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2PACS numbers: 13.60.-r, 13.60.Le, 13.85.Lg, 14.20.Dh, 14.40.AqGeneralized Parton Distributions (GPDs) [1, 2, 3℄ pro-vide a three-dimensional representation of the nuleonstruture at the partoni level orrelating the longitu-dinal momentum fration of a parton with its trans-verse spatial oordinates [4, 5, 6, 7, 8℄. The possibilityto study GPDs relies on fatorization theorems provenin the framework of perturbative quantum hromody-namis for hard exlusive proesses at leading twist, inpartiular for hard prodution of mesons by longitudi-nal virtual photons [9℄. For reent theoretial reviews,see [10, 11, 12℄.In the desription of hard exlusive eletroprodu-tion of pseudosalar mesons at leading twist, only thetwo GPDs eH and eE appear. Spin-averaged and spin-dependent ross setions are sensitive to di�erent om-binations of eH and eE. It was predited that for ex-lusive prodution of �+ mesons on transversely polar-ized protons by longitudinal virtual photons the interfer-ene between the pseudovetor (/ eH) and pseudosalar(/ eE) ontributions to the ross setion leads to a largeproton-spin related azimuthal asymmetry [13, 14℄. Un-like the spin-averaged ross setion, this asymmetry isdiretly proportional to the sine of the relative phase be-tween eH and eE. It was shown that next-to-leading or-der orretions in the strong-oupling onstant �s anelin the asymmetry [15, 16℄. No GPD-based model pre-ditions are available for the prodution of �+ mesonsby transverse virtual photons as no fatorization theo-rems exist for this ase, but also beause the leading-twist ontribution is expeted to be dominant. Measure-ments of the asymmetry are onsidered to be a valuablesoure of information about possible ontributions fromtransverse virtual photons [17℄. In a Fourier expansionof the proton-spin-dependent part of the hard exlusivepion eletroprodution ross setion [18℄ the only leading-twist ontribution to the asymmetry from longitudinalvirtual photons is the sin(� � �S) Fourier amplitude,whih an be used to test GPD models. All other ampli-tudes involve ontributions from transverse virtual pho-tons. Here, following the Trento onventions [19℄, � and�S are the azimuthal angles in the proton rest frame ofthe pion-momentum and the proton-polarization vetors,respetively, measured about the virtual-photon momen-tum vetor relative to the lepton sattering plane. Forreent theoretial analyses of exlusive pion eletropro-dution, see [17, 20, 21℄.The Hermes ollaboration has previously performedmeasurements of the spin-averaged ross setion [22℄ andthe single-spin azimuthal asymmetry in exlusive �+ ele-troprodution on longitudinally polarized protons [23℄.This letter reports the �rst measurement of the single-spin azimuthal asymmetry for the hard exlusive rea-tion ep" ! en�+ on transversely polarized protons. The

kinemati variables relevant for the analysis of this pro-ess are the squared four-momentum of the exhangedvirtual photon q2 � �Q2, the Bjorken variable xB �Q2=(2Mp�), and the squared four-momentum transfert � (q � p�+)2. Here, Mp is the proton mass, � theenergy of the virtual photon in the target rest frame,and p�+ the four-momentum of the pion. Instead of t,the quantity t0 � t� t0 is used in the analysis, where �t0represents the minimum value of �t for a given value ofQ2 and xB.The data orresponding to an integrated luminos-ity of 0:2 fb�1 were olleted with the Hermes spe-trometer [24℄ in the years 2002-2005. The 27:6GeVpositron or eletron beam was sattered o� the trans-versely nulear-polarized gaseous hydrogen target inter-nal to the Hera storage ring at Desy. The open-ended target ell was fed by an atomi-beam soure [25℄based on Stern-Gerlah separation ombined with ra-diofrequeny transitions of hydrogen hyper�ne states.The nulear polarization of the atoms was ipped at1-3minute time intervals, while both this polarizationand the atomi fration inside the target ell were on-tinuously measured [26℄. The average magnitude of thetransverse polarization of the target with respet to thebeam diretion was jPTj = 0:72� 0:06.Events were seleted with exatly two traks of hargedpartiles: a lepton and a pion. Furthermore, it wasrequired that no additional energy deposition was de-teted in the eletromagneti alorimeter. The Her-mes geometrial aeptane of �170mrad horizontallyand �(40-140)mrad vertially resulted in deteted sat-tering angles ranging from 40mrad to 220mrad. Lep-tons were identi�ed with an average eÆieny of 98%and a hadron ontamination of less than 1% by using aneletromagneti alorimeter, a transition-radiation dete-tor, a preshower sintillation ounter, and a dual-radiatorring imaging �Cerenkov detetor [27℄. Pions were identi-�ed in the momentum range 2GeV < p < 15GeV usingthe �Cerenkov detetor. For this momentum range thepion identi�ation eÆieny was on average 99% and theontamination from other hadrons less than 2%. Thekinemati requirement Q2 > 1GeV2 was imposed on thesattered lepton in order to selet the hard satteringregime.The single-spin asymmetry for exlusive �+ produ-tion with unpolarized (U) beam and target polarizationtransverse (T) to the lepton (`) beam diretion is de�nedas AUT;`(�; �S) = 1jPTj d�"(�; �S)� d�#(�; �S)d�"(�; �S) + d�#(�; �S) ; (1)where d�"(#)(�; �S) = d�UU(�) + PT d�UT;`(�; �S) is asum of the spin-averaged and spin-dependent ross se-



3tions, with PT=jPTj equal to 1 (�1) for the " (#) orien-tations of the transverse target polarization vetor PT.Both numerator and denominator of (1) an be Fourier-deomposed [18℄, respetively, asd�UT;`(�; �S) / 2hsin(�� �S)iUT;` sin(�� �S) + : : : ;(2)where the ellipsis denotes �ve more terms omitted herefor brevity, andd�UU(�) / 1 + 2hos�iUU os�+ 2hos(2�)iUU os(2�): (3)Ideally, the Fourier amplitudes in (2), whih provide mostdiret aess to the photoabsorption subproesses, shouldbe measured, e.g.,hsin(�� �S)iUT;`= R d�d�S sin(�� �S) d�UT;`(�; �S)R d�d�S d�UU(�) : (4)For experimental reasons, mainly to minimize e�ets ofthe Hermes spetrometer aeptane in �, the Fourieramplitudes assoiated with the asymmetry (1) were ex-trated instead, e.g.,Asin(���S)UT;` = 14�2 Z d�d�S sin(�� �S) d�UT;`(�; �S)d�UU(�) :(5)Similar equations hold for the other �ve amplitudes.These amplitudes embody all the essential informationthat ould also be extrated from (2). For small (or zero)values of hos�iUU and hos(2�)iUU, the amplitude in (5)orresponds to the one in (4).The set of six Fourier amplitudes of the asymmetrywas obtained from the observed �+ event sample using amaximum likelihood �t. The distribution of events wasparameterized by the probability density funtion Nparde�ned asNpar(PT; �; �S ;�UT;`) = 1 + PTAUT;`(�; �S ;�UT;`);(6)whereAUT;`(�; �S ;�UT;`)= Asin(���S)UT;` sin(�� �S) +Asin(�+�S)UT;` sin(�+ �S)+Asin�SUT;` sin�S +Asin(2���S)UT;` sin(2�� �S)+Asin(3���S)UT;` sin(3�� �S) +Asin(2�+�S)UT;` sin(2�+ �S):(7)Here, �UT;` represents the set of six Fourier amplitudesof the sine-modulation terms in (5).

Within the maximum likelihood sheme [28℄, the loga-rithm of the likelihood funtion to be minimized is takenas L(P iT; �i; �iS ;�UT;`)= �N�+Xi=1 ln[1 + P iTAUT;`(�i; �iS ;�UT;`)℄; (8)where N�+ = N"�+ +N#�+ is the total number of eventsin the seleted data sample, andThe raw results from the likelihood minimization of (8)were orreted for bakground ontributions in order toestimate the true results for exlusive �+ prodution:At = Ar � bAb1� b : (9)Here, Ar stands for one of the six Fourier amplitudes in�UT;` (see (7), (8)), b and Ab for the frational ontri-bution and orresponding Fourier amplitude of the bak-ground, and At for the resulting true amplitude. Thebakground fration isb = N�+ �Nexl�+N�+ ; (10)where N exl�+ is the number of exlusive events in the se-leted data sample.The following analysis was performed to estimate thequantities in (9). As the reoiling neutron in the proessep" ! en�+ was not deteted, the sample of \exlusive"events was seleted by requiring that the squared missingmass M2X of the reation ep" ! e�+X orresponds tothe squared neutron massM2n. The exlusive �+ hannelould not be ompletely separated from the hannels with�nal states �+ +X (de�ned as bakground hannels forX 6= n) in whih the �+ originates, e.g., from neutral-meson (mainly �0) deays, semi-inlusive proesses, ornuleon resonane prodution, as their M2X values weresmeared into the region aroundM2n due to the experimen-tal resolution. These bakground events were subtratedfrom N�+ following the method briey outlined below,and previously employed in the analysis of the exlusive�+ ross setion [22℄. The exlusive �+ yield was ob-tained by subtrating the yield di�erene (N�+ � N��)of the Pythia [29℄ Monte Carlo simulation from thatof the data, with both di�erenes being independentlyabsolutely normalized:Nexl�+ = (N�+ �N��)data � (N�+ �N��)Pythia: (11)The Pythia generator was used in onjuntion with aset of Jetset [30℄ fragmentation parameters that hadpreviously been adjusted to reprodue exlusive vetormeson prodution data [31℄ and multipliity distribu-tions [32℄ observed by Hermes. Exlusive produtionof single pions is absent in Pythia. Note that exlu-sive �� mesons annot be produed on protons. The



4onstraint on the invariant mass of the initial photon-nuleon systemW 2 > 10GeV2 was applied, and the pionmomentum was required to satisfy 7GeV < p < 15GeV.Both onditions, applied to the data and the Pythiayields, allowed for a better desription of the data by thePythia Monte Carlo simulation for values of M2X out-side the region orresponding to exlusive �+ prodution.The resultingM2X distribution of Nexl�+ and its resolutionof 0:7GeV2 were found to be onsistent with that of aMonte Carlo sample of exlusive �+ events normalizedto the data (inluding radiative e�ets) [22℄.An \exlusive region" in M2X was de�ned by requiring�1:2GeV2 < M2X < 1:2GeV2. The lower limit orre-sponds to three times the resolution of M2X , while theupper limit was set in order to minimize the (quadrati-ally) ombined statistial and systemati unertaintiesof the extrated Fourier amplitudes. A relative system-ati unertainty of 20% was assigned to N exl�+ , whih or-responds to the largest data-to-Pythia disrepany out-side of the exlusive region [22℄. As the M2X spetrumof the positron-beam data is found to be shifted by ap-proximately 0:16GeV2 towards higher values relative tothat of the eletron-beam data, the exlusive region forthe positron data is shifted aordingly. One quarter ofthe e�et of this shift on the results presented below isassigned as a ontribution to the systemati unertainty.The values of Ar and b in (9) are measured in the exlu-sive region. As the bakground originates from resolutionsmearing of events ourring at higher missing mass, Abin (9) was assumed to be equal to the Fourier ampli-tude measured in the M2X region between 1:9GeV2 and3:3GeV2 where the ontribution of exlusive �+ events isnegligible. In that region Ab was found to vary smoothly,with values smaller than �0:1, exept for the sin�S mod-ulation for whih it amounts on average to (0:25� 0:04).In order to aount for a possible variation of Ab withM2X in the exlusive region, one half of the di�erenebetween At and Ar is onservatively assigned as a on-tribution to the systemati unertainty of At.The values of t0 were alulated from the measure-ment of the four-momenta of the sattered lepton andprodued pion by setting MX = Mn, whih improvedthe t0-resolution by a fator of two. The kinematirange that ontains the events used in the subsequentanalysis is de�ned by the following requirements on thevariables: �t0 < 0:7GeV2, 0:03 < xB < 0:35, and1GeV2 < Q2 < 10GeV2. The mean W 2 value of thedata is 16GeV2.The dominant soures of systemati unertainty areassoiated with the bakground subtration and orre-tion, and the observed relative shift of the M2X distribu-tions between positron and eletron data. The ontribu-tions due to the residual beam polarization of 0:02�0:03,the orresponding beam-spin asymmetry [23℄, and theharged-trak urvature in the transverse �eld of thetarget magnet, are found to be negligible. All these

ontributions, exept for the target polarization saleunertainty of 8:2%, are added in quadrature to yieldthe total systemati unertainty. In addition, an esti-mate of the ombined ontribution to the experimentalunertainty from resolution smearing, aeptane, kine-mati bin width, and e�ets from the detetor alignmentwith respet to the beam is determined using MonteCarlo simulation based on the GPD model [17℄ for thesin(� � �S) Fourier amplitude only. The di�erene be-tween the amplitude extrated from the Monte Carlosample and the orresponding model predition alu-lated at the average kinemati values of the Monte Carlosample is added in quadrature to the total systematiunertainty of Asin(���S)UT;` . The largest experimental un-ertainties are those due to detetor aeptane and kine-mati bin width, and the determination of the target po-larization.Figure 1 shows the extrated Fourier amplitudes asa funtion of �t0, xB, and Q2. For this measurementthe average values of the kinemati variables are h�t0i =0:18GeV2, hxBi = 0:13, and hQ2i=2:38GeV2. The bak-ground fration b varies between (54�6)% and (62�5)%in the various kinemati bins. As xB and hQ2i are orre-lated the average values of Q2 vary in the four xB bins,namely, hQ2i = 1:24, 1:57, 2:24, 3:91GeV2. Analogously,the average values of xB vary in the four Q2 bins, hxBi =0:07, 0:11, 0:15, 0:23. A separation of the ontributionsfrom longitudinal and transverse virtual photons to theFourier amplitudes was not possible without measure-ments with di�erent beam energies.The six Fourier amplitudes shown in Fig. 1 orrespondto the following ombinations of photoabsorption rosssetions and interferene terms �ijmn for photon heliitiesm;n = 0;�1 and proton-spin projetions i; j = � 12 [18℄:hsin(�� �S)iUT;` / [os � Im (�+�++ + "�+�00 )+12 sin �p"(1 + ")Im (�+++0 � ���+0 )℄;(12)hsin(�+ �S)iUT;` / [ 12 os � " Im�+�+�+12 sin �p"(1 + ")Im (�+++0 � ���+0 )℄;(13)hsin�SiUT;` / [os �p"(1 + ")Im�+�+0 ℄; (14)hsin(2�� �S)iUT;` / [os �p"(1 + ")Im��++0+12 sin � "Im�+++� ℄; (15)hsin(3�� �S)iUT;` / [ 12 os � " Im��++� ℄; (16)
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Q2 [GeV2]FIG. 1: The set of six Fourier amplitudes (AUT;`) desribingthe sine modulations of the single-spin azimuthal asymmetryfor unpolarized (U) beam and transverse (T) target polariza-tion, for the exlusive event sample. The error bars (bands)represent the statistial (systemati) unertainties. The re-sults reeive an additional 8:2% sale unertainty orrespond-ing to the target polarization unertainty.hsin(2�+ �S)iUT;` / [ 12 sin � " Im�+++� ℄; (17)where " is the virtual-photon polarization parameter,and � is the angle between the beam and the virtual-photon diretion. Note that in the analysis presentedhere there is an integration over a range in �, withos � � 1 and 0:04 � sin � � 0:15. At leading twist, onlyhsin(���S)iUT;` reeives a ontribution from only longi-tudinal virtual photons via �+�00 , while the other Fourieramplitudes are expeted to be suppressed [9℄ by at leastone power of 1=Q due to interferene between ontribu-tions from longitudinal and transverse virtual photons,and by 1=Q2 due to terms involving only transverse vir-tual photons.Most of the Fourier amplitudes shown in Fig. 1 are

small or onsistent with zero, exept Asin�SUT;` . This am-plitude is found to be large and positive indiating a sig-ni�ant ontribution from the transverse-to-longitudinalheliity transition of the virtual photon, i.e.,Asin�SUT;` / �+�+0 =X�0 M�0�0++M0�00�=M�0+++M0+0� +M�0�++M0�0�; (18)where M�0�0�� are heliity amplitudes with �0 (�) and�0 (�) denoting the heliities of the pion (virtual pho-ton) and the neutron (proton), respetively. These ampli-tudes are proportional to p�t0j�����0+�0j. In the frame-work of GPDs, the amplitude M0�++ is assoiated atleading twist with virtual-photon heliity ip in the t-hannel [18℄, whih is proportional to p�t0 and hene isexpeted to vanish for �t0 ! 0. However, among higher-twist ontributions the one that involves the parton-heliity-ip GPDs HT and eHT need not vanish at smallvalues of jt0j. Moreover, in the more general frameworkof heliity amplitudes and the Regge model, Asin �SUT;` re-eives ontributions from natural and unnatural-parityexhange [17, 33℄, whih allow it to remain onstant as afuntion of �t0, as the data in Fig. 1 suggest. Lak of pa-rameterizations of �ijmn involving transverse virtual pho-tons does not allow further interpretation of the orre-sponding Fourier amplitudes. Any model that desribesexlusive pion prodution will need to desribe not onlythe leading-twist Fourier amplitude, but also the otherontributions to the target-spin azimuthal asymmetry.Of speial interest in the present measurement is theFourier amplitude Asin(���S)UT;` in ase of prodution bylongitudinal photons, whih an be ompared with GPDmodels. It is related to the parton-heliity-onservingpart of the sattering proess and is sensitive to the in-terferene between eH and eE [13, 16℄:Asin(���S)UT;` =� p�t0Mp� �p1� �2 Im(eE� eH)(1� �2) eH2 � t�24M2p eE2 � 2�2Re(eE� eH) ;(19)where the transition form fators eH and eE denote on-volutions of hard sattering kernels and the pion distri-bution amplitude with the GPDs eH and eE, respetively.Note that in the models desribed below terms propor-tional to the os� and os(2�) modulation of the spin-averaged ross setion are not inluded. In the measure-ment presented here these terms are not known, althoughthey nonetheless ontribute to the values of the extratedFourier amplitudes.Figure 2 shows the extrated Fourier amplitudeAsin(���S)UT;` as a funtion of �t0 in more detail. The solid



6and dotted urves represent the leading-twist, leading-order in �s alulations of this amplitude for longitudi-nal virtual photons using two variants of the GPD modelof [20℄. The modelling of the GPD eE relies here, evenat larger values of �t, on the dominane of the pion pole1=(m2�� t) in the pion exhange amplitude, with m� thepion mass. Then eE is real and positive, and the value ofAsin(���S)UT;` is typially predited to be large and negative,while it must sharply vanish at the kinemati boundary�t0 = 0 (see solid urve). The data qualitatively disagreewith suh a simpli�ed GPD model. The \Regge-ized"variant of the GPD- eE model [20℄, ontaining more thanonly a pion t-hannel exhange, results in the dash-dottedurve. In suh a model the asymmetry an beome pos-itive at larger values of �t0, aused by a negative realpart in eE . The dash-dotted urve arises from an alter-native GPD approah [34℄, in whih the imaginary partof eH beomes negative while the real part of eE remainspositive at larger values of �t0.An attempt to evaluate the omplete set of Fourieramplitudes (7), and in partiular the value of Asin(���S)UT;` ,is presented in [17℄. In this model, the GPDs are alu-lated in a similar way as in the models [15, 35℄, exeptthat the experimental value of the pion form fator F�is used. Here a large non-pole ontribution from eE over-ompensates the pion-pole ontribution leading to thezero-rossing behavior of the amplitude as a funtion of�t0 (see dashed urve in Fig. 2). This model appears tobe qualitatively in agreement with the data. However,within the large experimental unertainty Asin(���S)UT;` isalso onsistent with zero. A vanishing Fourier ampli-tude in this model implies the dominane (due to thepion pole) of eE over eH at low �t0. This is in agree-ment with the reent Hermes measurement of the ex-lusive �+ ross setion [22℄, whih is well desribed at�t0 = 0:1GeV2 by a GPD model [35℄ based only on eEwhile negleting the ontribution of eH .In summary, the Fourier amplitudes of the single-spinazimuthal asymmetry are measured in exlusive eletro-prodution of �+ mesons on transversely polarized pro-tons, for the �rst time. Within the experimental uner-tainties the amplitude of the sin(� � �S) modulation isfound to be onsistent with zero, thus exluding a purepion-pole ontribution to the GPD eE in leading-twist al-ulations. This ould also be an indiation for the dom-inane of eE over the GPD eH at low �t0. The observedamplitude of the sin�S modulation is large and posi-tive whih implies the presene of a sizeable interferenebetween ontributions from longitudinal and transversevirtual photons. A next-to-leading twist alulation aswell as knowledge of the ontributions from transversephotons and their interferene with longitudinal photonsare required for a desription of the measurements.We gratefully aknowledge the Desy management forits support and the sta� at Desy and the ollaborat-
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