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AbstratWe onstrut families of supersymmetri solutions of type IIB andD = 11supergravity that are invariant under the non-relativisti Shr�odinger(z)algebra for various values of the dynamial exponent z. The new solu-tions are based on �ve- and seven-dimensional Sasaki-Einstein manifolds,respetively, and inlude supersymmetri solutions with z = 2.
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1 IntrodutionAn interesting development in string/M-theory is the possibility of using holographiideas to study ondensed matter systems. Starting with [1, 2℄, one fous has beenon non-relativisti systems with Shr�odinger symmetry, a non-relativisti version ofonformal symmetry. The orresponding Shr�odinger algebra is generated by Galileantransformations, an anisotropi saling of spae (x) and time (x+) oordinates givenby x ! �x, x+ ! �2x+, and an additional speial onformal transformation. Moregenerally, one an onsider systems invariant under what we shall all Shr�odinger(z)(or Sh(z)) symmetry, where one maintains the Galilean transformations, but allowsfor other salings, x ! �x, x+ ! �zx+, with z the \dynamial exponent", and,in general, sari�es the speial onformal transformations. In this notation theShr�odinger algebra is Sh(2). The full set of ommutation relations for Sh (z) arewritten down in e.g. [2℄.Various solutions of type IIB supergravity and D = 11 supergravity have beenonstruted that are invariant under Sh(z) symmetry, for di�erent values of z. Thetype IIB solutions of [3℄-[8℄ an be viewed as deformations of the supersymmetriAdS5 � SE5 solutions, where SE5 is a �ve-dimensional Sasaki-Einstein spae, andshould be holographially dual to non-relativisti systems with two spatial dimen-sions. Similarly, there are deformations of the AdS4 � SE7 solutions1 of D = 11supergravity, where SE7 is a seven-dimensional Sasaki-Einstein spae, that are in-variant under Sh(z) and these should be dual to non-relativisti systems with asingle spatial dimension [7, 8℄.The type IIB solutions onstruted in [3, 4, 5℄ with z = 2, and hene invariantunder the larger Shr�odinger algebra, are based on a deformation in the three-formux and do not preserve any supersymmetry [4℄. In [6℄ supersymmetri solutionsof type IIB with various values of z were onstruted whih are based on a metrideformation and inlude supersymmetri solutions with z = 2. However, it wasargued that these supersymmetri solutions are unstable. On the other hand it wasshown that the instability an be removed by also swithing on the three-form uxdeformation, whih then breaks supersymmetry. In a more reent development arih lass of supersymmetri solutions of both type IIB and D = 11 supergravitywere onstruted in [8℄ whih have various values of z � 4 and z � 3, respetively(partiular examples of the z = 4 and z = 3 solutions were �rst onstruted in [4℄and [7℄, respetively).1Note that deformations of AdS5 solutions of D = 11 supergravity were studied in [9℄.1



In this short note, we generalise the onstrutions in [8℄ for both type IIB andD = 11 supergravity, �nding new lasses of supersymmetri solutions with variousvalues of z inluding z = 2.Note Added: In the proess of writing this paper up, we beame aware of [10℄,whih also onstruts some of the supersymmetri solutions of type IIB supergravitythat we present in setion 2.2 Solutions of type IIB supergravityConsider the general ansatz for the bosoni �elds of type IIB supergravity given byds210 = ��1=2 �2dx+dx� + h(dx+)2 + 2Cdx+ + dx21 + dx22�+ �1=2ds2(CY3)F5 = dx+ ^ dx� ^ dx1 ^ dx2 ^ d��1 + �CY3d��dx+ ^ ��CY3dC + d ���1C� ^ dx1 ^ dx2�G = dx+ ^W (2.1)where G is the omplex three-form and the axion and dilaton are set to zero. Here�, h are funtions, C is a one-form and W is a omplex two-form all de�ned on theCalabi-Yau three-fold, CY3. Our onventions for type IIB supergravity [11, 12℄ areas in [13℄. One �nds that all the equations of motion are satis�ed provided thatr2CY� = 0d �CY dC = 0dW = d �CY W = 0r2CY h = �jW j2CY (2.2)where jW j2CY � (1=2!)W ijW �ij with indies raised with respet to the CY metri.Observe that when C = h = W = 0 we have the standard D3-brane lass of solutionswith a transverse CY3 spae.If we hoose the two-form W to be primitive and have no (0; 2) piees (i.e. just(2; 0) and/or (1; 1) omponents), on CY3 then the solutions generially preserve 2supersymmetries2, whih is enhaned to 4 supersymmetries if the CY3 is at. More2We note that one an add a losed, primitive (1; 2)-form A on CY3 to the three-form G whilestill preserving the same amount of supersymmetry. This hanges two of the equations to r2CY� =�(1=2)jAj2CY and d �CY dC = i=2(W ^ A� �W � ^ A). Suh solutions will not, in general, admit asaling symmetry, so we shall not onsider them further here, however we note that solutions withW = 0 and Galilean symmetry were presented in [14℄.2



spei�ally, we introdue the orthonormal frame e+ = ��1=4dx+; e� = ��1=4(dx� +C+ h2dx+); e2 = ��1=4dx1; et. and hoose positive orientation to be given by e+�23^VolCY, where VolCY is the volume element on CY3. Consider �rst the speial ase thatC = h = W = 0. Then, as usual, a generi CY3 breaks 1/4 of the supersymmetry,while the harmoni funtion � leads to a further breaking of 1/2, the Killing spinorssatisfying the additional projetion �+�23� = i�. Swithing on C; h;W we �nd thatgenerially we need to also impose �+� = 0 and �ijWij� = 0.We now speialise to the ase that the CY3 is a metri one over a �ve-dimensionalSasaki-Einstein manifold SE5, ds2(CY3) = dr2+r2ds2(SE5). In order to get solutionswith Sh(z) symmetry we now set � = r�4C = r�1�h = r�2qW = d �r�3�� (2.3)where q is a funtion, � and � are, respetively, a real and a omplex one-form onSE5, and �i are onstants whih we will take to be positive. The full solution nowreadsds210 = r2 �2dx+dx� + r�2q (dx+)2 + 2r�1 dx+� + dx21 + dx22�+ dr2r2 + ds2 (SE5)F5 = 4r3 dx+ ^ dx� ^ dx1 ^ dx2 ^ dr + 4VolSE5�dx+ ^ �r�1+1 dr ^ �SE5d� + �1r�1+2 �SE5 � + d �r4+�1�� ^ dx1 ^ dx2�G = dx+ ^ d �r�3�� : (2.4)Generially, when C; h;W 6= 0, solutions with �1 + 2 = 1 + �2=2 = �3 � zwill be Sh(z) invariant. In partiular, the saling ats on the oordinates via(x+; x�; xi; r) ! (�zx+; �2�zx�; �xi; ��1r) (for other transformations see [2℄). Ob-serve that if we set C = h = W = 0 then we have the standard AdS5� SE5 solutionof type IIB. Generially, when C; h;W 6= 0, we still need to impose the projetionsmentioned above in order to preserve supersymmetry. Note in partiular that, gener-ially, half of the Poinar�e supersymmetries of the AdS5�SE5 solution are preserved,while none of the speial onformal supersymmetries are. It would be interesting toexplore speial sublasses of solutions with enhaned supersymmetry, whih our,for example, when the CY3 is at.In [6℄, supersymmetri solutions with W = C = 0, h 6= 0 were onstruted withr2SEq + �2(4 + �2)q = 0 (2.5)3



and give rise to solutions with z = 1 + �2=2 � 3=2, with the bound only ahievablefor SE5 = S5. In partiular supersymmetri solutions with z = 2 were found, but,beause the solutions have the metri omponent g++ positive in some regions of theSE5, the solutions were argued to be unstable. In [8℄, supersymmetri solutions withW = h = 0, C 6= 0 were onstruted with4SE� = �1 (�1 + 2)�; dy� = 0 (2.6)where 4SE = ddy + dyd is the Hodge-deRahm operator on SE5, and give rise tosolutions with z = 2 + �1 � 4, with the bound ahievable for any SE5 spae. Morespei�ally, the bound is ahieved when � is a one-form dual to a Killing vetor onthe SE5 spae; the lass of suh z = 4 solutions using the one-form dual to the Reebvetor on the SE5 spae were �rst onstruted in [4℄. It was also shown in [8℄ thatone an ombine these lasses of solutions with h; C 6= 0 (still with W = 0), andproviding that one an solve for q, � so that 2 + �1 = 1 + �2=2 then the solutionshave dynamial exponent z = 2 + �1 � 4.We now onsiderW 6= 0. This implies that h 6= 0 and we need to set �2 = 2(�3�1).In addition to (2.6) we also need to solve4SE� = �3 (�3 + 2)�; dy� = 0r2SEq + 4(�23 � 1)q = ��23j�j2SE � jd�j2SE : (2.7)The solutions for whih �3 = 2+ �1 are invariant under Sh(z)with z = �3. If C 6= 0then sine �1 � 2, neessarily we have z � 4.If we set C = 0, whih is needed to obtain supersymmetri solutions with z = 2 forexample, then we just need to solve (2.7). The �rst equation implies that z = �3 � 2,with the bound being saturated when � is a one-form dual to a Killing vetor onthe SE5 spae. A simple solution is obtained by taking � = � for some onstant ,where � is the anonial one-form dual to the Reeb vetor on SE5 and q = �jj2. Thissolution has z = �3 = 2 and was �rst onstruted in [3, 4, 5℄. Observe that for thissolution W = 2JCY . Thus while W is (1; 1) it is not primitive and so this solutiondoes not preserve any supersymmetry as previously pointed out in [4℄. On the otherhand it is straightforward to onstrut solutions with z = 2 that are supersymmetri.For example, we an take any Killing vetor on the SE5 spae that leaves invariantthe Killing spinors on SE5. It is straightforward to onstrut suh solutions expliitlywhen the metri for the SE5 is known expliitly as it is for the S5, T 1;1 [15℄, Y p;q[16℄ and La;b; [17℄ spaes. For the ase of S5 it is also easy to onstrut expliitsolutions for all values of z using spherial harmonis. It is worth noting that the4



z = 2 solutions for the S5 ase an have q onstant and negative and hene do notsu�er from the instability disussed in [6℄. This is easy to see sine W must be aonstant linear ombination of the 15 harmoni two-forms on R6 , dxi ^ dxj, or, ifwe demand supersymmetry, of the eight primitive (1; 1) forms and three (2; 0) forms.Then, in general, q will be the sum of a negative onstant with a salar harmonion S5 with eigenvalue 12. It would be interesting to investigate the issue of stabilityfurther for all of the new solutions we have onstruted. Some additional ommentsabout the solutions are presented in appendix A.3 Solutions of D = 11 supergravityWe onsider the ansatz for the bosoni �elds of D = 11 supergravity given byds2 = ��2=3 h2dx+dx� + h �dx+�2 + 2dx+C + dx21i+ �1=3ds2 (CY4)G = dx+ ^ dx� ^ dx1 ^ d��1 + dx+ ^ V + dx+ ^ dx1 ^ d ���1C� (3.1)where �, h are funtions, C is a one-form and V is a three-form all de�ned on3 theCalabi-Yau four-fold, CY4. Our onventions for D = 11 supergravity [18℄ are as in[19℄. One �nds that all the equations of motion are satis�ed provided thatr2CY� = 0d �CY dC = 0dV = d �CY V = 0r2CY h = �jV j2CY (3.2)where jV j2CY � (1=3!)V ijkVijk with indies raised with respet to the CY metri.When C = h = V = 0 we have the standard M2-brane lass of solutions with atransverse CY4 spae.If we hoose the three-form V to only have (2; 1) plus (1; 2) piees and be prim-itive on the CY4 then the solutions generially preserve 2 supersymmetries4, whihis enhaned to 4 supersymmetries if the CY4 us at. More spei�ally, we introduethe orthonormal frame e+ = ��1=6dx+; e� = ��1=6(dx� +C + h2dx+); e2 = ��1=6dx1;3It is straightforward to also onsider other eight-dimensional speial holonomy manifolds, butfor simpliity we shall restrit our attention to CY4.4As an aside, we note that we an also add a losed, primitive (2; 2)-form F on CY4 to thefour-form ux while still preserving the same amount of supersymmetry. This hanges two of theequations to r2CY � = �(1=2)jF j2CY and d �CY dC = V ^ F .5



et. and hoose positive orientation to be given by e+�2 ^VolCY, where VolCY is thevolume element on CY4. Consider �rst the speial ase that C = h = V = 0. Then,as usual, a non-at CY4 breaks 1/8 of the supersymmetry, and the harmoni funtion� an be added \for free" (the projetion on the Killing spinors arising from the CY4automatially imply the projetion �+�2� = ��). Swithing on C; h; V we �nd thatgenerially we need to also impose �+� = 0 and �ijkVijk� = 0. Note as an aside thatwe an \skew-whi�" by hanging the sign of the four-form ux and obtain solutionsthat generially don't preserve any supersymmetry (apart from the speial ase whenSE7 = S7).We now speialise to the ase that the CY4 is a metri one over a seven-dimensionalSasaki-Einstein manifold SE7, ds2(CY4) = dr2+r2ds2(SE7). In order to get solutionswith Sh(z) symmetry we now set � = r�6C = r�1�h = r�2qV = d �r�3�� (3.3)where q is a funtion, � and � are, respetively, a one-form and a two-form on SE7,and �i are onstants whih we will take to be positive. The full solution now readsds2 = r4 h2dx+dx� + r�2q �dx+�2 + 2r�1 dx+� + dx21i+ dr2r2 + ds2 (SE7)G = 6r5 dx+ ^ dx� ^ dx1 ^ dr + dx+ ^ d �r�3��+ dx+ ^ dx1 ^ d �r6+�1��(3.4)Generially, when C; h; V 6= 0, solutions with 2 + �1=2 = 1 + �2=4 = �3=2 � zwill be Sh(z) invariant. In partiular, the saling now ats as (x+; x�; x1; r) !(�zx+; �2�zx�; �x1; ��1=2r). Note that if we set C = h = V = 0 then we havethe standard AdS4 � SE7 solution. Generially, when C; h; V 6= 0, we still need toimpose the projetions mentioned above in order to preserve supersymmetry. Thus,generially, half of the Poinar�e supersymmetries of the AdS4 � SE7 solution arepreserved, while none of the speial onformal supersymmetries are. It would beinteresting to explore speial sublasses of solutions with enhaned supersymmetry,whih our, for example, when the CY4 is at.In [8℄, supersymmetri solutions with C = V = 0, h 6= 0 were onstruted withr2SEq + �2(6 + �2)q = 0 (3.5)6



and give rise to solutions with z = 1+�2=4 � 5=4, with the bound only ahievable forSE7 = S7. In partiular supersymmetri solutions with z = 2 were found, but theysu�er from a similar instability to that found for the analogous type IIB solutions in[6℄. In [8℄, supersymmetri solutions with h = V = 0, C 6= 0 were onstruted with4SE� = �1 (�1 + 4)�; dy� = 0 (3.6)and give rise to solutions with z = 2 + �1=2 � 3, with the bound ahievable for anySE7 spae. More spei�ally, the bound is ahieved when � is a one-form dual to aKilling vetor on the SE5 spae; and one an always hoose the one-form dual to theReeb vetor on the SE7 spae. It was also shown in [8℄ that one an ombine theselasses of solutions with C; h 6= 0, (still with V = 0), and providing that one anhoose 4+2�1 = �2 then they have dynamial exponent again with z = 2+�1=2 � 3.We now onsider V 6= 0. This implies h 6= 0 and we need to set �2 = 2(�3 � 2).In addition to (2.6) we also need to solve4SE� = �3 (�3 + 2) �; dy� = 0r2SEq + 4(�3 � 2)(�3 + 1)q = ��23j� j2SE � jd� j2SE : (3.7)The solutions for whih �3 = 4 + �1 are invariant under Sh(z) with z = 2 + �1=2 =�3=2. If C 6= 0 then neessarily we have �1 � 2 and hene z � 3.If we set C = 0 then we just need to solve (3.7). Let us illustrate with some simplesolutions when SE7 = S7. In fat it is easiest to diretly solve (3.2). For example, ifwe let za be standard omplex oordinates on R8 , with K�ahler form ! = (i=2)dza^d�zawe an take V =  dz1d�z2d�z3 + ::, where  is onstant, whih obviously has only(1; 2) and (2; 1) piees and is primitive, and h = �2 r2 (setting a possible solutionof the homogeneous equation in (3.2) to zero). This gives a supersymmetri solutionwith �3 = 3 and hene z = 3=2. In partiular we note that the metri omponent g++is always negative. A simple solution with z = 2 is obtained by splitting R8 = R4�R4and onsidering a sum of terms whih are (1; 1) and primitive on one fator with afator dxi on the other:V = n �x1 (dx1 ^ dx2 � dx3 ^ dx4) + x3(dx2 ^ dx3 � dx1 ^ dx4)� ^ dx5+ �x2 (dx1 ^ dx2 � dx3 ^ dx4) + x4(dx2 ^ dx3 � dx1 ^ dx4)� ^ dx6+ �x5 (dx5 ^ dx6 � dx7 ^ dx8) + x7(dx6 ^ dx7 � dx5 ^ dx8)� ^ dx1+ �x6 (dx5 ^ dx6 � dx7 ^ dx8) + x8(dx6 ^ dx7 � dx5 ^ dx8)� ^ dx2o :(3.8)7



Solving for h (and setting to zero a solution of the homogeneous equation in (3.2))we get h = � 220 r4 :For this solution, the metri omponent g++ is again always negative. Clearly thereare many additional simple onstrutions for the S7 ase that ould be explored aswell as for the more general lass of other expliit SE7 metris.AknowledgementsJPG is supported by an EPSRC Senior Fellowship and a Royal Soiety WolfsonAward.A Comments on solving (2.7)Here we make a few further omments onerning solving (2.7) (whih also haveobvious analogues for solving (3.7)). To solve (2.7), we �rst solve the �rst line for �and then substitute into the seond. It is illuminating to expand out the soure termin the right hand side of the equation in the seond line using a omplete set of salarharmonis on the SE5 spae:� �23j�j2SE � jd�j2SE =XIl aIlY Il (A.1)where r2SEY Il = �l(l + 4), orresponding to the harmoni funtion P Il = rlY Il onthe CY3 one. We then �ndq =XIl aIl4�23 � (l + 2)2Y Il + q0 : (A.2)In this expression we have allowed for the possibility of an arbitrary solution to thehomogeneous equation, q0, assuming it exists. The point is that the relevant putativeeigenvalue for q0 is �xed by the eigenspetrum of the Laplaian ating on one-forms.For the speial ase when SE5 = S5, for example, there is always suh a possibility ofadding a solution to the homogeneous equation. Another point to notie about (A.2)is that it only makes sense providing that the oeÆient aIl = 0 whenever 2�3 = l+2.For the speial ase when SE5 = S5, not only is this oeÆient zero but the sumappearing in (A.2) is a �nite sum terminating at l = 2�3 � 4. To see this we observethat aIl / ZS5 Y Il(�23j�j2SE + jd�j2SE) (A.3)8



whih an be reast as an integral on the at one R6aIl / ZR6 e�r2P Il W ijWij (A.4)where for S5, r2 =Pi xixi and P Il = CIi1:::ilxi1 � � �xil (A.5)with CIi1:::il de�ning the salar harmonis on S5. To proeed we write W asW = CJj;ki1:::i�3�1xi1 � � �xi�3�2 dxj ^ dxk (A.6)where CJj;i1:::i�3�1 de�ne the vetor spherial harmonis on S5. In arrying out theintegral (A.4) we will get all possible ontrations of the l indies of the salar spherialharmoni CIi1:::il with some of the 2�3 � 4 indiesCJ[j;k℄i1:::i�3�2CJ[j;k℄i01:::i0�3�2 (A.7)In partiular, sine the tensor de�ning the salar harmoni is traeless, we onludethat the aIl are zero for all Il with l > 2�3 � 4.Let us now onsider this issue for a general SE5 spae, but in the speial asewhen � is a one-form dual to a Killing vetor on SE5 orresponding to �3 = 2 andhene z = 2. As above, we have (A.4). WriteW = d(r2�) � dT (A.8)and observe that on the CY3 one riTj = r[iTj℄ and that r2CY Ti = 0. We thenompute aIl / ZCY e�r2P Il W ijWij= 4 ZCY e�r2P Il �riT j� (riTj)= 2 ZCY r2CY �e�r2P Il�T 2= 2 ZCY e�r2 ��4r�rP Il � 12P Il + 4r2P Il�T 2= 4 ZCY e�r2 (�l + 2)P IlT 2 : (A.9)In getting to the last line one needs to take into aount the r5 fator in the measureand use Z 10 rn+2e�r2dr = n+ 12 Z 10 rne�r2dr : (A.10)We thus onlude from (A.9) that the problemati oeÆient aIl in (A.2) when l =2�3 � 2 = 2 again vanishes for this lass of solutions.9
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