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DESY 09{070 ISSN 0418{9833Heavy-quark pair prodution in polarized photon-photon ollisions at next-to-leadingorder: Fully integrated total ross setionsB.A. Kniehl,1, � A.V. Kotikov,1, y Z.V. Merebashvili,1, z and O.L. Veretin1, x1II. Institut f�ur Theoretishe Physik, Universit�at Hamburg,Luruper Chaussee 149, 22761 Hamburg, Germany(Dated: July 1, 2009)We onsider the prodution of heavy-quark pairs in the ollisions of polarized and unpolarizedon-shell photons and present, in analyti form, the fully integrated total ross setions for totalphoton spins Jz = 0;�2 at next-to-leading-order in QCD. Phenomenologial appliations inludeb�b prodution, whih represents an irreduible bakground to standard-model intermediate-massHiggs-boson prodution, as well as t�t prodution.PACS numbers: 12.38.Bx, 13.85.-t, 13.85.Fb, 13.88.+eI. INTRODUCTIONIt has been emphasized by many physiists that run-ning a future e+e� linear ollider (ILC) in the photon-photon mode is a very interesting option (see, e.g.,Refs. [1, 2℄). The high-energy on-shell photons an begenerated by bakward Compton sattering of laser lighto� the high-energy eletron and positron bunhes of theollider with pratially no loss in energy and luminos-ity. In this respet, one of the most important reationsto onsider is heavy-quark pair prodution in photon-photon ollisions. A  ollider beomes partiularly im-portant for studies of the standard-model Higgs bosonwhen its mass is below theW+W� prodution threshold.Then, the predominant deay is H ! b�b. The dominantbakground to this omes from  ! b�b, whih reeivesontributions from diret and resolved photons. We leaveaside the latter for the time being and return to this inSe. V. The use of longitudinally polarized photons ofequal heliity (their angular momentum being Jz = 0)suppresses this bakground by a fator of m2b=s at theleading order in perturbation theory [3, 4℄. Of ourse,the reason that the Jz = 0 hannel is important is thatthe Higgs signal omes entirely from it. Nevertheless,the above-mentioned suppression should not neessarilyhold in general, sine QCD higher-order orretions in-volve gluon emission, whih permits the b�b system to haveJz 6= 0. Therefore, the proess of bottom-quark pair pro-dution in polarized-photon fusion would represent an ir-reduible bakground to intermediate-mass Higgs-bosonprodution. Indeed, subsequent alulations of the next-to-leading-order (NLO) QCD orretions have on�rmedthese expetations [5, 6℄.Furthermore, future photon olliders will beome top-�Eletroni address: kniehl�desy.deyOn leave from Bogoliubov Laboratory for Theoretial Physis,JINR, 141980 Dubna (Mosow region), Russia.; Eletroni address:kotikov�mail.desy.dezEletroni address: zakaria.merebashvili�desy.dexEletroni address: veretin�mail.desy.de

quark fatories. The data obtained there, when om-bined with data on top-quark prodution from other re-ations, will ertainly improve our knowledge of the top-quark properties (see, e.g., Ref. [7℄). It should also benoted that the NLO orretions have a large e�et onthe threshold behavior and exhibit a peuliar spin de-pendene in this region.Heavy-avor prodution in photon-photon ollisionsreeives ontributions from diret and resolved inidentphotons. In the �rst ase, photons behave as pointlikeobjets, interating diretly with the quarks in the hardsattering, while in the seond ase, the photon exhibits aomplex struture involving quarks and gluons that par-tiipate in the hard interation. In this paper, we presentanalytial results for the total ross setions for heavy-quark pair prodution by both polarized and unpolarizeddiret photons. The present work builds on the previouswork of one of us [5, 8℄. In Ref. [5℄, di�erential ross se-tions were alulated analytially in dimensional regular-ization [9℄ and ast into a very ompat form. We notethat this is the only publiation where omplete analyt-ial results for polarized and unpolarized doubly di�er-ential ross setions are presented. In Ref. [8℄, top-quarkpair prodution for energies not too far above thresholdwas studied, and the fully integrated result for the so-alled \virtual plus soft" part of the ross setion wasderived. We also note that the results presented in thepresent work onstitute the Abelian part of the gluon-indued hadroprodution of heavy-quark pairs.This paper is organized as follows. Setion II explainsour notations. In Se. III, we outline our general ap-proah and disuss in detail our proedure and method-ology. In Se. IV, we present our analytially integratedtotal ross setions. Our onlusions are summarized inSe. V. Finally, Appendix A elaborates on the alulationof one of the most diÆult double integrals, Appendix Bgives expressions for the various oeÆient funtions thatappear in the main text, and Appendix C displays repre-sentations of our basis funtions in terms of generalizedNielsen polylogarithms.
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d1 d2 d3FIG. 1: One-loop Feynman diagrams ontributing to the photon-fusion amplitude. Wavy, urly, and solid lines representphotons, gluons, and heavy quarks, respetivelyII. NOTATIONFor onsisteny, we losely follow the notations ofRef. [5℄. The one-loop Feynman diagrams with t-hanneltopology relevant for heavy-avor prodution by the sat-tering of two on-shell photons are depited in Fig. 1. Theu-hannel diagrams are obtained from the depited onesby rossing the inoming photon lines. Single-gluon ra-diation, whih arises from the tree-level diagrams with agluon attahed in all possible ways to the heavy-quarkline, ontributes at the same order. We assign the four-momenta and heliities as(p1; �1) + (p2; �2)! Q(p3) +Q(p4) + g(p5); (2.1)so that p1+p2 = p3+p4+p5, and have p21 = p22 = p25 = 0and p23 = p24 = m2, where m is the quark mass. Weintrodue the following Mandelstam variables:s = (p1 + p2)2;t = T �m2 = (p1 � p3)2 �m2; (2.2)u = U �m2 = (p2 � p3)2 �m2;s2 = S2 �m2 = (p1 + p2 � p3)2 �m2 = s+ t+ u;so that s2 = 0 in the soft-gluon limit. Introduingv = 1 + ts ; w = �us+ t (2.3)we may writet = �s(1�v); u = �svw; s2 = sv(1�w): (2.4)In Ref. [5℄, the four-momentum of the gluon was in-tegrated out, the squared amplitudes were summed overthe spins and olors of the �nal-state heavy quarks andaveraged over the spins of the initial photons. The dif-ferential ross setions d��=dvdw and d�=dvdw for the

polarized and unpolarized ases were presented analyti-ally, while the total ross setions �� and � were al-ulated numerially. In Ref. [8℄, these di�erential rosssetions were further integrated to obtain fully analyt-ial result for all the terms proportional to Æ(1 � w),i.e., those that multiply the leading-order term. How-ever, the hard-bremsstrahlung ontributions were leftout, for whih a suitable set of parametrizations wereonstruted. It is the aim of the present work to ana-lytially integrate these remaining ontributions, e.g. theexpression in Eq. (30) of Ref. [5℄, exept for its last term,proportional to d�LO=dvdw.III. EVALUATIONIn order to obtain the analytial result for the totalross setion, one has to perform double integrationsover the variables v and w, as was already mentionedin Se. II. The expliit forms of the relevant integralsIi (i = 1; : : : ; 16) are given in Appendix C of Ref. [5℄.However, their diret analytial evaluation turns out tobe very ompliated in general and even an unfeasibletask in some ases. The integrals Ii ontain logarithmswith square roots in their arguments, and their oeÆientfuntions also depend on the integration variables. Inseveral ases where diret integration is possible, one ob-tains expressions in terms of the generalized Nielsen poly-logarithms [10℄. These polylogarithms, however, ontainlong and ompliated arguments that look unnatural, sothat we deided to �nd some other universal representa-tion that would be valid for all the integrals under on-sideration.In fat, we made use of another approah to obtain theresults. The essene of our method onsists in obtainingthe integrated result from its expansion over the variableit depends on, as well as in the knowledge of the ba-



3sis funtions entering the integrated result. In the past,suh an approah was used in Ref. [11℄ for vertex- andpropagator-type two-loop diagrams and was also appliedto some other problems (see, e.g., Ref. [12℄).In our ase, the result depends on the single variablem2=s. We �nd it, however, more onvenient to set upthe expansion in the heavy-quark veloity� =r1� 4m2s : (3.1)The proedure for obtaining the required expansions ofthe double integrals in the variable �, by �rst expand-ing and then integrating Eq. (30) of Ref. [5℄, was alreadydisussed in detail in Ref. [8℄ and will not be addressedhere. We only mention that, in Ref. [8℄, only the �rst 11terms of the expansions were obtained, whih was all oneould ahieve at that time with available omputer hard-ware resoures. For our present purposes, we needed togreatly enlarge the depths of the expansions. Althoughthis appears to be a straightforward task at �rst sight, itturned out to be a major tehnial hallenge in pratie.We atually needed hundreds of expansion terms to beable to rebuild the �nal integrated results. For a givenintegral, the number of expansion terms is, of ourse, di-retly onneted to the number of funtions that makesup our basis. Thus, the main problems were, on the onehand, to de�ne the smallest possible basis and, on theother hand, to obtain suÆiently many terms of the ex-pansion. Analyzing already integrated parts of the rosssetion presented in Ref. [8℄ and taking into aount ob-servations made in a number of previous phenomenolog-ial studies, we hose our set of basis funtions to be theomplete set of harmoni polylogarithms of Remiddi andVermaseren [13℄. Further detailed investigation revealed,however, that harmoni polylogarithms alone are not suf-�ient, and that some nonharmoni funtions should beadded to the basis, as will be explained below. Thesefuntions fall into the lass of multiple polylogarithms[14℄.It is well known that Feynman amplitudes satisfy lineardi�erential equations (see, e.g., Ref. [15℄). In order to es-tablish the struture of the results, we found it very on-venient to onsider homogeneous di�erential equationsfor the various integrals Ii, whih are of the formkXn=0P (i)n (�) dnd�n Ii(�) = 0 ; (3.2)where P (i)n (�) are some polynomials and k is the order ofthe homogeneous di�erential equation. Having typially150{200 oeÆients of an expansion in �, we were ableto establish the di�erential equations of the above typefor eah of the Ii funtions. As a result, we found thatthe degrees of the polynomials P (i)n (�) never exeed 14and that the orders of the di�erential equations do notexeed 7. After having obtained the polynomials, onean try to solve the homogeneous di�erential equations

by using the linear ansatzIi =Xl a(i)l Fl; (3.3)where the sum runs over all the basis funtions. We re-mark that the �rst oeÆients of the original � expan-sions serve as boundary onditions for our di�erentialequations. Substitution of suh an ansatz into Eq. (3.2)leads to an algebrai system of linear equations.As already mentioned, not all the integrals an be givenin terms of harmoni polylogarithms. In partiular, thiswas the ase for the integral I8 of Ref. [5℄, whih is oneof the most ompliated ones. We expliitly integratedthe doubly di�erential distribution assoiated with thisfuntion. The details are presented in Appendix A. Nev-ertheless, suh a diret integration would be rather te-dious for a majority of our funtions, and the hanges ofvariables desribed in Appendix A are not universal and,therefore, not appliable to the other integrals. Anotherintegral that annot be expressed in terms of harmonipolylogarithms is I6.Originally, our ansatz ontained more than 100 basisfuntions. To work with suh an ansatz, we needed about1000 expansion oeÆients in the � series. Finally, af-ter some analysis, we onstruted a �nal set of 21 basisfuntions. They are harmoni polylogarithms, exept forthree, whih are disussed in Se. IV. With this set ofbasis funtions, the number of linear equations requiredvaries from several tens to a ouple of hundreds, depend-ing on the funtion Ii onsidered. Typially, one needsabout 150{200 oeÆients of the � expansion to �nd thesolution for the double integral Ii.IV. INTEGRATED RESULTSThe unpolarized and polarized ross setions are de-�ned in terms of ��1�2 as�unp = 12 (�++ + �+�) ;�pol = 12 (�++ � �+�) : (4.1)We parametrize the total ross setion in terms of thepolarization of the initial beams as� = 2� j2 �++ + j2�+� ; (4.2)where j = 1 � h�1�2i involves the average produt ofthe photon heliities �1 and �2. Aording to Eq. (4.2),j = 1 orresponds to the unpolarized ross setion �unp,while j = 0 and j = 2 orrespond to �++ and �+�,respetively.At NLO, Eq. (4.2) an be written as� = 2��2e4QNs hf (0)(j; �) + CF �s� f (1)(j; �)i ; (4.3)



4where eQ is the frational eletri harge of the heavyquark Q, N the number of olors, and � the �ne-struture onstant.The Born result is well known and readsf (0)(j; �) = 2� + 2�3 � 6j� � (1 + 2j � �4) ln 1� �1 + � :(4.4)The NLO result an be presented as a linear ombina-tion of universal basis funtions Fi,f (1)(j; �) = 21Xi=1 (j)i (�)Fi(�); (4.5)where all the j dependene resides in the oeÆients (j)i .The oeÆients (j)i are given in Appendix B. The hoieof the basis funtions Fi is not unique. We hoose the 21basis funtions Fi as follows:F1 = 1; F2 = H1; F3 = H�1; F4 = H1;1;F5 = H�1;1; F6 = H1;�1; F7 = H�1;�1;F8 = Li2(�)� Li2(��); F9 = H1;1;1;F10 = H�1;1;1; F11 = H1;�1;1; F12 = H�1;�1;1;F13 = H1;1;�1; F14 = H�1;1;�1; F15 = H1;�1;�1;F16 = H�1;�1;�1;F17 = 2 Z �0 db1� b2 [Li2(b)� Li2(�b)℄ ;F18 = Z �0 dbb ln2 1� b1 + b ;F19 = 2 Z �0 bdb5� b2 �12 ln2(1 + b)� 12 ln2(1� b)+ Li2�1 + b2 �� Li2�1� b2 �+ ln 2 ln 1� b1 + b� ;F20 = 2 Z �0 bdb3 + b2 �ln2 1 + b2 � ln2 1� b2 � ;F21 = � [A1(�)�A2(�)℄ : (4.6)The H funtions appearing in Eq. (4.6) are the so-alledharmoni polylogarithms, de�ned asH�1(�) = Z �0 db1� b = � ln(1� �);H�1;a;:::(�) = Z �0 db1� bHa;:::(b); (4.7)Li2 is the dilogarithm, de�ned below Eq. (4.9); and thefuntions A1 and A2 have the following ompat one-foldintegral representations:A1(�) = Z �0 db ln(1� b2)2� �2 � b2 ln 1� b21� �2 ;A2(�) = Z ��� db ln(1 + b)2� �2 � b2 [2 ln(1 + b)� ln(1 + �2 + 2b)� : (4.8)

We observe that only three basis funtions F19, F20,and F21 of Eq. (4.6) are not expressible in terms of har-moni polylogarithms (4.7). We remark that the basisfuntion F20 arises only from the virtual part of the rosssetion.We note that all the basis funtions Fi of Eq. (4.6) analso be expressed via generalized Nielsen polylogarithms,Sn;p(y) = (�1)n+p�1(n� 1)! p! 1Z0 dtt lnp(1� ty) lnn�1 t (4.9)with n + p = 2; 3 and ompliated arguments. Speialases inlude the polylogarithm of order n, Lin(y) =Sn�1;1(y), and Riemann's zeta funtion �n = �(n) =Lin(1) [10, 16℄. We rewrite the funtions Fi in terms ofthe standard generalized Nielsen polylogarithms in Ap-pendix C. We note in passing that all the Fi funtions anbe expressed in terms of multiple polylogarithms L1;1;1of depth and weight 3 [14℄ with simple linear arguments.To verify our analytial results, we ompared the nu-merial values for the funtion f (1) of Eq. (4.3) produedby our Mathematia program in the polarized and un-polarized ases with Table 1 of Ref. [8℄. There, the valuesfor f (1) are presented as funtions of the variablez = ps2m = 1p1� �2 : (4.10)We found agreement on the level of better than one partin 10 000. Next, we ompared our numbers with thosefor z = 1; 2; 3; 4; 5; 10 presented in Table 1 of Ref. [17℄dealing with the unpolarized ase. The agreement wasat the order of one part in 10 000 or better. Finally, wealso ompared our numbers with the orresponding val-ues for f (1)(++) and f (1)(+�) from Ref. [6℄. Generally,we were in good agreement; however, we found deviationsfor f (1)(++) by about 3% at some values of z.The present results form an Abelian subset of thenon-Abelian gluon-indued NLO ontributions to heavy-quark pair prodution. Reently, the total ross setionof this subproess was alulated analytially for unpo-larized gluons in Ref. [18℄ using a ompletely di�erentapproah. By modifying the olor strutures, it is pos-sible to extrat the unpolarized  ross setion fromtheir result. Comparing both numerially and analyti-ally (after expanding in �), we �nd omplete agreement.Spei�ally, three nonharmoni funtions F1(x), F2(x),and F3(x) appearing in Eqs. (13){(15) of Ref. [18℄ anbe expressed as linear ombinations of our funtions F19,F20, and F21. For instane, for the most ompliatedfuntion F3(x), one hasF21(�) = 815 1� xp1 + 6x+ x2F3(x); (4.11)where x = (1� �)=(1 + �).



5V. CONCLUSIONSWe presented, in analyti form, the integrated totalross setions of heavy-quark prodution in polarized andunpolarized  ollisions at NLO in QCD. The result iswritten as a sum over bilinear produts of j-dependentoeÆient funtions and j-independent basis funtions,where j denotes the total angular momentum of the pho-tons.We heked our analytial results by reproduing, withgreat auray, all the numerial values listed in the rel-evant tables of Refs. [8, 17℄. Furthermore, we establishedagreement with the analyti NLO result for the totalross setion of heavy-quark prodution via gg fusion,obtained just reently in Ref. [18℄, by taking the Abelianlimit.Using the baksattering tehnique, it is straightfor-ward to obtain polarized-photon beams of high intensityat the  option of the ILC by olliding low-energy laserlight with polarized eletron and positron beams.Of some onern are resolved-photon ontributions.On the one hand, the unpolarized ross setions ofthe ontributing subproesses were already presented inRef. [18℄ and the polarized ones may be dedued, e.g.,from Ref. [19℄. On the other hand, suh ontributionsan be suppressed by operating lose to the produtionthreshold. In fat, we infer from Ref. [20℄ that, in thease of b-quark prodution lose to threshold, the resolvedontribution only makes up a fration of a perent of thefull ross setion. Resolved ontributions may also be re-dued by identifying outgoing jets ollinear to one of thephoton beams, whih are a signature of resolved-photonevents. One an also require that the energy deposited inthe detetors be equal to the total beam energy in orderto aount for missed jets of the type mentioned above.From the experimental side, we are assuming only thatheavy-quark events an be learly identi�ed.Our omputer program evaluates the total ross se-tions presented here in less than a seond. It is publilyavailable [21℄ and uses the program pakage HPL [22℄.Being implemented in Mathematia, it does not allowfor alulations with arbitrary preision. However, withsome additional tehnial modi�ations, arbitrary prei-sion ould be ahieved.AknowledgmentsWe thank A.I. Davydyhev, M.Yu. Kalmykov, andO.V. Tarasov for useful disussions. We also thankM. Czakon and A. Mitov for assistane in omparing theirresults [18℄ with ours. The work of B.A.K. was supportedin part by the German Federal Ministry for Eduationand Researh BMBF through Grant No. 05 HT6GUA.The work of A.V.K. was supported in part by the Ger-man Researh Foundation DFG through Merator GuestProfessorship No. INST 152/465{1, by the Heisenberg-Landau Programme through Grant No. 5, and by the

Russian Foundation for Basi Researh through GrantNo. 08{02{00896{a. The work of Z.V.M. was supportedin part by the DFG through Grant No. KN 365/7{1and by the Georgia National Siene Foundation throughGrant No. GNSF/ST07/4{196. The work of O.L.V. wassupported by the Helmholtz Assoiation through GrantNo. HA{101.APPENDIX A: INTEGRALTRANSFORMATIONSThe ontribution proportional to the integral I8 ofRef. [5℄ an be represented in the formI8N = Z v2v1 dv Z 1w1 vdwpx8 ln px8 + vwpx8 � vw e8(v; w); (A1)where N is a known normalization onstant andv1 = 1� �2 ; v2 = 1 + �2 ; w1 = av(1� v) ;w = 1� w; x8 = v2w2 + 4av(1� vw); a = v1v2:(A2)In the polarized ase, the oeÆient funtion e8 is simplyreplaed by �e8. The atual expressions for �e8 and e8may be found in Eqs. (B6) and (B8) of Ref. [5℄, respe-tively.It is onvenient to hange the order of integrations asZ v2v1 dv Z 1w1 dw �! Z 11��2 dw Z 1+t21�t2 dv; (A3)where t2 = 1�4a=w. Furthermore, x8 de�ned in Eq. (A2)an be represented asx8 = v2y8; y8 = w2 + 4a�1v � w� ; (A4)so that we may substitutevpx8 ln px8 + vwpx8 � vw = 1py8 ln py8 + wpy8 � w: (A5)in Eq. (A1).Clearly, the \natural" replaement � = 1=v rendersy8 just linearly dependent on the new variable �. As aonsequene, the integral in Eq. (A1) will be transformedas I8N = Z 11��2 dwR(w);R(w) = Z w2a (1+t)w2a (1�t) d�py8 ln py8 + wpy8 � w e8(x;w); (A6)where e8 � e8=�2.



6The next step is to replae the integration variable � bythe new integration variable z = py8, so that the squareroot is removed from the logarithm. Thus, one obtainsR(w) = 12a Z py+py� dz ln z + wz � w e8(z; w); (A7)where y� = 2w(1� t� 2a) + w2.It is then onvenient to split R(w) into the two partsas R(w) = R+(w) �R�(w); (A8)R�(w) = 12a Z py+py� dz ln(z � w) e8(z; w)= 12a Z py+�wpy��w dz� ln z� e8(z�; w); (A9)where z� = z � w, whih indues a orresponding splitof the original integral I8=N :I8N = I(+)8 � I(�)8 : (A10)After exhanging the order of integrations and perform-ing some algebrai manipulations, we obtainI(�)8 = 12a Z 1+�1�� dz� ln z� Z 1w� dw e8(z�; w);= 12a Z ��� dr� ln(1� r�) Z w�0 dw e8(r�; w);(A11)where z� = 1� r�; w� = (1� r�)22(1� r� � 2a) ;w� = �2 � r2�2(1� r� � 2a) : (A12)It turns out the funtion e8, when expressed in termsof the new variables r�, is greatly simpli�ed, and so isthe integration over the variable w. Performing the in-tegrals in Eq. (A11), most of the terms ontained in e8yield harmoni polylogarithmsH and generalized Nielsenpolylogarithms Sa;b. Only the most ompliated terms ofe8 lead to the strutures A1(�) and A2(�) in Eq. (4.8).APPENDIX B: COEFFICIENTSHere, we list the oeÆients (j)i appearing in Eq. (4.5).They read(j)1 = �19� + 41�3 +�1 + 32� + 2�2 � 12�3 + �4��2� 4�(1 + 2�2) ln(2�2)+ j��32� � 34 �4 + � + 4�2 � 34�3��2

+ 4��7� 23 + �2� ln 2 + 24� ln��;(j)2;3 = �92 � 2� � 13�2 � 4�3 � 252 �4 + 805� �2+ 14� (2� � + 2�2 + 2�3 � 2�4 � �5 � 2�6)�2+ 2�7 + �2 + 4�4 � 243 + �2� ln 2 + 8�2(1 + �2) ln�+ j�9� 14� + 7�2 � 405� �2 + 4(3� �)3 + �2+ 18� (8 + � + 8�2 � 2�3 + �5)�2� 2 �21 + 5�2 � 483 + �2 + 48(3 + �2)2 � ln 2� 4(5 + 3�2) ln ��;(j)4;7 = �18� 9� � 10�2 + 3�3 � 6�4 � 2405� �2 � 320(5� �2)2� 483 + �2 + 12� (8� 3� + 8�2 � 6�3 � 8�4 � 3�5� 8�6) ln 2 + 4� (1 + �2 � �4 � �6) ln�+ j��392 + 92� � 392 �2 � 32�3� 160(5� �2)2 � 1605� �2 � 96(3 + �2)2 � 963 + �2+ 14� (32� 29� + 8�2 � 26�3 + 8�4 � 15�5) ln 2+ 8� (1 + �2) ln��;(j)5;6 = �32� 9� � 8�2 + 3�3 � 14�4 � 2405� �2 � 320(5� �2)2+ 12� (8� 3� + 8�2 � 6�3 � 8�4 � 3�5 � 8�6) ln 2+ 4� (1 + �2 � �4 � �6) ln�+ j��452 + 92� � 592 �2 � 32�3 � 160(5� �2)2 � 1605� �2+ 14� (32� 29� + 8�2 � 26�3 + 8�4 � 15�5) ln 2+ 8� (1 + �2) ln��;(j)8 = �4� 16�2 � 12�4 + 8j(4 + 3�2);(j)9;16 = 21� 1� � � + 18�2 � �3 � 7�4 � �5+ j4� (�8� � � 26�2 � 34�3 � 6�4 + 7�5);(j)10;15 = �18� 1� � � � 24�2 � �3 + 10�4 � �5



7+ j4� (�8� 5� � 26�2 + 46�3 � 6�4 � 13�5);(j)11;14 = �332 � 5� � 5� � 27�2 � 5�3 + 232 �4 � 5�5+ j2� (�20 + 12� � 17�2 + 36�3 � �4 � 14�5);(j)12;13 = 392 � 5� � 5� + 21�2 � 5�3 � 172 �4 � 5�5+ j2� (�20� 15� � 17�2 � 30�3 � �4 + 11�5);(j)17 = � 6� � 6� + 6�3 + 6�5 � 12j� (1 + �2);(j)18 = (j)173 ;(j)19 = 20 + 30�2 � 10�4 � 5j4 (7 + 14�2 � 5�4);(j)20 = �34 + 32�2 � 34�4 � 3j8 (15 + 6�2 � 5�4);(j)21 = �11� � 15� + 11�3 � �5 + 2j� (5� �2): (B1)APPENDIX C: BASIS FUNCTIONSAs was already mentioned in Se. IV, all the Fi fun-tions in Eq. (4.6) an be written in terms of Sn;p funtionswith n+ p = 2; 3 and some ompliated arguments. Thefuntions Fi with i = 1; : : : ; 16 are written in terms ofthe standard harmoni polylogarithms of Remiddi andVermaseren [13℄, and their representations in terms ofNielsen polylogarithms may be found in Ref. [13℄. Thefuntions Fi (i = 17; : : : ; 21) have the following forms:F17 = � lnx [Li2(�) � Li2(��)℄� F18;F18 = ln� ln2 x� 3�3 + 2 ['1(1; x)� '1(�1; x)℄ ;F19 = F (1)19 + 2F (2)19 + 2F (3)19 ;F (1)19 = � ln(5� b2) �2Li2(�x) + �2 + 2 lnx ln(1 + x)� 12 ln2 x� ;F (2)19 = ln 2�ln2 1 + �2 � ln2 1� �2 �+ '1�z�1 ; 1 + �2 �� '1 �z�1 ; 1� �2 �+ '1��z+1 ; 1 + �2 �� '1��z+1 ; 1� �2 � ;F (3)19 = ln 4�2Li2(�x) + �2 + 12 ln2 x�� 52�3 + 8S1;2(�x)� 2'1(�1; x)+ 2'2(�z�2 ; x)� 2'2(�z+2 ; x);F20 = F (1)20 + 2F (2)20 ;F (1)20 = ln 3 + �24 �ln2 1 + �2 � ln2 1� �2 � ;

F (2)20 = 19'1 �1;�1 + �2 �3!� 19'1 �1;�1� �2 �3!� '1��1; 1 + �2 �+ '1��1; 1 + �2 � ;F21 = �2d �ln 1� �2(d� 1)2 F (1)21 + F (2)21 � ;F (1)21 = ln Æ ln �� 12 ln2 �+ Li2(Æ�)� Li2 �Æ��� �2 � 2Li2(��);F (2)21 = �3 � 5 S1;2(��) + 4 S1;2��1��+ 2S1;2(Æ)� 4 S1;2�Æ��+ 2S1;2� Æ��+ 3�2 ln �� 5'2(1; �) + '2�1; 1��+ Re�S1;2�1Æ�� S1;2 ��Æ �+ 2���Æ;�1Æ�� 3����Æ;��Æ�+��� 1�Æ ;�Æ��� 5'2��1Æ ; ��+ '2��1Æ ; 1��� ; (C1)where z�1 = p5� 12 ; z�2 = 3�p52 ;d = p2� �2; Æ = d� 1d+ 1 ; � = d� �d+ � : (C2)The funtions '1 and '2 are de�ned as'1(�; x) = Z 1x dyy ln y ln(1� �y)= Li3(�) � Li3(�x) + lnxLi2(�x);'2(�; x) = Z 1x dyy ln(1 + y) ln(1 + �y)= �(1; �)� �(x; �x); (C3)where (see Eq. (3.15.4) of Ref. [10℄)�(A;B) = Z 10 dyy ln(1 +Ay) ln(1 +By)= S1;2(�A) + S1;2(�B)� 12 ln2 AB ln(1 +B)+ ln AB �Li2�A�BA �� Li2� A�BA(1 +B)��� S1;2�A�BA �+ S1;2� A�BA(1 +B)�� S1;2�B �A1 +B � : (C4)
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http://arxiv.org/abs/hep-ph/9407362
http://arxiv.org/abs/hep-ex/0108012
http://arxiv.org/abs/hep-ph/9405401
http://arxiv.org/abs/hep-ph/9503489
http://arxiv.org/abs/hep-ph/9601384
http://arxiv.org/abs/hep-ph/9803369
http://arxiv.org/abs/hep-ph/9803350
http://arxiv.org/abs/hep-ph/9808242
http://arxiv.org/abs/hep-th/0004010
http://arxiv.org/abs/hep-ph/0510235
http://arxiv.org/abs/hep-ph/0607202
http://arxiv.org/abs/hep-ph/0703013
http://arxiv.org/abs/hep-ph/9905237
http://arxiv.org/abs/0811.4119
http://arxiv.org/abs/hep-ph/0112276
http://arxiv.org/abs/hep-ph/9512246
http://arXiv.org
http://arxiv.org/abs/hep-ph/0507152

