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one or optionally any even number of proessors. Tested with up to 32768 proes-sors.Keywords: Hybrid Monte Carlo algorithm; Lattie QCD;PACS: 11.15.-q, 11.15.Ha, 11.38.-t, 11.38.GClassi�ation: 11.5 Quantum Chromodynamis, Lattie Gauge TheoryExternal routines/libraries: LAPACK [1℄ and LIME [2℄ library.Nature of problem:Quantum Chromodynamis.Solution method:Markov Chain Monte Carlo using the Hybrid Monte Carlo algorithm with masspreonditioning and multiple time sales [3℄. Iterative solver for large systems oflinear equations.Restritions:Restrited to an even number of (not neessarily mass degenerate) quark avoursin the Wilson or Wilson twisted mass formulation of lattie QCD.Additional omments:none.Running time:Depending on the problem size, the arhiteture and the input parameters from afew minutes to weeks.Referenes:[1℄ http://www.netlib.org/lapak/.[2℄ USQCD, http://usqd.jlab.org/usqd-dos/-lime/.[3℄ C. Urbah, K. Jansen, A. Shindler and U. Wenger, Comput. Phys. Commun.174, 87 (2006).
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LONG WRITE-UP1 IntrodutionThis ontribution to the anniversary issue of CPC deals with the strong forein Partile Physis. The strong fore is presumably the least well understoodfundamental interation between elementary partiles. It is responsible for theexistene of protons and neutrons, or more generally all nulei, as bound states.The onstituents of the nulei are the quarks and gluons as the fundamentalpartiles. It is interesting to observe that the energy (mass) of a proton has asize of about 1GeV while the mass of the two onstituent up and down quarksis at the order of only a few MeV. Hene, the by far biggest ontribution tothe proton mass is pure binding energy.This shows already that a desription of the proton in terms of the underlyingquark and gluon degrees of freedom must be highly non-trivial. The model thatis believed to provide a theoretial framework for the strong interation andshould give suh a desription is Quantum Chromodynamis (QCD). Althoughthis theory an be written in a very ompat mathematial form, it is a highlynon-linear theory that does not allow for a losed analytial solution.However, and rather fortunately, QCD an be reformulated in suh a waythat omputational physis methods an be applied to alulate propertiesof QCD from �rst priniples and without relying on approximations. In thisapproah, spae and time are rendered disrete and a lattie spaing a isintrodued. Thus, a 4-dimensional spae-time lattie is onsidered and thequark and gluon degrees of freedom are plaed on the lattie points or onso-alled links that onnet lattie points. In this way one obtains a modelof \quark" spins, whih are oupled to nearest neighbours only, very muhreminisent of an Ising model in statistial physis. Indeed, the methods ofstatistial physis, namely the evaluation of the partition funtion by meansof numerial simulations using Monte Carlo methods employing importanesampling, are the key to address QCD on the 4-dimensional lattie, whih wewill refer to as lattie QCD (LQCD).Although the onepts to treat LQCD numerially are very lear, the problemhas an intrinsially extremely high omputational demand. The ruial fatoris that in the end the introdued disretisation has to be removed again. Ifwe onsider a lattie with say, L = 3 fm linear extent and a lattie spaing ofa = 0:1 fm then we would have to use N = 3=0:1 = 30 lattie points in onediretion. Sine we are dealing with a 4-dimensional problem, we need hene304 lattie points for suh a more or less reasonable physial situation. Simu-lations on suh a lattie require in LQCD already several Teraops. Keeping3
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0 (b)Fig. 1. Computer resoures needed to generate 1000 independent on�gurations ofsize 243 � 40 at a lattie spaing of about 0:08 fm with pure Wilson fermions inunits of Tops � years as a funtion of mPS=mV. In (a) we show the predition ofRef. [1℄ from the 2001 lattie onferene in Berlin (hene titled \Berlin Wall"). In(b) we ompare to the formula of Ref. [1℄ (solid line) with the performane of thealgorithm desribed in this paper and �rst published in Ref. [2℄. The dashed line isto guide the eye. The sale of the vertial axis hanges by about a fator of 1=50from (a) to (b). In (a) and (b) the arrow indiates the physial pion to rho mesonmass ratio. Note that all the ost data were saled to math a lattie time extendof T = 40.L = 3 fm �xed and dereasing the lattie spaing to remove the disretisationby, say, a fator of two inreases the ost of the simulation already by a fator24. As this would not be worse enough, the used algorithms ontribute anotherfator of 2(2�3). Hene, going to really �ne disretisations where the e�ets ofthe non-zero lattie spaing an safely be negleted or at least a ontrolledextrapolation to zero values of the lattie spaing an be performed is an ex-tremely demanding omputational hallenge whih will �nally require at leastPetaops omputing, an area of omputing power we are realising today.However, even with the advent of Petaops omputers, the goal of \solving"QCD on a lattie would be ompletely out of reah without some algorithmiimprovements that were invented in reent years. This is shown in �g. 1. Inthe left panel of the graph, the number of Teraops years for a ertain typialsimulation is shown as a funtion of the ratio of two meson masses, the pseudosalar and the vetor meson. The graph derives from the known ost of theused algorithm in the year 2001 [1℄.It is important to realise that the meson mass ratio used in �g. 1 assumes avalue of about 0.2 in nature as measured in experiments, whih is indiatedby the arrow in both panels of �g. 1. The �gure learly demonstrates the4



strongly growing ost of the simulations when the real physial situation isto be reahed. In fat, simulations diretly at the physial value of this massratio were impossible in 2001. The right panel of the graph demonstrates thehange of the situation when algorithmi improvements are used as the onesdesribed in this artile. In fat, the simulation osts shown in the right panelof �g. 1 originate from diret performane measurements of the ode that isdesribed here. As the �gure demonstrates, although the simulations at thephysial value of the meson mass ratio are still rather demanding, they beomelearly realisti with todays Petaops systems. There are other approahes toimprove the HMC algorithmwith similar results [3,4,5,6,7,8℄. Very promising isthe reent additional improvement using inexat deation presented in Ref. [9℄.The algorithmi improvements provided therefore a tremendous gain openinga way for simulations in LQCD that were unthinkable a few years ago. Itis preisely the goal of this ontribution to desribe one programme versionof the underlying Hybrid Monte Carlo (HMC) algorithm where a number ofsuh improvements have been inorporated and to make the orrespondingode publily available. The urrent version of the ode and future updatesan be downloaded from the web [10℄.
2 Theoretial bakground2.1 QCD on a lattieQuantum Chromodynamis on a hyper-ubi Eulidean spae-time lattie ofsize L3 � T with lattie spaing a is formally desribed by the ationS = SG[U ℄ + a4Xx � D[U ℄  (1)with SG some suitable disretisation of the the Yang-Mills ation F 2��=4 [11℄.The partiular implementation we are using an be found below in setion 4.2and onsists of plaquette and retangular shaped Wilson loops with partiu-lar oeÆients. D is a disretisation of the Dira operator, for whih Wilsonoriginally proposed [12℄ to use the so alled Wilson Dira operatorDW [U ℄ = 12 h� �r� +r���� ar��r�i (2)5



with r� and r�� the forward and bakward gauge ovariant di�erene opera-tors, respetively:r� (x) = 1a�U(x; x + a�̂) (x + a�̂)�  (x)� ;r�� (x) = 1a� (x)� U y(x; x� a�̂) (x� a�̂)� ; (3)where we denote the SU(3) link variables by Ux;�. We shall set a � 1 inthe following for onveniene. Disretising the theory is by far not a uniqueproedure. Instead of Wilson's original formulation one may equally well hosethe Wilson twisted mass formulation and the orresponding Dira operator [13℄Dtm = (DW [U ℄ +m0) 1f + i�q5� 3 (4)for a mass degenerate doublet of quarks. We denote by m0 the bare (Wilson)quark mass, �q is the bare twisted mass parameter, � i the i-th Pauli matrix and1f the unit matrix ating in avour spae (see appendix A for our onvention).In the framework of Wilson twisted mass QCD only avour doublets of quarksan be simulated, however, the two quarks do not need to be degenerate inmass. The orresponding mass non-degenerate avour doublet reads [14℄Dh(��; ��) = DW 1f + i��5� 3 + ��� 1 : (5)Note that this notation is not unique. Equivalently { as used in Ref. [15℄ { onemay write D0h(��; �Æ) = DW � 1f + i5��� 1 + �Æ� 3 ; (6)whih is related to Dh by D0h = (1+ i� 2)Dh(1� i� 2)=2 and (��; �Æ)! (��;���).2.2 The Hybrid Monte Carlo AlgorithmFor the purpose of introduing the Hybrid Monte Carlo (HMC) algorithmwe shall onsider only the Wilson twisted mass formulation of lattie QCDwith oneq doublet of mass degenerate quarks with bare quark mass m0 andbare twisted mass �q. The extension to more than one avour doublet ofquarks is straightforward. The orresponding polynomial HMC algorithm usedfor simulating the mass non-degenerate avour doublet is disussed in thefollowing sub-setion.After integrating out the Grassmann valued fermion �elds, in lattie QCD oneneeds to evaluate the integralZ DU det(QyQ) e�SG ; (7)6



by Markov Chain Monte Carlo methods with some disretisation of the Yang-Mills gauge ation SG andQ � 5DW[U ℄ + 5m0 + i�q ; (8)with the Wilson-Dira operator DW of eq. (2). Note that Q ats now on oneavour only. The determinant an be re-expressed using omplex valued, so-alled pseudo fermion �elds � and �ydet(Q2) / Z D� D�y e�(Q�1�;Q�1�) (9)where SPF � jQ�1�j2 is alled the pseudo fermion ation. The HMC algo-rithm [16℄ is then de�ned by introduing traeless hermitian momenta Px;�(onjugate to the fundamental �elds Ux;�) and a HamiltonianH(U; P ) =Xx;� 12Tr[P 2x;�℄ + SG[U ℄ + SPF[U ℄ : (10)Given H, the algorithm is omposed out of a moleular dynamis update ofthe �elds (U; P ) ! (U 0; P 0) and a Metropolis aept/rejet step with respetto H using the aeptane probabilityPa = min(1; exp (H(U 0; P 0)�H(U; P )) : (11)While the momenta P are generated at the beginning of a trajetory { in theso alled heat-bath step { randomly from a Gaussian distribution, the pseudofermion �elds � are generated by �rst generating random �elds r and then� = Qrsuh that expf�(Q�1�;Q�1�)g = expfryrg. Note that the pseudo fermion�elds are not evolved during the moleular dynamis part of the HMC algo-rithm.2.2.1 Moleular Dynamis UpdateIn the moleular dynamis (MD) part of the HMC algorithm the momentaand gauge �elds are updated orresponding to the Hamiltonian equations ofmotion dd� Px;� = �F (x; �) ;dd� Ux;� = Px;�Ux;� (12)with respet to a �titious omputer time � and fores F whih are obtainedby di�erentiating the ation with respet to the gauge �elds U , and takes7



values in the Lie algebra of SU(3). The di�erentiation DU of some funtionf(U) is de�ned as DaUf(U) = ���f(ei�taU)j�=0 ;where ta are the generators of su(3).Sine these equations an in general not be integrated analytially, one usesnumerial integration methods, whih must be area preserving and reversible.Symmetrised sympleti integrators ful�l these requirements with the simplestexample being the leap-frog algorithm. The basi disrete update steps withintegration step size �� of the gauge �eld and the momenta an be de�ned asTU(��) : U ! U 0 = exp (i��P )U ;TS(��) : P ! P 0 = P � i��F : (13)The leap-frog algorithm is then obtained by sequential appliation ofT = TS(��=2) TU(��) TS(��=2) ;i.e. for a trajetory of length � one needs to apply TNMD with NMD = �=�� .2.2.2 Preonditioning and Multiple Time SalesPreonditioning is usually performed by fatorisingdet(QyQ) = det(Ry1R1) � det(Ry2R2) � � �det(RynRn) (14)with suitably hosen R1; R2; : : : Rn. Then For every Ri a separate pseudofermion �eld �i is introdued, suh that the Hamiltonian readsH(U; P ) =Xx;� 12Tr[P 2x;�℄ + SG[U ℄ + nXi=1 SPFi : (15)and the equations of motion are hanged todd� Px;� = � nXi=0 Fi(x; �)dd� Ux;� = Px;�Ux;�where we identify F0 with the fore stemming from the gauge ation SG.The fatorisation in eq. (14) an be ahieved in many di�erent ways, see forinstane Refs. [3,4,5,6,7,8℄. Here we shall only disuss what is known as masspreonditioning or Hasenbush trik [17,18,19℄. It is obtained by writing theidentity det(QyQ) = det(W yW ) � det(QyQ)det(W yW ) ; (16)8



where W = DW +m0 + i�25; �2 > �q :By adjusting the the additional mass parameter �2, the ondition number ofW yW and (QyQ)=(W yW ) an both be redued with respet to the one of QyQalone. As argued in Ref. [20℄, the optimal hoie leads to a ondition numberof pk for both W yW and (QyQ)=(W yW ), where k is the ondition number ofQyQ. A redued ondition number leads to redued fore ontributions in theMD evolution and allows hene for larger values of �� .It is important to notie that evaluating the fore ontribution stemming from(QyQ)=(W yW ) is more expensive in terms of omputer time than the evalua-tion of the ontribution from W yW , sine it involves the iterative solution of' = (QyQ)�1� with the large ondition number k. Thus, the algorithm mightbe further improved by not tuning the ondition numbers equal as explainedbeforehand, but by introduing a multiple time sale integration sheme asfollows.Considering a Hamiltonian like in eq. (15) we may introdue n+ 1 timesales��i with ��i = �NMDi ; NMDi = Nn �Nn�1 � � �Niand basi disrete update stepsTU(��) : U ! U 0 = exp (i��P )U ;TSi(��) : P ! P 0 = P � i��Fi (17)with 0 � i � n. We have identi�ed S0 � SG. The leap frog update on timesalei is then reursively de�ned asTi = 8><>:TSi(��i=2)TU(��i) TSi(��i=2) i = 0TSi(��i=2) [Ti�1℄Ni�1 TSi(��i=2) 0 < i � n (18)and the full trajetory of length � is eventually ahieved by [Tn℄Nn.As was shown in Ref. [2℄ { and for other fatorisations of the determinantin Refs. [3,7,21℄ { the ombination of multiple time sale integration and adeterminant fatorisation allows to set the algorithm up suh that the mostexpensive operator ontributes least to the MD fores. It an then be inte-grated on the outermost timesale and must be less often inverted.2.2.3 Integration ShemesDuring the last paragraphs we have introdued the simplest reversible andarea preserving integration sheme, known as leap frog integration sheme.9



There are more involved integration shemes available, partly or ompletelyanelling higher order disretisation errors.It turns out that ompletely anelling higher order e�ets is not neessaryand often even not eÆient. Integration shemes with redued errors are forexample the so alled n-th order minimal norm integration shemes, for detailssee Ref. [22℄ and referenes therein. The seond order minimal norm (2MN)integration sheme is based on the update stepT 2MN0 = TS0(�0��0) TU(��0=2) TS0((1� 2�0)��0)TU(��0=2) TS0(�0��0);T 2MNi = TSi(�i��i) [T 2MNi�1 ℄Ni�1 TSi((1� 2�i)��i)[T 2MNi�1 ℄Ni�1 TSi(�i��i); (19)�i is a dimensionless parameter and the 2MN sheme oinides with theSexton-Weingarten sheme [23℄ in ase �i = 1=6. The optimal value for �iwas given in Ref. [22℄ to be around 0:19. But its value is likely to depend onthe mass values and the time sale under onsideration. Note that there is aparameter �i for eah timesale ��i, whih an be tuned separately.While all the integration shemes introdued so far were based on the orderTS TU TS, it is also possible to revert this order. In this ase one talks aboutthe position version of the orresponding integration sheme, while the usualone is alled the veloity version. Under ertain irumstanes they an bemore eÆient, beause one less appliation of TS is needed. The orrespondingupdate steps an be easily derived from the formulae provided above.2.3 Polynomial HMC for a non-degenerate doubletIn the framework of Wilson twisted mass fermions it is only possible to sim-ulate avour doublets of quarks. Hene, if one wants to inlude the strangequark in the simulation one also needs to inlude the harm. The orrespond-ing mass non-degenerate doublet was de�ned in equation (5). Simulating suha avour doublet operator is possible using the polynomial HMC (PHMC) al-gorithm [24,25,26℄. The basi problem that ours in the mass non-degeneratease is that a single avour has to be taken into aount or equivalently thedeterminant of a single operator Q needs to be treated. The PHMC algorithman solve this problem elegantly.The idea of the PHMC is based on writingdet(Q) = det(qQ2) � det(P�1�;n (Q2)) / Z D� D�y e��yP�;10



valid as long as Q is positive. P�;n(Q2) is a polynomial approximation of 1=pQ2of degree n in the interval [�; 1℄Pn;�(s) = 1psf1 +Rn;�g; s = Q2 : (20)Rn;� is the error term. It an be shown that for the ase of Chebyshe� polyno-mials jRj vanishes exponentially fast with the degree n (for large n). For moredetails regarding this issue we refer the reader for instane to Refs.[27,28℄ andreferenes therein.It is worth notiing that representing in inverse operator by a polynomial hasoneptual advantages. It allows to treat ertain regions of the eigenvalue spe-trum of the operator in di�erent ways and to separate therefore the infraredfrom the bulk and ultraviolet parts of the spetrum. Although this has beenthe main underlying idea of the PHMC algorithm [24,25,26℄ we will use it here,however, only as a tehnial tool to treat single avours in the simulations.For our purpose { introduing Qh = 5Dh { we an rewrite the orrespondingdeterminant det(Qh) / Z D�y D� e��yPn;�(s)� ;with s = QyhQh and the pseudo fermion �elds � are now two avour �elds.Note that Dyh = � 15Dh5� 1. The appliation of the polynomial P to a pseudofermion �eld � an be performed by either using the Clenshaw reursion re-lation [29℄, or by using the produt representationPn;�(s)� = " nYi=1 (s� zi)#� � B(s) �B(s)y�with zi the omplex roots of P and a suitably hosen normalisation onstant. The produt representation is onveniently used in the MD update. For thehoie of polynomials, the determination of their roots and how to order themto avoid round-o� errors see appendix C.The HMC algorithm requires an area preserving and reversible MD updateproedure, however, there is no need to use in the MD update the same op-erator as in the heat-bath step. As long as the aeptane rate is suÆientlyhigh, we are free to use any other operator in the update. In order to exploitthis possibility we introdue a seond more preise polynomial~Pm;Æ(s) = 1Pn;�psf1 + ~Rm;Æg (21)whih is used in the heat-bath step to generate the pseudo fermion �elds froma random �eld R � = ~PByQhR11



and in the aeptane step. The less preise polynomial P is then used onlyin the MD update.The polynomial degrees n;m and the approximation intervals have to be de-termined suh as to guarantee a good approximation of 1=ps in the range ofeigenvalues of QyhQh. One may also adopt a strategy to hose � or Æ largerthan a few lowest eigenvalues of QyhQh and use re-weighting to orret forthis [24,25℄.Even/Odd preonditioningThe (P)HMC algorithm is implemented using even/odd preonditioning [30,31℄,whih is disussed shortly in appendix B. We want to stress that althougheven/odd preonditioning is a rather tehnial step, it leads to a very impor-tant improvement of the algorithm performane and is a ornerstone of allHMC implementations in the �eld.2.4 Boundary ConditionsThe theory is disretised and put on a �nite, hyper-ubi spae-time lattiewith extensions L3�T � Q� L�. The boundary onditions for the gauge �eldsUx;� are hosen to be periodi, i.e.Ux+L� �̂;� = Ux;� ;where �̂ is a unit vetor in diretion �. For the fermioni �elds  (x) we allowfor more general boundary onditions, namely so alled twisted boundaryonditions  (x + L� �̂) = ei��� (x) :Periodi boundary onditions orrespond to �� = 0, while anti-periodi bound-ary onditions are ahieved by setting �� = 1. More generally one an realisewith twisted boundary onditions arbitrary values of momentum transfer onthe lattie by a onvenient re-interpretation of the phases [32℄.3 Overview of the software strutureThe general strategy of the tmLQCD pakage is to provide programs for themain appliations used in lattie QCD with Wilson twisted mass fermions.The ode and the algorithms are designed to be general enough suh as toompile and run eÆiently on any modern omputer arhiteture. This is12



Fig. 2. Flowhart for the hm tm exeutable
ahieved ode-wise by using standard C as programming language and forparallelisation the message passing interfae (MPI) standard version 1.1.Performane improvements are ahieved by providing dediated ode for er-tain widely used arhitetures, like PC's or the Blue Gene family. Dediatedode is mainly available for the kernel routine { the appliation of the Diraoperator, whih will be disussed in detail in setion 4.1, and for the ommu-niation routines.The tmLQCD pakage provides three main appliations. The �rst is an imple-mentation of the (P)HMC algorithm, the seond and the third are exeutablesto invert the Wilson twisted mass Dira operator (4) and the non-degenerateWilson twisted mass Dira operator (5), respetively. All three do have a widerange of run-time options, whih an be inuened using an input �le. Thesyntax of the input �le is explained in the doumentation whih ships with thesoure ode. The relevant input parameters will be mentioned in the followingwhere appropriate, to ease usage.We shall �rstly disuss the general layout of the three aforementioned appli-ations, followed by a general disussion of the parallelisation strategy used inall three of them. 13



3.1 hm tmIn �gure 2 the programme ow of the hm tm exeutable is depited. In the�rst blok the input �le is parsed and parameters are set aordingly. Thenthe required memory is alloated and, depending on the input parameters,data is read from disk in order to ontinue a previous run.The main part of this appliation is the moleular dynamis update. For anumber of trajetories, whih must be spei�ed in the input �le, �rst a heat-bath is performed, then the integration aording to the equations of motionusing the integrator as spei�ed in the input �le, and �nally the aeptanestep.After eah trajetory ertain online measurements are performed, suh as mea-suring the plaquette value. Other online measurements are optional, like mea-suring the pseudo salar orrelation funtion.3.1.1 ommand line argumentsThe programme o�ers ommand line options as follows:� -h|? prints a help message and exits.� -f input �le name. The default is hm.input� -o the pre�x of the output �lenames. The default is output. The ode willgenerate or append to two �les, output.data and output.para.3.1.2 Input / OutputThe parameters of eah run are read from an input �le with default namehm.input. If it is missing all parameters will be set to their default values.Any parameter not set in the input �le will also be set to its default value.During the run the hm tm program will generate two output �les, one alledper default output.data, the other one output.para. Into the latter impor-tant parameters will be written at the beginning of the run.The �le output.data has several olumns with the following meanings(1) Plaquette value.(2) �H(3) exp(��H)(4) a pair of integers for eah pseudo fermion monomial. The �rst integer ofeah pair is the sum of solver iterations needed in the aeptane and14



Fig. 3. Flowhart for the main part of the invert and invert doublet exeutables.heatbath steps, the seond is the sum of iterations needed for the foreomputation of the whole trajetory.(5) Aeptane (0 or 1).(6) Time in seonds needed for this trajetory.(7) Value of the retangle part in the gauge ation, if used.Every new run will append its numbers to an already existing �le.In addition, the program will reate a �le history hm tm. This �le providesa mapping between the on�guration number and its plaquette and Polyakovloop values. Moreover the simulation parameters are stored there and in aseof a reread the time point an be found there.After every trajetory the program will save the urrent on�guration in the�le onf.save.3.2 invert and invert doubletThe two appliations invert and invert doublet are very similar. The maindi�erene is that in invert the one avour Wilson twisted mass Dira op-erator is inverted, whereas in invert doublet the non-degenerate doublet isinverted.The main part of the two exeutables is depited in �gure 3. Eah measurementorresponds to one gauge on�guration that is read from disk into memory. Foreah of these gauge on�gurations a number of inversions will be performed.15



The soures an be either generated or read in from disk. In the former asethe programme an urrently generate point soures at random loation inspae time. In the latter ase the name of the soure �le an be spei�ed inthe input �le.The relevant Dira operator is then inverted on eah soure and the result isstored on disk. The inversion an be performed with a number of inversionalgorithms, suh as onjugate gradient (CG), BiCGstab, and others [33℄. Andoptionally even/odd preonditioning as desribed previously an be used.3.2.1 ommand line argumentsThe two programmes o�er ommand line options as follows:� -h|? prints a help message and exits.� -f input �le name. The default is hm.input� -o the pre�x of the output �lenames. The default is output. The ode willgenerate or append to one �le alled output.para.3.2.2 OutputThe program will reate a �le alled output.data with information aboutthe parameters of the run. Of ourse, also the propagators are stored on disk.The orresponding �le names an be inuened via input parameters. The �leformat is disussed in some detail in sub-setion 4.7.One partiularity of the invert doublet program is that the propagatorswritten to disk orrespond to the two avour Dira operator of eq. (6), i.e.D0h(��; �Æ) = DW � 1f + i��� 1 + 5�Æ� 3 ;essentially for ompatibility reasons. For the two avour omponents writtenthe �rst is the would be strange omponent and the seond one the would beharm one.3.3 ParallelisationThe whole lattie an be parallelised in up to 4 spae-time diretions. It isontrolled with on�gure swithes, see setion 5.2. The Message Passing In-terfae (MPI, standard version 1.1) is used to implement the parallelisation.So for ompiling the parallel exeutables a working MPI implementation isneeded. 16



Depending on the number of parallelised spae-time diretions the t-diretion,the t- and x-diretion, the t-, x- and y-diretion or the t-, x- and y- andz-diretion are parallelised.The number of proessors per spae diretion must be spei�ed at run time,i.e. in the input �le. The relevant parameters are NrXPros, NrYPros andNrZPros. The number of proessors in time diretion is determined by theprogram automatially. Note that the extension in any diretion must divideby the number of proessors in this diretion.In ase of even/odd preonditioning further onstraints have to be ful�lled:the loal Lz and the loal produt Lt � Lx � Ly must both be even.
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Fig. 4. Boundary exhange in a two dimensional parallel setup. One an see that theinternal boundary is send while the external one is reeived. The orners { needed forimplementing improved gauge ations like the tree-level Symanzik improved gaugeation [34℄ { need a two step proedure.The ommuniation is organised using boundary bu�er, as skethed in �gure 4.The MPI setup is ontained in the �le mpi init.. The orresponding funtionmust be alled at the beginning of a main program just after the parametersare read in, also in ase of a serial run. In this funtion also the variousMPI Datatypes are onstruted needed for the exhange of the boundary �elds.The routines performing the ommuniation for the various data types areloated in �les starting with xhange .The ommuniation is implemented using di�erent types of MPI funtions.One implementation uses the MPI Sendrev funtion to ommuniate thedata. A seond one uses non-bloking MPI funtions and a third one persistentMPI alls. See the MPI standard for details [35℄. On mahines with network a-17



pable of sending in several diretions in parallel the non-bloking version is themost eÆient one. The relevant on�gure swithes are --with-nonblokingmpiand --with-persistentmpi, the latter of whih is only available for the Diraoperator with halfspinor �elds, see setion 4.1.4 Desription of the individual software omponents4.1 Dira OperatorThe Dira operator is the kernel routine of any lattie QCD appliation, be-ause its inverse is needed for the HMC update proedure and also for om-puting orrelation funtions. The inversion is usually performed by means ofiterative solvers, like the onjugate gradient algorithm, and hene the repeatedappliation of the Dira operator to a spinor �eld is needed. Thus the optimi-sation of this routine deserves speial attention.At some spae-time point x the appliation of a Wilson type Dira operatoris mainly given by�(x) =(m0 + 4r + i�q5) (x)� 12 4X�=1�Ux;�(r + �) (x+ a�̂) + U yx�a�̂;�(r � �) (x� a�̂)� (22)where r is the Wilson parameter, whih we set to one in the following. Themost omputer time onsuming part is the nearest neighbour interation part.For this part it is useful to observe that(1� �) has only two independent spinor omponents, the other two follow trivially.So only two of the omponents need to be omputed, then to be multipliedwith the orresponding gauge �eld U , and then the other two omponents areto be reonstruted.The operation in eq. (22) must be performed for eah spae-time point x. If theloop over x is performed suh that all elements of � are aessed sequentially(one output stream), it is lear that the elements in  and U annot beaessed sequentially as well. This non-sequential aess may lead to seriousperformane degradations due to too many ahe misses, beause modernproessing units have only a very limited number of input streams available.While the  �eld is usually di�erent from one to the next appliation of18



the Dira operator, the gauge �eld stays often the same for a large numberof appliations. This is for instane so in iterative solvers, where the Diraoperator is applied O(1000) times with �xed gauge �elds. Therefore it is usefulto onstrut a double opy of the original gauge �eld sorted suh that theelements are aessed exatly in the order needed in the Dira operator. Forthe prie of additional memory, with this simple hange one an obtain largeperformane improvements, depending on the arhiteture. The double opymust be updated whenever the gauge �eld hange. This feature is available inthe ode at on�gure time, the relevant swith is --with-gaugeopy.Above we were assuming that we run sequentially through the resulting spinor�eld �. Another possibility is to run sequentially through the soure spinor �eld . Moreover, one ould split up the operation (22) following the standard trikof introduing intermediate result vetors '� with only two spinor omponentsper lattie site. Conentrating on the hopping part only, we would have'+(x; �) = P 4!2+� Ux;�(r + �) (x)'�(x; �) = P 4!2�� (r � �) (x) : (23)From '� we an then reonstrut the resulting spinor �eld as�(x) =X� P 2!4+� '+(x + a�̂; �)+X� P 2!4�� U yx�a�̂;�'�(x� a�̂; �) (24)Here we denote with P 4!2�� the projetion to the two independent spinor om-ponents for 1� � and with P 2!4�� the orresponding reonstrution. The halfspinor �elds '� an be interlaed in memory suh that  (x) as well as '�(x)are always aessed sequentially in memory. The same is possible for the gauge�elds, as explained above. So only for � we annot avoid strided aess. So farwe have only introdued extra �elds '�, whih need to be loaded and storedfrom and to main memory, and divided the Dira operator into two steps(23) and (24) whih are very balaned with regard to memory bandwidth andoating point operations.The advantage of this implementation of the Dira operator omes in theparallel ase. In step (23) we need only elements of  (x), whih are loallyavailable on eah node. So this step an be performed without any ommu-niation. In between step (23) and (24) one then needs to ommuniate partof '�, however only half the amount is needed ompared to a ommuniationof  . After the seond step there is then no further ommuniation needed.Hene, one an redue the amount of data to be sent by a fator of two.There is yet another performane improvement possible with this form of theDira operator, this time for the prie of preision. One an store the interme-diate �elds '� with redued preision, e.g. in single preision when the regular19



spinor �elds are in double preision. This will lead to a result with reduedpreision, however, in a situation where this is not important, as for instane inthe MD update proedure, it redues the data to be ommuniated by anotherfator of two. And the required memory bandwidth is redued as well. Thisversion of the hopping matrix (urrently it is only implemented for the hoppingmatrix) is available at on�gure time with the swith --enable-halfspinor.The redued preision version (sloppy preision) is available through the inputparameter UseSloppyPreision. It will be used in the MD update whereappropriate. Moreover, it is implemented in the CG iterative solver followingthe ideas outlined in Ref. [36℄ for the overlap operator.The various implementations of the Dira operator an be found in the �leD psi. and { as needed for even/odd preonditioning { the hopping matrixin the �le Hopping Matrix.. There are many di�erent versions of these tworoutines available, eah optimised for a partiular arhiteture, e.g. for theBlue Gene/P double hummer proessor or the streaming SIMD extensions ofmodern PC proessors (SSE2 and SSE3), see also Ref. [37℄. Martin L�usherhas made available his standard C and SSE/SSE2 Dira operator [38℄ underthe GNU General Publi Liense, whih are partly inluded into the tmLQCDpakage.
4.1.1 Blue Gene VersionThe IBM PowerPC 450d proessor used on the Blue Gene arhiteture pro-vides a dual FPU, whih supports a set of SIMD operations working on 32speial registers useful for lattie QCD. These operations an be aessed us-ing build in funtions of the IBM XLC ompiler. The �le bgl.h ontains allmaros relevant for the Blue Gene version of the hopping matrix and the Diraoperator.A small fration of half spinor version (see above) is given in algorithm 1,whih represents the operation '+ = �U P 4!2+0 (1 + 0) . After loading theomponents of  into the speial registers and prefething the gauge �eld forthe next diretion (in this ase 1+ 1), P 4!2+0 (1+ 0) is performed. It is thenimportant to load the gauge �eld U only one from memory to registers andmultiply both spinor omponents in parallel.Finally the result is multiplied with � (whih inherits also a phase fator dueto the way we implement the boundary onditions, see next sub-setion) andstored in memory. 20



Algorithm 1 '+ = �U P 4!2+0 (1 + 0) 1: // load omponents of  into registers2: bgl load rs0((*s).s0);3: bgl load rs1((*s).s1);4: bgl load rs2((*s).s2);5: bgl load rs3((*s).s3);6: // prefeth gauge �eld for next diretion (1 + 1)7: prefeth su3(U+1);8: // do now �rst P 4!2+0 (1 + 0) 9: bgl vetor add rs2 to rs0 reg0();10: bgl vetor add rs3 to rs1 reg1();11: //now multiply both omponents at one with gauge �eld U and �12: bgl su3 multiply double((*U));13: bgl vetor mplx mul double(ka0);14: // store the result15: bgl store reg0 up((*phi[ix℄).s0);16: bgl store reg1 up((*phi[ix℄).s1);4.1.2 Boundary ConditionsAs disussed previously, we allow for arbitrary phase fators in the boundaryonditions of the fermion �elds. This is onveniently implemented in the Diraoperator as a phase fator in the hopping termX� �ei���=L� Ux;�(r + �) (x + a�̂) + e�i���=L� U yx�a�̂;�(r � �) (x� a�̂)� :The relevant input parameters are ThetaT, ThetaX, ThetaY, ThetaZ.4.2 The HMC UpdateWe assume in the following that the ation to be simulated an be written asS = SG + NmonomialsXi=1 SPFi ;and we all { following the CHROMA notation [39℄ { eah term in this sum amonomial. We require that there is exatly one gauge monomial SG (whih weidentify with S0 in the following) and an arbitrary number of pseudo fermionmonomials SPFi .As a data type every monomial must known how to ompute its ontributionto the initial Hamiltonian H at the beginning of eah trajetory in the heat-bath step. Then it must know how to ompute the derivative with respet to21



Fig. 5. Data type monomial and its omponentsthe gauge �elds for given gauge �eld and pseudo fermion �eld needed for theMD update. And �nally there must be a funtion to ompute its ontributionto the �nal Hamiltonian H0 as used in the aeptane step.In addition for eah monomial it needs to be known on whih timesale itshould be integrated. The orresponding data type is skethed in �gure 5.The general de�nitions for this data type an be found in the �le monomial..There are several sorts of monomials implemented:� DET: pseudo fermion representation of the (mass degenerate) simple deter-minant det(Q2(�) + �2)� DETRATIO: pseudo fermion representation of the determinant ratiodet(Q2(�) + �2)= det(Q2(�2) + �22)� NDPOLY: polynomial representation of the (possibly non-degenerate) doublet[det(Qnd(��; ��)2)℄1=2 :� GAUGE:�3 Xx 0BB�0 4X�;�=11��<�f1� ReTr(U1�1x;�;�)g + 1 4X�;�=1�6=� f1� ReTr(U1�2x;�;�)g1CCA ;The parameter 1 an be set in the input �le and 0 = 1 � 81. Note that1 = 0 orresponds to the Wilson plaquette gauge ation.The orresponding spei� funtions are de�ned in the �les det monomial.,detratio monomial., ndpoly monomial. and gauge monomial.. Additional22



Algorithm 2 integrateRequire: 0 < nts � Nts, � > 01: �� = �=noSteps[nts℄2: for i = 0 to noSteps[nts℄ do3: if nts == 1 then4: updateGauge(��)5: else6: integrate(nts � 1, ��)7: end if8: updateMomenta(�� , monomialList[nts℄)9: end formonomials an easily be implemented by providing the orresponding fun-tions as disussed above.The integration sheme is implemented reursively, as exempli�ed in algo-rithm 2 for the leap-frog integration sheme (where we skipped half steps forsimpliity). The updateMomenta funtion simply alls the derivative fun-tions of all monomials that are integrated on timesale nts and updates themomenta P aording to the time step �� .The reursive sheme for the integration an easily be extended to more in-volved integration shemes. The details an be found in the �le integrator..We have implemented the leap-frog and the seond order minimal norm [22℄integrations shemes. They are named in the input �le as LEAPFROG and 2MN,respetively. These two an be mixed on di�erent timesales. In addition wehave implemented a position version of the seond order minimal norm inte-gration sheme, denoted by 2MNPOSITION in the input �le. The latter mustnot be mixed with the former two.The MD update is summarised in algorithm 3. It omputes the initial and�nal Hamiltonians and alls in between the integration funtion with the totalnumber of timesales Nts and the total trajetory length � .4.2.1 Redued Preision in the MD UpdateAs shortly disussed previously, as long as the integration in the MD update isreversible and area preserving there is large freedom in hoosing the integrationsheme, but also the operator: it is not neessary to use the Dira operatorhere, it an be any approximation to it. This is only useful if the aeptanerate is not strongly a�eted by suh an approximation.The ode provides two possibilities to adapt the preision of the Dira op-erator used in the MD update: the �rst is to redue the preision in theinversions needed for the fore omputation. This auses redued iteration23



Algorithm 3 MD update1: H = H0 = 02: for i = 0 to Nmonomials do3: H += monomial[i℄!heat-bath-funtion4: end for5: integrate(Nts, �)6: for i = 0 to Nmonomials do7: H0 += monomial[i℄!aeptane-funtion8: end for9: aept with probability minf1; exp(��H)gnumbers needed for the integration of one trajetory. The relevant input pa-rameter is ForePreision available for eah monomial. The preision neededin the aeptane and/or heatbath step an be adjusted separately usingAeptanePreision. It is advisable to have the aeptane preision al-ways lose to mahine preision.The seond possibility for inuening the Dira operator is given by the re-dued preision Dira operator desribed in sub-setion 4.1, whih is swithedon with the UseSloppyPreision input parameter. The two possibilities analso be used in parallel.Note that one should always test for reversibility violations as explained insub-setion 4.3.4.2.2 Chronologial SolverThe idea of the hronologial solver method, or hronologial solver guess(CSG) (or similar methods [40℄) is to optimise the initial guess for the solu-tion used in the solver. To this end the history of NCSG last solutions of theequationM2� = � is saved and then a linear ombination of the �elds �i withoeÆients i is used as an initial guess for the next inversion. M stands forthe operator to be inverted and has to be replaed by the di�erent ratios ofoperators used in this paper.The oeÆients i are determined by solvingXi �yjM2�ii = �yj� (25)with respet to the oeÆients i. This is equivalent to minimising the fun-tional that is minimised by the CG inverter itself.The downside of this method is that the reversibility violations inrease signif-iantly by one or two orders of magnitude in the Hamiltonian when the CSGis swithed on and all other parameters are kept �xed. Therefore one has to24



adjust the residues in the solvers, whih inreases the number of matrix ve-tor multipliations again. Our experiene is that the methods desribed in theprevious sub-setion are more e�etive in partiular in the ontext of multipletime sale integration, beause the CSG is most e�etive for small values of�� .The input parameters is the CSGHistory parameter available for the relevantmonomials. Setting it to zero means no hronologial solver, otherwise thisparameter spei�es the number of last solutions NCSG to be saved.4.3 Online MeasurementsThe HMC program inludes the possibility to perform a ertain number ofmeasurements after every trajetory online, whether or not the on�gurationis stored on disk. Some of those are performed per default, namely all that arewritten to the output �le output.data:(1) the plaquette expetation value, de�ned as:hP i = 16V 4X�;�=1 1��<� ReTr(U1�1x;�;�) ;where V is the global lattie volume.(2) the retangle expetation value, de�ned as:hRi = 112V 4X�;�=1 �6=� ReTr(U1�2x;�;�)(3) �H = H0 �H and exp(��H).See the overview setion for details about the output.data �le. These observ-ables all ome with no extra omputational ost.Optionally, other online measurements an be performed, whih { however {need in general extra inversions of the Dira operator. First of all the ompu-tation of ertain orrelation funtions is implemented. They need one extrainversion of the Dira operator, as disussed in Ref. [41℄, using the one-end-trik. De�ne a stohasti soure � as followslimR!1[��i �j℄ = Æij; limR!1[�i�j℄ = 0 : (26)Here R labels the number of samples and i all other degrees of freedom. Then[�r�i �rj ℄R =M�1�ik �M�1jk + noise ; (27)25



if � was omputed from �rj =M�1jk �rk :Having in mind the 5-hermitiity property of the Wilson and Wilson twistedmass Dira propagator Gu;d, i.e.Gu(x; y) = 5Gd(y; x)y5it is lear that eq. (27) an be used to evaluateC�(t) = hTr[Gu(0; t)5Gd(t; 0)5℄i = hTr[Gu(0; t)Gu(0; t)y℄iwith only one inversion. But, even if the one gamma struture at the soureis �xed to be 5 due to the 5-hermitiity trik, we are still free to insert any-struture � at the soure, i.e. we an evaluate any orrelation funtion ofthe formCP�(t) = hTr[Gu(0; t)5Gd(t; 0)�℄i = hTr[Gu(0; t)Gu(0; t)y5�℄i :Useful ombinations of orrelation funtions are hPP i, hPAi and hPV i, withP � = ��5 ��2 � ; V �� = ��� ��2 � ; A�� = ��5� ��2 �From hPP i one an extrat the pseudo salar mass, and { in the twistedmass ase { the pseudo salar deay onstant. hPAi an be used together withhPP i to extrat the so alled PCAC quark mass and hPV i to measure therenormalisation onstant ZV. For details we refer the reader to Ref. [41℄.These online measurements are ontrolled with the two following input param-eters: PerformOnlineMeasurements to swith them on or o� and to speifythe frequeny OnlineMeasurementsFreq. The three orrelation funtions aresaved in �les named onlinemeas.n, where n is the trajetory number. Every�le ontains �ve olumns, speifying the type, the operator type and the Eu-lidean time t. The last two olumns are the values of the orrelation funtionitself, C(t) and C(�t), respetively. The type is equal to 1, 2 or 6 for the hPP i,the hPAi and the hPV i orrelation funtions. The operator type is for onlinemeasurements always equal to 1 for loal soure and sink (no smearing of anykind), and the time runs from 0 to T=2. Hene, C(�t) = C(T � t). C(�0) andC(�T=2) are set to zero for onveniene.In addition to orrelation funtions also the minimal and the maximal eigen-values of the (5D)2 an be measured.An online measurement not related to physis, but related to the algorithmare heks of reversibility violations. The HMC algorithm is exat if and onlyif the integration sheme is reversible. On a omputer with �nite preision thisis only guaranteed up to mahine preision. These violations an be estimated26



by integrating one trajetory forward and then bakward in Monte Carlo time.The di�erene Æ�H among the original Hamiltonian H and the �nal one H00after integrating bak an serve as one measure for those violations, anotherone is provided by the di�erene among the original gauge �eld U and the�nal one U 00 Æ�U = 112V Xx;�Xi;j (Ux;� � U 00x;�)2i;jwhere we indiate with the Æ� that this is obtained after integrating a tra-jetory forward and bakward in time. The results for Æ�H and Æ�U arestored in the �le return hek.data. The relevant input parameters areReversibilityChek and ReversibilityChekInterval.4.4 Iterative Solver and EigensolverThere are several iterative solvers implemented in the tmLQCD pakage forsolving D � = �for �. The minimal residual (MR), the onjugate gradient (CG), the on-jugate gradient squared (CGS), the generalised minimal residual (GMRES),the generalised onjugate residual and the stabilised bi-onjugate gradient(BiCGstab). For details regarding these algorithms we refer to Refs. [33,42℄.For the hm tm exeutable only the CG and the BiCGstab solvers are available,while all the others an be used in the invert exeutables. Most of them areboth available with and without even/odd preonditioning. For a performaneomparison we refer to Ref. [43,36℄.The stopping riterion is implemented in two ways: the �rst is an absolutestopping riterion, i.e. the solver is stopped when the squared norm of theresidual vetor (depending on the solver this might be the iterated residual orthe real residual) ful�ls krk2 < �2 :The seond is relative to the soure vetor, i.e.krk2k�k2 < �2 :The value of �2 and the hoie of relative or absolute preision an be inuenedvia input parameters.The redued preision Dira operator, as disussed in sub-setion 4.1, is avail-able for the CG solver. In the CG solver the full preision Dira operator isonly required at the beginning of the CG searh, beause the relative size of27



the ontribution to the resulting vetor dereases with the number of itera-tions. Thus, as soon as a ertain preision is ahieved in the CG algorithmwe an swith to the redued preision Dira operator without spoiling thepreision of the �nal result. We swith to the lower preision operator at apreision of p� in the CG searh, when aiming for a �nal preision of � < 1.We note that in priniple any ombination of using redued preision in oneof the ways desribed in this paper is possible. However, one should alwayshek that the true residual is as small as expeted in ase of an inversion andthat the reversibility violations are small in ase of a HMC simulation.The eigensolver used to ompute the eigenvalues (and vetors) of (5D)2 is theso alled Jaobi-Davidson method [44,45℄. For a disussion for the appliationof this algorithm to lattie QCD we refer again to Ref. [43,36℄.All solver related �les an be found in the sub-diretory solver. Note thatthere are a few more solvers implemented whih are, however, in an experi-mental status.4.5 Stout SmearingSmearing tehniques have beome an important tool to redue ultraviolet u-tuations in the gauge �elds. One of those tehniques, oming with the advan-tage of being usable in the MD update, is usually alled stout smearing [46℄.The (n + 1)th level of stout smeared gauge links is obtained iteratively fromthe nth level by U (n+1)� (x) = eiQ(n)� (x) U (n)� (x):We refer to the unsmeared (\thin") gauge �eld as U� � U (0)� . The SU(3)matries Q� are de�ned via the staples C�:Q(n)� (x)= i2�U (n)� (x)C(n)� y(x)� h::� � i6 Tr �U (n)� (x)C(n)� y(x)� h::� ;C(n)� =X� 6=� ��� �U (n)� (x)U (n)� (x + �̂)U (n)� y(x + �̂)+U (n)� y(x� �̂)U (n)� (x� �̂)U (n)� (x� �̂ + �̂)� ;where in general ��� is the smearing matrix. In the tmLQCD pakage we haveonly implemented isotropi 4-dimensional smearing, i.e., ��� = �.Currently stout smearing is only implemented for the invert exeutables. I.e.the gauge �eld an be stout smeared at the beginning of an inversion. The28



input parameters are UseStoutSmearing, StoutRho and StoutNoIterations.4.6 Random Number GeneratorThe random number generator used in the ode is the one proposed by MartinL�usher and usually known under the name RANLUX [47℄. A single and doublepreision implementation was made available by the author under the GNUGeneral Publi Liense and an be downloaded [48℄. For onveniene it is alsoinluded in the tmLQCD pakage.4.7 IO FormatsIn this �nal subsetion we speify the IO formats used to store gauge on�g-urations, propagators and soures to disk.4.7.1 Gauge Con�gurationsFor gauge on�gurations we use the International Lattie Data Grid (ILDG)standard as spei�ed in Ref. [49,50℄. As the lime pakaging library [51℄ andILDG standard allow additional { not required { reords to be stored withinthe �le, we urrently add the following two reords for onveniene:(1) xlf-info: useful information about the gauge on�guration, suh as theplaquette value, and about the run and the algorithm and the ode versionused to generate it.(2) sida-heksum: SCIDAC heksum of the gauge on�guration. For thespei�ation see [52℄.The gauge on�gurations an be written to disk either in single or doublepreision. The relevant input parameter is GaugeConfigWritePreision. Onreadin the preision is determined automatially.Note that the gauge on�guration does not depend on the partiular hoieof the -matries.4.7.2 PropagatorsWe note at the beginning, that we do not use di�erent IO formats for soureor sink fermion �elds. They are both stored using the same lime reords.The meta-data stored in the same lime-paked �le is supposed to larify all29



other things. It is also important to realise that the propagator depends onthe -matrix onvention used in the Dira operator. For our onvention seeappendix A.Here we mainly onentrate on storing propagators (sink). The �le an ontainonly soures, or both, soure and sink. We (plan to) support four di�erentformats(1) (arbitrary number of) sink, no soures(2) (arbitrary number of) soure/sink pairs(3) one soure, 12 sink(4) one soure, 4 sinkThis is very similar to the formats in use in parts of the US lattie ommunity.We adopt the SCIDAC heksum [52℄ for the binary data.Soure and sink binary data has to be in a separate lime reord. The order inone �le for the four formats mentioned above is supposed to be(1) sink, no soures: -(2) soure/sink pairs: �rst soure, then sink(3) one soure, 12 sink: �rst soure, then 12 sinks(4) one soure, 4 sink: �rst soure, then 4 sinksAll fermion �eld �les must have a reord indiating its type. The reord itselfis of type propagator-type and the reord has a single entry (ASCII string)whih ontains one of� DiraFermion Sink� DiraFermion Soure Sink Pairs� DiraFermion SalarSoure TwelveSink� DiraFermion SalarSoure FourSinkThose strings are also used in the input �les for the input parameter PropagatorType.The binary data orresponding to one Dira fermion �eld (soure or sink) isthen stored with at least two (three) reords. The �rst is of typeetm-propagator-formatand ontains the following information:<?xml version="1.0" enoding="UTF-8"?><etmFormat><field>diraFermion</field><preision>32</preision><flavours>1</flavours><lx>4</lx><ly>4</ly> 30



<lz>4</lz><lt>4</lt></etmFormat>The flavours entry must be set to 1 for a one avour propagator (avour diag-onal ase) and to 2 for a two avour propagator (avour non-diagonal 2-avouroperator). In the former ase there follows one reord of type sida-binary-data,whih is idential to the SCIDAC format, ontaining the fermion �eld. In thelatter ase there follow two of suh reords, the �rst of whih is the upperavour. To be preise, lets all the two avours s (strange) and  (harm).Then we always store the s omponent �rst and then the  omponent.The �rst two types are by now supported in the tmLQCD pakage. In thefuture the other two might follow.The indies (time, spae, spin, olour) in the binary data sida-binary-dataare in the following order: t; z; y; x; s;  ;where t is the slowest and olour the fastest running index. The binary datais stored big endian and either in single or in double preision, depending onthe preision entry in the etm-propagator-format reord.In addition we store an additional reord alled inverter-info with usefulinformation about the inversion preision, the physial parameters and theode version.4.7.3 Soure FieldsSoure �elds are, as mentioned before, stored with the same binary data for-mat. There are again several types of soure �les possible:� DiraFermion Soure� DiraFermion SalarSoure� DiraFermion FourSalarSoure� DiraFermion TwelveSalarSoureThis type is stored in a reord alled soure-type in the lime �le. Theremight be several soures stored within the same �le. We add a format reordetm-soure-format looking like<?xml version="1.0" enoding="UTF-8"?><etmFormat><field>diraFermion</field><preision>32</preision><flavours>1</flavours> 31



<lx>4</lx><ly>4</ly><lz>4</lz><lt>4</lt><spin>4</spin><olour>3</olour></etmFormat>with obvious meaning for every sida-binary-data reord within the limepaked �le. This format reord also allows to store a subset of the whole �eld,e.g. a time-slie.5 Installation instrutionsThe software ships with a GNU autoonf environment and a on�gure sript,whih will generate GNU Make�les to build the programmes. It is supportedand reommended to on�gure and build the exeutables in a separate builddiretory. This also allows to have several builds with di�erent options fromthe same soure ode diretory.5.1 PrerequisitesIn order to ompile the programmes the LAPACK [53℄ library (Fortran ver-sion) needs to be installed. In addition it must be known whih linker op-tions are needed to link against LAPACK, e.g. -Lpath-to-lapak -llapak-lblas. Also a the latest version (tested is version 1.2.3) of C-LIME [51℄ mustbe available, whih is used as a pakaging sheme to read and write gaugeon�gurations and propagators to �les.5.2 Con�guring the tmLQCD pakageIn order to get a simple on�guration of the hm pakage it is enough to justtypepath-to-sr-ode/onfigure --with-lime=<path-to-lime> \--with-lapak=<linker-flags> CC=<my> \F77=<myf77> CFLAGS=<-ompiler flags>in the build diretory. If CC, F77 and CFLAGS are not spei�ed, onfigurewill guess them. 32



The ode was suessfully ompiled and run at least on the following platforms:i686 and ompatible, x64 and ompatible, IBM Regatta systems, IBM BlueGene/L, IBM Blue Gene/P, SGI Altix and SGI PC lusters and powerplusters.The on�gure sript aepts ertain options to inuene the building proe-dure. One an get an overview over all supported options with onfigure--help. There are enable|disable options swithing on and o� optional fea-tures and with|without swithes usually related to optional pakages. In thefollowing we desribe the most important of them (hek onfigure --helpfor the defaults and more options):� --enable-mpi:This option swithes on the support for MPI. On ertain platforms it auto-matially hooses the orret parallel ompiler or searhes for a ommandmpi in the searh path.� --enable-p4:Enable the use of speial Pentium4 instrution set and ahe management.� --enable-opteron:Enable the use of speial opteron instrution set and ahe management.� --enable-sse2:Enable the use of SSE2 instrution set. This is a huge improvement onPentium4 and equivalent systems.� --enable-sse3:Enable the use of SSE3 instrution set. This will give another 20% ofspeedup when ompared to only SSE2. However, only a few proessors areapable of SSE3.� --enable-gaugeopy:See setion 4.1 for details on this option. It will inrease the memory re-quirement of the ode.� --enable-halfspinor:If this option is enabled the Dira operator using half spinor �elds is used.See sub-setion 4.1 for details. If this feature is swithed on, also the gaugeopy feature is swithed on automatially.� --with-mpidimension=n:This option has only e�et if the ode is on�gured for MPI usage. Thenumber of parallel diretions an be spei�ed. 1,2,3 and 4 dimensional par-allelisation is supported.� --with-lapak="<linker flags>":the ode requires lapak to be linked. All linker ags neessary to do somust be spei�ed here. Note that LIBS="..." works similar.� --with-limedir=<dir>:Tells on�gure where to �nd the lime pakage, whih is required for thebuild of the HMC. It is used for the ILDG �le format.33



TR0 TR1 TR2input-�le sample-hm0.input sample-hm2.input sample-hm3.inputL3 � T 43 � 4 43 � 4 43 � 4SG Wilson TlSym Iwasaki� 6:0 3:3 1:95� 0:177 0:17 0:1632602��q 0:177 0:01 0:0027409612��� � 0:1105 �2��� � 0:0935 �hP i 0:62457(7) 0:53347(17) 0:5951(2)hRi � 0:30393(22) 0:3637(3)Table 1Parameter and results for three sample input �les as provided with the ode.The on�gure sript will guess at the very beginning on whih platform thebuild is done. In ase this fails or a ross ompilation must be performed pleaseuse the option --host=HOST. For instane in order to ompile for the BG/Pone needs to speify --host=pp-ibm-bprts --build=pp64-ibm-linux.For ertain arhitetures like the Blue Gene systems there are README.arh�les in the top soure diretory with example on�gure alls.5.3 Building and InstallingAfter suessfully on�guring the pakage the ode an be build by simplytyping make in the build diretory. This will ompile the standard exeutables.Typing make install will opy these exeutables into the install diretory.The default install diretory is $HOME/bin, whih an be inuened e.g. withthe --prefix option to onfigure.6 Test run desriptionThe soure ode ships with a number of sample input �les. They are loatedin the sample-input sub-diretory. They are small volume V = 44 test runsdesignated to measure for instane the average plaquette values.Suh a test-run an be performed for instane on a salar mahine by typing34



./hm tm -f sample-hm0.input .Depending on the environment you are running in, you may need to adjustthe input parameters to math the maximal run-time and so on. The expetedaverage plaquette values are quoted in table 1 and also in the sample input�les.
6.1 Benhmark ExeutableAnother useful test exeutable is a benhmark ode. It an be build by typingmake benhmark and it will, when run, measure the performane of the Diraoperator. It an be run in the serial or parallel ase. It reads its input from a�le benhmark.input and the relevant input parameters are the following:L = 4T = 4NrXPros = 2NrYPros = 2NrZPros = 2UseEvenOdd = yesUseSloppyPreision = noIn ase of even/odd preonditioning the performane of the hopping matrix isevaluated, in ase of no even/odd the performane of the Dira operator. Theimportant part of the output of the ode is as follows[...℄(1429 Mflops [64 bit arithmeti℄)ommuniation swithed off(2592 Mflops [64 bit arithmeti℄)The size of the pakage is 36864 ByteThe bandwidth is 662.91 + 662.91 MB/seThe bandwidth is not measured diretly but omputed from the performanedi�erene among with and without ommuniation and the pakage size. Inase of a serial run the output is obviously redued.35
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A  and Pauli MatriesIn the following we speify our onventions for - and Pauli-matries.A.1 -matriesWe use the following onvention for the Dira -matries:
0 = 0BBBBBBBB� 0 0 �1 00 0 0 �1�1 0 0 00 �1 0 0

1CCCCCCCCA ; 1 = 0BBBBBBBB� 0 0 0 �i0 0 �i 00 +i 0 0+i 0 0 0
1CCCCCCCCA ;

2 = 0BBBBBBBB� 0 0 0 �10 0 +1 00 +1 0 0�1 0 0 0
1CCCCCCCCA ; 3 = 0BBBBBBBB� 0 0 �i 00 0 0 +i+i 0 0 00 �i 0 0

1CCCCCCCCA :
In this representation 5 is diagonal and reads

5 = 0BBBBBBBB�+1 0 0 00 +1 0 00 0 �1 00 0 0 �1
1CCCCCCCCA :

A.2 Pauli-matriesFor the Pauli-matries ating in avour spae we use the following onvention:1f = 0B�1 00 11CA ; � 1 = 0B�0 11 01CA ; � 2 = 0B�0 �ii 0 1CA ; � 3 = 0B�1 00 �11CA39



B Even/Odd PreonditioningB.1 HMC UpdateIn this setion we desribe how even/odd [30,31℄ preonditioning an be usedin the HMC algorithm in presene of a twisted mass term. Even/odd preon-ditioning is implemented in the tmLQCD pakage in the HMC algorithm aswell as in the inversion of the Dira operator, and an be used optionally.We start with the lattie fermion ation in the hopping parameter represen-tation in the �-basis written asS[�; ��; U ℄ =Xx 8<:��(x)[1 + 2i��5� 3℄�(x)� ���(x) 4X�=1�U(x; �)(r + �)�(x + a�̂)+ U y(x� a�̂; �)(r � �)�(x� a�̂)�9=;�Xx;y ��(x)Mxy�(y) (B.1)
similar to eq. (4). For onveniene we de�ne ~� = 2��. Using the matrix Mone an de�ne the hermitian (two avour) operator:Q � 5M = 0B�Q+ Q�1CA (B.2)where the sub-matries Q� an be fatorised as follows (Shur deomposition):Q� = 50B�1� i~�5 MeoMoe 1� i~�51CA = 50B�M�ee MeoMoe M�oo1CA= 0B�5M�ee 05Moe 11CA0B�1 (M�ee)�1Meo0 5(M�oo �Moe(M�ee)�1Meo)1CA : (B.3)
Note that (M�ee)�1 an be omputed to be(1� i~�5)�1 = 1� i~�51 + ~�2 : (B.4)40



Using det(Q) = det(Q+) det(Q�) the following relation an be deriveddet(Q�) / det(Q̂�)Q̂� = 5(M�oo �Moe(M�ee)�1Meo) ; (B.5)where Q̂� is only de�ned on the odd sites of the lattie. In the HMC algorithmthe determinant is stohastially estimated using pseudo fermion �elds �o:det(Q̂+Q̂�) = Z D�oD�yo exp(�SPF)SPF � �yo �Q̂+Q̂���1 �o ; (B.6)where the �elds �o are de�ned only on the odd sites of the lattie. In orderto ompute the fore orresponding to the e�etive ation SPF we need thevariation of SPF with respet to the gauge �elds (using Æ(A�1) = �A�1ÆAA�1):ÆSPF = �[�yo(Q̂+Q̂�)�1ÆQ̂+(Q̂+)�1�o + �yo(Q̂�)�1ÆQ̂�(Q̂+Q̂�)�1�o℄= �[XyoÆQ̂+Yo + Y yo ÆQ̂�Xo℄ (B.7)with Xo and Yo de�ned on the odd sides asXo = (Q̂+Q̂�)�1�o; Yo = (Q̂+)�1�o = Q̂�Xo ; (B.8)where (Q̂�)y = Q̂� has been used. The variation of Q̂� readsÆQ̂� = 5 ��ÆMoe(M�ee)�1Meo �Moe(M�ee)�1ÆMeo� ; (B.9)and one �nds ÆSPF = �(XyÆQ+Y + Y yÆQ�X)= �(XyÆQ+Y + (XyÆQ+Y )y) (B.10)where X and Y are now de�ned over the full lattie asX = 0B��(M�ee)�1MeoXoXo 1CA ; Y = 0B��(M+ee)�1MeoYoYo 1CA : (B.11)In addition ÆQ+ = ÆQ�;M yeo = 5Moe5 and M yoe = 5Meo5 have been used.Sine the bosoni part is quadrati in the �o �elds, the �o are generated atthe beginning of eah moleular dynamis trajetory with�o = Q̂+ro; (B.12)where ro is a random spinor �eld taken from a Gaussian distribution withnorm one. 41



B.1.1 Mass non-degenerate avour doubletEven/odd preonditioning an also be implemented for the mass non-degenerateavour doublet Dira operator Dh eq. (5). DenotingQh = 5Dhthe even/odd deomposition is as followsQh = 0B�(5 + i��� 3 � ��� 1) QheoQhoe (5 + i��� 3 � ��� 1)1CA= 0B�Qhee 0Qhoe 01CA � 0B�1 (Qhee)�1Qeo0 Qhoo 1CA (B.13)
where Qhoo is given in avour spae byQhoo = 50B�1 + i��5 � Moe(1�i��5)Meo1+��2���2 ��� �1 + MoeMeo1+��2���2���� �1 + MoeMeo1+��2���2� 1� i��5 � Moe(1�i��5)Meo1+��2���2 1CAwith the previous de�nitions of Meo et. The implementation for the PHMCis very similar to the mass degenerate HMC ase.B.2 InversionIn addition to even/odd preonditioning in the HMC algorithm as desribedabove, it an also be used to speed up the inversion of the fermion matrix. Dueto the fatorisation (B.3) the full fermion matrix an be inverted by invertingthe two matries appearing in the fatorisation0B�M�ee MeoMoe M�oo1CA�1 = 0B�1 (M�ee)�1Meo0 (M�oo �Moe(M�ee)�1Meo)1CA�10B�M�ee 0Moe 11CA�1 :The two fators an be simpli�ed as follows:0B�M�ee 0Moe 11CA�1 = 0B� (M�ee)�1 0�Moe(M�ee)�1 11CA42



and 0B�1 (M�ee)�1Meo0 (M�oo �Moe(M�ee)�1Meo)1CA�1=0B�1 �(M�ee)�1Meo(M�oo �Moe(M�ee)�1Meo)�10 (M�oo �Moe(M�ee)�1Meo)�1 1CA :The omplete inversion is now performed in two separate steps: �rst omputefor a given soure �eld � = (�e; �o) an intermediate result ' = ('e; 'o) by:0B�'e'o1CA = 0B�M�ee 0Moe 11CA�10B��e�o1CA = 0B� (M�ee)�1�e�Moe(M�ee)�1�e + �o1CA :This step requires only the appliation ofMoe and (M�ee)�1, the latter of whihis given by eq. (B.4). The �nal solution  = ( e;  o) an then be omputedwith0B� e o1CA = 0B�1 (M�ee)�1Meo0 (M�oo �Moe(M�ee)�1Meo)1CA�10B�'e'o1CA = 0B�'e � (M�ee)�1Meo o o 1CA ;where we de�ned  o = (M�oo �Moe(M�ee)�1Meo)�1'o :Therefore, the only inversion that has to be performed numerially is the oneto generate  o from 'o and this inversion involves only an operator that isbetter onditioned than the original fermion operator.Even/odd preonditioning an also be used for the mass non-degenerate Diraoperator Dh eq. (5). The orresponding equations follow immediately from theprevious disussion and the de�nition from eq. (B.13).C Initialising the PHMCThe funtion 1=ps in the interval [�; 1℄ an be approximated using polyno-mials or rational funtions of di�erent sorts. In the tmLQCD pakage we useChebyshe� polynomials, whih are easy to onstrut. They an be onstrutedas to provide a desired overall preision in the interval [�; 1℄.As disussed in sub-setion 2.3, the roots of the polynomial Pn;� are neededfor the evaluation of the fore. Even though the roots ome in omplex onju-43



gate pairs, for our ase the roots annot be omputed analytially, hene weneed to determine them numerially. Suh an evaluation requires usually highpreision. This is why these roots need to be determined before a PHMC runusing an external program, i.e. they annot be omputed at the beginning ofa run in the hm tm program.Suh an external program ships with the tmLQCD ode, whih is loated inthe util/laguere diretory 2 . It is based on Laguerre's method and uses theClass Library for Numbers (CLN) [54℄, whih provides arbitrary preision datatypes. In order to ompute roots the CLN library must be available, whih isfree software.Taking for granted that the CLN library is available, the proedure for om-puting the roots is as follows: assuming the non-degenerate Dira operatorhas eigenvalues in the interval [~smin; ~smax℄, i.e. � = ~smin=~smax, and the poly-nomial degree is n. Edit the �le hebyRoot.H and set the variable EPSILONto the value of �. Moreover, set the variable MAXPOW to the degree n. Adaptthe Makefile to your loal installation and ompile the ode by typing make.After running the ChebyRoot program suessfully, you should �nd two �lesin the diretory(1) Square root BR roots.dat:whih ontains the roots of the polynomial in bit-reverse order [24℄.(2) normierungLoal.dat:whih ontains a normalisation onstant.Copy these two �les into the diretory where you run the ode and adjust theinput parameters to math exatly the values used for the root omputation.I.e. the input parameters StildeMin, StildeMax and DegreeOfMDPolynomialmust be set appropriately in the NDPOLY monomial.The minimal and maximal eigenvalue of the non-degenerate avour doubletan be omputed as an online measurement. The frequeny an be spei�edin the NDPOLY monomial with the input parameter ComputeEVFreq and theyare written to the �le alled phm.data. Note that this is not a heap oper-ation in terms of omputer time. However, if the approximation interval ofthe polynomial is hosen wrongly the algorithm performane might deterio-rate drastially, in partiular if the upper bound is set wrongly. It is thereforeadvisable to introdue some seurity measure in partiular in the value of ~smax.
2 We thank Istvan Montvay for providing us with his ode.44
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