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AbstratWe onstrut the Killing spinors for a lass of supersymmetri solutionsof type IIB supergravity that are invariant under the non-relativistiShr�odinger algebra. The solutions depend on a �ve-dimensional Sasaki-Einstein spae and it has been shown that they admit two Killing spinors.Here we will show that, for generi Sasaki-Einstein spae, there are spe-ial sublasses of solutions whih admit six Killing spinors and we deter-mine the orresponding superisometry algebra. We also show that for thespeial ase that the Sasaki-Einstein spae is the round �ve-sphere, thenumber of Killing spinors an be inreased to twelve.
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1 IntrodutionConsider the lass of type IIB supergravity solutions of [1℄ given byds2 = ��1=2 h2 dx+dx� + h �dx+�2 + dx22 + dx23i+ �1=2 ds2 (CY3)F = (1 + �10) dx+ ^ dx� ^ dx2 ^ dx3 ^ d��1G = dx+ ^W (1.1)where F is the self-dual �ve-form, G is the omplex three-form and the dilaton andaxion vanish. Here � and h are salars and W is a omplex two-form de�ned on theCalabi-Yau three-fold CY3 that satisfy r2CY� = 0r2CY h+ jW j2CY = 0dW = d �CY W = 0 (1.2)where jW j2CY � 12WmnW �mn with indies raised with respet to the CY3 metri.Our fous will be on ases where the CY3 is a one over a �ve dimensional Sasaki-Einstein spae SE5 and the harmoni funtion � has a soure at the apex of theone: ds2 (CY3) = dr2 + r2 ds2 (SE5)� = r�4 : (1.3)When W = h = 0 this gives the well known AdS5�SE5 lass of solutions desribingD3-branes sitting at the apex of the one. We will be most interested in the asewhere the deformation W is given byW = d �r2�� (1.4)where � is a omplex one-form dual to a Killing vetor on SE5, and h is obtainedby solving the seond equation in (1.2). This partiular lass of solutions, for thespeial ase ofW being real, was also independently disovered in [2℄ using a solutiongenerating tehnique.An interesting feature of this lass of solutions is that they are invariant under theShr�odinger algebra [1℄[2℄. The urrent interest in these solutions is that they mightprovide a good holographi desription of non-relativisti systems that are invariantunder suh symmetry [3℄[4℄. The prinipal aim of this paper is to arry out a arefulstudy of the supersymmetry preserved by these solutions, building on the observations1



of [1℄[2℄. In partiular, we will see that for speial sublasses of solutions �xed by(h, �), there is the possibility of extra \supernumerary" Killing spinors. In manyways, the analysis is reminisent of the supersymmetry enhanement that ours forplane wave solutions [5℄[6℄. Note that in addition to the papers [1℄[2℄ supersymmetrisolutions of type IIB or D = 11 supergravity with Shr�odinger or Shr�odinger(z)symmetry, where z is the dynamial exponent, have also been disussed in [15℄-[18℄.For a general CY3 (i.e not neessarily a one) and with W = h = 0 the solutions(1.1), (1.2) desribe D3-branes transverse to the CY3 and preserve, generially, four\Poinar�e" supersymmetries satisfyingD3" = "; rCY " = 0 (1.5)where we have de�ned the D3-brane projetionD3 � i�+�23 : (1.6)Here we are using a light one frame and rCY is the Levi-Civita onnetion onR1;3 � CY3. As shown in [1℄ when the two-form W on CY3 is primitive and with no(0; 2) omponent (i.e. just (1; 1) and/or (2; 0) omponents) then two of these Killingspinors, satisfying the additional projetion �+� = 0, are preserved, and furthermorethe funtional form of the Killing spinors are the same as those for the W = h = 0solutions.When the CY3 is a one, as in (1.3), and W = h = 0 the solutions are AdS5�SE5solutions and, generially, in addition to the four Poinar�e supersymmetries thereare an extra four \superonformal" supersymmetries. Reall that if one takes theLie derivative of the Poinar�e Killing spinors with respet to the speial onformalKilling vetors, one obtains the speial onformal Killing spinors. Here we will studythe possibility of an analogous enhanement of supersymmetry when W 6= 0. We willfous on the ase when W is of the form given in (1.4) when we know the solutionsare invariant under the Shr�odinger algebra. In partiular, these solutions posses aKilling vetor orresponding to speial onformal transformations and naively onemight think that after taking the Lie-derivative of the two Poinar�e supersymme-tries satisfying �+" = 0 mentioned above, one would obtain new superonformalsupersymmetries. We will show that this is in fat not the ase and that the Liederivative vanishes. However, we shall see that for speial hoies of (h,�) there anbe two additional Poinar�e supersymmetries, with �+" 6= 0 and whose funtionalform depends on W , and that the Lie derivative of these give rise to two additional
2



superonformal supersymmetries. Generially, then, one has six supersymmetries1whih an be viewed as deformations of four Poinar�e and two speial onformal su-persymmetries. We will also show that for the speial ase when the SE5 is a roundS5 the supersymmetry an be enhaned to eight Poinar�e and four speial onformalsupersymmetries.Having onstruted the expliit Killing spinors we an use them to study thesuperisometry algebra using the tehnique of [7℄[8℄. In partiular, the Grassmannodd-odd part of this algebra is obtained by onstruting Killing vetors as bi-linearsin the Killing spinors. The odd-even part of the algebra is obtained by taking theLie derivative of the Killing spinors with respet to the Killing vetors. The resultingsuper-Shr�odinger algebras that we obtain are onsistent with those2 found in [9℄. Thetwo Poinar�e supersymmetries found in [1℄ are \kinematial" supersymmetries, withanti-ommutator giving the entral number operator of the Shr�odinger algebra. Thetwo new Poinar�e Killing spinors that we �nd here are \dynamial" supersymmetries,with anti-ommutator giving the non-relativisiti Hamiltonian H and they lead to apositive spetrum for H.We will also briey onsider the more general lass of solutions (1.1), (1.2),(1.3) when W is of the form W = d(rz�) for z > 2. This lass of solutions hasShr�odinger(z) symmetry, where z is the dynamial exponent. We shall �nd whilethere annot be any superonformal supersymmetries, for speial sublasses of solu-tions it is possible to have dynamial supersymmetries in addition to the kinematialsupersymmetries found in [1℄.The plan of the rest of the paper is as follows. In setion 2 we analyse in detailthe onditions for supersymmetry. We have summarised some of the alulationsin setion 2.4 where we also present some expliit examples. Setion 3 studies thesuperisometry algebra and setion 4 briey onludes. Appendix A ontains someuseful results about CY3 ones, appendix B a tehnial derivation arising in setion2, and appendix C a brief disussion of the z > 2 solutions.2 Constrution of Killing spinorsWe will now arry out our analysis of the Killing spinor equations for the lass ofsolutions given above in (1.1) and (1.3). We will fous on the ase when W = d(rz�)1Note that solutions of D = 11 supergravity with Shr�odinger symmetry and six Killing spinorswere also found in [18℄.2For other work on super-Shr�odinger algebras see [10℄-[14℄.3



with z = 2, reserving some omments about the ase when z > 2 to the appendix.Our main results are summarised in setion 2.4.The onditions for these solutions to admit IIB Killing spinors " are given byDM"+ i16=F�M"+ 116 (�M=G+ 2 =G�M) "� = 0 (2.1)=G" = 0 (2.2)where e.g. =F � 15!�P1:::P5�P1:::P5 . We will use the orthonormal frame given by e+ =��1=4dx+, e� = ��1=4(dx� + 12hdx+), e2 = ��1=4dx2, e3 = ��1=4dx3, ea = �1=4fa,where fa is an orthonormal frame for the CY3 metri: fafa = ds2(CY3). The gamma-matries with D = 10 tangent spae indies, �A = f�+, ��, �2, �3, �ag, satisfyf�A;�Bg = 2�AB (with e.g. �� = +1) and indies an be raised and lowered usingthe tangent spae metri �. We are using the onventions of type IIB supergravitygiven in [19℄ and in partiular �11" = �" where �11 � �+�23456789. We �nd itonvenient to work in basis in whih the gamma-matries are real and " = "�.It will be helpful to introdue some further notation. We let xm be oordinates onthe CY3, and we will write xm = (r; x�) where x� are oordinates on SE5. Similarlyfor the orthonormal frame on the CY3 one we write fa = (dr; r �f�) where �f� is anorthonormal frame for the SE5 metri: �f� �f� = ds2(SE5). Correspondingly we alsowrite �a = (�r;��) (with e.g. (�r)2 = (��)2 = 1). We emphasise that for formsde�ned on the CY3 spae tangent spae indies will always refer to the frame fa so,for example, d� = (d�)afa. Furthermore for suh forms we use the slash notation tomean e.g. =W � 12Wab�ab; =�� � (d�)a�a (2.3)(note that this di�ers by a fator of �1=4 from the slash notation used for the ten-dimensional �elds in (2.1), (2.2).) Similarly tangent frame indies on � and itsderivatives will refer to the frame �f� e.g. � = �� �f�. Unless otherwise stated, allgamma-matries will be understood to be tangent spae gamma-matries �A satisfy-ing f�A;�Bg = �AB.2.1 Analysis for M = �; 2; 3Let us onsider the Killing spinor equation (2.1) when the oordinate index M =�; 2; 3. It will be onvenient to de�ne XI = (x�; xi), with i = 2; 3. For theseoordinates, the Killing spinor equation (2.1) takes the form�I" = r2 (1� D3) �r�I"� r216�+=W�I�� : (2.4)4



This easily gives �I�J" = r332�I�Jf(1� D3)�r;�+=Wg"� (2.5)and hene, after anti-symmetrising on I and J ,f(1� D3)�r;�+=Wg"� = 0�I�J" = 0 : (2.6)We thus an write " = "0 + xI"I with "0 and "I depending on x+ and the CY3oordinates xm. Substituting bak into (2.4) we obtain the unique solution" = "0 + r2�r(xI�I) (1 + D3) "0 � r216�+=W (xI�I)"�0 : (2.7)We next deompose "0 into eigenvalues of D3. It will turn out to be onvenient todo this in the following way: "0 = r�1=2�r�+ + r1=2�� (2.8)where D3�� = ��� (2.9)and �� depend only on the oordinates x+; xm.It is now helpful to substitute (2.7),(2.8) into (2.2). The terms that are depen-dent and independent of the oordinates xI must eah separately vanish and afterprojeting with (1=2)(1� D3) we dedue that�+=W�� = 0 (2.10)�+=W��� = 0 (2.11)�+=W�r�+ = 0 (2.12)and that the ten-dimensional Killing spinor an be written as" = r1=2�� + �r�1=2�r � r1=2(xI�I)� �+ � r3=216 �+=W (xI�I)�r��+ : (2.13)Observe that with W = d(rz�) (2.10), (2.12) imply for any z that�+(����)�+ = 0 : (2.14)
5



2.2 Analysis for M = mWe next onsider (2.1) for M = m. It is useful to de�nerCYm " = (�m + 14!CYmab�ab)" : (2.15)where !CY is the spin onnetion on the CY3 with respet to the frame fa. We nextnote that sine the CY3 is a one we haverCYm (2r�r) = rCYm (=�r2) = 2�afam (2.16)where fa � famdxm. After separately onsidering the xI dependent and independentomponents and projeting with (1=2)(1� D3), we �nd that the M = m omponentof (2.1) gives rise to three equationsrCYm �+ + 116�+=W (�afam)��+ � r16�+rCYm =W�r��+ = 0 (2.17)rCYm �+ + 18�r�+=W (�afam)�r��+ + 116�r(�afam)�+=W�r��+ = 0 (2.18)rCYm �� + 18�+=W (�afam)��� = 0 : (2.19)Note that these imply �+rCYm �� = 0 (2.20)and then using (2.10)-(2.12) we get�+rCYm =W�� = �+rCYm =W��� = 0 : (2.21)Next, using the fat that for z = 2 we have[rCYm =W;�r℄ = 2rCYm War�a = 0; (2.22)where in the last step we used (A.6), and ombining with (2.21) we dedue that thelast term in (2.17) vanishes. Therefore, we an solve (2.17) by writing�+ =  + � r16�+=W�r �+ (2.23)rCYm  + = 0 (2.24)with  + satisfying D3 + = i + and onstraints arising from (2.10)-(2.12):�+=W + = �+=W �+ = �+=W�r + = 0 : (2.25)Note that we ould solve (2.19) in a similar way, but we delay doing that for amoment. 6



The ompatibility of (2.17) and (2.18) imply that�+ [�=W�� � 2�r=W���r + �r��=W�r℄ �+ = 0 (2.26)whih implies that �+ �rSE� ���� + 2���r � ������r� �+ = 0 : (2.27)2.3 Analysis for M = +We now onsider (2.1) for M = +. We �nd�+"+ r2��r(1 + D3)"+ hr4 �+r(1 + D3)"+ r24 �+=�h"+r28 �+��=W"� + r216���+=W"� = 0 : (2.28)After substituting in the expression for " given in (2.13), isolating the terms dependingon xI and then projeting with (1=2)(1� D3) we are led to �+�+ = 0 (2.29)�+�� + ���+ + r4=W�r��+ + �+�r4=�h�r + h2� �+ � r16���+=W�r��+ = 0 (2.30)�+=�h�+ + =W��+ � r16�+=W=W ��r�+ = 0 (2.31)�+=�h�� + =W��� = 0 : (2.32)We would now like to argue that �+ + = 0. We start by substituting (2.23) into(2.14) to obtain �+(����) + = 0 : (2.33)Di�erentiating this and using rCYm  + = 0 we obtain�+ ����r �rSE� ����� + = 0 (2.34)(one an use (A.4) to obtain this). After ontrating with ��� we get�+ �j�j2�r � ���rSE� ����� + = 0 : (2.35)We next substitute (2.23) into (2.31) to get�+ h=�h� r8=W=W ��ri + + =W �+ = 0 : (2.36)
7



From (1.2) we dedue that the two terms have di�erent salings with respet to rand hene must separately vanish�+ h=�h� r8=W=W ��ri + = 0=W � + = 0 : (2.37)Next using also that �+=W + = 0 the �rst equation implies that�+ �=�h + 2r �j�j2�r + ���rSE� ������ + = 0 (2.38)and after using (2.35) we dedue that�+=�h + = 0 (2.39)and hene that �+ + = 0 : (2.40)Using this result, we �nd that (2.29)-(2.32) simplify onsiderably. After substi-tuting (2.23) we now �nd that �+ + = 0 (2.41)�+�� + �� + + r4=W�r �+ = 0 (2.42)=W �+ = 0 (2.43)�+=�h�� + =W��� = 0 : (2.44)We solve (2.42) as �� =  � � x+ ��� + + r4=W�r �+� (2.45)where  � is independent of x+. Compatibility with (2.19), and using (2.22) (forz = 2), then implies rCYm  � + 18�+=W�m �� = 0 : (2.46)From (2.10) we also dedue that =W + = 0 : (2.47)Returning now to (2.44) we �nd that�=�h� r8=W=W ��r� + = 0 (2.48)�+=�h � + =W �� = 0 : (2.49)
8



Observe that (2.46) an be solved by taking � = �� � r8�+=W�r��� (2.50)with rCYm �� = �+=W�� = �+=W ��� = 0 : (2.51)After substituting into (2.49), we obtain�+ �=�h� r8=W=W ��r� �� + =W��� = 0 : (2.52)After noting from (1.2) that there are two terms with di�erent saling behavioursunder salings of r, we dedue that�+ �=�h� r8=W=W ��r� �� = 0 (2.53)=W��� = 0 : (2.54)2.4 SummaryWe now summarise our analysis so far. For z = 2 the most general Killing spinor anbe written as a sum of \Poinar�e" and \superonformal" Killing spinors3:" = "P + "S (2.55)where "P = r1=2�� � 18r3=2�+=W�r��� (2.56)"S = r�1=2 ��r � rxi�i � rx+�+� �+ � 14x+r3=2=W�r��+: (2.57)where xi = (x2; x3). The spinors �� only depend on the CY3 oordinates and satisfythe following onditions: rCYm �� = 0 (2.58)�+ �=�h� r8=W=W ��r� �� = 0 (2.59)�+=W�� = =W ��� = 0 (2.60)rCYm �+ = 0 (2.61)�=�h� r8=W=W ��r� �+ = 0 (2.62)=W�+ = =W ��+ = 0 (2.63)D3�� = ���; �+�+ = 0 : (2.64)3We have relabelled  + of the last setion as �+.9



In order to get a supersymmetri solution we also need to ensure that the equationsof motion (1.2) are satis�ed. If W = d(r2�) then d �CY W = 0 is equivalent to �being a Killing vetor on the SE5 as we disuss in appendix A. Thus we just need toimpose r2CY h+ jW j2CY = 0.In arrying out further analysis, it is illuminating to make a 4+6 deompositionand write the ten dimensional Gamma matries as�u = �u 
 I8�8; u = +;�; 2; 3 (2.65)�a = �D3 
 a (2.66)where �D3 = i�+��� 2� 3. �11 = �D3(7) where (7) = i456789 and so we an write thespinors �� as �� = q� 
 �+ (2.67)with q� being onstant spinors on R1;3 suh that �D3q� = �q�, �+q+ = 0 and �+a ovariantly onstant spinor on CY3 of positive hirality (see appendix A for moredetails on our onventions).At this stage it is worth pausing to reover the results found in [1℄. In thatpaper Killing spinors with �+ = 0 and �+�� = 0 were onsidered. As in [1℄, theabove onditions for supersymmetry then redue to rCYm �� = =W ��� = 0. Clearly theformer is satis�ed with �� as given in (2.67), while the latter ondition is satsi�edif the two-form W on CY3 has no (0; 2) form piees i.e. it onsists of (1; 1) andprimitive and/or (2; 0) two-forms. Note that the funtional form of these Killingspinors is exatly the same as those for W = 0 and that they omprise two Poinar�eKilling spinors. For the speial ase of the �ve-sphere, for a generi W with no (0; 2)piees with respet to one of the omplex strutures on R6 , there are again just twoPoinar�e Killing spinors that satisfy this ondition. However, there is the possibilityof speial W that satisfy this ondition for other omplex strutures. In partiular,for W that live in R4 � R6 there an be four Poinar�e Killing spinors.We now look for speial hoies of W and h whih give rise to additional Killingspinors. Given the deomposition (2.67), we want to allow �+q� 6= 0 and so ouronditions boil down to solving the following equations on the CY3 one�=�h� r8=W=W �r� �+ = 0 (2.68)=W�+ = =W ��+ = 0 : (2.69)Here all gamma-matris are those on CY3, a. The onditions (2.69) now require thatW = d(r2�) is neessarily of type (1,1) and primitive on the CY3 one. Solving (2.68)10



for h leads to additional onstraints on W . Let us summarise the result (a few moredetails are presented in appendix B). De�ne a one-form � on the SE5 spae given by� � iLSE5�� � (2.70)where the notation means that we are taking the Lie-derivative with respet to thevetor �eld whih is dual, with respet to the SE5 metri, to ��. For h we takeh = �r2 �j�j2SE + 12(�SE)���� ; (2.71)where �SE is the one-form on SE5 dual to the Reeb Killing vetor. It is interestingto observe that the expression for h is atually negative de�nite. This an be seen bywriting it as h = �2jS(0;1)j2CY (2.72)where S(0;1)m � (1=2) (Sm + iJmnSn) andS � r2� (2.73)is a one-form dual to a Killing vetor on CY3. Finally, we also need to impose thatr2CY h + jW j2CY = 0. As we disuss in appendix B this is guaranteed if the two-formV = dL (2.74)is primitive on the CY3 where we have introduedL = r2� (2.75)whih is a one-form dual to a Killing vetor on CY3. In appendix B we also showthat V is in fat (1,1).We have shown that these speial lasses of Shr�odinger invariant solutions ad-mit Killing spinors of the form (2.55), (2.56), (2.56) where the spinors �� are fun-tions of the CY3 oordinates xm only, and satisfy rCYm �� = 0, D3�� = ��� and�+�+ = 0. For a generi SE5 spae, these solutions preserve six supersymmetries,four \Poinar�e" Killing spinors "P and two \superonformal" Killing spinors "S. Thenumber of supersymmetries being preserved is very suggestive that the superisometryalgebra is the ones disussed in [9℄. In the next setion we will on�rm this.For the speial ase when SE5 = S5, with one R6 , we an get further enhanementof supersymmetry. In partiular, if the two-form W is not generi but is a two-formon R4 2 R6 then the onditions =W�� = =W ��� = 0 that we imposed an be satis�ed11



by twie as many Killing spinors satisfying rCYm �� = 0. This leads to preservationof twelve supersymmetries, eight "P and four "S.We onlude this setion by presenting some simple examples for the ase of S5.Expliitly we let (z1; z2; z3) be omplex oordinates on R6 and takeW = (1d�z2 + 2 d�z3) ^ dz1 + (3d�z3 + 4d�z1) ^ dz2 + (5d�z1 + 6d�z2) ^ dz3 (2.76)where i are omplex onstants. After writing W = d(r2�) where � is de�ned on S5,we �nd that2S � r2� = 1(�z2dz1 � z1d�z2) + 2(�z3dz1 � z1d�z3) + : : :2S(0;1) = �(1z1 + 6z3)d�z2 � (4z2 + 5z3)d�z1 � (2z1 + 3z2)d�z3 (2.77)giving h = � j1z1 + 6�z3j2 � j2�z1 + 3�z2j2 � j4�z2 + 5�z3j2 : (2.78)One an diretly hek that r2CY h + jW j2CY = 0 and hene we indeed have a super-symmetri solution generially preserving six supersymmetries. An interesting speialase is when 1 = 3 = 5 �  and 2 = 4 = 6 = 0. We then haveW = (d�z2 ^ dz1 + d�z3 ^ dz2 + d�z1 ^ dz3)h = � jj2 r2 (2.79)and we see that h is onstant on the �ve-sphere. Another interesting speial ase isif one takes 2 = 3 = 4 = 5 = 6 = 0, sine the two-form W = 1d�z2 ^ dz1 thenlives in R4 � R6 and the solution preserves twelve supersymmetries. Note that forthis ase h = �j1j2jz1j2 and it vanishes on the lous z1 = 0. We an also obtainsimple solutions with W real by, for example, taking the real part of the two-form in(2.76). To illustrate, a solution with twelve supersymmetries is obtained if we takeW = 1d�z2 ^ dz1 + :: and then h = �j1j2(jz1j2 + jz2j2) whih now vanishes alongthe lower-dimensional lous z1 = z2 = 0.3 Superisometry algebraIn this setion we will analyse the superisometry algebra for the lass of Shr�odingerinvariant solutions disussed in setion 2.4 for a generi SE5, preserving six super-symmetries. 12



3.1 Killing vetorsWe begin by presenting the Killing vetors that leave the solution invariant. Theseorrespond to the Hamiltonian H, spatial translations Pi, the number operator N ,Galilean boosts Gi, spatial rotations M , the dilatations D, the speial onformaltransformations K, whih together generate the Shr�odinger algebra, and the R-symmetry of SE5. Expliitly we have:H =�+Pi =�iN =��Gi =� x+�i + xi��M =x2�3 � x3�2D =r�r � xi�i � 2x+�+K =� 2 x+ xi�i � 2 �x+�2 �+ + �xixi + 1r2� �� + 2 x+r �rR =� (3.1)where � is the R-symmetry Killing vetor on SE5 manifold (see appendix A formore disussion on SE5 spaes). For speial hoies of SE5 there ould be additionalKilling vetors.Using the ten-dimensional metri, we alulate the dual one-forms, whih we willdenote by the same letters hoping that this won't ause any onfusion:H =r2(dx� + hdx+)Pi =r2dxiN =r2dx+Gi =r2 ��x+dxi + xidx+�M =r2 �x2dx3 � x3dx2�D =1rdr � r2xidxi � 2r2 x+ �dx� + h dx+�K =r2��2 x+ xidxi � 2 �x+�2 �dx� + h dx+�+ �xixi + 1r2� dx+�+ 2 x+r drR =�SE (3.2)and �SE is the Reeb one-form on the SE manifold.Atually, it is not immediately obvious that the ation of the Reeb Killing vetordoes in fat leave the solution invariant for our hoie of W and h, both of whih13



depend on the oordinates of the SE5 spae. The K�ahler-form on the CY3 one anbe written as J = r dr ^ � + 12r2 d�SE (3.3)Using this, the (1,1) ondition on W = d(r2�) then implies thatd��� = �(�SE)� (d�SE)� ��� + (�SE)� (d�SE)� ��� + 14 (d�SE)� � (d�SE)� � (d�)��(3.4)with indies raised with respet to the metri on SE5. After using that j�SEj2 = 1and that �� is a Killing vetor on SE5 we dedue thatL� � = 0 (3.5)and it then follows that the Reeb vetor still generates a symmetry of the solution.3.2 Killing spinor bilinearsWe �rst observe that if "1 and "2 are two type IIB Killing spinors then the ten-dimensional one-form �"1�M"2dxM + :: (3.6)is dual to a Killing vetor [20℄. In the following we will alulate suh bilinearsinvolving "P and "S. In arrying out these alulations one heavily uses the projetiononditions satis�ed by ��. We write�11 = �i�+�23� �i�4:::9� � D3(7) (3.7)and we have D3�� =� ��; (7)�� = ��; �+�+ = 0 : (3.8)We also use the onditions arising from W being (1,1) and primitive=W�� = =W ��� = 0 : (3.9)3.2.1 The PP bilinearWe de�ne the bilinear form A � (�"P�M"P )dxM (3.10)
14



where here �M is a oordinate basis gamma-matrix. After substituting the expressionfor "P given in (2.56), and using the projetions (3.8), (3.9) We �ndA = �r����M�� � r464 �����r=W ��+�M�+=W�r���� dxM : (3.11)In simplifying the last term, we user2�����+�r=W �=W�r��� = 16h������� : (3.12)A alulation shows thatA = (�������)H + (����+��)N + (����i��)P i : (3.13)This should be ompared with with the equations just below (3.10) in [9℄.We an write �� = �K� + �D� ; �+�K� = 0; ���D� = 0 : (3.14)We then �nd A = (��D����D� )H + (��K��+�K� )N + (��D��i�K� + ��K��i�D� )P i (3.15)and we see that �K� parametrise the \kinematial" supersymmetries found in [1℄ while�D� parametrise \dynamial supersymmetries" and lead to a positive spetrum for H.3.2.2 The PS bilinearWe de�ne the bilinear form B � (�"P�M"S)dxM + :: : (3.16)After substituting the expressions for "P , "S given in (2.56), (2.57), then using theprojetion onditions and the primitivity of W one an show that the only non-zeroontribution omes fromB =r�1����afam�r�+ dxm � r2��� ��+dx+ + �idxi�xj�j�+� x+r2��� ��+dx+�idxi + h2�+dx+����+ + r416x+�����r=W �=W�r��+dx+ + :: :(3.17)To proeed we use that (������r�+) �f� = (�����=1�r�+)�SE (3.18)15



where we reall that �f� is an orthonormal frame for SE5 and we have taken �f 1 � �SE.To see this we use the 4+6 deomposition (2.67) to write ������r�+ = �i�q�q+J�rwith J given in (A.11). We then �nd we an express the bilinear form asB = (����+)D + 2(����1�2�+)M � (����+�i�+)Gi + (�����=1�r�+)R+ :: : (3.19)This should be ompared with the equations just below (3.10) in [9℄.3.2.3 The SS bilinearWe now onsider the bilinear C � (�"S�̂M"S)dxM : (3.20)After substituting the expression for "S given in (2.57) it is helpful to observe that,for example, ��+�A�+ an only be non-vanishing if A = +. An easy way to see thisis to insert 2 = �+�+ + �+�+. Using this as well as (3.8), (3.9) we see that the onlynon-zero ontribution omes from the termsC ="1r ��+�r�M�r�+ � x+ (��+�r�M�+�+ + ��+�+�M�r�+) + r ��+xi�i�Mxj�j�++ x+r (��+xa�a�M�+�+ + ��+�+�Mxa�a�+) + �x+�2 r ��+�+�M�+�+� r3(x+)216 ���+�r=W ��M=W�r��+ #dxM : (3.21)After some further alulation we obtainC = �(��+�+�+)K̂ : (3.22)This should be ompared with the equations just below (3.10) in [9℄.3.3 Generating the superonformal symmetriesIf a supergravity solution has a Killing vetor preserving all of the uxes, then theLie derivative of a Killing spinor with respet to that Killing vetor generates anotherKilling spinor. This ation orresponds to the even-odd part of the superisometryalgebra.Here we onsider taking the Lie derivative of the Poinar�e Killing spinors "Pwith respet to the speial onformal Killing vetor K. We expet to generate thesuperonformal Killing spinors. We haveLK"P � KMrM"P + 18dKMN�MN"P : (3.23)16



A alulation reveals thatLK"P = ��r�1�r + xi�i + x+�+��+"P + rx+4 =W�r�+"�P : (3.24)This immediately shows that the two Poinare supersymmetries satisfying �+"P = 0whih were found in [1℄, i.e. the two kinematial supersymmetries, annot generatesuperonformal Killing spinors.We now substitute the expression for "P to �ndLK"P = r1=2 ��1r�r + xi�i + x+�+��+�� + x+r3=24 =W�r�+��� : (3.25)and we see that LK"P = "S (3.26)with "S as in (2.57) with �+ = ��+�� : (3.27)Thus we see that the speial onformal transformations ating on the two extraPoinar�e Killing spinors, i.e. the dynamial supersymmetries, generate the two su-peronformal Killing spinors, as expeted.4 ConlusionIn this paper we have arried out a detailed analysis of the supersymmetry that ispreserved by a lass of solutions found in [1℄. We showed that speial lasses of so-lutions with Shr�odinger symmetry an have the supersymmetry enhaned from twoKilling spinors to six, for a generi SE5 spae. We also analysed the orrespondingsuperisometry algebra and showed that the two Killing spinors found in [1℄ are kine-matial supersymmetries and the four new supersymmetries onsist of two dynamialsupersymmetries and two speial onformal supersymmetries. For the speial asewhen SE5 is the round �ve-sphere we showed that the supersymmetry an be en-haned from four Killing spinors to twelve. For a lass of Shr�odinger(z) invariantsolutions found in [1℄ with z > 2 we showed that while there are no superonformalsupersymmetries there an be additional dynamial supersymmetries. It would be ofinterest to further extend this analysis to the full range of supersymmetri solutionswith Shr�odinger(z) symmetry with z > 2 found in [1℄.It would also be interesting to arry out a similar analysis for the solutions ofD = 11 supergravity with Shr�odinger(z) symmetry that were onstruted in [1℄.These solutions share many similarities with the type IIB solutions that we havebeen onsidering here and we expet analogous results.17
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Note in partiular that for the speial ase when z = 2 and when the one-form � isdual to a Killing vetor on SE5 (see below), we dedue thatrCYm Wrn = 0; rCYr W�� = 0 : (A.6)If we introdue a frame fa = (f r; f�) on CY3 with f r = dr; f� = r �f� where �f� isa frame for SE5 then the ovariant derivative of a spinor has oordinate omponentsrCYm=r� = �r�rCYm=�� = rSE� � + 12 �f����r� : (A.7)The metri on SE5 is normalised so that the Rii tensor is four times the metri.We will write the metri on SE5 asds2(SE5) = �SE 
 �SE + ds2(KE4) (A.8)where ds2(KE4) is the transverse K�ahler-Einstein metri, normalised so that the Riitensor is six times that of the metri, and d�SE = 2JKE where JKE is the K�ahlerform of KE4. Reall that in general KE4 is only loally de�ned. We also write�SE = (d + A); dA = 2JKE (A.9)so that the Reeb Killing vetor dual to �SE is � . If � is a one-form on SE5 dual toa Killing vetor then r2SE�� = RSE� ��� = �4�� : (A.10)The K�ahler form on the one an be written asJ = rCY �r2(�SE)�= r dr ^ (�SE) + r2JKE (A.11)and so in partiular Jr� = r(�SE)� : (A.12)If W is a (1; 1) from on the one thenJkmWml = �JlmWkm : (A.13)The CY3 has a ovariantly onstant, positive hirality spinor �+ and we haveJmn = i�y+mn�+ : (A.14)
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Furthermore, m�+ = iJ nm n�+ : (A.15)In holomorphi oordinates4 we have  ���+ = 0 and hene if W is of type (1,1) andprimitive and/or type (2,0) (i.e. the (0,2) piees vanish) then we have12W �mnmn�+ = 0 : (A.16)Note that if W = d(r2�) with � an arbitrary one-form on SE5 then d �CY W = 0is equivalent to rSE� �� = 0 and r2SE�� = �4��. In turn turn these two onditionsare equivalent to �� being dual to a Killing vetor on SE5. If �� is dual to a Killingvetor it is simple to see that it implies the two onditions. Conversely, if we assumethe two onditions using an argument in setion 4.3 of [21℄ that �� is dual to a Killingvetor.B Solving equation (2.68)We would like to solve �=�h� r8=W=W �r� �+ = 0 (B.1)on the CY3 one subjet to W being (1,1) and primitive i.e. satisfying =W�+ = 0,=W ��+ = 0. We �rst reast the ondition in the formn ��nh� r2WnmW �mr� �+ = 0 : (B.2)To proeed we now use the projetion ondition on the ovariantly onstant spinor(A.15) to obtainn h�nh� r4 (WnmW �mr +W �nmWmr) + ir4Jnk (WkmW �mr �W �kmWmr)i �+ = 0(B.3)where Jmn is the K�ahler-form on CY3. This expression is of the form nTn�+ withTn real. After multiplying by mTm we onlude that Tn = 0:�nh = ��n �jSj2CY �� ir4Jnk (WkmW �mr �W �kmWmr) : (B.4)Here we have introdued the one-form S that is dual to a Killing vetor on the CYone de�ned by S � r2� : (B.5)4Note that we use the maths onvention that Jmn = �Imn where Imn is the omplex strutureand that in holomorphi oordinates I ij = iÆij . 20



We an now solve this for h:h = � �jSj2CY � iJmnSmS�n� : (B.6)This an be veri�ed using rCYm Sn = (1=2)Wmn and also (A.13). This expression forh is atually negative de�nite. This an be seen by writing it in the formh = �2jS(0;1)j2CY (B.7)where S(0;1)m � 12 (Sm + iJmnSn) : (B.8)We an express h in yet another way by �rst introduing a one-form � on the SE5spae given by �� � i(LSE5�� ��) � i(���rSE� �� � ��rSE� ���) (B.9)where the notation means that we are taking the Lie-derivative with respet to thevetor �eld whih is dual, with respet to the SE5 metri, to ��. Next, using (A.13)and also (A.12) we dedue that we an write h ash = �r2 �j�j2SE + 12(�SE)���� ; : (B.10)Finally we also need to ensure that the equation of motion r2CY h+ jW j2CY = 0 in(1.2), arising from Einstein's equations, is satis�ed. We �nd that this is equivalent tor2SE5 ((�SE)���) = �12 (�SE)��� (B.11)Given that � and � are one-forms on SE5 that are dual to Killing vetors, thisondition is equivalent to demanding that the two form on CY3 given byV = dL (B.12)is primitive where L � r2� (B.13)is dual to a Killing vetor on CY3. We an also show that V is a (1,1) form on CY3.We have Wmn = 2rCYm Sn; Vmn = 2rCYm Ln (B.14)and it is straightforward to show thatL = iLCYS� S : (B.15)21



Combining these results we alulate thatVmn = i2 �W �mkW kn �W �nkW km�+ iRmnklSkS�l (B.16)where for the seond term we used the result that for any Killing vetorrmrnSk = �RnkmlSl (B.17)and also the Bianhi identity for the Riemann tensor. The term in the brakets in(B.16) is (1; 1), sine W is (1,1), and so is the seond term sine R is the Riemanntensor of a K�ahler metri.Note that if S(0;1) = 0 then h = 0 and from the equation of motion r2CY h +jW j2CY = 0 we see that W = � = 0.C Killing spinors for z > 2For W = d(rz�) with z > 2 the analysis of the Killing spinor equations proeeds inexatly the same way as in setion 2 up to equation (2.21). We next substitute m = rinto (2.17), (2.18) and use (2.11) to dedue that�+rCYr =W�r��+ = 0 : (C.1)From (2.21) we also have �+rCYr =W��+ = 0 : (C.2)Together these imply �+rCYr Wr�����+ = 0 and hene, after using (A.5), that forz 6= 2 �+(����)��+ = 0 : (C.3)Combining this with (2.14), we dedue that for � 6= 0 we neessarily have�+�+ = 0 : (C.4)The remaining equations that one �nds are very similar to the z = 2 ase. Letus label �+ =  +. We �nd that  + has only dependene on the CY3 oordinates andrCYm  + = 0. Furthermore, =W � + = =W + = 0 and so if  + 6= 0 then W is (1,1) andprimitive. We also �nd �+=W�� = �+=W ��� = 0 (C.5)rCYm �� + 18�+=W�m��� = 0 (C.6)�+=�h�� + =W��� = 0 (C.7)�� =  � � x+(�� + + r4=W�r �+) = 0 : (C.8)22



Substituting (C.8) into (C.6) we obtainrCYm  � + 18�+=W�m �� = 0 (C.9)rCYm W �rn�n + = 0 : (C.10)From the seond equation we obtain the two onstraints(z � 2) ����� + = 0 (C.11)�(z � 1)rSE� ��� +rSE� ������ + = 0 : (C.12)C.1 No superonformal Killing spinors for z > 2We now show that  + = 0. Let us assume the onverse and then  + is a ovariantlyonstant spinor on R1;3 � CY3. Using the 4+6 deomposition (2.65) we an write + = q+ 
 �+ : (C.13)With q+ 6= 0, equations (C.11), (C.12) beome �����+ = 0 (C.14)�(z � 1)rSE� ��� +rSE� ���� ��+ = 0 : (C.15)Multiplying equation (C.14) by �yr from the left we obtain (using (A.14) and (A.11))�1 = 0 (C.16)where we are using an orthonormal frame �f� on SE5 with �f 1 = �SE. On the otherhand multiplying equation (C.15) by �yr from the left we haved��1� + zrSE� ��1 = 0 (C.17)) d��1� = z(JKE)����� (C.18)(C.19)where we used that the spin onnetion on SE5 has omponents �!1� = (JKE)�� �f�.We now use the (1; 1) ondition on W to dedueW1� = J1rJ�nWrn (C.20)) d�1� = �z (JKE)���� (C.21)whih in ombination with (C.18) implies � = 0 and hene for z > 2: + = 0: (C.22)23



C.2 Example for z > 2Despite the fat that  + = 0 we an have speial solutions that have enhanedsupersymmetry with �+ � 6= 0. Let us illustrate for the speial ase when SE5 isthe round �ve-sphere.We onstrut a losed, primitive (1,1) formW using a (0; 1) one-form A(z) on R6 :W = dA = �ziA�zi (z) dzi ^ d�zj (C.23)(impliitly we are assuming that it takes the form W = d(rz�)) with the prmitivityondition �xed by hoosing that A is o-losed�ziAzi = 0 : (C.24)This also guarantees that d �CY W = 0.Equation (C.9) reads �m � � 14�+Wmn�n �� = 0 : (C.25)From (C.6) we observe that rCYm (�+ �) = 0 and we restrit our attention to Killingspinors satisfying ��zi�+ � = 0 : (C.26)This brings equation (C.25) to the form�m � � 14�+rm =A �� = 0 (C.27)whih we an solve as follows: � = �� + 14�+=A ���; �m�� = 0 : (C.28)Next, equation (C.7) �xes h = �12 jAj2 (C.29)One an hek that the equation of motion r2CY h+ jW j2CY = 0 is also satis�ed. TheKilling spinors take the form " = r 12 ��� + i4�+=A ���� : (C.30)
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