)and we have 
D3�� =� ��; 
(7)�� = ��; �+�+ = 0 : (3.8)We also use the 
onditions arising from W being (1,1) and primitive=W�� = =W ��� = 0 : (3.9)3.2.1 The PP bilinearWe de�ne the bilinear form A � (�"P�M"P )dxM (3.10)
14



where here �M is a 
oordinate basis gamma-matrix. After substituting the expressionfor "P given in (2.56), and using the proje
tions (3.8), (3.9) We �ndA = �r����M�� � r464 �����r=W ��+�M�+=W�r���� dxM : (3.11)In simplifying the last term, we user2�����+�r=W �=W�r��� = 16h������� : (3.12)A 
al
ulation shows thatA = (�������)H + (����+��)N + (����i��)P i : (3.13)This should be 
ompared with with the equations just below (3.10) in [9℄.We 
an write �� = �K� + �D� ; �+�K� = 0; ���D� = 0 : (3.14)We then �nd A = (��D����D� )H + (��K��+�K� )N + (��D��i�K� + ��K��i�D� )P i (3.15)and we see that �K� parametrise the \kinemati
al" supersymmetries found in [1℄ while�D� parametrise \dynami
al supersymmetries" and lead to a positive spe
trum for H.3.2.2 The PS bilinearWe de�ne the bilinear form B � (�"P�M"S)dxM + 
:
: : (3.16)After substituting the expressions for "P , "S given in (2.56), (2.57), then using theproje
tion 
onditions and the primitivity of W one 
an show that the only non-zero
ontribution 
omes fromB =r�1����afam�r�+ dxm � r2��� ��+dx+ + �idxi�xj�j�+� x+r2��� ��+dx+�idxi + h2�+dx+����+ + r416x+�����r=W �=W�r��+dx+ + 
:
: :(3.17)To pro
eed we use that (������r�+) �f� = (�����=1�r�+)�SE (3.18)15



where we re
all that �f� is an orthonormal frame for SE5 and we have taken �f 1 � �SE.To see this we use the 4+6 de
omposition (2.67) to write ������r�+ = �i�q�q+J�rwith J given in (A.11). We then �nd we 
an express the bilinear form asB = (����+)D + 2(����1�2�+)M � (����+�i�+)Gi + (�����=1�r�+)R+ 
:
: : (3.19)This should be 
ompared with the equations just below (3.10) in [9℄.3.2.3 The SS bilinearWe now 
onsider the bilinear C � (�"S�̂M"S)dxM : (3.20)After substituting the expression for "S given in (2.57) it is helpful to observe that,for example, ��+�A�+ 
an only be non-vanishing if A = +. An easy way to see thisis to insert 2 = �+�+ + �+�+. Using this as well as (3.8), (3.9) we see that the onlynon-zero 
ontribution 
omes from the termsC ="1r ��+�r�M�r�+ � x+ (��+�r�M�+�+ + ��+�+�M�r�+) + r ��+xi�i�Mxj�j�++ x+r (��+xa�a�M�+�+ + ��+�+�Mxa�a�+) + �x+�2 r ��+�+�M�+�+� r3(x+)216 ���+�r=W ��M=W�r��+ #dxM : (3.21)After some further 
al
ulation we obtainC = �(��+�+�+)K̂ : (3.22)This should be 
ompared with the equations just below (3.10) in [9℄.3.3 Generating the super
onformal symmetriesIf a supergravity solution has a Killing ve
tor preserving all of the 
uxes, then theLie derivative of a Killing spinor with respe
t to that Killing ve
tor generates anotherKilling spinor. This a
tion 
orresponds to the even-odd part of the superisometryalgebra.Here we 
onsider taking the Lie derivative of the Poin
ar�e Killing spinors "Pwith respe
t to the spe
ial 
onformal Killing ve
tor K. We expe
t to generate thesuper
onformal Killing spinors. We haveLK"P � KMrM"P + 18dKMN�MN"P : (3.23)16



A 
al
ulation reveals thatLK"P = ��r�1�r + xi�i + x+�+��+"P + rx+4 =W�r�+"�P : (3.24)This immediately shows that the two Poin
are supersymmetries satisfying �+"P = 0whi
h were found in [1℄, i.e. the two kinemati
al supersymmetries, 
annot generatesuper
onformal Killing spinors.We now substitute the expression for "P to �ndLK"P = r1=2 ��1r�r + xi�i + x+�+��+�� + x+r3=24 =W�r�+��� : (3.25)and we see that LK"P = "S (3.26)with "S as in (2.57) with �+ = ��+�� : (3.27)Thus we see that the spe
ial 
onformal transformations a
ting on the two extraPoin
ar�e Killing spinors, i.e. the dynami
al supersymmetries, generate the two su-per
onformal Killing spinors, as expe
ted.4 Con
lusionIn this paper we have 
arried out a detailed analysis of the supersymmetry that ispreserved by a 
lass of solutions found in [1℄. We showed that spe
ial 
lasses of so-lutions with S
hr�odinger symmetry 
an have the supersymmetry enhan
ed from twoKilling spinors to six, for a generi
 SE5 spa
e. We also analysed the 
orrespondingsuperisometry algebra and showed that the two Killing spinors found in [1℄ are kine-mati
al supersymmetries and the four new supersymmetries 
onsist of two dynami
alsupersymmetries and two spe
ial 
onformal supersymmetries. For the spe
ial 
asewhen SE5 is the round �ve-sphere we showed that the supersymmetry 
an be en-han
ed from four Killing spinors to twelve. For a 
lass of S
hr�odinger(z) invariantsolutions found in [1℄ with z > 2 we showed that while there are no super
onformalsupersymmetries there 
an be additional dynami
al supersymmetries. It would be ofinterest to further extend this analysis to the full range of supersymmetri
 solutionswith S
hr�odinger(z) symmetry with z > 2 found in [1℄.It would also be interesting to 
arry out a similar analysis for the solutions ofD = 11 supergravity with S
hr�odinger(z) symmetry that were 
onstru
ted in [1℄.These solutions share many similarities with the type IIB solutions that we havebeen 
onsidering here and we expe
t analogous results.17
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iety WolfsonAward.A Some results for CY3 
onesConsider the 
one metri
 ds2(CY3) = dr2 + r2ds2(SE5) : (A.1)Using 
oordinates xm = (r; x�) we 
al
ulate that the non-zero Christo�el symbols aregiven by �r�� = �rgSE����r� = r�1Æ������ = 
��� (A.2)where 
 is the Christo�el symbols for SE5. One 
an then obtain the result for theRiemann tensor RCYrmnp = 0 : (A.3)We next note that if � is an arbitrary one-form on SE5 then it 
an be pulled ba
kto give a one-form on CY3. We then haverCY� (r2�)r = �r��rCYr (r2�)� = r��rCY� (r2�)� = r2rSE� �� : (A.4)In parti
ular, if � is dual to a Killing ve
tor on SE5 then r2� is dual to a Killingve
tor on CY3.Next 
onsider W = d(rz�) with � a one-form on SE5. We 
al
ulaterCYr Wr� = z(z � 2)rz�2��rCYr W�� = 2(z � 2)rz�1rSE[� ��℄rCY� Wr� = rz�1 �(z � 2)rSE[� ��℄ + zrSE(� ��)�rCY� W�� = 2rz �rSE� rSE[� ��℄ + zgSE�[���℄� : (A.5)
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Note in parti
ular that for the spe
ial 
ase when z = 2 and when the one-form � isdual to a Killing ve
tor on SE5 (see below), we dedu
e thatrCYm Wrn = 0; rCYr W�� = 0 : (A.6)If we introdu
e a frame fa = (f r; f�) on CY3 with f r = dr; f� = r �f� where �f� isa frame for SE5 then the 
ovariant derivative of a spinor has 
oordinate 
omponentsrCYm=r� = �r�rCYm=�� = rSE� � + 12 �f����r� : (A.7)The metri
 on SE5 is normalised so that the Ri

i tensor is four times the metri
.We will write the metri
 on SE5 asds2(SE5) = �SE 
 �SE + ds2(KE4) (A.8)where ds2(KE4) is the transverse K�ahler-Einstein metri
, normalised so that the Ri

itensor is six times that of the metri
, and d�SE = 2JKE where JKE is the K�ahlerform of KE4. Re
all that in general KE4 is only lo
ally de�ned. We also write�SE = (d + A); dA = 2JKE (A.9)so that the Reeb Killing ve
tor dual to �SE is � . If � is a one-form on SE5 dual toa Killing ve
tor then r2SE�� = RSE� ��� = �4�� : (A.10)The K�ahler form on the 
one 
an be written asJ = rCY �r2(�SE)�= r dr ^ (�SE) + r2JKE (A.11)and so in parti
ular Jr� = r(�SE)� : (A.12)If W is a (1; 1) from on the 
one thenJkmWml = �JlmWkm : (A.13)The CY3 has a 
ovariantly 
onstant, positive 
hirality spinor �+ and we haveJmn = i�y+
mn�+ : (A.14)
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Furthermore, 
m�+ = iJ nm 
n�+ : (A.15)In holomorphi
 
oordinates4 we have 
 ���+ = 0 and hen
e if W is of type (1,1) andprimitive and/or type (2,0) (i.e. the (0,2) pie
es vanish) then we have12W �mn
mn�+ = 0 : (A.16)Note that if W = d(r2�) with � an arbitrary one-form on SE5 then d �CY W = 0is equivalent to rSE� �� = 0 and r2SE�� = �4��. In turn turn these two 
onditionsare equivalent to �� being dual to a Killing ve
tor on SE5. If �� is dual to a Killingve
tor it is simple to see that it implies the two 
onditions. Conversely, if we assumethe two 
onditions using an argument in se
tion 4.3 of [21℄ that �� is dual to a Killingve
tor.B Solving equation (2.68)We would like to solve �=�h� r8=W=W �
r� �+ = 0 (B.1)on the CY3 
one subje
t to W being (1,1) and primitive i.e. satisfying =W�+ = 0,=W ��+ = 0. We �rst re
ast the 
ondition in the form
n ��nh� r2WnmW �mr� �+ = 0 : (B.2)To pro
eed we now use the proje
tion 
ondition on the 
ovariantly 
onstant spinor(A.15) to obtain
n h�nh� r4 (WnmW �mr +W �nmWmr) + ir4Jnk (WkmW �mr �W �kmWmr)i �+ = 0(B.3)where Jmn is the K�ahler-form on CY3. This expression is of the form 
nTn�+ withTn real. After multiplying by 
mTm we 
on
lude that Tn = 0:�nh = ��n �jSj2CY �� ir4Jnk (WkmW �mr �W �kmWmr) : (B.4)Here we have introdu
ed the one-form S that is dual to a Killing ve
tor on the CY
one de�ned by S � r2� : (B.5)4Note that we use the maths 
onvention that Jmn = �Imn where Imn is the 
omplex stru
tureand that in holomorphi
 
oordinates I ij = iÆij . 20



We 
an now solve this for h:h = � �jSj2CY � iJmnSmS�n� : (B.6)This 
an be veri�ed using rCYm Sn = (1=2)Wmn and also (A.13). This expression forh is a
tually negative de�nite. This 
an be seen by writing it in the formh = �2jS(0;1)j2CY (B.7)where S(0;1)m � 12 (Sm + iJmnSn) : (B.8)We 
an express h in yet another way by �rst introdu
ing a one-form � on the SE5spa
e given by �� � i(LSE5�� ��) � i(���rSE� �� � ��rSE� ���) (B.9)where the notation means that we are taking the Lie-derivative with respe
t to theve
tor �eld whi
h is dual, with respe
t to the SE5 metri
, to ��. Next, using (A.13)and also (A.12) we dedu
e that we 
an write h ash = �r2 �j�j2SE + 12(�SE)���� ; : (B.10)Finally we also need to ensure that the equation of motion r2CY h+ jW j2CY = 0 in(1.2), arising from Einstein's equations, is satis�ed. We �nd that this is equivalent tor2SE5 ((�SE)���) = �12 (�SE)��� (B.11)Given that � and � are one-forms on SE5 that are dual to Killing ve
tors, this
ondition is equivalent to demanding that the two form on CY3 given byV = dL (B.12)is primitive where L � r2� (B.13)is dual to a Killing ve
tor on CY3. We 
an also show that V is a (1,1) form on CY3.We have Wmn = 2rCYm Sn; Vmn = 2rCYm Ln (B.14)and it is straightforward to show thatL = iLCYS� S : (B.15)21



Combining these results we 
al
ulate thatVmn = i2 �W �mkW kn �W �nkW km�+ iRmnklSkS�l (B.16)where for the se
ond term we used the result that for any Killing ve
torrmrnSk = �RnkmlSl (B.17)and also the Bian
hi identity for the Riemann tensor. The term in the bra
kets in(B.16) is (1; 1), sin
e W is (1,1), and so is the se
ond term sin
e R is the Riemanntensor of a K�ahler metri
.Note that if S(0;1) = 0 then h = 0 and from the equation of motion r2CY h +jW j2CY = 0 we see that W = � = 0.C Killing spinors for z > 2For W = d(rz�) with z > 2 the analysis of the Killing spinor equations pro
eeds inexa
tly the same way as in se
tion 2 up to equation (2.21). We next substitute m = rinto (2.17), (2.18) and use (2.11) to dedu
e that�+rCYr =W�r��+ = 0 : (C.1)From (2.21) we also have �+rCYr =W��+ = 0 : (C.2)Together these imply �+rCYr Wr�����+ = 0 and hen
e, after using (A.5), that forz 6= 2 �+(����)��+ = 0 : (C.3)Combining this with (2.14), we dedu
e that for � 6= 0 we ne
essarily have�+�+ = 0 : (C.4)The remaining equations that one �nds are very similar to the z = 2 
ase. Letus label �+ =  +. We �nd that  + has only dependen
e on the CY3 
oordinates andrCYm  + = 0. Furthermore, =W � + = =W + = 0 and so if  + 6= 0 then W is (1,1) andprimitive. We also �nd �+=W�� = �+=W ��� = 0 (C.5)rCYm �� + 18�+=W�m��� = 0 (C.6)�+=�h�� + =W��� = 0 (C.7)�� =  � � x+(�� + + r4=W�r �+) = 0 : (C.8)22



Substituting (C.8) into (C.6) we obtainrCYm  � + 18�+=W�m �� = 0 (C.9)rCYm W �rn�n + = 0 : (C.10)From the se
ond equation we obtain the two 
onstraints(z � 2) ����� + = 0 (C.11)�(z � 1)rSE� ��� +rSE� ������ + = 0 : (C.12)C.1 No super
onformal Killing spinors for z > 2We now show that  + = 0. Let us assume the 
onverse and then  + is a 
ovariantly
onstant spinor on R1;3 � CY3. Using the 4+6 de
omposition (2.65) we 
an write + = q+ 
 �+ : (C.13)With q+ 6= 0, equations (C.11), (C.12) be
ome ���
��+ = 0 (C.14)�(z � 1)rSE� ��� +rSE� ���� 
��+ = 0 : (C.15)Multiplying equation (C.14) by �y
r from the left we obtain (using (A.14) and (A.11))�1 = 0 (C.16)where we are using an orthonormal frame �f� on SE5 with �f 1 = �SE. On the otherhand multiplying equation (C.15) by �y
r from the left we haved��1� + zrSE� ��1 = 0 (C.17)) d��1� = z(JKE)����� (C.18)(C.19)where we used that the spin 
onne
tion on SE5 has 
omponents �!1� = (JKE)�� �f�.We now use the (1; 1) 
ondition on W to dedu
eW1� = J1rJ�nWrn (C.20)) d�1� = �z (JKE)���� (C.21)whi
h in 
ombination with (C.18) implies � = 0 and hen
e for z > 2: + = 0: (C.22)23



C.2 Example for z > 2Despite the fa
t that  + = 0 we 
an have spe
ial solutions that have enhan
edsupersymmetry with �+ � 6= 0. Let us illustrate for the spe
ial 
ase when SE5 isthe round �ve-sphere.We 
onstru
t a 
losed, primitive (1,1) formW using a (0; 1) one-form A(z) on R6 :W = dA = �ziA�zi (z) dzi ^ d�zj (C.23)(impli
itly we are assuming that it takes the form W = d(rz�)) with the prmitivity
ondition �xed by 
hoosing that A is 
o-
losed�ziAzi = 0 : (C.24)This also guarantees that d �CY W = 0.Equation (C.9) reads �m � � 14�+Wmn�n �� = 0 : (C.25)From (C.6) we observe that rCYm (�+ �) = 0 and we restri
t our attention to Killingspinors satisfying ��zi�+ � = 0 : (C.26)This brings equation (C.25) to the form�m � � 14�+rm =A �� = 0 (C.27)whi
h we 
an solve as follows: � = �� + 14�+=A ���; �m�� = 0 : (C.28)Next, equation (C.7) �xes h = �12 jAj2 (C.29)One 
an 
he
k that the equation of motion r2CY h+ jW j2CY = 0 is also satis�ed. TheKilling spinors take the form " = r 12 ��� + i4�+=A ���� : (C.30)
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