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Abstra
tWe 
onstru
t families of supersymmetri
 solutions of type IIB andD = 11supergravity that are invariant under the non-relativisti
 S
hr�odinger(z)algebra for various values of the dynami
al exponent z. The new solu-tions are based on �ve- and seven-dimensional Sasaki-Einstein manifolds,respe
tively, and in
lude supersymmetri
 solutions with z = 2.
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1 Introdu
tionAn interesting development in string/M-theory is the possibility of using holographi
ideas to study 
ondensed matter systems. Starting with [1, 2℄, one fo
us has beenon non-relativisti
 systems with S
hr�odinger symmetry, a non-relativisti
 version of
onformal symmetry. The 
orresponding S
hr�odinger algebra is generated by Galileantransformations, an anisotropi
 s
aling of spa
e (x) and time (x+) 
oordinates givenby x ! �x, x+ ! �2x+, and an additional spe
ial 
onformal transformation. Moregenerally, one 
an 
onsider systems invariant under what we shall 
all S
hr�odinger(z)(or S
h(z)) symmetry, where one maintains the Galilean transformations, but allowsfor other s
alings, x ! �x, x+ ! �zx+, with z the \dynami
al exponent", and,in general, sa
ri�
es the spe
ial 
onformal transformations. In this notation theS
hr�odinger algebra is S
h(2). The full set of 
ommutation relations for S
h (z) arewritten down in e.g. [2℄.Various solutions of type IIB supergravity and D = 11 supergravity have been
onstru
ted that are invariant under S
h(z) symmetry, for di�erent values of z. Thetype IIB solutions of [3℄-[8℄ 
an be viewed as deformations of the supersymmetri
AdS5 � SE5 solutions, where SE5 is a �ve-dimensional Sasaki-Einstein spa
e, andshould be holographi
ally dual to non-relativisti
 systems with two spatial dimen-sions. Similarly, there are deformations of the AdS4 � SE7 solutions1 of D = 11supergravity, where SE7 is a seven-dimensional Sasaki-Einstein spa
e, that are in-variant under S
h(z) and these should be dual to non-relativisti
 systems with asingle spatial dimension [7, 8℄.The type IIB solutions 
onstru
ted in [3, 4, 5℄ with z = 2, and hen
e invariantunder the larger S
hr�odinger algebra, are based on a deformation in the three-form
ux and do not preserve any supersymmetry [4℄. In [6℄ supersymmetri
 solutionsof type IIB with various values of z were 
onstru
ted whi
h are based on a metri
deformation and in
lude supersymmetri
 solutions with z = 2. However, it wasargued that these supersymmetri
 solutions are unstable. On the other hand it wasshown that the instability 
an be removed by also swit
hing on the three-form 
uxdeformation, whi
h then breaks supersymmetry. In a more re
ent development ari
h 
lass of supersymmetri
 solutions of both type IIB and D = 11 supergravitywere 
onstru
ted in [8℄ whi
h have various values of z � 4 and z � 3, respe
tively(parti
ular examples of the z = 4 and z = 3 solutions were �rst 
onstru
ted in [4℄and [7℄, respe
tively).1Note that deformations of AdS5 solutions of D = 11 supergravity were studied in [9℄.1



In this short note, we generalise the 
onstru
tions in [8℄ for both type IIB andD = 11 supergravity, �nding new 
lasses of supersymmetri
 solutions with variousvalues of z in
luding z = 2.Note Added: In the pro
ess of writing this paper up, we be
ame aware of [10℄,whi
h also 
onstru
ts some of the supersymmetri
 solutions of type IIB supergravitythat we present in se
tion 2.2 Solutions of type IIB supergravityConsider the general ansatz for the bosoni
 �elds of type IIB supergravity given byds210 = ��1=2 �2dx+dx� + h(dx+)2 + 2Cdx+ + dx21 + dx22�+ �1=2ds2(CY3)F5 = dx+ ^ dx� ^ dx1 ^ dx2 ^ d��1 + �CY3d��dx+ ^ ��CY3dC + d ���1C� ^ dx1 ^ dx2�G = dx+ ^W (2.1)where G is the 
omplex three-form and the axion and dilaton are set to zero. Here�, h are fun
tions, C is a one-form and W is a 
omplex two-form all de�ned on theCalabi-Yau three-fold, CY3. Our 
onventions for type IIB supergravity [11, 12℄ areas in [13℄. One �nds that all the equations of motion are satis�ed provided thatr2CY� = 0d �CY dC = 0dW = d �CY W = 0r2CY h = �jW j2CY (2.2)where jW j2CY � (1=2!)W ijW �ij with indi
es raised with respe
t to the CY metri
.Observe that when C = h = W = 0 we have the standard D3-brane 
lass of solutionswith a transverse CY3 spa
e.If we 
hoose the two-form W to be primitive and have no (0; 2) pie
es (i.e. just(2; 0) and/or (1; 1) 
omponents), on CY3 then the solutions generi
ally preserve 2supersymmetries2, whi
h is enhan
ed to 4 supersymmetries if the CY3 is 
at. More2We note that one 
an add a 
losed, primitive (1; 2)-form A on CY3 to the three-form G whilestill preserving the same amount of supersymmetry. This 
hanges two of the equations to r2CY� =�(1=2)jAj2CY and d �CY dC = i=2(W ^ A� �W � ^ A). Su
h solutions will not, in general, admit as
aling symmetry, so we shall not 
onsider them further here, however we note that solutions withW = 0 and Galilean symmetry were presented in [14℄.2



spe
i�
ally, we introdu
e the orthonormal frame e+ = ��1=4dx+; e� = ��1=4(dx� +C+ h2dx+); e2 = ��1=4dx1; et
. and 
hoose positive orientation to be given by e+�23^VolCY, where VolCY is the volume element on CY3. Consider �rst the spe
ial 
ase thatC = h = W = 0. Then, as usual, a generi
 CY3 breaks 1/4 of the supersymmetry,while the harmoni
 fun
tion � leads to a further breaking of 1/2, the Killing spinorssatisfying the additional proje
tion �+�23� = i�. Swit
hing on C; h;W we �nd thatgeneri
ally we need to also impose �+� = 0 and �ijWij�
 = 0.We now spe
ialise to the 
ase that the CY3 is a metri
 
one over a �ve-dimensionalSasaki-Einstein manifold SE5, ds2(CY3) = dr2+r2ds2(SE5). In order to get solutionswith S
h(z) symmetry we now set � = r�4C = r�1�h = r�2qW = d �r�3�� (2.3)where q is a fun
tion, � and � are, respe
tively, a real and a 
omplex one-form onSE5, and �i are 
onstants whi
h we will take to be positive. The full solution nowreadsds210 = r2 �2dx+dx� + r�2q (dx+)2 + 2r�1 dx+� + dx21 + dx22�+ dr2r2 + ds2 (SE5)F5 = 4r3 dx+ ^ dx� ^ dx1 ^ dx2 ^ dr + 4VolSE5�dx+ ^ �r�1+1 dr ^ �SE5d� + �1r�1+2 �SE5 � + d �r4+�1�� ^ dx1 ^ dx2�G = dx+ ^ d �r�3�� : (2.4)Generi
ally, when C; h;W 6= 0, solutions with �1 + 2 = 1 + �2=2 = �3 � zwill be S
h(z) invariant. In parti
ular, the s
aling a
ts on the 
oordinates via(x+; x�; xi; r) ! (�zx+; �2�zx�; �xi; ��1r) (for other transformations see [2℄). Ob-serve that if we set C = h = W = 0 then we have the standard AdS5� SE5 solutionof type IIB. Generi
ally, when C; h;W 6= 0, we still need to impose the proje
tionsmentioned above in order to preserve supersymmetry. Note in parti
ular that, gener-i
ally, half of the Poin
ar�e supersymmetries of the AdS5�SE5 solution are preserved,while none of the spe
ial 
onformal supersymmetries are. It would be interesting toexplore spe
ial sub
lasses of solutions with enhan
ed supersymmetry, whi
h o

ur,for example, when the CY3 is 
at.In [6℄, supersymmetri
 solutions with W = C = 0, h 6= 0 were 
onstru
ted withr2SEq + �2(4 + �2)q = 0 (2.5)3



and give rise to solutions with z = 1 + �2=2 � 3=2, with the bound only a
hievablefor SE5 = S5. In parti
ular supersymmetri
 solutions with z = 2 were found, but,be
ause the solutions have the metri
 
omponent g++ positive in some regions of theSE5, the solutions were argued to be unstable. In [8℄, supersymmetri
 solutions withW = h = 0, C 6= 0 were 
onstru
ted with4SE� = �1 (�1 + 2)�; dy� = 0 (2.6)where 4SE = ddy + dyd is the Hodge-deRahm operator on SE5, and give rise tosolutions with z = 2 + �1 � 4, with the bound a
hievable for any SE5 spa
e. Morespe
i�
ally, the bound is a
hieved when � is a one-form dual to a Killing ve
tor onthe SE5 spa
e; the 
lass of su
h z = 4 solutions using the one-form dual to the Reebve
tor on the SE5 spa
e were �rst 
onstru
ted in [4℄. It was also shown in [8℄ thatone 
an 
ombine these 
lasses of solutions with h; C 6= 0 (still with W = 0), andproviding that one 
an solve for q, � so that 2 + �1 = 1 + �2=2 then the solutionshave dynami
al exponent z = 2 + �1 � 4.We now 
onsiderW 6= 0. This implies that h 6= 0 and we need to set �2 = 2(�3�1).In addition to (2.6) we also need to solve4SE� = �3 (�3 + 2)�; dy� = 0r2SEq + 4(�23 � 1)q = ��23j�j2SE � jd�j2SE : (2.7)The solutions for whi
h �3 = 2+ �1 are invariant under S
h(z)with z = �3. If C 6= 0then sin
e �1 � 2, ne
essarily we have z � 4.If we set C = 0, whi
h is needed to obtain supersymmetri
 solutions with z = 2 forexample, then we just need to solve (2.7). The �rst equation implies that z = �3 � 2,with the bound being saturated when � is a one-form dual to a Killing ve
tor onthe SE5 spa
e. A simple solution is obtained by taking � = 
� for some 
onstant 
,where � is the 
anoni
al one-form dual to the Reeb ve
tor on SE5 and q = �j
j2. Thissolution has z = �3 = 2 and was �rst 
onstru
ted in [3, 4, 5℄. Observe that for thissolution W = 2
JCY . Thus while W is (1; 1) it is not primitive and so this solutiondoes not preserve any supersymmetry as previously pointed out in [4℄. On the otherhand it is straightforward to 
onstru
t solutions with z = 2 that are supersymmetri
.For example, we 
an take any Killing ve
tor on the SE5 spa
e that leaves invariantthe Killing spinors on SE5. It is straightforward to 
onstru
t su
h solutions expli
itlywhen the metri
 for the SE5 is known expli
itly as it is for the S5, T 1;1 [15℄, Y p;q[16℄ and La;b;
 [17℄ spa
es. For the 
ase of S5 it is also easy to 
onstru
t expli
itsolutions for all values of z using spheri
al harmoni
s. It is worth noting that the4



z = 2 solutions for the S5 
ase 
an have q 
onstant and negative and hen
e do notsu�er from the instability dis
ussed in [6℄. This is easy to see sin
e W must be a
onstant linear 
ombination of the 15 harmoni
 two-forms on R6 , dxi ^ dxj, or, ifwe demand supersymmetry, of the eight primitive (1; 1) forms and three (2; 0) forms.Then, in general, q will be the sum of a negative 
onstant with a s
alar harmoni
on S5 with eigenvalue 12. It would be interesting to investigate the issue of stabilityfurther for all of the new solutions we have 
onstru
ted. Some additional 
ommentsabout the solutions are presented in appendix A.3 Solutions of D = 11 supergravityWe 
onsider the ansatz for the bosoni
 �elds of D = 11 supergravity given byds2 = ��2=3 h2dx+dx� + h �dx+�2 + 2dx+C + dx21i+ �1=3ds2 (CY4)G = dx+ ^ dx� ^ dx1 ^ d��1 + dx+ ^ V + dx+ ^ dx1 ^ d ���1C� (3.1)where �, h are fun
tions, C is a one-form and V is a three-form all de�ned on3 theCalabi-Yau four-fold, CY4. Our 
onventions for D = 11 supergravity [18℄ are as in[19℄. One �nds that all the equations of motion are satis�ed provided thatr2CY� = 0d �CY dC = 0dV = d �CY V = 0r2CY h = �jV j2CY (3.2)where jV j2CY � (1=3!)V ijkVijk with indi
es raised with respe
t to the CY metri
.When C = h = V = 0 we have the standard M2-brane 
lass of solutions with atransverse CY4 spa
e.If we 
hoose the three-form V to only have (2; 1) plus (1; 2) pie
es and be prim-itive on the CY4 then the solutions generi
ally preserve 2 supersymmetries4, whi
his enhan
ed to 4 supersymmetries if the CY4 us 
at. More spe
i�
ally, we introdu
ethe orthonormal frame e+ = ��1=6dx+; e� = ��1=6(dx� +C + h2dx+); e2 = ��1=6dx1;3It is straightforward to also 
onsider other eight-dimensional spe
ial holonomy manifolds, butfor simpli
ity we shall restri
t our attention to CY4.4As an aside, we note that we 
an also add a 
losed, primitive (2; 2)-form F on CY4 to thefour-form 
ux while still preserving the same amount of supersymmetry. This 
hanges two of theequations to r2CY � = �(1=2)jF j2CY and d �CY dC = V ^ F .5



et
. and 
hoose positive orientation to be given by e+�2 ^VolCY, where VolCY is thevolume element on CY4. Consider �rst the spe
ial 
ase that C = h = V = 0. Then,as usual, a non-
at CY4 breaks 1/8 of the supersymmetry, and the harmoni
 fun
tion� 
an be added \for free" (the proje
tion on the Killing spinors arising from the CY4automati
ally imply the proje
tion �+�2� = ��). Swit
hing on C; h; V we �nd thatgeneri
ally we need to also impose �+� = 0 and �ijkVijk� = 0. Note as an aside thatwe 
an \skew-whi�" by 
hanging the sign of the four-form 
ux and obtain solutionsthat generi
ally don't preserve any supersymmetry (apart from the spe
ial 
ase whenSE7 = S7).We now spe
ialise to the 
ase that the CY4 is a metri
 
one over a seven-dimensionalSasaki-Einstein manifold SE7, ds2(CY4) = dr2+r2ds2(SE7). In order to get solutionswith S
h(z) symmetry we now set � = r�6C = r�1�h = r�2qV = d �r�3�� (3.3)where q is a fun
tion, � and � are, respe
tively, a one-form and a two-form on SE7,and �i are 
onstants whi
h we will take to be positive. The full solution now readsds2 = r4 h2dx+dx� + r�2q �dx+�2 + 2r�1 dx+� + dx21i+ dr2r2 + ds2 (SE7)G = 6r5 dx+ ^ dx� ^ dx1 ^ dr + dx+ ^ d �r�3��+ dx+ ^ dx1 ^ d �r6+�1��(3.4)Generi
ally, when C; h; V 6= 0, solutions with 2 + �1=2 = 1 + �2=4 = �3=2 � zwill be S
h(z) invariant. In parti
ular, the s
aling now a
ts as (x+; x�; x1; r) !(�zx+; �2�zx�; �x1; ��1=2r). Note that if we set C = h = V = 0 then we havethe standard AdS4 � SE7 solution. Generi
ally, when C; h; V 6= 0, we still need toimpose the proje
tions mentioned above in order to preserve supersymmetry. Thus,generi
ally, half of the Poin
ar�e supersymmetries of the AdS4 � SE7 solution arepreserved, while none of the spe
ial 
onformal supersymmetries are. It would beinteresting to explore spe
ial sub
lasses of solutions with enhan
ed supersymmetry,whi
h o

ur, for example, when the CY4 is 
at.In [8℄, supersymmetri
 solutions with C = V = 0, h 6= 0 were 
onstru
ted withr2SEq + �2(6 + �2)q = 0 (3.5)6



and give rise to solutions with z = 1+�2=4 � 5=4, with the bound only a
hievable forSE7 = S7. In parti
ular supersymmetri
 solutions with z = 2 were found, but theysu�er from a similar instability to that found for the analogous type IIB solutions in[6℄. In [8℄, supersymmetri
 solutions with h = V = 0, C 6= 0 were 
onstru
ted with4SE� = �1 (�1 + 4)�; dy� = 0 (3.6)and give rise to solutions with z = 2 + �1=2 � 3, with the bound a
hievable for anySE7 spa
e. More spe
i�
ally, the bound is a
hieved when � is a one-form dual to aKilling ve
tor on the SE5 spa
e; and one 
an always 
hoose the one-form dual to theReeb ve
tor on the SE7 spa
e. It was also shown in [8℄ that one 
an 
ombine these
lasses of solutions with C; h 6= 0, (still with V = 0), and providing that one 
an
hoose 4+2�1 = �2 then they have dynami
al exponent again with z = 2+�1=2 � 3.We now 
onsider V 6= 0. This implies h 6= 0 and we need to set �2 = 2(�3 � 2).In addition to (2.6) we also need to solve4SE� = �3 (�3 + 2) �; dy� = 0r2SEq + 4(�3 � 2)(�3 + 1)q = ��23j� j2SE � jd� j2SE : (3.7)The solutions for whi
h �3 = 4 + �1 are invariant under S
h(z) with z = 2 + �1=2 =�3=2. If C 6= 0 then ne
essarily we have �1 � 2 and hen
e z � 3.If we set C = 0 then we just need to solve (3.7). Let us illustrate with some simplesolutions when SE7 = S7. In fa
t it is easiest to dire
tly solve (3.2). For example, ifwe let za be standard 
omplex 
oordinates on R8 , with K�ahler form ! = (i=2)dza^d�zawe 
an take V = 
 dz1d�z2d�z3 + 
:
:, where 
 is 
onstant, whi
h obviously has only(1; 2) and (2; 1) pie
es and is primitive, and h = �
2 r2 (setting a possible solutionof the homogeneous equation in (3.2) to zero). This gives a supersymmetri
 solutionwith �3 = 3 and hen
e z = 3=2. In parti
ular we note that the metri
 
omponent g++is always negative. A simple solution with z = 2 is obtained by splitting R8 = R4�R4and 
onsidering a sum of terms whi
h are (1; 1) and primitive on one fa
tor with afa
tor dxi on the other:V = 
n �x1 (dx1 ^ dx2 � dx3 ^ dx4) + x3(dx2 ^ dx3 � dx1 ^ dx4)� ^ dx5+ �x2 (dx1 ^ dx2 � dx3 ^ dx4) + x4(dx2 ^ dx3 � dx1 ^ dx4)� ^ dx6+ �x5 (dx5 ^ dx6 � dx7 ^ dx8) + x7(dx6 ^ dx7 � dx5 ^ dx8)� ^ dx1+ �x6 (dx5 ^ dx6 � dx7 ^ dx8) + x8(dx6 ^ dx7 � dx5 ^ dx8)� ^ dx2o :(3.8)7



Solving for h (and setting to zero a solution of the homogeneous equation in (3.2))we get h = � 
220 r4 :For this solution, the metri
 
omponent g++ is again always negative. Clearly thereare many additional simple 
onstru
tions for the S7 
ase that 
ould be explored aswell as for the more general 
lass of other expli
it SE7 metri
s.A
knowledgementsJPG is supported by an EPSRC Senior Fellowship and a Royal So
iety WolfsonAward.A Comments on solving (2.7)Here we make a few further 
omments 
on
erning solving (2.7) (whi
h also haveobvious analogues for solving (3.7)). To solve (2.7), we �rst solve the �rst line for �and then substitute into the se
ond. It is illuminating to expand out the sour
e termin the right hand side of the equation in the se
ond line using a 
omplete set of s
alarharmoni
s on the SE5 spa
e:� �23j�j2SE � jd�j2SE =XIl aIlY Il (A.1)where r2SEY Il = �l(l + 4), 
orresponding to the harmoni
 fun
tion P Il = rlY Il onthe CY3 
one. We then �ndq =XIl aIl4�23 � (l + 2)2Y Il + q0 : (A.2)In this expression we have allowed for the possibility of an arbitrary solution to thehomogeneous equation, q0, assuming it exists. The point is that the relevant putativeeigenvalue for q0 is �xed by the eigenspe
trum of the Lapla
ian a
ting on one-forms.For the spe
ial 
ase when SE5 = S5, for example, there is always su
h a possibility ofadding a solution to the homogeneous equation. Another point to noti
e about (A.2)is that it only makes sense providing that the 
oeÆ
ient aIl = 0 whenever 2�3 = l+2.For the spe
ial 
ase when SE5 = S5, not only is this 
oeÆ
ient zero but the sumappearing in (A.2) is a �nite sum terminating at l = 2�3 � 4. To see this we observethat aIl / ZS5 Y Il(�23j�j2SE + jd�j2SE) (A.3)8



whi
h 
an be re
ast as an integral on the 
at 
one R6aIl / ZR6 e�r2P Il W ijWij (A.4)where for S5, r2 =Pi xixi and P Il = CIi1:::ilxi1 � � �xil (A.5)with CIi1:::il de�ning the s
alar harmoni
s on S5. To pro
eed we write W asW = CJj;ki1:::i�3�1xi1 � � �xi�3�2 dxj ^ dxk (A.6)where CJj;i1:::i�3�1 de�ne the ve
tor spheri
al harmoni
s on S5. In 
arrying out theintegral (A.4) we will get all possible 
ontra
tions of the l indi
es of the s
alar spheri
alharmoni
 CIi1:::il with some of the 2�3 � 4 indi
esCJ[j;k℄i1:::i�3�2CJ[j;k℄i01:::i0�3�2 (A.7)In parti
ular, sin
e the tensor de�ning the s
alar harmoni
 is tra
eless, we 
on
ludethat the aIl are zero for all Il with l > 2�3 � 4.Let us now 
onsider this issue for a general SE5 spa
e, but in the spe
ial 
asewhen � is a one-form dual to a Killing ve
tor on SE5 
orresponding to �3 = 2 andhen
e z = 2. As above, we have (A.4). WriteW = d(r2�) � dT (A.8)and observe that on the CY3 
one riTj = r[iTj℄ and that r2CY Ti = 0. We then
ompute aIl / ZCY e�r2P Il W ijWij= 4 ZCY e�r2P Il �riT j� (riTj)= 2 ZCY r2CY �e�r2P Il�T 2= 2 ZCY e�r2 ��4r�rP Il � 12P Il + 4r2P Il�T 2= 4 ZCY e�r2 (�l + 2)P IlT 2 : (A.9)In getting to the last line one needs to take into a

ount the r5 fa
tor in the measureand use Z 10 rn+2e�r2dr = n+ 12 Z 10 rne�r2dr : (A.10)We thus 
on
lude from (A.9) that the problemati
 
oeÆ
ient aIl in (A.2) when l =2�3 � 2 = 2 again vanishes for this 
lass of solutions.9
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