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DESY 09{070 ISSN 0418{9833Heavy-quark pair produ
tion in polarized photon-photon 
ollisions at next-to-leadingorder: Fully integrated total 
ross se
tionsB.A. Kniehl,1, � A.V. Kotikov,1, y Z.V. Merebashvili,1, z and O.L. Veretin1, x1II. Institut f�ur Theoretis
he Physik, Universit�at Hamburg,Luruper Chaussee 149, 22761 Hamburg, Germany(Dated: July 1, 2009)We 
onsider the produ
tion of heavy-quark pairs in the 
ollisions of polarized and unpolarizedon-shell photons and present, in analyti
 form, the fully integrated total 
ross se
tions for totalphoton spins Jz = 0;�2 at next-to-leading-order in QCD. Phenomenologi
al appli
ations in
ludeb�b produ
tion, whi
h represents an irredu
ible ba
kground to standard-model intermediate-massHiggs-boson produ
tion, as well as t�t produ
tion.PACS numbers: 12.38.Bx, 13.85.-t, 13.85.Fb, 13.88.+eI. INTRODUCTIONIt has been emphasized by many physi
ists that run-ning a future e+e� linear 
ollider (ILC) in the photon-photon mode is a very interesting option (see, e.g.,Refs. [1, 2℄). The high-energy on-shell photons 
an begenerated by ba
kward Compton s
attering of laser lighto� the high-energy ele
tron and positron bun
hes of the
ollider with pra
ti
ally no loss in energy and luminos-ity. In this respe
t, one of the most important rea
tionsto 
onsider is heavy-quark pair produ
tion in photon-photon 
ollisions. A 

 
ollider be
omes parti
ularly im-portant for studies of the standard-model Higgs bosonwhen its mass is below theW+W� produ
tion threshold.Then, the predominant de
ay is H ! b�b. The dominantba
kground to this 
omes from 

 ! b�b, whi
h re
eives
ontributions from dire
t and resolved photons. We leaveaside the latter for the time being and return to this inSe
. V. The use of longitudinally polarized photons ofequal heli
ity (their angular momentum being Jz = 0)suppresses this ba
kground by a fa
tor of m2b=s at theleading order in perturbation theory [3, 4℄. Of 
ourse,the reason that the Jz = 0 
hannel is important is thatthe Higgs signal 
omes entirely from it. Nevertheless,the above-mentioned suppression should not ne
essarilyhold in general, sin
e QCD higher-order 
orre
tions in-volve gluon emission, whi
h permits the b�b system to haveJz 6= 0. Therefore, the pro
ess of bottom-quark pair pro-du
tion in polarized-photon fusion would represent an ir-redu
ible ba
kground to intermediate-mass Higgs-bosonprodu
tion. Indeed, subsequent 
al
ulations of the next-to-leading-order (NLO) QCD 
orre
tions have 
on�rmedthese expe
tations [5, 6℄.Furthermore, future photon 
olliders will be
ome top-�Ele
troni
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ow region), Russia.; Ele
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quark fa
tories. The data obtained there, when 
om-bined with data on top-quark produ
tion from other re-a
tions, will 
ertainly improve our knowledge of the top-quark properties (see, e.g., Ref. [7℄). It should also benoted that the NLO 
orre
tions have a large e�e
t onthe threshold behavior and exhibit a pe
uliar spin de-penden
e in this region.Heavy-
avor produ
tion in photon-photon 
ollisionsre
eives 
ontributions from dire
t and resolved in
identphotons. In the �rst 
ase, photons behave as pointlikeobje
ts, intera
ting dire
tly with the quarks in the hards
attering, while in the se
ond 
ase, the photon exhibits a
omplex stru
ture involving quarks and gluons that par-ti
ipate in the hard intera
tion. In this paper, we presentanalyti
al results for the total 
ross se
tions for heavy-quark pair produ
tion by both polarized and unpolarizeddire
t photons. The present work builds on the previouswork of one of us [5, 8℄. In Ref. [5℄, di�erential 
ross se
-tions were 
al
ulated analyti
ally in dimensional regular-ization [9℄ and 
ast into a very 
ompa
t form. We notethat this is the only publi
ation where 
omplete analyt-i
al results for polarized and unpolarized doubly di�er-ential 
ross se
tions are presented. In Ref. [8℄, top-quarkpair produ
tion for energies not too far above thresholdwas studied, and the fully integrated result for the so-
alled \virtual plus soft" part of the 
ross se
tion wasderived. We also note that the results presented in thepresent work 
onstitute the Abelian part of the gluon-indu
ed hadroprodu
tion of heavy-quark pairs.This paper is organized as follows. Se
tion II explainsour notations. In Se
. III, we outline our general ap-proa
h and dis
uss in detail our pro
edure and method-ology. In Se
. IV, we present our analyti
ally integratedtotal 
ross se
tions. Our 
on
lusions are summarized inSe
. V. Finally, Appendix A elaborates on the 
al
ulationof one of the most diÆ
ult double integrals, Appendix Bgives expressions for the various 
oeÆ
ient fun
tions thatappear in the main text, and Appendix C displays repre-sentations of our basis fun
tions in terms of generalizedNielsen polylogarithms.
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a1 c1 c2

d1 d2 d3FIG. 1: One-loop Feynman diagrams 
ontributing to the photon-fusion amplitude. Wavy, 
urly, and solid lines representphotons, gluons, and heavy quarks, respe
tivelyII. NOTATIONFor 
onsisten
y, we 
losely follow the notations ofRef. [5℄. The one-loop Feynman diagrams with t-
hanneltopology relevant for heavy-
avor produ
tion by the s
at-tering of two on-shell photons are depi
ted in Fig. 1. Theu-
hannel diagrams are obtained from the depi
ted onesby 
rossing the in
oming photon lines. Single-gluon ra-diation, whi
h arises from the tree-level diagrams with agluon atta
hed in all possible ways to the heavy-quarkline, 
ontributes at the same order. We assign the four-momenta and heli
ities as
(p1; �1) + 
(p2; �2)! Q(p3) +Q(p4) + g(p5); (2.1)so that p1+p2 = p3+p4+p5, and have p21 = p22 = p25 = 0and p23 = p24 = m2, where m is the quark mass. Weintrodu
e the following Mandelstam variables:s = (p1 + p2)2;t = T �m2 = (p1 � p3)2 �m2; (2.2)u = U �m2 = (p2 � p3)2 �m2;s2 = S2 �m2 = (p1 + p2 � p3)2 �m2 = s+ t+ u;so that s2 = 0 in the soft-gluon limit. Introdu
ingv = 1 + ts ; w = �us+ t (2.3)we may writet = �s(1�v); u = �svw; s2 = sv(1�w): (2.4)In Ref. [5℄, the four-momentum of the gluon was in-tegrated out, the squared amplitudes were summed overthe spins and 
olors of the �nal-state heavy quarks andaveraged over the spins of the initial photons. The dif-ferential 
ross se
tions d��=dvdw and d�=dvdw for the

polarized and unpolarized 
ases were presented analyti-
ally, while the total 
ross se
tions �� and � were 
al-
ulated numeri
ally. In Ref. [8℄, these di�erential 
rossse
tions were further integrated to obtain fully analyt-i
al result for all the terms proportional to Æ(1 � w),i.e., those that multiply the leading-order term. How-ever, the hard-bremsstrahlung 
ontributions were leftout, for whi
h a suitable set of parametrizations were
onstru
ted. It is the aim of the present work to ana-lyti
ally integrate these remaining 
ontributions, e.g. theexpression in Eq. (30) of Ref. [5℄, ex
ept for its last term,proportional to d�LO=dvdw.III. EVALUATIONIn order to obtain the analyti
al result for the total
ross se
tion, one has to perform double integrationsover the variables v and w, as was already mentionedin Se
. II. The expli
it forms of the relevant integralsIi (i = 1; : : : ; 16) are given in Appendix C of Ref. [5℄.However, their dire
t analyti
al evaluation turns out tobe very 
ompli
ated in general and even an unfeasibletask in some 
ases. The integrals Ii 
ontain logarithmswith square roots in their arguments, and their 
oeÆ
ientfun
tions also depend on the integration variables. Inseveral 
ases where dire
t integration is possible, one ob-tains expressions in terms of the generalized Nielsen poly-logarithms [10℄. These polylogarithms, however, 
ontainlong and 
ompli
ated arguments that look unnatural, sothat we de
ided to �nd some other universal representa-tion that would be valid for all the integrals under 
on-sideration.In fa
t, we made use of another approa
h to obtain theresults. The essen
e of our method 
onsists in obtainingthe integrated result from its expansion over the variableit depends on, as well as in the knowledge of the ba-



3sis fun
tions entering the integrated result. In the past,su
h an approa
h was used in Ref. [11℄ for vertex- andpropagator-type two-loop diagrams and was also appliedto some other problems (see, e.g., Ref. [12℄).In our 
ase, the result depends on the single variablem2=s. We �nd it, however, more 
onvenient to set upthe expansion in the heavy-quark velo
ity� =r1� 4m2s : (3.1)The pro
edure for obtaining the required expansions ofthe double integrals in the variable �, by �rst expand-ing and then integrating Eq. (30) of Ref. [5℄, was alreadydis
ussed in detail in Ref. [8℄ and will not be addressedhere. We only mention that, in Ref. [8℄, only the �rst 11terms of the expansions were obtained, whi
h was all one
ould a
hieve at that time with available 
omputer hard-ware resour
es. For our present purposes, we needed togreatly enlarge the depths of the expansions. Althoughthis appears to be a straightforward task at �rst sight, itturned out to be a major te
hni
al 
hallenge in pra
ti
e.We a
tually needed hundreds of expansion terms to beable to rebuild the �nal integrated results. For a givenintegral, the number of expansion terms is, of 
ourse, di-re
tly 
onne
ted to the number of fun
tions that makesup our basis. Thus, the main problems were, on the onehand, to de�ne the smallest possible basis and, on theother hand, to obtain suÆ
iently many terms of the ex-pansion. Analyzing already integrated parts of the 
rossse
tion presented in Ref. [8℄ and taking into a

ount ob-servations made in a number of previous phenomenolog-i
al studies, we 
hose our set of basis fun
tions to be the
omplete set of harmoni
 polylogarithms of Remiddi andVermaseren [13℄. Further detailed investigation revealed,however, that harmoni
 polylogarithms alone are not suf-�
ient, and that some nonharmoni
 fun
tions should beadded to the basis, as will be explained below. Thesefun
tions fall into the 
lass of multiple polylogarithms[14℄.It is well known that Feynman amplitudes satisfy lineardi�erential equations (see, e.g., Ref. [15℄). In order to es-tablish the stru
ture of the results, we found it very 
on-venient to 
onsider homogeneous di�erential equationsfor the various integrals Ii, whi
h are of the formkXn=0P (i)n (�) dnd�n Ii(�) = 0 ; (3.2)where P (i)n (�) are some polynomials and k is the order ofthe homogeneous di�erential equation. Having typi
ally150{200 
oeÆ
ients of an expansion in �, we were ableto establish the di�erential equations of the above typefor ea
h of the Ii fun
tions. As a result, we found thatthe degrees of the polynomials P (i)n (�) never ex
eed 14and that the orders of the di�erential equations do notex
eed 7. After having obtained the polynomials, one
an try to solve the homogeneous di�erential equations

by using the linear ansatzIi =Xl a(i)l Fl; (3.3)where the sum runs over all the basis fun
tions. We re-mark that the �rst 
oeÆ
ients of the original � expan-sions serve as boundary 
onditions for our di�erentialequations. Substitution of su
h an ansatz into Eq. (3.2)leads to an algebrai
 system of linear equations.As already mentioned, not all the integrals 
an be givenin terms of harmoni
 polylogarithms. In parti
ular, thiswas the 
ase for the integral I8 of Ref. [5℄, whi
h is oneof the most 
ompli
ated ones. We expli
itly integratedthe doubly di�erential distribution asso
iated with thisfun
tion. The details are presented in Appendix A. Nev-ertheless, su
h a dire
t integration would be rather te-dious for a majority of our fun
tions, and the 
hanges ofvariables des
ribed in Appendix A are not universal and,therefore, not appli
able to the other integrals. Anotherintegral that 
annot be expressed in terms of harmoni
polylogarithms is I6.Originally, our ansatz 
ontained more than 100 basisfun
tions. To work with su
h an ansatz, we needed about1000 expansion 
oeÆ
ients in the � series. Finally, af-ter some analysis, we 
onstru
ted a �nal set of 21 basisfun
tions. They are harmoni
 polylogarithms, ex
ept forthree, whi
h are dis
ussed in Se
. IV. With this set ofbasis fun
tions, the number of linear equations requiredvaries from several tens to a 
ouple of hundreds, depend-ing on the fun
tion Ii 
onsidered. Typi
ally, one needsabout 150{200 
oeÆ
ients of the � expansion to �nd thesolution for the double integral Ii.IV. INTEGRATED RESULTSThe unpolarized and polarized 
ross se
tions are de-�ned in terms of ��1�2 as�unp = 12 (�++ + �+�) ;�pol = 12 (�++ � �+�) : (4.1)We parametrize the total 
ross se
tion in terms of thepolarization of the initial beams as� = 2� j2 �++ + j2�+� ; (4.2)where j = 1 � h�1�2i involves the average produ
t ofthe photon heli
ities �1 and �2. A

ording to Eq. (4.2),j = 1 
orresponds to the unpolarized 
ross se
tion �unp,while j = 0 and j = 2 
orrespond to �++ and �+�,respe
tively.At NLO, Eq. (4.2) 
an be written as� = 2��2e4QN
s hf (0)(j; �) + CF �s� f (1)(j; �)i ; (4.3)



4where eQ is the fra
tional ele
tri
 
harge of the heavyquark Q, N
 the number of 
olors, and � the �ne-stru
ture 
onstant.The Born result is well known and readsf (0)(j; �) = 2� + 2�3 � 6j� � (1 + 2j � �4) ln 1� �1 + � :(4.4)The NLO result 
an be presented as a linear 
ombina-tion of universal basis fun
tions Fi,f (1)(j; �) = 21Xi=1 
(j)i (�)Fi(�); (4.5)where all the j dependen
e resides in the 
oeÆ
ients 
(j)i .The 
oeÆ
ients 
(j)i are given in Appendix B. The 
hoi
eof the basis fun
tions Fi is not unique. We 
hoose the 21basis fun
tions Fi as follows:F1 = 1; F2 = H1; F3 = H�1; F4 = H1;1;F5 = H�1;1; F6 = H1;�1; F7 = H�1;�1;F8 = Li2(�)� Li2(��); F9 = H1;1;1;F10 = H�1;1;1; F11 = H1;�1;1; F12 = H�1;�1;1;F13 = H1;1;�1; F14 = H�1;1;�1; F15 = H1;�1;�1;F16 = H�1;�1;�1;F17 = 2 Z �0 db1� b2 [Li2(b)� Li2(�b)℄ ;F18 = Z �0 dbb ln2 1� b1 + b ;F19 = 2 Z �0 bdb5� b2 �12 ln2(1 + b)� 12 ln2(1� b)+ Li2�1 + b2 �� Li2�1� b2 �+ ln 2 ln 1� b1 + b� ;F20 = 2 Z �0 bdb3 + b2 �ln2 1 + b2 � ln2 1� b2 � ;F21 = � [A1(�)�A2(�)℄ : (4.6)The H fun
tions appearing in Eq. (4.6) are the so-
alledharmoni
 polylogarithms, de�ned asH�1(�) = Z �0 db1� b = � ln(1� �);H�1;a;:::(�) = Z �0 db1� bHa;:::(b); (4.7)Li2 is the dilogarithm, de�ned below Eq. (4.9); and thefun
tions A1 and A2 have the following 
ompa
t one-foldintegral representations:A1(�) = Z �0 db ln(1� b2)2� �2 � b2 ln 1� b21� �2 ;A2(�) = Z ��� db ln(1 + b)2� �2 � b2 [2 ln(1 + b)� ln(1 + �2 + 2b)� : (4.8)

We observe that only three basis fun
tions F19, F20,and F21 of Eq. (4.6) are not expressible in terms of har-moni
 polylogarithms (4.7). We remark that the basisfun
tion F20 arises only from the virtual part of the 
rossse
tion.We note that all the basis fun
tions Fi of Eq. (4.6) 
analso be expressed via generalized Nielsen polylogarithms,Sn;p(y) = (�1)n+p�1(n� 1)! p! 1Z0 dtt lnp(1� ty) lnn�1 t (4.9)with n + p = 2; 3 and 
ompli
ated arguments. Spe
ial
ases in
lude the polylogarithm of order n, Lin(y) =Sn�1;1(y), and Riemann's zeta fun
tion �n = �(n) =Lin(1) [10, 16℄. We rewrite the fun
tions Fi in terms ofthe standard generalized Nielsen polylogarithms in Ap-pendix C. We note in passing that all the Fi fun
tions 
anbe expressed in terms of multiple polylogarithms L1;1;1of depth and weight 3 [14℄ with simple linear arguments.To verify our analyti
al results, we 
ompared the nu-meri
al values for the fun
tion f (1) of Eq. (4.3) produ
edby our Mathemati
a program in the polarized and un-polarized 
ases with Table 1 of Ref. [8℄. There, the valuesfor f (1) are presented as fun
tions of the variablez = ps2m = 1p1� �2 : (4.10)We found agreement on the level of better than one partin 10 000. Next, we 
ompared our numbers with thosefor z = 1; 2; 3; 4; 5; 10 presented in Table 1 of Ref. [17℄dealing with the unpolarized 
ase. The agreement wasat the order of one part in 10 000 or better. Finally, wealso 
ompared our numbers with the 
orresponding val-ues for f (1)(++) and f (1)(+�) from Ref. [6℄. Generally,we were in good agreement; however, we found deviationsfor f (1)(++) by about 3% at some values of z.The present results form an Abelian subset of thenon-Abelian gluon-indu
ed NLO 
ontributions to heavy-quark pair produ
tion. Re
ently, the total 
ross se
tionof this subpro
ess was 
al
ulated analyti
ally for unpo-larized gluons in Ref. [18℄ using a 
ompletely di�erentapproa
h. By modifying the 
olor stru
tures, it is pos-sible to extra
t the unpolarized 

 
ross se
tion fromtheir result. Comparing both numeri
ally and analyti-
ally (after expanding in �), we �nd 
omplete agreement.Spe
i�
ally, three nonharmoni
 fun
tions F1(x), F2(x),and F3(x) appearing in Eqs. (13){(15) of Ref. [18℄ 
anbe expressed as linear 
ombinations of our fun
tions F19,F20, and F21. For instan
e, for the most 
ompli
atedfun
tion F3(x), one hasF21(�) = 815 1� xp1 + 6x+ x2F3(x); (4.11)where x = (1� �)=(1 + �).



5V. CONCLUSIONSWe presented, in analyti
 form, the integrated total
ross se
tions of heavy-quark produ
tion in polarized andunpolarized 

 
ollisions at NLO in QCD. The result iswritten as a sum over bilinear produ
ts of j-dependent
oeÆ
ient fun
tions and j-independent basis fun
tions,where j denotes the total angular momentum of the pho-tons.We 
he
ked our analyti
al results by reprodu
ing, withgreat a

ura
y, all the numeri
al values listed in the rel-evant tables of Refs. [8, 17℄. Furthermore, we establishedagreement with the analyti
 NLO result for the total
ross se
tion of heavy-quark produ
tion via gg fusion,obtained just re
ently in Ref. [18℄, by taking the Abelianlimit.Using the ba
ks
attering te
hnique, it is straightfor-ward to obtain polarized-photon beams of high intensityat the 

 option of the ILC by 
olliding low-energy laserlight with polarized ele
tron and positron beams.Of some 
on
ern are resolved-photon 
ontributions.On the one hand, the unpolarized 
ross se
tions ofthe 
ontributing subpro
esses were already presented inRef. [18℄ and the polarized ones may be dedu
ed, e.g.,from Ref. [19℄. On the other hand, su
h 
ontributions
an be suppressed by operating 
lose to the produ
tionthreshold. In fa
t, we infer from Ref. [20℄ that, in the
ase of b-quark produ
tion 
lose to threshold, the resolved
ontribution only makes up a fra
tion of a per
ent of thefull 
ross se
tion. Resolved 
ontributions may also be re-du
ed by identifying outgoing jets 
ollinear to one of thephoton beams, whi
h are a signature of resolved-photonevents. One 
an also require that the energy deposited inthe dete
tors be equal to the total beam energy in orderto a

ount for missed jets of the type mentioned above.From the experimental side, we are assuming only thatheavy-quark events 
an be 
learly identi�ed.Our 
omputer program evaluates the total 
ross se
-tions presented here in less than a se
ond. It is publi
lyavailable [21℄ and uses the program pa
kage HPL [22℄.Being implemented in Mathemati
a, it does not allowfor 
al
ulations with arbitrary pre
ision. However, withsome additional te
hni
al modi�
ations, arbitrary pre
i-sion 
ould be a
hieved.A
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iation through GrantNo. HA{101.APPENDIX A: INTEGRALTRANSFORMATIONSThe 
ontribution proportional to the integral I8 ofRef. [5℄ 
an be represented in the formI8N = Z v2v1 dv Z 1w1 vdwpx8 ln px8 + vwpx8 � vw e8(v; w); (A1)where N is a known normalization 
onstant andv1 = 1� �2 ; v2 = 1 + �2 ; w1 = av(1� v) ;w = 1� w; x8 = v2w2 + 4av(1� vw); a = v1v2:(A2)In the polarized 
ase, the 
oeÆ
ient fun
tion e8 is simplyrepla
ed by �e8. The a
tual expressions for �e8 and e8may be found in Eqs. (B6) and (B8) of Ref. [5℄, respe
-tively.It is 
onvenient to 
hange the order of integrations asZ v2v1 dv Z 1w1 dw �! Z 11��2 dw Z 1+t21�t2 dv; (A3)where t2 = 1�4a=w. Furthermore, x8 de�ned in Eq. (A2)
an be represented asx8 = v2y8; y8 = w2 + 4a�1v � w� ; (A4)so that we may substitutevpx8 ln px8 + vwpx8 � vw = 1py8 ln py8 + wpy8 � w: (A5)in Eq. (A1).Clearly, the \natural" repla
ement � = 1=v rendersy8 just linearly dependent on the new variable �. As a
onsequen
e, the integral in Eq. (A1) will be transformedas I8N = Z 11��2 dwR(w);R(w) = Z w2a (1+t)w2a (1�t) d�py8 ln py8 + wpy8 � w e8(x;w); (A6)where e8 � e8=�2.



6The next step is to repla
e the integration variable � bythe new integration variable z = py8, so that the squareroot is removed from the logarithm. Thus, one obtainsR(w) = 12a Z py+py� dz ln z + wz � w e8(z; w); (A7)where y� = 2w(1� t� 2a) + w2.It is then 
onvenient to split R(w) into the two partsas R(w) = R+(w) �R�(w); (A8)R�(w) = 12a Z py+py� dz ln(z � w) e8(z; w)= 12a Z py+�wpy��w dz� ln z� e8(z�; w); (A9)where z� = z � w, whi
h indu
es a 
orresponding splitof the original integral I8=N :I8N = I(+)8 � I(�)8 : (A10)After ex
hanging the order of integrations and perform-ing some algebrai
 manipulations, we obtainI(�)8 = 12a Z 1+�1�� dz� ln z� Z 1w� dw e8(z�; w);= 12a Z ��� dr� ln(1� r�) Z w�0 dw e8(r�; w);(A11)where z� = 1� r�; w� = (1� r�)22(1� r� � 2a) ;w� = �2 � r2�2(1� r� � 2a) : (A12)It turns out the fun
tion e8, when expressed in termsof the new variables r�, is greatly simpli�ed, and so isthe integration over the variable w. Performing the in-tegrals in Eq. (A11), most of the terms 
ontained in e8yield harmoni
 polylogarithmsH and generalized Nielsenpolylogarithms Sa;b. Only the most 
ompli
ated terms ofe8 lead to the stru
tures A1(�) and A2(�) in Eq. (4.8).APPENDIX B: COEFFICIENTSHere, we list the 
oeÆ
ients 
(j)i appearing in Eq. (4.5).They read
(j)1 = �19� + 41�3 +�1 + 32� + 2�2 � 12�3 + �4��2� 4�(1 + 2�2) ln(2�2)+ j��32� � 34 �4 + � + 4�2 � 34�3��2

+ 4��7� 23 + �2� ln 2 + 24� ln��;
(j)2;3 = �92 � 2� � 13�2 � 4�3 � 252 �4 + 805� �2+ 14� (2� � + 2�2 + 2�3 � 2�4 � �5 � 2�6)�2+ 2�7 + �2 + 4�4 � 243 + �2� ln 2 + 8�2(1 + �2) ln�+ j�9� 14� + 7�2 � 405� �2 + 4(3� �)3 + �2+ 18� (8 + � + 8�2 � 2�3 + �5)�2� 2 �21 + 5�2 � 483 + �2 + 48(3 + �2)2 � ln 2� 4(5 + 3�2) ln ��;
(j)4;7 = �18� 9� � 10�2 + 3�3 � 6�4 � 2405� �2 � 320(5� �2)2� 483 + �2 + 12� (8� 3� + 8�2 � 6�3 � 8�4 � 3�5� 8�6) ln 2 + 4� (1 + �2 � �4 � �6) ln�+ j��392 + 92� � 392 �2 � 32�3� 160(5� �2)2 � 1605� �2 � 96(3 + �2)2 � 963 + �2+ 14� (32� 29� + 8�2 � 26�3 + 8�4 � 15�5) ln 2+ 8� (1 + �2) ln��;
(j)5;6 = �32� 9� � 8�2 + 3�3 � 14�4 � 2405� �2 � 320(5� �2)2+ 12� (8� 3� + 8�2 � 6�3 � 8�4 � 3�5 � 8�6) ln 2+ 4� (1 + �2 � �4 � �6) ln�+ j��452 + 92� � 592 �2 � 32�3 � 160(5� �2)2 � 1605� �2+ 14� (32� 29� + 8�2 � 26�3 + 8�4 � 15�5) ln 2+ 8� (1 + �2) ln��;
(j)8 = �4� 16�2 � 12�4 + 8j(4 + 3�2);
(j)9;16 = 21� 1� � � + 18�2 � �3 � 7�4 � �5+ j4� (�8� � � 26�2 � 34�3 � 6�4 + 7�5);
(j)10;15 = �18� 1� � � � 24�2 � �3 + 10�4 � �5



7+ j4� (�8� 5� � 26�2 + 46�3 � 6�4 � 13�5);
(j)11;14 = �332 � 5� � 5� � 27�2 � 5�3 + 232 �4 � 5�5+ j2� (�20 + 12� � 17�2 + 36�3 � �4 � 14�5);
(j)12;13 = 392 � 5� � 5� + 21�2 � 5�3 � 172 �4 � 5�5+ j2� (�20� 15� � 17�2 � 30�3 � �4 + 11�5);
(j)17 = � 6� � 6� + 6�3 + 6�5 � 12j� (1 + �2);
(j)18 = 
(j)173 ;
(j)19 = 20 + 30�2 � 10�4 � 5j4 (7 + 14�2 � 5�4);
(j)20 = �34 + 32�2 � 34�4 � 3j8 (15 + 6�2 � 5�4);
(j)21 = �11� � 15� + 11�3 � �5 + 2j� (5� �2): (B1)APPENDIX C: BASIS FUNCTIONSAs was already mentioned in Se
. IV, all the Fi fun
-tions in Eq. (4.6) 
an be written in terms of Sn;p fun
tionswith n+ p = 2; 3 and some 
ompli
ated arguments. Thefun
tions Fi with i = 1; : : : ; 16 are written in terms ofthe standard harmoni
 polylogarithms of Remiddi andVermaseren [13℄, and their representations in terms ofNielsen polylogarithms may be found in Ref. [13℄. Thefun
tions Fi (i = 17; : : : ; 21) have the following forms:F17 = � lnx [Li2(�) � Li2(��)℄� F18;F18 = ln� ln2 x� 3�3 + 2 ['1(1; x)� '1(�1; x)℄ ;F19 = F (1)19 + 2F (2)19 + 2F (3)19 ;F (1)19 = � ln(5� b2) �2Li2(�x) + �2 + 2 lnx ln(1 + x)� 12 ln2 x� ;F (2)19 = ln 2�ln2 1 + �2 � ln2 1� �2 �+ '1�z�1 ; 1 + �2 �� '1 �z�1 ; 1� �2 �+ '1��z+1 ; 1 + �2 �� '1��z+1 ; 1� �2 � ;F (3)19 = ln 4�2Li2(�x) + �2 + 12 ln2 x�� 52�3 + 8S1;2(�x)� 2'1(�1; x)+ 2'2(�z�2 ; x)� 2'2(�z+2 ; x);F20 = F (1)20 + 2F (2)20 ;F (1)20 = ln 3 + �24 �ln2 1 + �2 � ln2 1� �2 � ;

F (2)20 = 19'1 �1;�1 + �2 �3!� 19'1 �1;�1� �2 �3!� '1��1; 1 + �2 �+ '1��1; 1 + �2 � ;F21 = �2d �ln 1� �2(d� 1)2 F (1)21 + F (2)21 � ;F (1)21 = ln Æ ln �� 12 ln2 �+ Li2(Æ�)� Li2 �Æ��� �2 � 2Li2(��);F (2)21 = �3 � 5 S1;2(��) + 4 S1;2��1��+ 2S1;2(Æ)� 4 S1;2�Æ��+ 2S1;2� Æ��+ 3�2 ln �� 5'2(1; �) + '2�1; 1��+ Re�S1;2�1Æ�� S1;2 ��Æ �+ 2���Æ;�1Æ�� 3����Æ;��Æ�+��� 1�Æ ;�Æ��� 5'2��1Æ ; ��+ '2��1Æ ; 1��� ; (C1)where z�1 = p5� 12 ; z�2 = 3�p52 ;d = p2� �2; Æ = d� 1d+ 1 ; � = d� �d+ � : (C2)The fun
tions '1 and '2 are de�ned as'1(�; x) = Z 1x dyy ln y ln(1� �y)= Li3(�) � Li3(�x) + lnxLi2(�x);'2(�; x) = Z 1x dyy ln(1 + y) ln(1 + �y)= �(1; �)� �(x; �x); (C3)where (see Eq. (3.15.4) of Ref. [10℄)�(A;B) = Z 10 dyy ln(1 +Ay) ln(1 +By)= S1;2(�A) + S1;2(�B)� 12 ln2 AB ln(1 +B)+ ln AB �Li2�A�BA �� Li2� A�BA(1 +B)��� S1;2�A�BA �+ S1;2� A�BA(1 +B)�� S1;2�B �A1 +B � : (C4)
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