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Heavy-quark pair production in polarized photon-photon collisions at next-to-leading
order: Fully integrated total cross sections
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We consider the production of heavy-quark pairs in the collisions of polarized and unpolarized
on-shell photons and present, in analytic form, the fully integrated total cross sections for total
photon spins J, = 0,+2 at next-to-leading-order in QCD. Phenomenological applications include
bb production, which represents an irreducible background to standard-model intermediate-mass

Higgs-boson production, as well as tt production.

PACS numbers: 12.38.Bx, 13.85.-t, 13.85.Fb, 13.88.+¢

I. INTRODUCTION

It has been emphasized by many physicists that run-
ning a future ete~ linear collider (ILC) in the photon-
photon mode is a very interesting option (see, e.g.,
Refs. [1, 2]). The high-energy on-shell photons can be
generated by backward Compton scattering of laser light
off the high-energy electron and positron bunches of the
collider with practically no loss in energy and luminos-
ity. In this respect, one of the most important reactions
to consider is heavy-quark pair production in photon-
photon collisions. A v+ collider becomes particularly im-
portant for studies of the standard-model Higgs boson
when its mass is below the W W ~ production threshold.
Then, the predominant decay is H — bb. The dominant
background to this comes from yy — bb, which receives
contributions from direct and resolved photons. We leave
aside the latter for the time being and return to this in
Sec. W1 The use of longitudinally polarized photons of
equal helicity (their angular momentum being J, = 0)
suppresses this background by a factor of m}/s at the
leading order in perturbation theory [3, 4]. Of course,
the reason that the J, = 0 channel is important is that
the Higgs signal comes entirely from it. Nevertheless,
the above-mentioned suppression should not necessarily
hold in general, since QCD higher-order corrections in-
volve gluon emission, which permits the bb system to have
J. # 0. Therefore, the process of bottom-quark pair pro-
duction in polarized-photon fusion would represent an ir-
reducible background to intermediate-mass Higgs-boson
production. Indeed, subsequent calculations of the next-
to-leading-order (NLO) QCD corrections have confirmed
these expectations |3, 6].

Furthermore, future photon colliders will become top-
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quark factories. The data obtained there, when com-
bined with data on top-quark production from other re-
actions, will certainly improve our knowledge of the top-
quark properties (see, e.g., Ref. [7]). It should also be
noted that the NLO corrections have a large effect on
the threshold behavior and exhibit a peculiar spin de-
pendence in this region.

Heavy-flavor production in photon-photon collisions
receives contributions from direct and resolved incident
photons. In the first case, photons behave as pointlike
objects, interacting directly with the quarks in the hard
scattering, while in the second case, the photon exhibits a
complex structure involving quarks and gluons that par-
ticipate in the hard interaction. In this paper, we present
analytical results for the total cross sections for heavy-
quark pair production by both polarized and unpolarized
direct photons. The present work builds on the previous
work of one of us [, &]. In Ref. [5], differential cross sec-
tions were calculated analytically in dimensional regular-
ization [9] and cast into a very compact form. We note
that this is the only publication where complete analyt-
ical results for polarized and unpolarized doubly differ-
ential cross sections are presented. In Ref. [8], top-quark
pair production for energies not too far above threshold
was studied, and the fully integrated result for the so-
called “virtual plus soft” part of the cross section was
derived. We also note that the results presented in the
present work constitute the Abelian part of the gluon-
induced hadroproduction of heavy-quark pairs.

This paper is organized as follows. Section [T explains
our notations. In Sec. [[II, we outline our general ap-
proach and discuss in detail our procedure and method-
ology. In Sec.[[V] we present our analytically integrated
total cross sections. Our conclusions are summarized in
Sec.[Vl Finally, Appendix[Alelaborates on the calculation
of one of the most difficult double integrals, Appendix [B
gives expressions for the various coefficient functions that
appear in the main text, and Appendix [C]l displays repre-
sentations of our basis functions in terms of generalized
Nielsen polylogarithms.
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FIG. 1: One-loop Feynman diagrams contributing to the photon-fusion amplitude. Wavy, curly, and solid lines represent

photons, gluons, and heavy quarks, respectively

II. NOTATION

For consistency, we closely follow the notations of
Ref. [5]. The one-loop Feynman diagrams with ¢-channel
topology relevant for heavy-flavor production by the scat-
tering of two on-shell photons are depicted in Fig.[Il The
u-channel diagrams are obtained from the depicted ones
by crossing the incoming photon lines. Single-gluon ra-
diation, which arises from the tree-level diagrams with a
gluon attached in all possible ways to the heavy-quark
line, contributes at the same order. We assign the four-
momenta and helicities as

Y(p1, A1) + v(P2; A2) = Q(ps) + Qlpa) + 9(ps), (2.1)
so that p1 +p2 = p3 +ps+ps, and have p? = p3 =p2 =0
and p2 = p? = m?, where m is the quark mass. We
introduce the following Mandelstam variables:

s = (p +P2)27
t=T-m?= (m —pg)2 —m?, (2.2)

2

u = U—mzz(p2—p3)2—m,

s5 = Se—m?=(p1+ps—p3)° —m>=s+1t+u,

so that sy = 0 in the soft-gluon limit. Introducing

t

we may write

t=—s(l—v), u = —svw, 59 = sv(l—w). (2.4)

In Ref. [5], the four-momentum of the gluon was in-
tegrated out, the squared amplitudes were summed over
the spins and colors of the final-state heavy quarks and
averaged over the spins of the initial photons. The dif-

ferential cross sections dAo/dvdw and do/dvdw for the

polarized and unpolarized cases were presented analyti-
cally, while the total cross sections Ao and o were cal-
culated numerically. In Ref. [§], these differential cross
sections were further integrated to obtain fully analyt-
ical result for all the terms proportional to 6(1 — w),
i.e., those that multiply the leading-order term. How-
ever, the hard-bremsstrahlung contributions were left
out, for which a suitable set of parametrizations were
constructed. It is the aim of the present work to ana-
lytically integrate these remaining contributions, e.g. the
expression in Eq. (30) of Ref. [3], except for its last term,
proportional to dor,o/dvdw.

III. EVALUATION

In order to obtain the analytical result for the total
cross section, one has to perform double integrations
over the variables v and w, as was already mentioned
in Sec. [ The explicit forms of the relevant integrals
I; (i =1,...,16) are given in Appendix C of Ref. [3].
However, their direct analytical evaluation turns out to
be very complicated in general and even an unfeasible
task in some cases. The integrals I; contain logarithms
with square roots in their arguments, and their coefficient
functions also depend on the integration variables. In
several cases where direct integration is possible, one ob-
tains expressions in terms of the generalized Nielsen poly-
logarithms |10]. These polylogarithms, however, contain
long and complicated arguments that look unnatural, so
that we decided to find some other universal representa-
tion that would be valid for all the integrals under con-
sideration.

In fact, we made use of another approach to obtain the
results. The essence of our method consists in obtaining
the integrated result from its expansion over the variable
it depends on, as well as in the knowledge of the ba-



sis functions entering the integrated result. In the past,
such an approach was used in Ref. [11] for vertex- and
propagator-type two-loop diagrams and was also applied
to some other problems (see, e.g., Ref. [12]).

In our case, the result depends on the single variable
m?/s. We find it, however, more convenient to set up
the expansion in the heavy-quark velocity

4m?2
P=yi-—

The procedure for obtaining the required expansions of
the double integrals in the variable 3, by first expand-
ing and then integrating Eq. (30) of Ref. [3], was already
discussed in detail in Ref. [8] and will not be addressed
here. We only mention that, in Ref. [§], only the first 11
terms of the expansions were obtained, which was all one
could achieve at that time with available computer hard-
ware resources. For our present purposes, we needed to
greatly enlarge the depths of the expansions. Although
this appears to be a straightforward task at first sight, it
turned out to be a major technical challenge in practice.
We actually needed hundreds of expansion terms to be
able to rebuild the final integrated results. For a given
integral, the number of expansion terms is, of course, di-
rectly connected to the number of functions that makes
up our basis. Thus, the main problems were, on the one
hand, to define the smallest possible basis and, on the
other hand, to obtain sufficiently many terms of the ex-
pansion. Analyzing already integrated parts of the cross
section presented in Ref. [§] and taking into account ob-
servations made in a number of previous phenomenolog-
ical studies, we chose our set of basis functions to be the
complete set, of harmonic polylogarithms of Remiddi and
Vermaseren [13]. Further detailed investigation revealed,
however, that harmonic polylogarithms alone are not suf-
ficient, and that some nonharmonic functions should be
added to the basis, as will be explained below. These
functions fall into the class of multiple polylogarithms
[14].

It is well known that Feynman amplitudes satisfy linear
differential equations (see, e.g., Ref. [15]). In order to es-
tablish the structure of the results, we found it very con-
venient to consider homogeneous differential equations
for the various integrals I;, which are of the form

(3.1)

k n
> POB) 15 1(5) =0, (3.2)
n=0

where P (8) are some polynomials and k is the order of
the homogeneous differential equation. Having typically
150-200 coefficients of an expansion in 3, we were able
to establish the differential equations of the above type
for each of the I; functions. As a result, we found that
the degrees of the polynomials 7(;) (B) never exceed 14
and that the orders of the differential equations do not
exceed 7. After having obtained the polynomials, one
can try to solve the homogeneous differential equations

by using the linear ansatz
Ii = Z al(i)ﬂa
1

where the sum runs over all the basis functions. We re-
mark that the first coefficients of the original 8 expan-
sions serve as boundary conditions for our differential
equations. Substitution of such an ansatz into Eq. (8:2)
leads to an algebraic system of linear equations.

As already mentioned, not all the integrals can be given
in terms of harmonic polylogarithms. In particular, this
was the case for the integral Is of Ref. [3], which is one
of the most complicated ones. We explicitly integrated
the doubly differential distribution associated with this
function. The details are presented in Appendix A. Nev-
ertheless, such a direct integration would be rather te-
dious for a majority of our functions, and the changes of
variables described in Appendix A are not universal and,
therefore, not applicable to the other integrals. Another
integral that cannot be expressed in terms of harmonic
polylogarithms is Ig.

Originally, our ansatz contained more than 100 basis
functions. To work with such an ansatz, we needed about
1000 expansion coefficients in the 3 series. Finally, af-
ter some analysis, we constructed a final set of 21 basis
functions. They are harmonic polylogarithms, except for
three, which are discussed in Sec. [Vl With this set of
basis functions, the number of linear equations required
varies from several tens to a couple of hundreds, depend-
ing on the function I; considered. Typically, one needs
about 150-200 coefficients of the 8 expansion to find the
solution for the double integral I;.

(3.3)

IV. INTEGRATED RESULTS

The unpolarized and polarized cross sections are de-
fined in terms of oy, \, as

1
Ounp = 5 (044 +04-),
1
Opol = 5 (044 —04-). (4.1)

We parametrize the total cross section in terms of the
polarization of the initial beams as

2—7J J
g = TO’++ + §O'+_ 5 (42)
where 57 = 1 — (A1 \2) involves the average product of
the photon helicities A\; and Ay. According to Eq. (£2]),
J = 1 corresponds to the unpolarized cross section oy,
while 7 = 0 and j = 2 correspond to o4+ and oy_,
respectively.
At NLO, Eq. [@2) can be written as
2ra2el N, Qs
o= ——LL 06,8 + Cr VG ) (43)



where eg is the fractional electric charge of the heavy
quark @, N. the number of colors, and « the fine-
structure constant.

The Born result is well known and reads

fO3U,8) = 28+28°—6j8 — b
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(4.4)

(1+2j —54)111

The NLO result can be presented as a linear combina-
tion of universal basis functions Fj,

21 )
=3 BF
=1
@)

where all the j dependence resides in the coefficients c;
The coefficients cEJ ) are given in Appendix[Bl The choice
of the basis functions Fj is not unique. We choose the 21

basis functions F; as follows:

(4.5)

F =1, F, = Hy, F; =H 4, Fy=H,,
Fs = H 1, Fs = Hy 1, F,=H .,
Fy = Liy(B) — Liz(—5), Fy=Hy1,,
Fio = H_y,,., Fiy=Hy 1, Fio=H__11,
Fi3 = Hyg,_1, Fiyy=H_11_1, Fis=H _1_1,
Fi¢ = H_y_1 1,
5 db
F17 = 2/ 1 b2 [ng(b) LIQ( b)]
o 1—
Bdb 510
Fs = [ @m2-—2
s /0 e

B obdb 1
2/0 0 {5 (1+b)——1n(1—b)

+Li2<1+b> < >+1 21n +zﬂ

B 5 bdb s 1+b | ,1-b
Foo = 2/0 3+ (‘“ ;. I T)
Fyy = B [A(B) — A2(B)].

The H functions appearing in Eq. [@6) are the so-called
harmonic polylogarithms, defined as

(4.6)

53
Hai(B) /Oﬂzﬂn(lw),

1F0b

53
Hira (8) = / g o) (47)

1F0b

Liy is the dilogarithm, defined below Eq. [@3); and the
functions A; and As have the following compact one-fold
integral representations:

In(1-p%)  1-p
A1(8) = /0 deH_(IB o 1n11_62,
A5(8) :/ db%[zm(ub)

— In(1+4 8% +2b)]. (4.8)

We observe that only three basis functions Fig, Fb,
and Fy; of Eq. ([@0) are not expressible in terms of har-
monic polylogarithms ([@7). We remark that the basis
function Fyg arises only from the virtual part of the cross
section.

We note that all the basis functions F; of Eq. (@6) can
also be expressed via generalized Nielsen polylogarithms,

_ (=t [ dt no1
Sn,p(y) = e InP(1—ty) In" "¢t (4.9)
0
with n + p = 2,3 and complicated arguments. Special

cases include the polylogarithm of order n, Li,(y) =
Sn—1,1(y), and Riemann’s zeta function ¢, = ((n) =
Li, (1) [10, 16]. We rewrite the functions F; in terms of
the standard generalized Nielsen polylogarithms in Ap-
pendix[Cl We note in passing that all the F; functions can
be expressed in terms of multiple polylogarithms L ;
of depth and weight 3 [14] with simple linear arguments.

To verify our analytical results, we compared the nu-
merical values for the function f() of Eq. ([@3) produced
by our MATHEMATICA program in the polarized and un-
polarized cases with Table 1 of Ref. [8§]. There, the values
for f(1) are presented as functions of the variable

_vs_ 1
=g = m (4.10)

We found agreement on the level of better than one part
in 10000. Next, we compared our numbers with those
for z = 1,2,3,4,5,10 presented in Table 1 of Ref. |17]
dealing with the unpolarized case. The agreement was
at the order of one part in 10000 or better. Finally, we
also compared our numbers with the corresponding val-
ues for f)(++) and f()(+—) from Ref. [6]. Generally,
we were in good agreement; however, we found deviations
for f((++4) by about 3% at some values of z.

The present results form an Abelian subset of the
non-Abelian gluon-induced NLO contributions to heavy-
quark pair production. Recently, the total cross section
of this subprocess was calculated analytically for unpo-
larized gluons in Ref. [18] using a completely different
approach. By modifying the color structures, it is pos-
sible to extract the unpolarized vy cross section from
their result. Comparing both numerically and analyti-
cally (after expanding in ), we find complete agreement.
Specifically, three nonharmonic functions F(z), F>(z),
and F3(z) appearing in Egs. (13)—(15) of Ref. [18] can
be expressed as linear combinations of our functions Fig,
Fy, and F3,. For instance, for the most complicated
function F3(x), one has

8 1—2x
15V1+6ZIZ+$2

where z = (1 - 38)/(1 + B).

F(B) = Fy(z), (4.11)



V. CONCLUSIONS

We presented, in analytic form, the integrated total
cross sections of heavy-quark production in polarized and
unpolarized vy collisions at NLO in QCD. The result is
written as a sum over bilinear products of j-dependent
coefficient functions and j-independent basis functions,
where j denotes the total angular momentum of the pho-
tons.

We checked our analytical results by reproducing, with
great accuracy, all the numerical values listed in the rel-
evant tables of Refs. [§,[17]. Furthermore, we established
agreement with the analytic NLO result for the total
cross section of heavy-quark production via gg fusion,
obtained just recently in Ref. [1&], by taking the Abelian
limit.

Using the backscattering technique, it is straightfor-
ward to obtain polarized-photon beams of high intensity
at the vy option of the ILC by colliding low-energy laser
light with polarized electron and positron beams.

Of some concern are resolved-photon contributions.
On the one hand, the unpolarized cross sections of
the contributing subprocesses were already presented in
Ref. [1&] and the polarized ones may be deduced, e.g.,
from Ref. [19]. On the other hand, such contributions
can be suppressed by operating close to the production
threshold. In fact, we infer from Ref. [20] that, in the
case of b-quark production close to threshold, the resolved
contribution only makes up a fraction of a percent of the
full cross section. Resolved contributions may also be re-
duced by identifying outgoing jets collinear to one of the
photon beams, which are a signature of resolved-photon
events. One can also require that the energy deposited in
the detectors be equal to the total beam energy in order
to account for missed jets of the type mentioned above.
From the experimental side, we are assuming only that
heavy-quark events can be clearly identified.

Our computer program evaluates the total cross sec-
tions presented here in less than a second. It is publicly
available [21] and uses the program package HPL [22].
Being implemented in MATHEMATICA, it does not allow
for calculations with arbitrary precision. However, with
some additional technical modifications, arbitrary preci-
sion could be achieved.
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APPENDIX A: INTEGRAL
TRANSFORMATIONS

The contribution proportional to the integral Ig of
Ref. [5] can be represented in the form

I, v2 L ud ,/_+
2= / dv/ vew v es(v,w), (A1)
N v w VT8 ,/ Tg — VW
where N is a known normalization constant and
1-3 1+ a
v = — Vo — —— w = ——
1 9 9 2 9 9 1 ’U(]. — U) )
W= 1-w, =z5=0wW +4av(l—ovw), a=uvv,.
(A2)

In the polarized case, the coefficient function eg is simply
replaced by Aeg. The actual expressions for Aeg and eg
may be found in Egs. (B6) and (B8) of Ref. [5], respec-
tively.

It is convenient to change the order of integrations as

1
/ dv/ dw — dw dv,
w1 1—p32 1—t

2

(A3)

where t* = 1—4a/w. Furthermore, xg defined in Eq. (A2))
can be represented as

1
g = U2y87 Ys = w? +4a <_ - UJ> ) (A4)
v
so that we may substitute
v ln,/$g+vw . \/_+w (A5)

VI8
in Eq. (AT).

Clearly, the “natural” replacement & = 1/v renders
ys just linearly dependent on the new variable £&. As a
consequence, the integral in Eq. (A]) will be transformed
as

Vs — 0w \/_ Nk

/ B dw R(w),
L VBT

35 (141)
B /;1 —t) \/_ \/__

where 3 = eg/£2.

es(z,w), (A6)



The next step is to replace the integration variable & by
the new integration variable z = ,/ys, so that the square
root is removed from the logarithm. Thus, one obtains

1 [V T
/ dz lnz+w€g(z,w),

(.

A7
P (A7)
where y1 = 2w(1 £t — 2a) + w>.

It is then convenient to split R(w) into the two parts
as

R(w) = Ry(w) — R_(w),

1 Vit

(A8)
Ri(w) = % . dz In(z + @) es(z,w)
y,
1 [Vy+tw
- dzy Inzyeg(ze,w), (A9)
2a VI—tw

where z4+ = z + w, which induces a corresponding split
of the original integral Is/N:

I _

RO

(A10)

After exchanging the order of integrations and perform-
ing some algebraic manipulations, we obtain

1 148 1
Iéi) = %/ dz4+ Inzy4

1-8 wi

dweg(z+,w),

1 r8 W
= —/ dry ln(l:l:ri)/ dweg(ry,w)(A11)
2a -8B 0

where

(1 —Ti)Q
=1+ S
= e 21— ry — 2a)’
_ p*—ri

YT 50—y~ 20)

w4+ =
(A12)

It turns out the function eg, when expressed in terms
of the new variables ry, is greatly simplified, and so is
the integration over the variable w. Performing the in-
tegrals in Eq. [(AT1]), most of the terms contained in eg
yield harmonic polylogarithms H and generalized Nielsen
polylogarithms S, 5. Only the most complicated terms of
es lead to the structures A; (8) and A2(B) in Eq. (£S).

APPENDIX B: COEFFICIENTS

Here, we list the coefficients cgj) appearing in Eq. ([£.3)).

They read

A= —198 + 4158 + <1 + gﬂ +282 - %[33 + B“) 2

—46(1 + 26%)1n(28%)

+j[—326—g <4+ﬂ+452—2ﬂ3> 2

o) =

) -

Co 16 —

)

C10,15

2
+4B<7—3+52>ln2+2461nﬂ],
9 s s 25 . 80
TR T B EA - s

+ %(2 - B+28% +28° —28* — p° — 28%)n”

+2<7+52+4B4—3+B2>ln2+862(1+[32)lnﬂ
. 2 40 4(3F p)
+]{9i14ﬂ+7ﬂ _5—B2+ 3+ 52
+$(8+ﬂ+8ﬂ2—2ﬂ3+ﬂ5)w2
) 48 48
—9 {21+5ﬁ 3T @ + (3_1_52)2]1112
—4(5+3B2)1n5},

240 320
:F18—96:|:1062+3B3:F6B4:|:5_52 F G
48 1 2 3 4 5

:Fm‘i—%(gﬂ::;ﬁ-i—gﬁ F68° —83% £ 35

—866)1n2+%(14—62—64—66)1116

2
160 160 96 96
F +
5— 32 5—08%2 " (3+5%)2 342

1
+ 532295+ 862 +264% + 84* F 154°) In2

+%(1+B2)lnﬁ],

139 9 39 3
+][ —+§5i752—§53

Gy oEN

240 320
-p2 (5-p%)?
+ %(8¢3B+862 +63% — 86" F36° — 83%)In2

:l:32—96:|:8ﬁ2+363:|:14ﬁ4:|:5 S+

+ 1+ =4 =% g

|~

160 160
(5-5%) - p?
+ %(32 F293 + 832 F263° + 881 +£153°)In2

8

+ 50 +B2)lnﬁ],
—4— 1652 — 128* + 8j(4 + 352),

21$%$B+18ﬂ2i[33—754i55

.45 .9, 59, 3
+y[ S BT SB-58F

+
2 275

+ %@8 — BF265% —345° £ 68" +75°),

1
= —18F =T/ -2432+£B>+108* £ 3°

B



+-ZB(¢8 58 F 2687 + 468° + 63" — 134%),
; 33 5 23
M = G xS 2R
J 2 3 4 5
+§Buﬁu+mﬁirw +3643° £ 8% — 145°),
; 39 5 17
i)y = 5 E G2 7560 - S5t w58
+-§%(i20——15ﬂ:t17ﬂ2 308° + g* + 115%),
6 125
e} = —5 68 +68° 1687~ (145,
) _cr
18 3 ?
) —-20-+30ﬂ2——1064——§i(74-14ﬂ2-5ﬂ4)
19 = ’
G) _ 3.3, 34 3J1 2 _ 54
11
) =~ 155+ =5+ L5 ),

APPENDIX C: BASIS FUNCTIONS

As was already mentioned in Sec. [[V] all the F; func-
tions in Eq. (4.06]) can be written in terms of S, , functions
with n + p = 2,3 and some complicated arguments. The
functions F; with ¢ = 1,...,16 are written in terms of
the standard harmonic polylogarithms of Remiddi and
Vermaseren [13], and their representations in terms of
Nielsen polylogarithms may be found in Ref. [13]. The
functions F; (i = 17,...,21) have the following forms:

Fiz = —Inz[Li>(8) — Liz(-B)] — Fis,
Fis = InfIn"z 3G +2[p1(1,2) — o (-1,2)],
Fiy = Fjy +2F; +2F,
Fl(;) — —ln(5—b2) {2Li2(—$)+C2+21nxln(1+x)
— %an CU:| ,
Fg>::m2<m21+ﬁ_hﬁl_ﬁ>
2 2
v (o 1HBY (18
$1 127 $1 107
1+ 1-8
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The functions ¢; and - are defined as
1
prlaa) = [ Pinyin(i - ay)
= Lis(a) — Lig(az) + In z Lis(az),
1 dy
prlova) = [ L +y) (1 +ay)
= (I)(lva) - @(m,aw), (03)

where (see Eq. (3.15.4) of Ref. [10])
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