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h b;1aDESY, Patanenallee 6, Zeuthen, GermanybHumboldt-Univertit�at zu Berlin, Institut f�ur Physik,Newtonstr. 15, 12489 Berlin, GermanyAbstra
tWe dis
uss a program suite for simulating Quantum Chromodynami
s on a 4-dimensional spa
e-time latti
e. The basi
 Hybrid Monte Carlo algorithm is intro-du
ed and a number of algorithmi
 improvements are explained. We then dis
ussthe implementations of these 
on
epts as well as our parallelisation strategy in thea
tual simulation 
ode. Finally, we provide a user guide to 
ompile and run theprogram.PACS: 11.15.-q, 11.15.Ha, 11.38.-t, 11.38.G
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one or optionally any even number of pro
essors. Tested with up to 32768 pro
es-sors.Keywords: Hybrid Monte Carlo algorithm; Latti
e QCD;PACS: 11.15.-q, 11.15.Ha, 11.38.-t, 11.38.G
Classi�
ation: 11.5 Quantum Chromodynami
s, Latti
e Gauge TheoryExternal routines/libraries: LAPACK [1℄ and LIME [2℄ library.Nature of problem:Quantum Chromodynami
s.Solution method:Markov Chain Monte Carlo using the Hybrid Monte Carlo algorithm with masspre
onditioning and multiple time s
ales [3℄. Iterative solver for large systems oflinear equations.Restri
tions:Restri
ted to an even number of (not ne
essarily mass degenerate) quark 
avoursin the Wilson or Wilson twisted mass formulation of latti
e QCD.Additional 
omments:none.Running time:Depending on the problem size, the ar
hite
ture and the input parameters from afew minutes to weeks.Referen
es:[1℄ http://www.netlib.org/lapa
k/.[2℄ USQCD, http://usq
d.jlab.org/usq
d-do
s/
-lime/.[3℄ C. Urba
h, K. Jansen, A. Shindler and U. Wenger, Comput. Phys. Commun.174, 87 (2006).
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LONG WRITE-UP1 Introdu
tionThis 
ontribution to the anniversary issue of CPC deals with the strong for
ein Parti
le Physi
s. The strong for
e is presumably the least well understoodfundamental intera
tion between elementary parti
les. It is responsible for theexisten
e of protons and neutrons, or more generally all nu
lei, as bound states.The 
onstituents of the nu
lei are the quarks and gluons as the fundamentalparti
les. It is interesting to observe that the energy (mass) of a proton has asize of about 1GeV while the mass of the two 
onstituent up and down quarksis at the order of only a few MeV. Hen
e, the by far biggest 
ontribution tothe proton mass is pure binding energy.This shows already that a des
ription of the proton in terms of the underlyingquark and gluon degrees of freedom must be highly non-trivial. The model thatis believed to provide a theoreti
al framework for the strong intera
tion andshould give su
h a des
ription is Quantum Chromodynami
s (QCD). Althoughthis theory 
an be written in a very 
ompa
t mathemati
al form, it is a highlynon-linear theory that does not allow for a 
losed analyti
al solution.However, and rather fortunately, QCD 
an be reformulated in su
h a waythat 
omputational physi
s methods 
an be applied to 
al
ulate propertiesof QCD from �rst prin
iples and without relying on approximations. In thisapproa
h, spa
e and time are rendered dis
rete and a latti
e spa
ing a isintrodu
ed. Thus, a 4-dimensional spa
e-time latti
e is 
onsidered and thequark and gluon degrees of freedom are pla
ed on the latti
e points or onso-
alled links that 
onne
t latti
e points. In this way one obtains a modelof \quark" spins, whi
h are 
oupled to nearest neighbours only, very mu
hreminis
ent of an Ising model in statisti
al physi
s. Indeed, the methods ofstatisti
al physi
s, namely the evaluation of the partition fun
tion by meansof numeri
al simulations using Monte Carlo methods employing importan
esampling, are the key to address QCD on the 4-dimensional latti
e, whi
h wewill refer to as latti
e QCD (LQCD).Although the 
on
epts to treat LQCD numeri
ally are very 
lear, the problemhas an intrinsi
ally extremely high 
omputational demand. The 
ru
ial fa
toris that in the end the introdu
ed dis
retisation has to be removed again. Ifwe 
onsider a latti
e with say, L = 3 fm linear extent and a latti
e spa
ing ofa = 0:1 fm then we would have to use N = 3=0:1 = 30 latti
e points in onedire
tion. Sin
e we are dealing with a 4-dimensional problem, we need hen
e304 latti
e points for su
h a more or less reasonable physi
al situation. Simu-lations on su
h a latti
e require in LQCD already several Tera
ops. Keeping3
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es needed to generate 1000 independent 
on�gurations ofsize 243 � 40 at a latti
e spa
ing of about 0:08 fm with pure Wilson fermions inunits of T
ops � years as a fun
tion of mPS=mV. In (a) we show the predi
tion ofRef. [1℄ from the 2001 latti
e 
onferen
e in Berlin (hen
e titled \Berlin Wall"). In(b) we 
ompare to the formula of Ref. [1℄ (solid line) with the performan
e of thealgorithm des
ribed in this paper and �rst published in Ref. [2℄. The dashed line isto guide the eye. The s
ale of the verti
al axis 
hanges by about a fa
tor of 1=50from (a) to (b). In (a) and (b) the arrow indi
ates the physi
al pion to rho mesonmass ratio. Note that all the 
ost data were s
aled to mat
h a latti
e time extendof T = 40.L = 3 fm �xed and de
reasing the latti
e spa
ing to remove the dis
retisationby, say, a fa
tor of two in
reases the 
ost of the simulation already by a fa
tor24. As this would not be worse enough, the used algorithms 
ontribute anotherfa
tor of 2(2�3). Hen
e, going to really �ne dis
retisations where the e�e
ts ofthe non-zero latti
e spa
ing 
an safely be negle
ted or at least a 
ontrolledextrapolation to zero values of the latti
e spa
ing 
an be performed is an ex-tremely demanding 
omputational 
hallenge whi
h will �nally require at leastPeta
ops 
omputing, an area of 
omputing power we are realising today.However, even with the advent of Peta
ops 
omputers, the goal of \solving"QCD on a latti
e would be 
ompletely out of rea
h without some algorithmi
improvements that were invented in re
ent years. This is shown in �g. 1. Inthe left panel of the graph, the number of Tera
ops years for a 
ertain typi
alsimulation is shown as a fun
tion of the ratio of two meson masses, the pseudos
alar and the ve
tor meson. The graph derives from the known 
ost of theused algorithm in the year 2001 [1℄.It is important to realise that the meson mass ratio used in �g. 1 assumes avalue of about 0.2 in nature as measured in experiments, whi
h is indi
atedby the arrow in both panels of �g. 1. The �gure 
learly demonstrates the4



strongly growing 
ost of the simulations when the real physi
al situation isto be rea
hed. In fa
t, simulations dire
tly at the physi
al value of this massratio were impossible in 2001. The right panel of the graph demonstrates the
hange of the situation when algorithmi
 improvements are used as the onesdes
ribed in this arti
le. In fa
t, the simulation 
osts shown in the right panelof �g. 1 originate from dire
t performan
e measurements of the 
ode that isdes
ribed here. As the �gure demonstrates, although the simulations at thephysi
al value of the meson mass ratio are still rather demanding, they be
ome
learly realisti
 with todays Peta
ops systems. There are other approa
hes toimprove the HMC algorithmwith similar results [3,4,5,6,7,8℄. Very promising isthe re
ent additional improvement using inexa
t de
ation presented in Ref. [9℄.The algorithmi
 improvements provided therefore a tremendous gain openinga way for simulations in LQCD that were unthinkable a few years ago. Itis pre
isely the goal of this 
ontribution to des
ribe one programme versionof the underlying Hybrid Monte Carlo (HMC) algorithm where a number ofsu
h improvements have been in
orporated and to make the 
orresponding
ode publi
ly available. The 
urrent version of the 
ode and future updates
an be downloaded from the web [10℄.
2 Theoreti
al ba
kground2.1 QCD on a latti
eQuantum Chromodynami
s on a hyper-
ubi
 Eu
lidean spa
e-time latti
e ofsize L3 � T with latti
e spa
ing a is formally des
ribed by the a
tionS = SG[U ℄ + a4Xx � D[U ℄  (1)with SG some suitable dis
retisation of the the Yang-Mills a
tion F 2��=4 [11℄.The parti
ular implementation we are using 
an be found below in se
tion 4.2and 
onsists of plaquette and re
tangular shaped Wilson loops with parti
u-lar 
oeÆ
ients. D is a dis
retisation of the Dira
 operator, for whi
h Wilsonoriginally proposed [12℄ to use the so 
alled Wilson Dira
 operatorDW [U ℄ = 12 h
� �r� +r���� ar��r�i (2)5



with r� and r�� the forward and ba
kward gauge 
ovariant di�eren
e opera-tors, respe
tively:r� (x) = 1a�U(x; x + a�̂) (x + a�̂)�  (x)� ;r�� (x) = 1a� (x)� U y(x; x� a�̂) (x� a�̂)� ; (3)where we denote the SU(3) link variables by Ux;�. We shall set a � 1 inthe following for 
onvenien
e. Dis
retising the theory is by far not a uniquepro
edure. Instead of Wilson's original formulation one may equally well 
hosethe Wilson twisted mass formulation and the 
orresponding Dira
 operator [13℄Dtm = (DW [U ℄ +m0) 1f + i�q
5� 3 (4)for a mass degenerate doublet of quarks. We denote by m0 the bare (Wilson)quark mass, �q is the bare twisted mass parameter, � i the i-th Pauli matrix and1f the unit matrix a
ting in 
avour spa
e (see appendix A for our 
onvention).In the framework of Wilson twisted mass QCD only 
avour doublets of quarks
an be simulated, however, the two quarks do not need to be degenerate inmass. The 
orresponding mass non-degenerate 
avour doublet reads [14℄Dh(��; ��) = DW 1f + i��
5� 3 + ��� 1 : (5)Note that this notation is not unique. Equivalently { as used in Ref. [15℄ { onemay write D0h(��; �Æ) = DW � 1f + i
5��� 1 + �Æ� 3 ; (6)whi
h is related to Dh by D0h = (1+ i� 2)Dh(1� i� 2)=2 and (��; �Æ)! (��;���).2.2 The Hybrid Monte Carlo AlgorithmFor the purpose of introdu
ing the Hybrid Monte Carlo (HMC) algorithmwe shall 
onsider only the Wilson twisted mass formulation of latti
e QCDwith oneq doublet of mass degenerate quarks with bare quark mass m0 andbare twisted mass �q. The extension to more than one 
avour doublet ofquarks is straightforward. The 
orresponding polynomial HMC algorithm usedfor simulating the mass non-degenerate 
avour doublet is dis
ussed in thefollowing sub-se
tion.After integrating out the Grassmann valued fermion �elds, in latti
e QCD oneneeds to evaluate the integralZ DU det(QyQ) e�SG ; (7)6



by Markov Chain Monte Carlo methods with some dis
retisation of the Yang-Mills gauge a
tion SG andQ � 
5DW[U ℄ + 
5m0 + i�q ; (8)with the Wilson-Dira
 operator DW of eq. (2). Note that Q a
ts now on one
avour only. The determinant 
an be re-expressed using 
omplex valued, so-
alled pseudo fermion �elds � and �ydet(Q2) / Z D� D�y e�(Q�1�;Q�1�) (9)where SPF � jQ�1�j2 is 
alled the pseudo fermion a
tion. The HMC algo-rithm [16℄ is then de�ned by introdu
ing tra
eless hermitian momenta Px;�(
onjugate to the fundamental �elds Ux;�) and a HamiltonianH(U; P ) =Xx;� 12Tr[P 2x;�℄ + SG[U ℄ + SPF[U ℄ : (10)Given H, the algorithm is 
omposed out of a mole
ular dynami
s update ofthe �elds (U; P ) ! (U 0; P 0) and a Metropolis a

ept/reje
t step with respe
tto H using the a

eptan
e probabilityPa

 = min(1; exp (H(U 0; P 0)�H(U; P )) : (11)While the momenta P are generated at the beginning of a traje
tory { in theso 
alled heat-bath step { randomly from a Gaussian distribution, the pseudofermion �elds � are generated by �rst generating random �elds r and then� = Qrsu
h that expf�(Q�1�;Q�1�)g = expfryrg. Note that the pseudo fermion�elds are not evolved during the mole
ular dynami
s part of the HMC algo-rithm.2.2.1 Mole
ular Dynami
s UpdateIn the mole
ular dynami
s (MD) part of the HMC algorithm the momentaand gauge �elds are updated 
orresponding to the Hamiltonian equations ofmotion dd� Px;� = �F (x; �) ;dd� Ux;� = Px;�Ux;� (12)with respe
t to a �
titious 
omputer time � and for
es F whi
h are obtainedby di�erentiating the a
tion with respe
t to the gauge �elds U , and takes7



values in the Lie algebra of SU(3). The di�erentiation DU of some fun
tionf(U) is de�ned as DaUf(U) = ���f(ei�taU)j�=0 ;where ta are the generators of su(3).Sin
e these equations 
an in general not be integrated analyti
ally, one usesnumeri
al integration methods, whi
h must be area preserving and reversible.Symmetrised symple
ti
 integrators ful�l these requirements with the simplestexample being the leap-frog algorithm. The basi
 dis
rete update steps withintegration step size �� of the gauge �eld and the momenta 
an be de�ned asTU(��) : U ! U 0 = exp (i��P )U ;TS(��) : P ! P 0 = P � i��F : (13)The leap-frog algorithm is then obtained by sequential appli
ation ofT = TS(��=2) TU(��) TS(��=2) ;i.e. for a traje
tory of length � one needs to apply TNMD with NMD = �=�� .2.2.2 Pre
onditioning and Multiple Time S
alesPre
onditioning is usually performed by fa
torisingdet(QyQ) = det(Ry1R1) � det(Ry2R2) � � �det(RynRn) (14)with suitably 
hosen R1; R2; : : : Rn. Then For every Ri a separate pseudofermion �eld �i is introdu
ed, su
h that the Hamiltonian readsH(U; P ) =Xx;� 12Tr[P 2x;�℄ + SG[U ℄ + nXi=1 SPFi : (15)and the equations of motion are 
hanged todd� Px;� = � nXi=0 Fi(x; �)dd� Ux;� = Px;�Ux;�where we identify F0 with the for
e stemming from the gauge a
tion SG.The fa
torisation in eq. (14) 
an be a
hieved in many di�erent ways, see forinstan
e Refs. [3,4,5,6,7,8℄. Here we shall only dis
uss what is known as masspre
onditioning or Hasenbus
h tri
k [17,18,19℄. It is obtained by writing theidentity det(QyQ) = det(W yW ) � det(QyQ)det(W yW ) ; (16)8



where W = DW +m0 + i�2
5; �2 > �q :By adjusting the the additional mass parameter �2, the 
ondition number ofW yW and (QyQ)=(W yW ) 
an both be redu
ed with respe
t to the one of QyQalone. As argued in Ref. [20℄, the optimal 
hoi
e leads to a 
ondition numberof pk for both W yW and (QyQ)=(W yW ), where k is the 
ondition number ofQyQ. A redu
ed 
ondition number leads to redu
ed for
e 
ontributions in theMD evolution and allows hen
e for larger values of �� .It is important to noti
e that evaluating the for
e 
ontribution stemming from(QyQ)=(W yW ) is more expensive in terms of 
omputer time than the evalua-tion of the 
ontribution from W yW , sin
e it involves the iterative solution of' = (QyQ)�1� with the large 
ondition number k. Thus, the algorithm mightbe further improved by not tuning the 
ondition numbers equal as explainedbeforehand, but by introdu
ing a multiple time s
ale integration s
heme asfollows.Considering a Hamiltonian like in eq. (15) we may introdu
e n+ 1 times
ales��i with ��i = �NMDi ; NMDi = Nn �Nn�1 � � �Niand basi
 dis
rete update stepsTU(��) : U ! U 0 = exp (i��P )U ;TSi(��) : P ! P 0 = P � i��Fi (17)with 0 � i � n. We have identi�ed S0 � SG. The leap frog update on times
alei is then re
ursively de�ned asTi = 8><>:TSi(��i=2)TU(��i) TSi(��i=2) i = 0TSi(��i=2) [Ti�1℄Ni�1 TSi(��i=2) 0 < i � n (18)and the full traje
tory of length � is eventually a
hieved by [Tn℄Nn.As was shown in Ref. [2℄ { and for other fa
torisations of the determinantin Refs. [3,7,21℄ { the 
ombination of multiple time s
ale integration and adeterminant fa
torisation allows to set the algorithm up su
h that the mostexpensive operator 
ontributes least to the MD for
es. It 
an then be inte-grated on the outermost times
ale and must be less often inverted.2.2.3 Integration S
hemesDuring the last paragraphs we have introdu
ed the simplest reversible andarea preserving integration s
heme, known as leap frog integration s
heme.9



There are more involved integration s
hemes available, partly or 
ompletely
an
elling higher order dis
retisation errors.It turns out that 
ompletely 
an
elling higher order e�e
ts is not ne
essaryand often even not eÆ
ient. Integration s
hemes with redu
ed errors are forexample the so 
alled n-th order minimal norm integration s
hemes, for detailssee Ref. [22℄ and referen
es therein. The se
ond order minimal norm (2MN)integration s
heme is based on the update stepT 2MN0 = TS0(�0��0) TU(��0=2) TS0((1� 2�0)��0)TU(��0=2) TS0(�0��0);T 2MNi = TSi(�i��i) [T 2MNi�1 ℄Ni�1 TSi((1� 2�i)��i)[T 2MNi�1 ℄Ni�1 TSi(�i��i); (19)�i is a dimensionless parameter and the 2MN s
heme 
oin
ides with theSexton-Weingarten s
heme [23℄ in 
ase �i = 1=6. The optimal value for �iwas given in Ref. [22℄ to be around 0:19. But its value is likely to depend onthe mass values and the time s
ale under 
onsideration. Note that there is aparameter �i for ea
h times
ale ��i, whi
h 
an be tuned separately.While all the integration s
hemes introdu
ed so far were based on the orderTS TU TS, it is also possible to revert this order. In this 
ase one talks aboutthe position version of the 
orresponding integration s
heme, while the usualone is 
alled the velo
ity version. Under 
ertain 
ir
umstan
es they 
an bemore eÆ
ient, be
ause one less appli
ation of TS is needed. The 
orrespondingupdate steps 
an be easily derived from the formulae provided above.2.3 Polynomial HMC for a non-degenerate doubletIn the framework of Wilson twisted mass fermions it is only possible to sim-ulate 
avour doublets of quarks. Hen
e, if one wants to in
lude the strangequark in the simulation one also needs to in
lude the 
harm. The 
orrespond-ing mass non-degenerate doublet was de�ned in equation (5). Simulating su
ha 
avour doublet operator is possible using the polynomial HMC (PHMC) al-gorithm [24,25,26℄. The basi
 problem that o

urs in the mass non-degenerate
ase is that a single 
avour has to be taken into a

ount or equivalently thedeterminant of a single operator Q needs to be treated. The PHMC algorithm
an solve this problem elegantly.The idea of the PHMC is based on writingdet(Q) = det(qQ2) � det(P�1�;n (Q2)) / Z D� D�y e��yP�;10



valid as long as Q is positive. P�;n(Q2) is a polynomial approximation of 1=pQ2of degree n in the interval [�; 1℄Pn;�(s) = 1psf1 +Rn;�g; s = Q2 : (20)Rn;� is the error term. It 
an be shown that for the 
ase of Chebyshe� polyno-mials jRj vanishes exponentially fast with the degree n (for large n). For moredetails regarding this issue we refer the reader for instan
e to Refs.[27,28℄ andreferen
es therein.It is worth noti
ing that representing in inverse operator by a polynomial has
on
eptual advantages. It allows to treat 
ertain regions of the eigenvalue spe
-trum of the operator in di�erent ways and to separate therefore the infraredfrom the bulk and ultraviolet parts of the spe
trum. Although this has beenthe main underlying idea of the PHMC algorithm [24,25,26℄ we will use it here,however, only as a te
hni
al tool to treat single 
avours in the simulations.For our purpose { introdu
ing Qh = 
5Dh { we 
an rewrite the 
orrespondingdeterminant det(Qh) / Z D�y D� e��yPn;�(s)� ;with s = QyhQh and the pseudo fermion �elds � are now two 
avour �elds.Note that Dyh = � 1
5Dh
5� 1. The appli
ation of the polynomial P to a pseudofermion �eld � 
an be performed by either using the Clenshaw re
ursion re-lation [29℄, or by using the produ
t representationPn;�(s)� = " nYi=1 
(s� zi)#� � B(s) �B(s)y�with zi the 
omplex roots of P and a suitably 
hosen normalisation 
onstant
. The produ
t representation is 
onveniently used in the MD update. For the
hoi
e of polynomials, the determination of their roots and how to order themto avoid round-o� errors see appendix C.The HMC algorithm requires an area preserving and reversible MD updatepro
edure, however, there is no need to use in the MD update the same op-erator as in the heat-bath step. As long as the a

eptan
e rate is suÆ
ientlyhigh, we are free to use any other operator in the update. In order to exploitthis possibility we introdu
e a se
ond more pre
ise polynomial~Pm;Æ(s) = 1Pn;�psf1 + ~Rm;Æg (21)whi
h is used in the heat-bath step to generate the pseudo fermion �elds froma random �eld R � = ~PByQhR11



and in the a

eptan
e step. The less pre
ise polynomial P is then used onlyin the MD update.The polynomial degrees n;m and the approximation intervals have to be de-termined su
h as to guarantee a good approximation of 1=ps in the range ofeigenvalues of QyhQh. One may also adopt a strategy to 
hose � or Æ largerthan a few lowest eigenvalues of QyhQh and use re-weighting to 
orre
t forthis [24,25℄.Even/Odd pre
onditioningThe (P)HMC algorithm is implemented using even/odd pre
onditioning [30,31℄,whi
h is dis
ussed shortly in appendix B. We want to stress that althougheven/odd pre
onditioning is a rather te
hni
al step, it leads to a very impor-tant improvement of the algorithm performan
e and is a 
ornerstone of allHMC implementations in the �eld.2.4 Boundary ConditionsThe theory is dis
retised and put on a �nite, hyper-
ubi
 spa
e-time latti
ewith extensions L3�T � Q� L�. The boundary 
onditions for the gauge �eldsUx;� are 
hosen to be periodi
, i.e.Ux+L� �̂;� = Ux;� ;where �̂ is a unit ve
tor in dire
tion �. For the fermioni
 �elds  (x) we allowfor more general boundary 
onditions, namely so 
alled twisted boundary
onditions  (x + L� �̂) = ei��� (x) :Periodi
 boundary 
onditions 
orrespond to �� = 0, while anti-periodi
 bound-ary 
onditions are a
hieved by setting �� = 1. More generally one 
an realisewith twisted boundary 
onditions arbitrary values of momentum transfer onthe latti
e by a 
onvenient re-interpretation of the phases [32℄.3 Overview of the software stru
tureThe general strategy of the tmLQCD pa
kage is to provide programs for themain appli
ations used in latti
e QCD with Wilson twisted mass fermions.The 
ode and the algorithms are designed to be general enough su
h as to
ompile and run eÆ
iently on any modern 
omputer ar
hite
ture. This is12



Fig. 2. Flow
hart for the hm
 tm exe
utable
a
hieved 
ode-wise by using standard C as programming language and forparallelisation the message passing interfa
e (MPI) standard version 1.1.Performan
e improvements are a
hieved by providing dedi
ated 
ode for 
er-tain widely used ar
hite
tures, like PC's or the Blue Gene family. Dedi
ated
ode is mainly available for the kernel routine { the appli
ation of the Dira
operator, whi
h will be dis
ussed in detail in se
tion 4.1, and for the 
ommu-ni
ation routines.The tmLQCD pa
kage provides three main appli
ations. The �rst is an imple-mentation of the (P)HMC algorithm, the se
ond and the third are exe
utablesto invert the Wilson twisted mass Dira
 operator (4) and the non-degenerateWilson twisted mass Dira
 operator (5), respe
tively. All three do have a widerange of run-time options, whi
h 
an be in
uen
ed using an input �le. Thesyntax of the input �le is explained in the do
umentation whi
h ships with thesour
e 
ode. The relevant input parameters will be mentioned in the followingwhere appropriate, to ease usage.We shall �rstly dis
uss the general layout of the three aforementioned appli-
ations, followed by a general dis
ussion of the parallelisation strategy used inall three of them. 13



3.1 hm
 tmIn �gure 2 the programme 
ow of the hm
 tm exe
utable is depi
ted. In the�rst blo
k the input �le is parsed and parameters are set a

ordingly. Thenthe required memory is allo
ated and, depending on the input parameters,data is read from disk in order to 
ontinue a previous run.The main part of this appli
ation is the mole
ular dynami
s update. For anumber of traje
tories, whi
h must be spe
i�ed in the input �le, �rst a heat-bath is performed, then the integration a

ording to the equations of motionusing the integrator as spe
i�ed in the input �le, and �nally the a

eptan
estep.After ea
h traje
tory 
ertain online measurements are performed, su
h as mea-suring the plaquette value. Other online measurements are optional, like mea-suring the pseudo s
alar 
orrelation fun
tion.3.1.1 
ommand line argumentsThe programme o�ers 
ommand line options as follows:� -h|? prints a help message and exits.� -f input �le name. The default is hm
.input� -o the pre�x of the output �lenames. The default is output. The 
ode willgenerate or append to two �les, output.data and output.para.3.1.2 Input / OutputThe parameters of ea
h run are read from an input �le with default namehm
.input. If it is missing all parameters will be set to their default values.Any parameter not set in the input �le will also be set to its default value.During the run the hm
 tm program will generate two output �les, one 
alledper default output.data, the other one output.para. Into the latter impor-tant parameters will be written at the beginning of the run.The �le output.data has several 
olumns with the following meanings(1) Plaquette value.(2) �H(3) exp(��H)(4) a pair of integers for ea
h pseudo fermion monomial. The �rst integer ofea
h pair is the sum of solver iterations needed in the a

eptan
e and14



Fig. 3. Flow
hart for the main part of the invert and invert doublet exe
utables.heatbath steps, the se
ond is the sum of iterations needed for the for
e
omputation of the whole traje
tory.(5) A

eptan
e (0 or 1).(6) Time in se
onds needed for this traje
tory.(7) Value of the re
tangle part in the gauge a
tion, if used.Every new run will append its numbers to an already existing �le.In addition, the program will 
reate a �le history hm
 tm. This �le providesa mapping between the 
on�guration number and its plaquette and Polyakovloop values. Moreover the simulation parameters are stored there and in 
aseof a reread the time point 
an be found there.After every traje
tory the program will save the 
urrent 
on�guration in the�le 
onf.save.3.2 invert and invert doubletThe two appli
ations invert and invert doublet are very similar. The maindi�eren
e is that in invert the one 
avour Wilson twisted mass Dira
 op-erator is inverted, whereas in invert doublet the non-degenerate doublet isinverted.The main part of the two exe
utables is depi
ted in �gure 3. Ea
h measurement
orresponds to one gauge 
on�guration that is read from disk into memory. Forea
h of these gauge 
on�gurations a number of inversions will be performed.15



The sour
es 
an be either generated or read in from disk. In the former 
asethe programme 
an 
urrently generate point sour
es at random lo
ation inspa
e time. In the latter 
ase the name of the sour
e �le 
an be spe
i�ed inthe input �le.The relevant Dira
 operator is then inverted on ea
h sour
e and the result isstored on disk. The inversion 
an be performed with a number of inversionalgorithms, su
h as 
onjugate gradient (CG), BiCGstab, and others [33℄. Andoptionally even/odd pre
onditioning as des
ribed previously 
an be used.3.2.1 
ommand line argumentsThe two programmes o�er 
ommand line options as follows:� -h|? prints a help message and exits.� -f input �le name. The default is hm
.input� -o the pre�x of the output �lenames. The default is output. The 
ode willgenerate or append to one �le 
alled output.para.3.2.2 OutputThe program will 
reate a �le 
alled output.data with information aboutthe parameters of the run. Of 
ourse, also the propagators are stored on disk.The 
orresponding �le names 
an be in
uen
ed via input parameters. The �leformat is dis
ussed in some detail in sub-se
tion 4.7.One parti
ularity of the invert doublet program is that the propagatorswritten to disk 
orrespond to the two 
avour Dira
 operator of eq. (6), i.e.D0h(��; �Æ) = DW � 1f + i��� 1 + 
5�Æ� 3 ;essentially for 
ompatibility reasons. For the two 
avour 
omponents writtenthe �rst is the would be strange 
omponent and the se
ond one the would be
harm one.3.3 ParallelisationThe whole latti
e 
an be parallelised in up to 4 spa
e-time dire
tions. It is
ontrolled with 
on�gure swit
hes, see se
tion 5.2. The Message Passing In-terfa
e (MPI, standard version 1.1) is used to implement the parallelisation.So for 
ompiling the parallel exe
utables a working MPI implementation isneeded. 16



Depending on the number of parallelised spa
e-time dire
tions the t-dire
tion,the t- and x-dire
tion, the t-, x- and y-dire
tion or the t-, x- and y- andz-dire
tion are parallelised.The number of pro
essors per spa
e dire
tion must be spe
i�ed at run time,i.e. in the input �le. The relevant parameters are NrXPro
s, NrYPro
s andNrZPro
s. The number of pro
essors in time dire
tion is determined by theprogram automati
ally. Note that the extension in any dire
tion must divideby the number of pro
essors in this dire
tion.In 
ase of even/odd pre
onditioning further 
onstraints have to be ful�lled:the lo
al Lz and the lo
al produ
t Lt � Lx � Ly must both be even.
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Fig. 4. Boundary ex
hange in a two dimensional parallel setup. One 
an see that theinternal boundary is send while the external one is re
eived. The 
orners { needed forimplementing improved gauge a
tions like the tree-level Symanzik improved gaugea
tion [34℄ { need a two step pro
edure.The 
ommuni
ation is organised using boundary bu�er, as sket
hed in �gure 4.The MPI setup is 
ontained in the �le mpi init.
. The 
orresponding fun
tionmust be 
alled at the beginning of a main program just after the parametersare read in, also in 
ase of a serial run. In this fun
tion also the variousMPI Datatypes are 
onstru
ted needed for the ex
hange of the boundary �elds.The routines performing the 
ommuni
ation for the various data types arelo
ated in �les starting with x
hange .The 
ommuni
ation is implemented using di�erent types of MPI fun
tions.One implementation uses the MPI Sendre
v fun
tion to 
ommuni
ate thedata. A se
ond one uses non-blo
king MPI fun
tions and a third one persistentMPI 
alls. See the MPI standard for details [35℄. On ma
hines with network 
a-17



pable of sending in several dire
tions in parallel the non-blo
king version is themost eÆ
ient one. The relevant 
on�gure swit
hes are --with-nonblo
kingmpiand --with-persistentmpi, the latter of whi
h is only available for the Dira
operator with halfspinor �elds, see se
tion 4.1.4 Des
ription of the individual software 
omponents4.1 Dira
 OperatorThe Dira
 operator is the kernel routine of any latti
e QCD appli
ation, be-
ause its inverse is needed for the HMC update pro
edure and also for 
om-puting 
orrelation fun
tions. The inversion is usually performed by means ofiterative solvers, like the 
onjugate gradient algorithm, and hen
e the repeatedappli
ation of the Dira
 operator to a spinor �eld is needed. Thus the optimi-sation of this routine deserves spe
ial attention.At some spa
e-time point x the appli
ation of a Wilson type Dira
 operatoris mainly given by�(x) =(m0 + 4r + i�q
5) (x)� 12 4X�=1�Ux;�(r + 
�) (x+ a�̂) + U yx�a�̂;�(r � 
�) (x� a�̂)� (22)where r is the Wilson parameter, whi
h we set to one in the following. Themost 
omputer time 
onsuming part is the nearest neighbour intera
tion part.For this part it is useful to observe that(1� 
�) has only two independent spinor 
omponents, the other two follow trivially.So only two of the 
omponents need to be 
omputed, then to be multipliedwith the 
orresponding gauge �eld U , and then the other two 
omponents areto be re
onstru
ted.The operation in eq. (22) must be performed for ea
h spa
e-time point x. If theloop over x is performed su
h that all elements of � are a

essed sequentially(one output stream), it is 
lear that the elements in  and U 
annot bea

essed sequentially as well. This non-sequential a

ess may lead to seriousperforman
e degradations due to too many 
a
he misses, be
ause modernpro
essing units have only a very limited number of input streams available.While the  �eld is usually di�erent from one to the next appli
ation of18



the Dira
 operator, the gauge �eld stays often the same for a large numberof appli
ations. This is for instan
e so in iterative solvers, where the Dira
operator is applied O(1000) times with �xed gauge �elds. Therefore it is usefulto 
onstru
t a double 
opy of the original gauge �eld sorted su
h that theelements are a

essed exa
tly in the order needed in the Dira
 operator. Forthe pri
e of additional memory, with this simple 
hange one 
an obtain largeperforman
e improvements, depending on the ar
hite
ture. The double 
opymust be updated whenever the gauge �eld 
hange. This feature is available inthe 
ode at 
on�gure time, the relevant swit
h is --with-gauge
opy.Above we were assuming that we run sequentially through the resulting spinor�eld �. Another possibility is to run sequentially through the sour
e spinor �eld . Moreover, one 
ould split up the operation (22) following the standard tri
kof introdu
ing intermediate result ve
tors '� with only two spinor 
omponentsper latti
e site. Con
entrating on the hopping part only, we would have'+(x; �) = P 4!2+� Ux;�(r + 
�) (x)'�(x; �) = P 4!2�� (r � 
�) (x) : (23)From '� we 
an then re
onstru
t the resulting spinor �eld as�(x) =X� P 2!4+� '+(x + a�̂; �)+X� P 2!4�� U yx�a�̂;�'�(x� a�̂; �) (24)Here we denote with P 4!2�� the proje
tion to the two independent spinor 
om-ponents for 1� 
� and with P 2!4�� the 
orresponding re
onstru
tion. The halfspinor �elds '� 
an be interla
ed in memory su
h that  (x) as well as '�(x)are always a

essed sequentially in memory. The same is possible for the gauge�elds, as explained above. So only for � we 
annot avoid strided a

ess. So farwe have only introdu
ed extra �elds '�, whi
h need to be loaded and storedfrom and to main memory, and divided the Dira
 operator into two steps(23) and (24) whi
h are very balan
ed with regard to memory bandwidth and
oating point operations.The advantage of this implementation of the Dira
 operator 
omes in theparallel 
ase. In step (23) we need only elements of  (x), whi
h are lo
allyavailable on ea
h node. So this step 
an be performed without any 
ommu-ni
ation. In between step (23) and (24) one then needs to 
ommuni
ate partof '�, however only half the amount is needed 
ompared to a 
ommuni
ationof  . After the se
ond step there is then no further 
ommuni
ation needed.Hen
e, one 
an redu
e the amount of data to be sent by a fa
tor of two.There is yet another performan
e improvement possible with this form of theDira
 operator, this time for the pri
e of pre
ision. One 
an store the interme-diate �elds '� with redu
ed pre
ision, e.g. in single pre
ision when the regular19



spinor �elds are in double pre
ision. This will lead to a result with redu
edpre
ision, however, in a situation where this is not important, as for instan
e inthe MD update pro
edure, it redu
es the data to be 
ommuni
ated by anotherfa
tor of two. And the required memory bandwidth is redu
ed as well. Thisversion of the hopping matrix (
urrently it is only implemented for the hoppingmatrix) is available at 
on�gure time with the swit
h --enable-halfspinor.The redu
ed pre
ision version (sloppy pre
ision) is available through the inputparameter UseSloppyPre
ision. It will be used in the MD update whereappropriate. Moreover, it is implemented in the CG iterative solver followingthe ideas outlined in Ref. [36℄ for the overlap operator.The various implementations of the Dira
 operator 
an be found in the �leD psi.
 and { as needed for even/odd pre
onditioning { the hopping matrixin the �le Hopping Matrix.
. There are many di�erent versions of these tworoutines available, ea
h optimised for a parti
ular ar
hite
ture, e.g. for theBlue Gene/P double hummer pro
essor or the streaming SIMD extensions ofmodern PC pro
essors (SSE2 and SSE3), see also Ref. [37℄. Martin L�us
herhas made available his standard C and SSE/SSE2 Dira
 operator [38℄ underthe GNU General Publi
 Li
ense, whi
h are partly in
luded into the tmLQCDpa
kage.
4.1.1 Blue Gene VersionThe IBM PowerPC 450d pro
essor used on the Blue Gene ar
hite
ture pro-vides a dual FPU, whi
h supports a set of SIMD operations working on 32spe
ial registers useful for latti
e QCD. These operations 
an be a

essed us-ing build in fun
tions of the IBM XLC 
ompiler. The �le bgl.h 
ontains allma
ros relevant for the Blue Gene version of the hopping matrix and the Dira
operator.A small fra
tion of half spinor version (see above) is given in algorithm 1,whi
h represents the operation '+ = �U P 4!2+0 (1 + 
0) . After loading the
omponents of  into the spe
ial registers and prefet
hing the gauge �eld forthe next dire
tion (in this 
ase 1+ 
1), P 4!2+0 (1+ 
0) is performed. It is thenimportant to load the gauge �eld U only on
e from memory to registers andmultiply both spinor 
omponents in parallel.Finally the result is multiplied with � (whi
h inherits also a phase fa
tor dueto the way we implement the boundary 
onditions, see next sub-se
tion) andstored in memory. 20



Algorithm 1 '+ = �U P 4!2+0 (1 + 
0) 1: // load 
omponents of  into registers2: bgl load rs0((*s).s0);3: bgl load rs1((*s).s1);4: bgl load rs2((*s).s2);5: bgl load rs3((*s).s3);6: // prefet
h gauge �eld for next dire
tion (1 + 
1)7: prefet
h su3(U+1);8: // do now �rst P 4!2+0 (1 + 
0) 9: bgl ve
tor add rs2 to rs0 reg0();10: bgl ve
tor add rs3 to rs1 reg1();11: //now multiply both 
omponents at on
e with gauge �eld U and �12: bgl su3 multiply double((*U));13: bgl ve
tor 
mplx mul double(ka0);14: // store the result15: bgl store reg0 up((*phi[ix℄).s0);16: bgl store reg1 up((*phi[ix℄).s1);4.1.2 Boundary ConditionsAs dis
ussed previously, we allow for arbitrary phase fa
tors in the boundary
onditions of the fermion �elds. This is 
onveniently implemented in the Dira
operator as a phase fa
tor in the hopping termX� �ei���=L� Ux;�(r + 
�) (x + a�̂) + e�i���=L� U yx�a�̂;�(r � 
�) (x� a�̂)� :The relevant input parameters are ThetaT, ThetaX, ThetaY, ThetaZ.4.2 The HMC UpdateWe assume in the following that the a
tion to be simulated 
an be written asS = SG + NmonomialsXi=1 SPFi ;and we 
all { following the CHROMA notation [39℄ { ea
h term in this sum amonomial. We require that there is exa
tly one gauge monomial SG (whi
h weidentify with S0 in the following) and an arbitrary number of pseudo fermionmonomials SPFi .As a data type every monomial must known how to 
ompute its 
ontributionto the initial Hamiltonian H at the beginning of ea
h traje
tory in the heat-bath step. Then it must know how to 
ompute the derivative with respe
t to21



Fig. 5. Data type monomial and its 
omponentsthe gauge �elds for given gauge �eld and pseudo fermion �eld needed for theMD update. And �nally there must be a fun
tion to 
ompute its 
ontributionto the �nal Hamiltonian H0 as used in the a

eptan
e step.In addition for ea
h monomial it needs to be known on whi
h times
ale itshould be integrated. The 
orresponding data type is sket
hed in �gure 5.The general de�nitions for this data type 
an be found in the �le monomial.
.There are several sorts of monomials implemented:� DET: pseudo fermion representation of the (mass degenerate) simple deter-minant det(Q2(�) + �2)� DETRATIO: pseudo fermion representation of the determinant ratiodet(Q2(�) + �2)= det(Q2(�2) + �22)� NDPOLY: polynomial representation of the (possibly non-degenerate) doublet[det(Qnd(��; ��)2)℄1=2 :� GAUGE:�3 Xx 0BB�
0 4X�;�=11��<�f1� ReTr(U1�1x;�;�)g + 
1 4X�;�=1�6=� f1� ReTr(U1�2x;�;�)g1CCA ;The parameter 
1 
an be set in the input �le and 
0 = 1 � 8
1. Note that
1 = 0 
orresponds to the Wilson plaquette gauge a
tion.The 
orresponding spe
i�
 fun
tions are de�ned in the �les det monomial.
,detratio monomial.
, ndpoly monomial.
 and gauge monomial.
. Additional22



Algorithm 2 integrateRequire: 0 < nts � Nts, � > 01: �� = �=noSteps[nts℄2: for i = 0 to noSteps[nts℄ do3: if nts == 1 then4: updateGauge(��)5: else6: integrate(nts � 1, ��)7: end if8: updateMomenta(�� , monomialList[nts℄)9: end formonomials 
an easily be implemented by providing the 
orresponding fun
-tions as dis
ussed above.The integration s
heme is implemented re
ursively, as exempli�ed in algo-rithm 2 for the leap-frog integration s
heme (where we skipped half steps forsimpli
ity). The updateMomenta fun
tion simply 
alls the derivative fun
-tions of all monomials that are integrated on times
ale nts and updates themomenta P a

ording to the time step �� .The re
ursive s
heme for the integration 
an easily be extended to more in-volved integration s
hemes. The details 
an be found in the �le integrator.
.We have implemented the leap-frog and the se
ond order minimal norm [22℄integrations s
hemes. They are named in the input �le as LEAPFROG and 2MN,respe
tively. These two 
an be mixed on di�erent times
ales. In addition wehave implemented a position version of the se
ond order minimal norm inte-gration s
heme, denoted by 2MNPOSITION in the input �le. The latter mustnot be mixed with the former two.The MD update is summarised in algorithm 3. It 
omputes the initial and�nal Hamiltonians and 
alls in between the integration fun
tion with the totalnumber of times
ales Nts and the total traje
tory length � .4.2.1 Redu
ed Pre
ision in the MD UpdateAs shortly dis
ussed previously, as long as the integration in the MD update isreversible and area preserving there is large freedom in 
hoosing the integrations
heme, but also the operator: it is not ne
essary to use the Dira
 operatorhere, it 
an be any approximation to it. This is only useful if the a

eptan
erate is not strongly a�e
ted by su
h an approximation.The 
ode provides two possibilities to adapt the pre
ision of the Dira
 op-erator used in the MD update: the �rst is to redu
e the pre
ision in theinversions needed for the for
e 
omputation. This 
auses redu
ed iteration23



Algorithm 3 MD update1: H = H0 = 02: for i = 0 to Nmonomials do3: H += monomial[i℄!heat-bath-fun
tion4: end for5: integrate(Nts, �)6: for i = 0 to Nmonomials do7: H0 += monomial[i℄!a

eptan
e-fun
tion8: end for9: a

ept with probability minf1; exp(��H)gnumbers needed for the integration of one traje
tory. The relevant input pa-rameter is For
ePre
ision available for ea
h monomial. The pre
ision neededin the a

eptan
e and/or heatbath step 
an be adjusted separately usingA

eptan
ePre
ision. It is advisable to have the a

eptan
e pre
ision al-ways 
lose to ma
hine pre
ision.The se
ond possibility for in
uen
ing the Dira
 operator is given by the re-du
ed pre
ision Dira
 operator des
ribed in sub-se
tion 4.1, whi
h is swit
hedon with the UseSloppyPre
ision input parameter. The two possibilities 
analso be used in parallel.Note that one should always test for reversibility violations as explained insub-se
tion 4.3.4.2.2 Chronologi
al SolverThe idea of the 
hronologi
al solver method, or 
hronologi
al solver guess(CSG) (or similar methods [40℄) is to optimise the initial guess for the solu-tion used in the solver. To this end the history of NCSG last solutions of theequationM2� = � is saved and then a linear 
ombination of the �elds �i with
oeÆ
ients 
i is used as an initial guess for the next inversion. M stands forthe operator to be inverted and has to be repla
ed by the di�erent ratios ofoperators used in this paper.The 
oeÆ
ients 
i are determined by solvingXi �yjM2�i
i = �yj� (25)with respe
t to the 
oeÆ
ients 
i. This is equivalent to minimising the fun
-tional that is minimised by the CG inverter itself.The downside of this method is that the reversibility violations in
rease signif-i
antly by one or two orders of magnitude in the Hamiltonian when the CSGis swit
hed on and all other parameters are kept �xed. Therefore one has to24



adjust the residues in the solvers, whi
h in
reases the number of matrix ve
-tor multipli
ations again. Our experien
e is that the methods des
ribed in theprevious sub-se
tion are more e�e
tive in parti
ular in the 
ontext of multipletime s
ale integration, be
ause the CSG is most e�e
tive for small values of�� .The input parameters is the CSGHistory parameter available for the relevantmonomials. Setting it to zero means no 
hronologi
al solver, otherwise thisparameter spe
i�es the number of last solutions NCSG to be saved.4.3 Online MeasurementsThe HMC program in
ludes the possibility to perform a 
ertain number ofmeasurements after every traje
tory online, whether or not the 
on�gurationis stored on disk. Some of those are performed per default, namely all that arewritten to the output �le output.data:(1) the plaquette expe
tation value, de�ned as:hP i = 16V 4X�;�=1 1��<� ReTr(U1�1x;�;�) ;where V is the global latti
e volume.(2) the re
tangle expe
tation value, de�ned as:hRi = 112V 4X�;�=1 �6=� ReTr(U1�2x;�;�)(3) �H = H0 �H and exp(��H).See the overview se
tion for details about the output.data �le. These observ-ables all 
ome with no extra 
omputational 
ost.Optionally, other online measurements 
an be performed, whi
h { however {need in general extra inversions of the Dira
 operator. First of all the 
ompu-tation of 
ertain 
orrelation fun
tions is implemented. They need one extrainversion of the Dira
 operator, as dis
ussed in Ref. [41℄, using the one-end-tri
k. De�ne a sto
hasti
 sour
e � as followslimR!1[��i �j℄ = Æij; limR!1[�i�j℄ = 0 : (26)Here R labels the number of samples and i all other degrees of freedom. Then[�r�i �rj ℄R =M�1�ik �M�1jk + noise ; (27)25



if � was 
omputed from �rj =M�1jk �rk :Having in mind the 
5-hermiti
ity property of the Wilson and Wilson twistedmass Dira
 propagator Gu;d, i.e.Gu(x; y) = 
5Gd(y; x)y
5it is 
lear that eq. (27) 
an be used to evaluateC�(t) = hTr[Gu(0; t)
5Gd(t; 0)
5℄i = hTr[Gu(0; t)Gu(0; t)y℄iwith only one inversion. But, even if the one gamma stru
ture at the sour
eis �xed to be 
5 due to the 
5-hermiti
ity tri
k, we are still free to insert any
-stru
ture � at the sour
e, i.e. we 
an evaluate any 
orrelation fun
tion ofthe formCP�(t) = hTr[Gu(0; t)
5Gd(t; 0)�℄i = hTr[Gu(0; t)Gu(0; t)y
5�℄i :Useful 
ombinations of 
orrelation fun
tions are hPP i, hPAi and hPV i, withP � = ��
5 ��2 � ; V �� = ��
� ��2 � ; A�� = ��
5
� ��2 �From hPP i one 
an extra
t the pseudo s
alar mass, and { in the twistedmass 
ase { the pseudo s
alar de
ay 
onstant. hPAi 
an be used together withhPP i to extra
t the so 
alled PCAC quark mass and hPV i to measure therenormalisation 
onstant ZV. For details we refer the reader to Ref. [41℄.These online measurements are 
ontrolled with the two following input param-eters: PerformOnlineMeasurements to swit
h them on or o� and to spe
ifythe frequen
y OnlineMeasurementsFreq. The three 
orrelation fun
tions aresaved in �les named onlinemeas.n, where n is the traje
tory number. Every�le 
ontains �ve 
olumns, spe
ifying the type, the operator type and the Eu-
lidean time t. The last two 
olumns are the values of the 
orrelation fun
tionitself, C(t) and C(�t), respe
tively. The type is equal to 1, 2 or 6 for the hPP i,the hPAi and the hPV i 
orrelation fun
tions. The operator type is for onlinemeasurements always equal to 1 for lo
al sour
e and sink (no smearing of anykind), and the time runs from 0 to T=2. Hen
e, C(�t) = C(T � t). C(�0) andC(�T=2) are set to zero for 
onvenien
e.In addition to 
orrelation fun
tions also the minimal and the maximal eigen-values of the (
5D)2 
an be measured.An online measurement not related to physi
s, but related to the algorithmare 
he
ks of reversibility violations. The HMC algorithm is exa
t if and onlyif the integration s
heme is reversible. On a 
omputer with �nite pre
ision thisis only guaranteed up to ma
hine pre
ision. These violations 
an be estimated26



by integrating one traje
tory forward and then ba
kward in Monte Carlo time.The di�eren
e Æ�H among the original Hamiltonian H and the �nal one H00after integrating ba
k 
an serve as one measure for those violations, anotherone is provided by the di�eren
e among the original gauge �eld U and the�nal one U 00 Æ�U = 112V Xx;�Xi;j (Ux;� � U 00x;�)2i;jwhere we indi
ate with the Æ� that this is obtained after integrating a tra-je
tory forward and ba
kward in time. The results for Æ�H and Æ�U arestored in the �le return 
he
k.data. The relevant input parameters areReversibilityChe
k and ReversibilityChe
kInterval.4.4 Iterative Solver and EigensolverThere are several iterative solvers implemented in the tmLQCD pa
kage forsolving D � = �for �. The minimal residual (MR), the 
onjugate gradient (CG), the 
on-jugate gradient squared (CGS), the generalised minimal residual (GMRES),the generalised 
onjugate residual and the stabilised bi-
onjugate gradient(BiCGstab). For details regarding these algorithms we refer to Refs. [33,42℄.For the hm
 tm exe
utable only the CG and the BiCGstab solvers are available,while all the others 
an be used in the invert exe
utables. Most of them areboth available with and without even/odd pre
onditioning. For a performan
e
omparison we refer to Ref. [43,36℄.The stopping 
riterion is implemented in two ways: the �rst is an absolutestopping 
riterion, i.e. the solver is stopped when the squared norm of theresidual ve
tor (depending on the solver this might be the iterated residual orthe real residual) ful�ls krk2 < �2 :The se
ond is relative to the sour
e ve
tor, i.e.krk2k�k2 < �2 :The value of �2 and the 
hoi
e of relative or absolute pre
ision 
an be in
uen
edvia input parameters.The redu
ed pre
ision Dira
 operator, as dis
ussed in sub-se
tion 4.1, is avail-able for the CG solver. In the CG solver the full pre
ision Dira
 operator isonly required at the beginning of the CG sear
h, be
ause the relative size of27



the 
ontribution to the resulting ve
tor de
reases with the number of itera-tions. Thus, as soon as a 
ertain pre
ision is a
hieved in the CG algorithmwe 
an swit
h to the redu
ed pre
ision Dira
 operator without spoiling thepre
ision of the �nal result. We swit
h to the lower pre
ision operator at apre
ision of p� in the CG sear
h, when aiming for a �nal pre
ision of � < 1.We note that in prin
iple any 
ombination of using redu
ed pre
ision in oneof the ways des
ribed in this paper is possible. However, one should always
he
k that the true residual is as small as expe
ted in 
ase of an inversion andthat the reversibility violations are small in 
ase of a HMC simulation.The eigensolver used to 
ompute the eigenvalues (and ve
tors) of (
5D)2 is theso 
alled Ja
obi-Davidson method [44,45℄. For a dis
ussion for the appli
ationof this algorithm to latti
e QCD we refer again to Ref. [43,36℄.All solver related �les 
an be found in the sub-dire
tory solver. Note thatthere are a few more solvers implemented whi
h are, however, in an experi-mental status.4.5 Stout SmearingSmearing te
hniques have be
ome an important tool to redu
e ultraviolet 
u
-tuations in the gauge �elds. One of those te
hniques, 
oming with the advan-tage of being usable in the MD update, is usually 
alled stout smearing [46℄.The (n + 1)th level of stout smeared gauge links is obtained iteratively fromthe nth level by U (n+1)� (x) = eiQ(n)� (x) U (n)� (x):We refer to the unsmeared (\thin") gauge �eld as U� � U (0)� . The SU(3)matri
es Q� are de�ned via the staples C�:Q(n)� (x)= i2�U (n)� (x)C(n)� y(x)� h:
:� � i6 Tr �U (n)� (x)C(n)� y(x)� h:
:� ;C(n)� =X� 6=� ��� �U (n)� (x)U (n)� (x + �̂)U (n)� y(x + �̂)+U (n)� y(x� �̂)U (n)� (x� �̂)U (n)� (x� �̂ + �̂)� ;where in general ��� is the smearing matrix. In the tmLQCD pa
kage we haveonly implemented isotropi
 4-dimensional smearing, i.e., ��� = �.Currently stout smearing is only implemented for the invert exe
utables. I.e.the gauge �eld 
an be stout smeared at the beginning of an inversion. The28



input parameters are UseStoutSmearing, StoutRho and StoutNoIterations.4.6 Random Number GeneratorThe random number generator used in the 
ode is the one proposed by MartinL�us
her and usually known under the name RANLUX [47℄. A single and doublepre
ision implementation was made available by the author under the GNUGeneral Publi
 Li
ense and 
an be downloaded [48℄. For 
onvenien
e it is alsoin
luded in the tmLQCD pa
kage.4.7 IO FormatsIn this �nal subse
tion we spe
ify the IO formats used to store gauge 
on�g-urations, propagators and sour
es to disk.4.7.1 Gauge Con�gurationsFor gauge 
on�gurations we use the International Latti
e Data Grid (ILDG)standard as spe
i�ed in Ref. [49,50℄. As the lime pa
kaging library [51℄ andILDG standard allow additional { not required { re
ords to be stored withinthe �le, we 
urrently add the following two re
ords for 
onvenien
e:(1) xlf-info: useful information about the gauge 
on�guration, su
h as theplaquette value, and about the run and the algorithm and the 
ode versionused to generate it.(2) s
ida
-
he
ksum: SCIDAC 
he
ksum of the gauge 
on�guration. For thespe
i�
ation see [52℄.The gauge 
on�gurations 
an be written to disk either in single or doublepre
ision. The relevant input parameter is GaugeConfigWritePre
ision. Onreadin the pre
ision is determined automati
ally.Note that the gauge 
on�guration does not depend on the parti
ular 
hoi
eof the 
-matri
es.4.7.2 PropagatorsWe note at the beginning, that we do not use di�erent IO formats for sour
eor sink fermion �elds. They are both stored using the same lime re
ords.The meta-data stored in the same lime-pa
ked �le is supposed to 
larify all29



other things. It is also important to realise that the propagator depends onthe 
-matrix 
onvention used in the Dira
 operator. For our 
onvention seeappendix A.Here we mainly 
on
entrate on storing propagators (sink). The �le 
an 
ontainonly sour
es, or both, sour
e and sink. We (plan to) support four di�erentformats(1) (arbitrary number of) sink, no sour
es(2) (arbitrary number of) sour
e/sink pairs(3) one sour
e, 12 sink(4) one sour
e, 4 sinkThis is very similar to the formats in use in parts of the US latti
e 
ommunity.We adopt the SCIDAC 
he
ksum [52℄ for the binary data.Sour
e and sink binary data has to be in a separate lime re
ord. The order inone �le for the four formats mentioned above is supposed to be(1) sink, no sour
es: -(2) sour
e/sink pairs: �rst sour
e, then sink(3) one sour
e, 12 sink: �rst sour
e, then 12 sinks(4) one sour
e, 4 sink: �rst sour
e, then 4 sinksAll fermion �eld �les must have a re
ord indi
ating its type. The re
ord itselfis of type propagator-type and the re
ord has a single entry (ASCII string)whi
h 
ontains one of� Dira
Fermion Sink� Dira
Fermion Sour
e Sink Pairs� Dira
Fermion S
alarSour
e TwelveSink� Dira
Fermion S
alarSour
e FourSinkThose strings are also used in the input �les for the input parameter PropagatorType.The binary data 
orresponding to one Dira
 fermion �eld (sour
e or sink) isthen stored with at least two (three) re
ords. The �rst is of typeetm
-propagator-formatand 
ontains the following information:<?xml version="1.0" en
oding="UTF-8"?><etm
Format><field>dira
Fermion</field><pre
ision>32</pre
ision><flavours>1</flavours><lx>4</lx><ly>4</ly> 30



<lz>4</lz><lt>4</lt></etm
Format>The flavours entry must be set to 1 for a one 
avour propagator (
avour diag-onal 
ase) and to 2 for a two 
avour propagator (
avour non-diagonal 2-
avouroperator). In the former 
ase there follows one re
ord of type s
ida
-binary-data,whi
h is identi
al to the SCIDAC format, 
ontaining the fermion �eld. In thelatter 
ase there follow two of su
h re
ords, the �rst of whi
h is the upper
avour. To be pre
ise, lets 
all the two 
avours s (strange) and 
 (
harm).Then we always store the s 
omponent �rst and then the 
 
omponent.The �rst two types are by now supported in the tmLQCD pa
kage. In thefuture the other two might follow.The indi
es (time, spa
e, spin, 
olour) in the binary data s
ida
-binary-dataare in the following order: t; z; y; x; s; 
 ;where t is the slowest and 
olour the fastest running index. The binary datais stored big endian and either in single or in double pre
ision, depending onthe pre
ision entry in the etm
-propagator-format re
ord.In addition we store an additional re
ord 
alled inverter-info with usefulinformation about the inversion pre
ision, the physi
al parameters and the
ode version.4.7.3 Sour
e FieldsSour
e �elds are, as mentioned before, stored with the same binary data for-mat. There are again several types of sour
e �les possible:� Dira
Fermion Sour
e� Dira
Fermion S
alarSour
e� Dira
Fermion FourS
alarSour
e� Dira
Fermion TwelveS
alarSour
eThis type is stored in a re
ord 
alled sour
e-type in the lime �le. Theremight be several sour
es stored within the same �le. We add a format re
ordetm
-sour
e-format looking like<?xml version="1.0" en
oding="UTF-8"?><etm
Format><field>dira
Fermion</field><pre
ision>32</pre
ision><flavours>1</flavours> 31



<lx>4</lx><ly>4</ly><lz>4</lz><lt>4</lt><spin>4</spin><
olour>3</
olour></etm
Format>with obvious meaning for every s
ida
-binary-data re
ord within the limepa
ked �le. This format re
ord also allows to store a subset of the whole �eld,e.g. a time-sli
e.5 Installation instru
tionsThe software ships with a GNU auto
onf environment and a 
on�gure s
ript,whi
h will generate GNU Make�les to build the programmes. It is supportedand re
ommended to 
on�gure and build the exe
utables in a separate builddire
tory. This also allows to have several builds with di�erent options fromthe same sour
e 
ode dire
tory.5.1 PrerequisitesIn order to 
ompile the programmes the LAPACK [53℄ library (Fortran ver-sion) needs to be installed. In addition it must be known whi
h linker op-tions are needed to link against LAPACK, e.g. -Lpath-to-lapa
k -llapa
k-lblas. Also a the latest version (tested is version 1.2.3) of C-LIME [51℄ mustbe available, whi
h is used as a pa
kaging s
heme to read and write gauge
on�gurations and propagators to �les.5.2 Con�guring the tmLQCD pa
kageIn order to get a simple 
on�guration of the hm
 pa
kage it is enough to justtypepat
h-to-sr
-
ode/
onfigure --with-lime=<path-to-lime> \--with-lapa
k=<linker-flags> CC=<my

> \F77=<myf77> CFLAGS=<
-
ompiler flags>in the build dire
tory. If CC, F77 and CFLAGS are not spe
i�ed, 
onfigurewill guess them. 32



The 
ode was su

essfully 
ompiled and run at least on the following platforms:i686 and 
ompatible, x64 and 
ompatible, IBM Regatta systems, IBM BlueGene/L, IBM Blue Gene/P, SGI Altix and SGI PC 
lusters and powerp

lusters.The 
on�gure s
ript a

epts 
ertain options to in
uen
e the building pro
e-dure. One 
an get an overview over all supported options with 
onfigure--help. There are enable|disable options swit
hing on and o� optional fea-tures and with|without swit
hes usually related to optional pa
kages. In thefollowing we des
ribe the most important of them (
he
k 
onfigure --helpfor the defaults and more options):� --enable-mpi:This option swit
hes on the support for MPI. On 
ertain platforms it auto-mati
ally 
hooses the 
orre
t parallel 
ompiler or sear
hes for a 
ommandmpi

 in the sear
h path.� --enable-p4:Enable the use of spe
ial Pentium4 instru
tion set and 
a
he management.� --enable-opteron:Enable the use of spe
ial opteron instru
tion set and 
a
he management.� --enable-sse2:Enable the use of SSE2 instru
tion set. This is a huge improvement onPentium4 and equivalent systems.� --enable-sse3:Enable the use of SSE3 instru
tion set. This will give another 20% ofspeedup when 
ompared to only SSE2. However, only a few pro
essors are
apable of SSE3.� --enable-gauge
opy:See se
tion 4.1 for details on this option. It will in
rease the memory re-quirement of the 
ode.� --enable-halfspinor:If this option is enabled the Dira
 operator using half spinor �elds is used.See sub-se
tion 4.1 for details. If this feature is swit
hed on, also the gauge
opy feature is swit
hed on automati
ally.� --with-mpidimension=n:This option has only e�e
t if the 
ode is 
on�gured for MPI usage. Thenumber of parallel dire
tions 
an be spe
i�ed. 1,2,3 and 4 dimensional par-allelisation is supported.� --with-lapa
k="<linker flags>":the 
ode requires lapa
k to be linked. All linker 
ags ne
essary to do somust be spe
i�ed here. Note that LIBS="..." works similar.� --with-limedir=<dir>:Tells 
on�gure where to �nd the lime pa
kage, whi
h is required for thebuild of the HMC. It is used for the ILDG �le format.33



TR0 TR1 TR2input-�le sample-hm
0.input sample-hm
2.input sample-hm
3.inputL3 � T 43 � 4 43 � 4 43 � 4SG Wilson TlSym Iwasaki� 6:0 3:3 1:95� 0:177 0:17 0:1632602��q 0:177 0:01 0:0027409612��� � 0:1105 �2��� � 0:0935 �hP i 0:62457(7) 0:53347(17) 0:5951(2)hRi � 0:30393(22) 0:3637(3)Table 1Parameter and results for three sample input �les as provided with the 
ode.The 
on�gure s
ript will guess at the very beginning on whi
h platform thebuild is done. In 
ase this fails or a 
ross 
ompilation must be performed pleaseuse the option --host=HOST. For instan
e in order to 
ompile for the BG/Pone needs to spe
ify --host=pp
-ibm-bprts --build=pp
64-ibm-linux.For 
ertain ar
hite
tures like the Blue Gene systems there are README.ar
h�les in the top sour
e dire
tory with example 
on�gure 
alls.5.3 Building and InstallingAfter su

essfully 
on�guring the pa
kage the 
ode 
an be build by simplytyping make in the build dire
tory. This will 
ompile the standard exe
utables.Typing make install will 
opy these exe
utables into the install dire
tory.The default install dire
tory is $HOME/bin, whi
h 
an be in
uen
ed e.g. withthe --prefix option to 
onfigure.6 Test run des
riptionThe sour
e 
ode ships with a number of sample input �les. They are lo
atedin the sample-input sub-dire
tory. They are small volume V = 44 test runsdesignated to measure for instan
e the average plaquette values.Su
h a test-run 
an be performed for instan
e on a s
alar ma
hine by typing34



./hm
 tm -f sample-hm
0.input .Depending on the environment you are running in, you may need to adjustthe input parameters to mat
h the maximal run-time and so on. The expe
tedaverage plaquette values are quoted in table 1 and also in the sample input�les.
6.1 Ben
hmark Exe
utableAnother useful test exe
utable is a ben
hmark 
ode. It 
an be build by typingmake ben
hmark and it will, when run, measure the performan
e of the Dira
operator. It 
an be run in the serial or parallel 
ase. It reads its input from a�le ben
hmark.input and the relevant input parameters are the following:L = 4T = 4NrXPro
s = 2NrYPro
s = 2NrZPro
s = 2UseEvenOdd = yesUseSloppyPre
ision = noIn 
ase of even/odd pre
onditioning the performan
e of the hopping matrix isevaluated, in 
ase of no even/odd the performan
e of the Dira
 operator. Theimportant part of the output of the 
ode is as follows[...℄(1429 Mflops [64 bit arithmeti
℄)
ommuni
ation swit
hed off(2592 Mflops [64 bit arithmeti
℄)The size of the pa
kage is 36864 ByteThe bandwidth is 662.91 + 662.91 MB/se
The bandwidth is not measured dire
tly but 
omputed from the performan
edi�eren
e among with and without 
ommuni
ation and the pa
kage size. In
ase of a serial run the output is obviously redu
ed.35
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A 
 and Pauli Matri
esIn the following we spe
ify our 
onventions for 
- and Pauli-matri
es.A.1 
-matri
esWe use the following 
onvention for the Dira
 
-matri
es:

0 = 0BBBBBBBB� 0 0 �1 00 0 0 �1�1 0 0 00 �1 0 0

1CCCCCCCCA ; 
1 = 0BBBBBBBB� 0 0 0 �i0 0 �i 00 +i 0 0+i 0 0 0
1CCCCCCCCA ;


2 = 0BBBBBBBB� 0 0 0 �10 0 +1 00 +1 0 0�1 0 0 0
1CCCCCCCCA ; 
3 = 0BBBBBBBB� 0 0 �i 00 0 0 +i+i 0 0 00 �i 0 0

1CCCCCCCCA :
In this representation 
5 is diagonal and reads


5 = 0BBBBBBBB�+1 0 0 00 +1 0 00 0 �1 00 0 0 �1
1CCCCCCCCA :

A.2 Pauli-matri
esFor the Pauli-matri
es a
ting in 
avour spa
e we use the following 
onvention:1f = 0B�1 00 11CA ; � 1 = 0B�0 11 01CA ; � 2 = 0B�0 �ii 0 1CA ; � 3 = 0B�1 00 �11CA39



B Even/Odd Pre
onditioningB.1 HMC UpdateIn this se
tion we des
ribe how even/odd [30,31℄ pre
onditioning 
an be usedin the HMC algorithm in presen
e of a twisted mass term. Even/odd pre
on-ditioning is implemented in the tmLQCD pa
kage in the HMC algorithm aswell as in the inversion of the Dira
 operator, and 
an be used optionally.We start with the latti
e fermion a
tion in the hopping parameter represen-tation in the �-basis written asS[�; ��; U ℄ =Xx 8<:��(x)[1 + 2i��
5� 3℄�(x)� ���(x) 4X�=1�U(x; �)(r + 
�)�(x + a�̂)+ U y(x� a�̂; �)(r � 
�)�(x� a�̂)�9=;�Xx;y ��(x)Mxy�(y) (B.1)
similar to eq. (4). For 
onvenien
e we de�ne ~� = 2��. Using the matrix Mone 
an de�ne the hermitian (two 
avour) operator:Q � 
5M = 0B�Q+ Q�1CA (B.2)where the sub-matri
es Q� 
an be fa
torised as follows (S
hur de
omposition):Q� = 
50B�1� i~�
5 MeoMoe 1� i~�
51CA = 
50B�M�ee MeoMoe M�oo1CA= 0B�
5M�ee 0
5Moe 11CA0B�1 (M�ee)�1Meo0 
5(M�oo �Moe(M�ee)�1Meo)1CA : (B.3)
Note that (M�ee)�1 
an be 
omputed to be(1� i~�
5)�1 = 1� i~�
51 + ~�2 : (B.4)40



Using det(Q) = det(Q+) det(Q�) the following relation 
an be deriveddet(Q�) / det(Q̂�)Q̂� = 
5(M�oo �Moe(M�ee)�1Meo) ; (B.5)where Q̂� is only de�ned on the odd sites of the latti
e. In the HMC algorithmthe determinant is sto
hasti
ally estimated using pseudo fermion �elds �o:det(Q̂+Q̂�) = Z D�oD�yo exp(�SPF)SPF � �yo �Q̂+Q̂���1 �o ; (B.6)where the �elds �o are de�ned only on the odd sites of the latti
e. In orderto 
ompute the for
e 
orresponding to the e�e
tive a
tion SPF we need thevariation of SPF with respe
t to the gauge �elds (using Æ(A�1) = �A�1ÆAA�1):ÆSPF = �[�yo(Q̂+Q̂�)�1ÆQ̂+(Q̂+)�1�o + �yo(Q̂�)�1ÆQ̂�(Q̂+Q̂�)�1�o℄= �[XyoÆQ̂+Yo + Y yo ÆQ̂�Xo℄ (B.7)with Xo and Yo de�ned on the odd sides asXo = (Q̂+Q̂�)�1�o; Yo = (Q̂+)�1�o = Q̂�Xo ; (B.8)where (Q̂�)y = Q̂� has been used. The variation of Q̂� readsÆQ̂� = 
5 ��ÆMoe(M�ee)�1Meo �Moe(M�ee)�1ÆMeo� ; (B.9)and one �nds ÆSPF = �(XyÆQ+Y + Y yÆQ�X)= �(XyÆQ+Y + (XyÆQ+Y )y) (B.10)where X and Y are now de�ned over the full latti
e asX = 0B��(M�ee)�1MeoXoXo 1CA ; Y = 0B��(M+ee)�1MeoYoYo 1CA : (B.11)In addition ÆQ+ = ÆQ�;M yeo = 
5Moe
5 and M yoe = 
5Meo
5 have been used.Sin
e the bosoni
 part is quadrati
 in the �o �elds, the �o are generated atthe beginning of ea
h mole
ular dynami
s traje
tory with�o = Q̂+ro; (B.12)where ro is a random spinor �eld taken from a Gaussian distribution withnorm one. 41



B.1.1 Mass non-degenerate 
avour doubletEven/odd pre
onditioning 
an also be implemented for the mass non-degenerate
avour doublet Dira
 operator Dh eq. (5). DenotingQh = 
5Dhthe even/odd de
omposition is as followsQh = 0B�(
5 + i��� 3 � ��� 1) QheoQhoe (
5 + i��� 3 � ��� 1)1CA= 0B�Qhee 0Qhoe 01CA � 0B�1 (Qhee)�1Qeo0 Qhoo 1CA (B.13)
where Qhoo is given in 
avour spa
e byQhoo = 
50B�1 + i��
5 � Moe(1�i��
5)Meo1+��2���2 ��� �1 + MoeMeo1+��2���2���� �1 + MoeMeo1+��2���2� 1� i��
5 � Moe(1�i��
5)Meo1+��2���2 1CAwith the previous de�nitions of Meo et
. The implementation for the PHMCis very similar to the mass degenerate HMC 
ase.B.2 InversionIn addition to even/odd pre
onditioning in the HMC algorithm as des
ribedabove, it 
an also be used to speed up the inversion of the fermion matrix. Dueto the fa
torisation (B.3) the full fermion matrix 
an be inverted by invertingthe two matri
es appearing in the fa
torisation0B�M�ee MeoMoe M�oo1CA�1 = 0B�1 (M�ee)�1Meo0 (M�oo �Moe(M�ee)�1Meo)1CA�10B�M�ee 0Moe 11CA�1 :The two fa
tors 
an be simpli�ed as follows:0B�M�ee 0Moe 11CA�1 = 0B� (M�ee)�1 0�Moe(M�ee)�1 11CA42



and 0B�1 (M�ee)�1Meo0 (M�oo �Moe(M�ee)�1Meo)1CA�1=0B�1 �(M�ee)�1Meo(M�oo �Moe(M�ee)�1Meo)�10 (M�oo �Moe(M�ee)�1Meo)�1 1CA :The 
omplete inversion is now performed in two separate steps: �rst 
omputefor a given sour
e �eld � = (�e; �o) an intermediate result ' = ('e; 'o) by:0B�'e'o1CA = 0B�M�ee 0Moe 11CA�10B��e�o1CA = 0B� (M�ee)�1�e�Moe(M�ee)�1�e + �o1CA :This step requires only the appli
ation ofMoe and (M�ee)�1, the latter of whi
his given by eq. (B.4). The �nal solution  = ( e;  o) 
an then be 
omputedwith0B� e o1CA = 0B�1 (M�ee)�1Meo0 (M�oo �Moe(M�ee)�1Meo)1CA�10B�'e'o1CA = 0B�'e � (M�ee)�1Meo o o 1CA ;where we de�ned  o = (M�oo �Moe(M�ee)�1Meo)�1'o :Therefore, the only inversion that has to be performed numeri
ally is the oneto generate  o from 'o and this inversion involves only an operator that isbetter 
onditioned than the original fermion operator.Even/odd pre
onditioning 
an also be used for the mass non-degenerate Dira
operator Dh eq. (5). The 
orresponding equations follow immediately from theprevious dis
ussion and the de�nition from eq. (B.13).C Initialising the PHMCThe fun
tion 1=ps in the interval [�; 1℄ 
an be approximated using polyno-mials or rational fun
tions of di�erent sorts. In the tmLQCD pa
kage we useChebyshe� polynomials, whi
h are easy to 
onstru
t. They 
an be 
onstru
tedas to provide a desired overall pre
ision in the interval [�; 1℄.As dis
ussed in sub-se
tion 2.3, the roots of the polynomial Pn;� are neededfor the evaluation of the for
e. Even though the roots 
ome in 
omplex 
onju-43



gate pairs, for our 
ase the roots 
annot be 
omputed analyti
ally, hen
e weneed to determine them numeri
ally. Su
h an evaluation requires usually highpre
ision. This is why these roots need to be determined before a PHMC runusing an external program, i.e. they 
annot be 
omputed at the beginning ofa run in the hm
 tm program.Su
h an external program ships with the tmLQCD 
ode, whi
h is lo
ated inthe util/laguere dire
tory 2 . It is based on Laguerre's method and uses theClass Library for Numbers (CLN) [54℄, whi
h provides arbitrary pre
ision datatypes. In order to 
ompute roots the CLN library must be available, whi
h isfree software.Taking for granted that the CLN library is available, the pro
edure for 
om-puting the roots is as follows: assuming the non-degenerate Dira
 operatorhas eigenvalues in the interval [~smin; ~smax℄, i.e. � = ~smin=~smax, and the poly-nomial degree is n. Edit the �le 
hebyRoot.H and set the variable EPSILONto the value of �. Moreover, set the variable MAXPOW to the degree n. Adaptthe Makefile to your lo
al installation and 
ompile the 
ode by typing make.After running the ChebyRoot program su

essfully, you should �nd two �lesin the dire
tory(1) Square root BR roots.dat:whi
h 
ontains the roots of the polynomial in bit-reverse order [24℄.(2) normierungLo
al.dat:whi
h 
ontains a normalisation 
onstant.Copy these two �les into the dire
tory where you run the 
ode and adjust theinput parameters to mat
h exa
tly the values used for the root 
omputation.I.e. the input parameters StildeMin, StildeMax and DegreeOfMDPolynomialmust be set appropriately in the NDPOLY monomial.The minimal and maximal eigenvalue of the non-degenerate 
avour doublet
an be 
omputed as an online measurement. The frequen
y 
an be spe
i�edin the NDPOLY monomial with the input parameter ComputeEVFreq and theyare written to the �le 
alled phm
.data. Note that this is not a 
heap oper-ation in terms of 
omputer time. However, if the approximation interval ofthe polynomial is 
hosen wrongly the algorithm performan
e might deterio-rate drasti
ally, in parti
ular if the upper bound is set wrongly. It is thereforeadvisable to introdu
e some se
urity measure in parti
ular in the value of ~smax.
2 We thank Istvan Montvay for providing us with his 
ode.44
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