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DESY 12-073CERN-PH-TH/2012-127On the gauge dependene of vauumtransitions at �nite temperatureMathias Garnya, Thomas Konstandina;b{a DESY, Notkestr. 85, 22607 Hamburg, Germanyb CERN Theory Division, 1211 Geneva, SwitzerlandAbstratIn priniple, observables as for example the sphaleron rate or thetunneling rate in a �rst-order phase transition are gauge-independent.However, in pratie a gauge dependene is introdued in expliit per-turbative alulations due to the breakdown of the gradient expansionof the e�etive ation in the symmetri phase. We exemplify the sit-uation using the e�etive potential of the Abelian Higgs model in thegeneral renormalizable gauge. Still, we �nd that the quantitative de-pendene on the gauge hoie is small for gauges that are onsistentwith the perturbative expansion.
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1 IntrodutionFuntional methods are an indispensable tool in studying the physis of spon-taneous symmetry breaking and phase transitions [1, 2, 3, 4℄. The mainadvantage in this approah is that the e�etive ation enodes the groundstate of the system in a transparent way. On the tehnial side, it failitatesthe resummation of tadpole diagrams and redues perturbative alulationto the subset of one-partile-irreduible diagrams.A large drawbak of the e�etive ation is however that it is not expliitlygauge-independent [5, 6, 7, 8, 9, 10℄. This makes it neessary to distinguishbetween the gauge dependene that is expeted from the one that is intro-dued by approximation shemes that break the gauge invariane addition-ally. The �rst lass of gauge dependenes is well represented by the Nielsenidentities while the seond an for example arise from the use of a loop ex-pansion in perturbation theory or from the expansion of the e�etive ationin gradients.The aim of the present work is to disentangle these di�erent soures ofgauge dependene for vauum transitions [11℄ at �nite temperature in theAbelian Higgs model. After a general introdution to the model (Setion2) and the Nielsen identities (Setions 3 and 4), the e�etive potential isalulated (Setion 5). The main fous is hereby on resummation of infrarede�ets at �nite temperature. In this setion, it is also expliitly demonstratedthat the position of the minimum of the e�etive potential transforms underhanges of the gauge �xing parameter � aording to the Nielsen identity.Subsequently (Setion 6), the same is demonstrated for the (o�-shell) e�etiveation in the gradient expansion. Finally (Setions 7 and 8), the gaugedependene of the tunneling ation and the sphaleron energy are disussed.In these ases an additional ompliation arises, namely the breakdown ofthe gradient expansion in the symmetri phase. We disuss, to what extendthe gauge dependene of these phenomena an be quanti�ed and potentiallyredued before we onlude (Setion 9).2 The modelIn the following we lay out the details of the model under onsideration.In order to simplify the analysis and to fous on the main impat of thegauge dependene of the e�etive ation, we disuss an Abelian Higgs model.2



This model has all neessary ingredients that our in the Standard Modelbut does not ontain fermions or the orret symmetry breaking pattern asobserved in Nature. Nevertheless, for the order of perturbation theory wework at these features are not important and the presented arguments animmediately be arried over to the Standard Model ase.The Lagrangian is given byL = D���D��� 14F��F �� � V (���) ; (1)with the salar potentialV (���) = ��2��� + �4 (���)2 = �4 (���� v2)2: (2)The gauge ovariant derivative is given by D�� = (�� � igA�)�, while the�eld strength tensor reads F�� = ��A� � ��A�.We are interested in the e�etive ation � that is obtained [1, 3℄ byLegendre transformation of the generating funtional of onneted Greensfuntions W (j) eiW (j) = Z D�DAei R d4xL(�)+j� ;�(�) = W (j)� Z d4x j ������=dW=dj : (3)This implies after a shift in the integration variable �! � + �ei� = Z D�DAei R d4xL(�+�)+j� : (4)By onstrution the �eld in the shifted theory does not have a vauum expe-tation value (vev). Hene, the bi-linear term ontaining the soure j has toanels all tadpole diagrams and beyond this anellation, the soure j hasno impat on the e�etive ation. Therefore � ontains only the onnetedone-partile-irreduible vauum diagrams in the shifted theory. The e�etivepotential is obtained by restriting the e�etive ation to homogeneous �eldexpetation values �, Veff = �= R d4x.For perturbative alulations, the Lagrange density has to be supple-mented by a gauge �xing proedure that results in an additional gauge �xingterm and a ontribution from the Fadeev-Popov ghosts.3



A ommon hoie is to use the general Lorentz gaugeLorentz gauge : Lgf = � 12� (��A�)2 ;LFP = ���  : (5)In this gauge the Fadeev-Popov ghosts do not ouple to the remaining par-tiles, but the Goldstone boson and the unphysial k� polarization of thegauge boson mix after spontaneous symmetry breaking. Nevertheless, thisproblem is removed in the Landau gauge, � ! 0.Another ommon hoie is the R�-gauge [12℄R�-gauge : Lgf = � 12� (��A� + ig�(���� ���))2 ;LFP = �� (�+ �g2(��� + ���))  : (6)The ontribution ontaining the bakground �eld � is designed to anelthe mixing term between the Goldstone mode and the k� polarization ofthe gauge boson thus partially diagonalizing the propagator struture of thetheory. However, having an expliit dependene on the bakground �eld inthe gauge �xing term leads to some ompliations.First of all, in Lorentz-gauge a shift in � is equivalent to attahing an ex-ternal � �eld to the diagram [13, 4℄ (this follows immediately from inspetingthe Feynman rules). Hene the tadpole an be obtained from the derivativeof the e�etive ation. In general gauges this only holds in the minimum ofthe potential (where the tadpole has to vanish) while in Lorentz gauge thisis also true away from the extrema of the potential.One onsequene of this fat is that the two-point funtions of the Higgsand Goldstone bosons (at vanishing external momentum) an be obtainedfrom the seond derivatives of the e�etive potential. In partiular, theGoldstone bosons are massless in the broken phase (what an be a urseor a blessing). In R�-gauge the Goldstone bosons have a mass already ontree-level for � 6= 0.Furthermore, any tadpole that is generated in a higher loop perturbativealulation an in Lorentz gauge be absorbed by adjusting the appropriateounterterms. This is partiularly handy in zero temperature alulationswhere the Higgs vev is an input observable parameter and kept �xed orderby order in the perturbative expansion. Espeially when several bakground�elds are present, it is not guaranteed in the R�-gauge that the tadpoles4



an be absorbed into the ounterterms of the Lagrangian what makes ittehnially more diÆult to keep the vevs �xed in higher loop alulations[13℄. Note that at �nite temperature this feature is not so important, sinepart of the shift of the vev by loop e�ets is physial and one has to dealwith a temperature-dependent vev anyway.The behavior of the e�etive ation under gauge transformations wasoriginally analyzed in the Lorentz gauge by Nielsen [5℄. Similar relationshave been derived shortly after for R�-gauges [6, 7, 8℄ but their appliationis somewhat more involved. Still the general piture is the same as in thease of the original Nielsen identities: While the value of the e�etive ationin its extrema is gauge-independent, the position of the extrema an have agauge dependene. This implies that the ritial temperature of the phasetransition is gauge-independent. For vauum transitions, the on�gurationsthat extremize the e�etive ation an be gauge-dependent while the valueof the ation for the on�guration is not. The prove of this is skethed in thenext setion.Ultimately, we aim to disuss the gauge dependene of the sphaleronenergy and the tunneling rate. In this work we fous on the R�-gauge for tworeasons. First, we �nd it tehnially easier to eliminate the mixing betweenthe gauge boson and the Goldstone boson and to deal with the peuliarities ofthe R�-gauge than to perform loop alulations in the general Lorentz gauge1. Seond, the onvergene of the perturbation theory is in the Lorentz gaugeless obvious than in the R�-gauge [14, 15, 16℄.3 Nielsen identity in R� gaugeIn this setion we briey review the Nielsen identities for the e�etive poten-tial, paying speial attention to the additional ompliations arising in theR�-gauge. In order to derive the Nielsen identity for a general gauge �xingwe write the latter in the form,Lgf = � 12�F 2 ;LFP = �� � ÆFÆA��� + ÆFÆ� ig� + ÆFÆ�� (�ig��)�  ; (7)1See [11℄ for a zero temperature analysis of the gauge dependene of the e�etive ationin general Lorentz gauge. 5



where F = ��A� in Lorentz gauge and F = ��A� + ig�(~��� � �� ~�) forthe R�-gauge. For the derivation of the Nielsen identities, it is onvenientto disriminate the �eld expetation value � � h�i that appears due tothe Legendre transformation of the generating funtional from the expliitdependene on the bakground �eld in the gauge �xing term, whih is denotedby ~� here and an be onsidered as an external parameter at this stage ofthe alulation. Both �elds will be identi�ed in the end, but for now wedistinguish them.The dependene on F in general leads to a gauge dependene of the e�e-tive ation �. For an arbitrary hange in the gauge �xing term parametrizedby F ! F + ÆF and � ! � + Æ� the hange of the funtional W is givenby [8℄ ÆW = � i Z d4x Z d4y ji hÆg�i(x)(x)�(y)Æ0F (y)i ; (8)where Æ0F � ÆF � F=(2�)Æ�. Furthermore, we olletively denote by �i all�eld expetation values that the e�etive ation depends on, and by Æg�i thevariation of the orresponding �eld operator under a gauge transformationÆg� = ig�; Æg�� = �ig��; ÆgA� = �� : (9)The expetation value of an operator hOi is de�ned in the usual path integralsense.The funtional W is gauge invariant up to the soure term involving jiand the gauge �xing term Lgf+LFP . The identity (8) reets the fat that ahange in the gauge �xing funtional an via a gauge transformation shiftedinto a hange of the soure term. Now, notie that for any external parameter� one has the relationd�(�; �)d� �����=onst = dW (j; �)d� ����j=onst ; (10)what an be veri�ed using the de�nition (3). The gauge �xing parameters �and ~� are external parameters suh that one an translate (8) into a relationfor � if the left hand side is understood as being varied with � kept �xed,namely Æ� = i Z d4x Z d4y Æ�Æ�i(x)hÆg�i(x)(x)�(y)Æ0F (y)i : (11)
6



This immediately yields the Nielsen identity for the e�etive ation, whihresults when only onsidering a hange in the gauge parameter �,� ���� = � Z d4x� Æ�ÆA�(x)CA�(x) + Æ�Æ�(x)C�(x) + Æ�Æ��(x)C��(x)� ; (12)where the oeÆients, taking a possible � dependene of F into aount, aregiven byCA�(x) = i2 Z d4yh��(x)�(y)(F (y)� 2��F (y)=��)i ;C�(x) = i2 Z d4yhig�(x)(x)�(y)(F (y)� 2��F (y)=��)i ;C��(x) = i2 Z d4yh(�ig��(x))(x)�(y)(F (y)� 2��F (y)=��)i : (13)For a onstant �eld expetation value, hosen to lie along the real axis � = ��,and vanishing bakground gauge �eld A� = 0, one obtains the well-knownNielsen identity for the e�etive potential,� �Veff(�)�� + C0�Veff (�)�� = 0 : (14)The oeÆient C0 is obtained when evaluating C(x) � C� + C��j�=�� for aonstant �eld expetation value �. In R�-gauge, the general expression forC(x) readsC(x) = ig2p2 Z d4y D�(x)�(x)(y)���A�(y) +p2g� ~��(y)�E ; (15)while in Lorentz gauge the seond summand is absent. Here we have insertedthe deomposition � = � + (h + i�)=p2 where h and � denote the Higgsand Goldstone �eld operators, respetively. Note that the restrition to onereal bakground �eld and vanishing gauge �elds an lead to spurious minimain the e�etive potential but is justi�ed in our lass of gauges [6℄. This ismostly due to the invariane of the full Lagrangian (inluding gauge �xingand soures) under the transformation �! �� and A� ! �A�.For the Lorentz gauge these identities an be used diretly when insertingthe gauge �xing term F = ��A�. In the R�-gauge, the e�etive ationdepends in addition parametrially on the external �eld ~�, i.e. � = �[�; ~�℄.7



We are ultimately interested in deriving a Nielsen identity for the e�etiveation ��[�℄ � �[�; ~�℄j~�=�. Compared to the Lorentz gauge the ompliationarises that the �eld derivatives appearing in Eq. (12) at only on �, while the�eld derivative of ��[�℄ ontains also a part proportional to the derivative ofthe e�etive ation with respet to the bakground �eld ~�. Nevertheless, it ispossible to derive a Nielsen identity also for ��[�℄. The key observation is thatthe dependene on the bakground �eld ~� enters only via the gauge �xingterm [8℄. For that reason, the hange of the e�etive ation when varying thebakground �eld also obeys a Nielsen identity, whih an be diretly obtainedfrom Eq. (11),Æ�Æ ~�(y) = i Z d4x Æ�Æ�i(x) �Æg�i(x)(x)�(y)�F (y)� ~� � : (16)An analogous relation holds for the derivative with respet to the omplexonjugated �eld. One an use the relation above to express the derivatives of�� in terms of the derivatives of � with respet to the �eld expetation values�, �� and A�, Æ��Æ�i(y) = Z d4x Xj=A�;�;�� Cij(y; x) Æ�Æ�j(x) ��~�=� ; (17)where Cij(y; x) = ÆijÆ(x� y) + i�Æg�j(x)(x)�(y)�F (y)� ~�i � : (18)These relations imply that, if the �elds ful�ll the equation of motions de-rived from the e�etive ation �[�; ~�℄, i.e. Æ�=Æ�j = 0, then the same �eldon�gurations also orrespond to a stationary point of the e�etive ation��[�℄. In addition, if C is invertible, it follows that the e�etive ation ��[�℄also ful�lls a Nielsen identity whih is of the same form as Eq. (12) exeptthat the oeÆients are replaed by the oeÆients �Ci given by�Ci(y) = Z d4xCj(x) (C�1)ji(x; y) ; (19)for i = A�; �; ��. Conretely, for the ase of the R�-gauge onsidered here,and assuming a vanishing bakground gauge �eld, one hasCij = ÆijÆ(x� y) (20)+ ig2�� h�(x)(x)�(y)��(y)i �h��(x)(x)�(y)��(y)i�h�(x)(x)�(y)�(y)i h��(x)(x)�(y)�(y)i : �8
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Figure 1: One-loop diagram ontributing to the Nielsen oeÆient C0.When onsidering an expetation value that is onstant in spae-time, theright-hand side an depend only on the di�erene of the oordinates, x� y,and the equations an be simpli�ed. The resulting Nielsen identity for thee�etive potential for onstant and real �eld expetation value in R�-gaugehas then the form � � �Veff(�)�� + �C0� �Veff (�)�� = 0 ; (21)where �Veff(�) = Veff(�; ~�)j~�=�, and�C0 = C0�1� ig2� Z d4(x� y)h�(x)(x)�(y)�(y)i��1 : (22)The leading ontribution arises at one-loop level. For a onstant bakground�eld, only a single diagram ontributes to C0 in the R�-gauge, whih an berepresented by the diagram shown in Fig 1. The oeÆients �C0 and C0 di�eronly at higher orders, whih we do not onsider in the following. Therefore,we use the notation C0 also in the ase of R�-gauge. Before heking (21)expliitly in Setion 5, we give attention to an analogous identity for thekineti term in the next setion.4 The Gradient Expansion of the Nielsen Iden-tityAs we have just disussed, the e�etive ation ontains a ertain gauge de-pendene. Nevertheless, the ation evaluated in a saddle point is gauge-independent what is for homogeneous �elds reeted by the Nielsen identi-ties. This is expliitly demonstrated in the subsequent setion for the broken9



phase of the e�etive potential where the onvergene of perturbation the-ory is well under ontrol. However, the sphaleron energy is not a spatiallyonstant on�guration and in partiular also depends on the e�etive ationevaluated in the symmetri phase. This is problemati, sine even thoughthe sphaleron energy is gauge-independent in priniple, a gauge dependenean be introdued due to the breakdown of the gradient expansion. Still,even for on�gurations that do not ful�ll the equations of motion, a gauge-transformation ats on the (o�-shell) e�etive ation aording to the Nielsenidentity. In the following we derive this relation for the e�etive ation ingradient expansion following [11℄.To be spei�, onsider the e�etive ation in gradient expansion� = Z d4x �Z(�) ������� Veff(�) +O(�4)� ; (23)where we introdued a renormalization Z of the kineti term that in thesphaleron ase depends on temperature T , the �eld value � and the gaugeparameter �. The oeÆient C(x) from the last setion that enters the Nielsenidentity for the e�etive ation depends funtionally on the �eld value. Itan be expanded in �eld gradients as [11℄C(x) = C0(�) +D(�)������� ��[ ~D(�)���℄ +O(�4) ; (24)where the oeÆients depend on the �eld value evaluated at position x. Notethat the term involving ~D orresponds to a total derivative. Nevertheless itgives rise to a non-zero ontribution to the right-hand side of the Nielsenidentity for the e�etive ation, and it turns out that it has to be taken intoaount in a onsistent gradient expansion. This term has been negletedin [11℄ but was not important there at leading order due to the di�erentounting � � g4. The Nielsen identity is ful�lled when in leading order ingradients the identity (21) for the e�etive potential is established, while inthe next order in gradients one �nds2� �Z�� = �C0�Z�� � 2Z�C0�� +D�Veff�� + ~D�2Veff��2 : (25)Notie that this relation annot ensure the gauge independene of thetunnel ation or the sphaleron rate, sine the gradient expansion does not2At �nite temperature the orretion to the kineti term an di�er in general for thetemporal and spatial omponents. The Nielsen identity an be easily generalized to thisase. In the following, Z refers to the orretion orresponding to the spatial omponents.10



apply in these ases, due to ������ ' Veff . Still, this relation onstitutes anessential hek of the onsisteny of the perturbative sheme that is used toevaluate the e�etive ation. The topi of the subsequent setions is to studythis identity in the Abelian Higgs model lose to the broken phase expliitly,where perturbative evaluation of all quantities is plausible.5 The e�etive potential to order g3 and �In the following we reprodue the e�etive potential to order g3 and � loseto the broken phase. Subsequently, we disuss its gauge dependene and theorresponding Nielsen identity. Before we do so, we briey motivate why aounting g3 � � is the appropriate hoie in the ontext of osmology and�nite temperature. It is well known that in the present model the strength ofthe phase transition ruially depends on ubi ontributions to the e�etivepotential of the form (g�)3T . At the same time the strength of the phasetransition is for viable baryogenesis [17, 18℄ onstrained by �=T � g3=� >1. So the largest value of � that is interesting in osmology is of orderg3. Besides, for larger values of �, the onvergene of perturbation theorybeomes worse and ompletely breaks down at � � g2. For smaller valuesof �, the onvergene of the perturbative expansion improves. However, thehigh temperature expansion that we want to employ in the following wouldbreak down sine for � � g4, we �nd mW=T � g�=T � 1. Therefore, weount in the following � � T and � � g3 as was done in [19℄ 3.At one-loop order the e�etive potential is given byVeff(�) = V (�) + 12T 4Xi ni IB(m2i =T 2) ; (26)where the sum runs over all speies, ni depends on the statisti of the �eld,and the funtion IB is given byIB(y) = 12�2 Xn Z dx x2 log (4�2n2 + x2 + y)' onst + 112y � 16�y3=2 +O(y2) : (27)Notie that the zero temperature ontributions are of order y2 and are ne-gleted in the following.3At zero temperature, the ounting � � g4 is more appropriate [11, 1℄.11



The tree level inverse propagators of the Higgs, Goldstone, gauge �eldsand ghosts are respetivelyiP�1h=�=FP = p2 �m2h=�=FP ;iP�1A = p2g�� � (1� 1=�)p�p� �m2Ag�� ;where we have introdued the �eld-dependent massesm2h = �2 (3�2 � v2) ;m2� = �2 (�2 � v2)� 2�g2�2 ;m2A = 2g2�2 ;m2FP = 2�g2�2 : (28)These expressions an be used to write the e�etive potential in the mean�eld approximation (using the leading terms in (27))Vmean�field = �4 ��2 � v2�2 + T 224 ��2 (3�2 � v2) + ��2 (�2 � v2) + 2�g2�2�+ 2 �3g2�2 + g2��2�� 4�g2�2�= �4 ��2 � v2�2 + T 224 ��(2�2 � v2) + 6g2�2� ; (29)where the di�erent ontributions are from the Higgs, the Goldstone, thegauge bosons and the ghosts, respetively.Notie that at tree level and for � = v, the poles of the Goldstone,the k� polarization and the ghosts are all situated at p2 = 2�g2�2 and theorresponding ontributions to the e�etive ation anel 4. However, at �nitetemperature the minimum of the e�etive ation moves away from � = v andhigher loop orretions beome important that have to be resummed. In thefollowing we show that these two e�ets indeed anel eah other in leadingorder.The neessity of resummation [2, 21℄ at �nite temperature arises beauseof diagrams as depited in Fig. 2. In general, all �nite temperature ontri-4 A term that depends on � but not on � an be aneled by an appropriate measurefor the ghost �elds [8℄. 12
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Figure 3: The leading ontributions to the self-energy of the gauge bosons.butions to the self-energies are UV �nite. One the sum over the Matsubarafrequenies is performed (or if the real time formalism is used), the integrandontains the partile distribution funtions that are exponentially suppressedfor momenta larger than the temperature. Hene, the graphs that are ap-parently UV divergent an be estimated to be of order of the temperature.In partiular, tadpole diagrams of the self-energy that arise from the gaugeinteration are of order g2T 2 (e.g. the ontributions to the self-energy of thegauge bosons shown in Fig. 3).If the partile in the loop has a mass ml and the self-energy is of orderg2T 2, adding self-energies leads to additional fatorsg2T 2(2�nT )2 + p2 +m2l : (30)As long as n > 0, this yields only a subleading orretion of order g2. Still,13



for the zero mode n = 0, this ontribution an be sizable and the aordingdiagrams have to be resummed. This problem is partiularly severe whenm2l � g2T 2 and the onvergene of the perturbative expansion ruially de-pends on this resummation. This is for example the ase for the longitudinalgauge bosons, that in the symmetri phase are massless on tree level, butreeive self-energy orretions of order � � g2T 2 at one-loop. But even inthe broken phase the self-energy and the mass are both of order g2�2 andresummation is essential.In order to resum these diagrams onsistently, one has to absorb at leasta part �0 of the self-energy into the propagator. In the broken phase, thedetails how this is done do not really matter as long asm2eff = m2l + �0 � �� �0 : (31)This ensures that IR divergenes are tamed and the perturbative series on-verges. These self-energy ontributions depend on the temperature and theyhave to be ompensated by introduing a ounterterm of equal size in orderto avoid a temperature-dependent regularization sheme. These ountert-erms ontribute at higher loop level as we will see below. �0 an in prinipledepend on momentum and also on the Matsubara number n. A partiu-larly simple hoie is to only absorb the self-energy of the zero mode in thepropagator [19℄.For the hoie of resummation sheme, it is ruial that in the presentontext we are only interested in stati quantities. If non-stati quantitiesas the plasmon damping rate are onsidered, the resummation of the zeromodes is not enough to ensure the onvergene of perturbation theory asdisussed in [22℄. In this ase more elaborate shemes like hard thermal loopresummation have to be employed [23℄.In the broken phase (and for � � 1), it suÆes to absorb the leading termof the self-energy of the gauge bosons. After this is done, the pole strutureof all gauge boson propagators is proper in leading order and orretionsan be treated perturbatively. On the other hand, the symmetri phase ismore problemati beause the transverse polarizations remain massless inperturbative alulations.Within the ontext of non-Abelian gauge theories, adding additionallines using the self-interation vertex of the gauge bosons results in a fa-tor g2T=mA what is of order g in the broken phase. In the symmetri phase,on the other hand, the mass of the transverse polarizations is known [23, 24℄14



to be non-perturbative and only of order g2T what leads to the well knownLinde's problem. For the Abelian ase, there is no self-interation of gaugebosons and the mass of the transverse polarization should vanish in the sym-metri phase [25℄. But also here the onvergene of the perturbative expan-sion is not obvious [26, 24℄.Compared to the unresummed one-loop result in Eq. (27) resumming onlythe zero modes gives an additional ontributionT Z d3p(2�)3 log p2 +m2 + �0p2 +m2 : (32)One way to evaluate this expression is to determine its derivative with respetto m2 whih leads toT Z d3p(2�)3 � 1p2 +m2 + �0 � 1p2 +m2�= � T4� �pm2 + �0 �pm2� : (33)Therefore, the resummation of the zero mode only a�ets the ubi term inEq. (27). The resummed gauge boson masses are given bym2T = 2g2�2 ;m2L = 2g2�2 + a2g2�2 : (34)Here, we parametrized the thermal mass of the longitudinal gauge boson withthe parameter a beause it depends e.g. on the fermioni matter ontent ofthe model and is quite di�erent in the Standard Model than in our examplealulation.Now onsider the Goldstone bosons that seem to be more interesting thanthe gauge �elds due to the � dependene in their mass. The Goldstone bosonsare massless on tree level for � = 0, suh that resummation an have a largeimpat on them. If the leading high temperature ontributions are taken intoaount, the self-energy arises from the diagrams in Fig. 2 and the e�etivemass is given byorder g2 : m2�;eff = �2 (�2 � v2) + 2�g2�2 + T 212 (�+ 3g2): (35)This �ts niely with the mean �eld result in Eq. (29). If our ounting was� � g2, the mean �eld result would give the orret leading order result for15
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Figure 6: The Goldstone ontributions to the self-energy of the Higgs boson.In onlusion, we arrive to the following expression for the e�etive po-tential to order g3 and �V(g3;�) = �4 ��2 � v2�2 + T 224 ��(2�2 � v2) + 6g2�2�� T12� �2m3T +m3L +m3� �m3FP � : (40)We emphasize that the resummed mass of the Goldstone boson is given by(39). As argued before, the ontribution from the Goldstone boson plus ghostis small when evaluated lose to the minimum of the potential. For small� � �=g2 it is of order �3=2, while for � � 1 one �ndsÆV � � T12� �(m2�)3=2 � (m2FP )3=2� � �TmFP8� (m2� �m2FP ) ; (41)whih is of order g� � g4 and also subleading. However, if it is not negleted,it indues a slight shift in the minimum of orderÆ� ' ÆV 0V 00 ' gp� T8p2� : (42)A shift in the position of the minimum is expeted on general grounds, be-ause the �eld value is not a physial observable. Note that lose to theritial temperature this shift is sub-leading,Æ�=� � gp� ; (43)beause in our ounting �=T � 1. Other ontributions to the potential oforder g� ould eventually redue this shift but atually this shift persists18



even if higher order ontributions are taken into aount. This an be seenby inspeting all two-loop diagrams. It turns out that even though someontributions are nominally of order g4, they either do not depend on �or are not linear in the temperature, so formally they annot anel (41)ompletely. However, one expets at higher order a ontribution of the form12Æ�2V 00 ' g2��512�2T 2�2 ; (44)to the potential lose to the broken phase that removes the remaining gaugedependene of the e�etive ation evaluated in the minimum. That thisterm is not inluded in the potential (40) introdues a subleading gaugedependene in the ritial temperature of orderÆTT ' ��256�2 ; (45)what is nominally of order g3 and numerially very small.Let us now disuss to what extent the potential (40) respets the Nielsenidentity (14). First, we show that the shift (42) in the position of the min-imum is supported by the Nielsen identity. As a funtion of the parameter� and �, the potential develops iso-potential urves, i.e. there is a funtion��(�0; �) that ful�lls ��(�0; �0) = �0 and aording to (14)� dd�V (��; �) = � d��d� ���V + � ���V = C0 ���V + � ���V = 0 : (46)An expliit expression for the funtion C0 is given in (15). The leadingontribution obtained by evaluating the diagram shown in Fig. 1 readsC0 ' 12g2��T Z d3p(2�)3 1p2 �m2� 1p2 �m2FP ; (47)that gives C0 ' 18� g2��Tm� +mFP ' gp� T16p2� ; (48)where the last expression is obtained when evaluating the masses lose to thebroken phase. This agrees niely with our �ndings in (42) and the relationC0 = �d��=d�. Using (48), it is also possible to verify expliitly that theNielsen identity for the e�etive potential (14) is indeed satis�ed also away19



from the broken minimum, up to higher order orretions. Namely, takingthe �-derivative of the e�etive potential given in (40) one �nds� �V�� = � 14�g2��2T (m� �mFP ) : (49)The right-hand side is of higher order lose to the minimum where m� �mFP , suh that the value of the e�etive potential in the minimum is �-independent, up to higher order orretions, as disussed before. Using that�V�� ' 2�(m2� �m2FP ) +O(g4; �g) in ombination with (48) then shows thatthe Nielsen identity is respeted also away from the broken minimum.6 Gauge Independene in the Gradient Ex-pansionLet us return to the relation (25) that ensures the gauge independene ofthe e�etive ation in the gradient expansion. An expliit alulation of thewave funtion orretion appearing in the derivative expansion of the e�etiveation yields (see Appendix B)Z = 1� g2T3�  118mT � m2T16m3L + 2m� +mT � 2mFP +mT+ �m� +mFP � 7�16mFP � �m2FP16m3� (1 + Æ=�)2! ; (50)where we have de�nedÆ � ��2m2FP ���(m2� �m2FP ) ' �4g2 � g2T8� � 2mT + 1mL� : (51)Within our ounting, Æ is of order g and hene subleading. Still, wekeep these orretions sine unlike two-loop ontributions they are linearin the temperature and (as we shall see) anel among themselves. The �dependene of Z arises via the masses m� and mFP , apart from the expliitdependene on �. Formally, the �-dependent terms are of the same order asthe �-independent ones. In the limit � ! 0, the wave funtion orretionagrees with the one obtained in Landau gauge (see appendix A of [27℄).20



Note that lose to the broken minimum where m� � mFP , the leading�-dependent terms anel and the � dependene beomes suppressed. Thisbehavior is preisely the one expeted from the Nielsen identity (25), beauselose to the broken minimum all terms on the right-hand side are at most oforder g2. Namely, the term proportional to �C0=�� is of higher order beauselose to the broken minimum C0 beomes approximately �-independent. Theterm involving C0�Z=�� is suppressed beause both fators are of order g,and the term proportional to the derivative of the e�etive potential alsohas to vanish in the broken minimum by de�nition. Finally, the last term issuppressed as well beause the Higgs mass is of order � � g3. In order tohek expliitly that the Nielsen identity (25) is also ful�lled for �eld on-�gurations away from the broken minimum, we have omputed the leadingontributions to the oeÆients D and ~D ontributing to the derivative ex-pansion (24) of the Nielsen oeÆient C(x) for the full e�etive ation. Itis possible to relate these oeÆients to Feynman diagrams obtained fromattahing one or two external Higgs �eld lines to the one-loop graph shownin Fig. 1 that orresponds to the leading ontribution to C(x). The diagramsand the expliit expressions are shown in Appendix B.One an hek that, with these oeÆients (98), the result for Z fromEq. (50), and C0 from Eq. (48), the Nielsen identity (25) for the orretion ofthe kineti term is indeed satis�ed to order g2. For this alulation, we foundit helpful to express also the leading ontributions to the �eld derivatives ofC0 and V in terms of the Goldstone and ghost masses,�C0�� ' g2T�8� m2� �m2FP (1 + Æ=�)m�(m� +mFP )2 ; (52)and �V=�� ' 2�(m2��m2FP ), as well as �2V=��2 ' 2(m2��m2FP )+4m2FP Æ=�up to orretions of order O(g4; �g). Two numerial examples are given inFig. 7.In onlusion, we have the following �ndings:First: The funtion C0 is lose to the broken phase of order gp�T andhene the � dependene of the ritial �eld value � is subleading. Anotherimportant onsequene is that the �rst-order nature of the phase transitionis a gauge-independent statement [5, 6℄ in the regime where the perturbativeexpansion onverges 5.5In our urrent sheme this also entails the ondition that � is not muh larger thanO(1). 21
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Figure 7: The di�erent ontributions to the Nielsen identity (25) for Z(�) andtheir sum. The labels (a) to (e) are the �ve ontributions in (25) from left to right.The parameters of the upper plot are g = 1=3 and � = 0:015, while the lower usesg = 1=10 and � = 4:05 � 10�4. This ensures �=T � 1 in both ases. The gaugeparameter is � = 0:5. 22



Seond: The Nielsen identity (25) for Z is in leading order (g2) ful�lledeverywhere. The derivative �C0=�� is of order g2T=�p�. Hene, aordingto (25) ��Z=�� an be at most of order g2 if �Z=�� is at most of order g.From the expliit result (50) it turns out that, in the broken phase, indeed��Z=�� is of order g2 while �Z=�� is of order g. Finally, D is of order 1=g, soall terms in (25) are of the same order and their sum to this order vanishes.Third: Even though we annot hek the equation (25) in full general-ity to order g3, the one-loop terms are the only ontributions to this orderthat are linear in the temperature. These ontributions anel among them-selves. The remaining terms in (25) to order g3 (denoted by � in Fig. 7)result from the ontributions proportional to T 2 oming from the produt ofone-loop terms in C0dZ=d�. These have to anel against genuine two-loopontributions that we did not alulate.Fourth: Close to the symmetri phase the funtions Z, D and ~D divergewhat makes the gauge dependene introdued by subleading ontributionslarge. However, this does not indiate a breakdown of perturbation theory.What breaks down is the gradient expansion of the e�etive ation � and ofthe funtion C that was used to arrive at the relation (25). In priniple, if thegradient expansion was avoided, expliitly gauge-independent results ouldbe obtained. Nevertheless, in pratie the gradient expansion is typiallyused to determine observables like the sphaleron energy or the tunnelingrate perturbatively. In the next setions, we disuss to what extend thisintrodues a gauge dependene to the onventional analysis found in theliterature.7 Thermal TunnelingWe start the disussion of thermal tunneling by assuming that the gradi-ent expansion of the e�etive ation is sound and only later investigate towhat extent this really holds true. The rate of thermal tunneling is mostlydetermined by the ation of the so-alled boune solution of the e�etive a-tion [28, 29℄. The (Eulidean) ation with O(3) symmetry is in leading ordergiven by � = 4�T Z d� �2 (������Z(�) + V (�)) : (53)To simplify the disussion, we assume that the temperature is lose to theritial temperature where the solutions of the equation of motion is in the23



`thin-wall-regime'. In this ase, the �eld only hanges in a region � � R� L,where R denotes the size of the nuleated bubbles while L denotes the wallthikness of the boune solution [29℄. In this approximation, the ation anbe rewritten as� = 4�T R2 Z d� �(���)2 Z(�) + V (�)�� 4�3T R3� ; (54)where � denotes the potential di�erene between the symmetri and the bro-ken phase. The �rst integral is invariant under a shift in � leading to aonservation of (���)2 Z(�)� V (�) = onst : (55)For the on�guration that dominates the path integral in the tunneling pro-ess the onstant on the right side vanishes. This gives for the ation� = 4�T �R2 � 4�3T R3� ; (56)where we de�ned the wall tension6� = Z d� �(���)2 Z(�) + V (�)� = Z �0 d�pV (�)Z(�) : (57)Finally, the bubble size R an be obtained by extremizing this expression,what gives the well-known result [30℄R = 2�� ; � = 16�3T �3�2 : (58)This little exerise shows that a gauge-independent tunneling rate an inthe thin-wall regime only be obtained if the wall tension is gauge-independent(the potential di�erene � is obviously gauge-independent due to Nielsen'sidentity). At �rst sight, it seems to be impossible that the wall tension isgauge-independent: In the e�etive potential the gauge dependene startsat relative order g, while in Z the gauge dependene �rst ours at relativeorder g2. However this argument is not sound, sine the gauge dependenearising from the potential is further suppressed in the wall tension. To see6Our de�nition of the wall tension di�ers from the usual de�nition by a fator p2 dueto our onventions for the kineti term. 24



this, one an ignore the subleading ontributions in Z to order g2. This givesthen for the wall tension� dd�� ' Z �0 d� � dd�pV ' Z �0 d�C0 dd�pV ' � Z �0 d� dC0d� pV : (59)Here we used that the potential vanishes in both phases in the thin-wallapproximation. dC0=d� is in the broken phase of order g2 suh that thegauge dependene of the e�etive potential an in the wall tension anelagainst the gauge dependene in Z.Is this result spei� to the thin-wall regime and how does this �t to-gether with the statement (25)? On �rst sight, (25) only ensure the gaugeindependene of the ation in the gradient expansion, or more spei�allyas long as Z������ � V . On the other hand, for the tunneling bounesolution both terms are of the same order and this expansion does not apply.However, in the present ontext there is a way to derive a similar relation as(25) for the tunneling boune without this onstraint. Starting from (8), afuntional derivative with respet to j(x) yields� d�(x)d� = C(x; �(x); �) ; (60)in ase �(x) ful�lls the equation of motion, j(x) = 0. So, there is a lass ofsolutions '(x; �) with dd��(�(x); �)j�(x)='(x;�) = 0 : (61)Using this relation in (53) yields0 = 4�T Z d� �2������� �2dCd� + dZd�C + � dZd� �+ � dVd� + CdVd�� : (62)So qualitatively the same piture emerges as in the thin-wall regime. Torelative order g, the shift (60) in ombination with (14) ensures the gaugeindependene but only beause dC=d� is of order g2 while C is of order g.Using the expansion (24) in (61) then leads to a relation similar to (25).Unlike the ondition Z������ � V , the expansion (24) is well justi�ed inthe present ontext at least in the broken phase. Nominally the expansionparameter is p2=m2 suh that with p2�2 � V � g3�4 and masses of order25



m2 � 2�g2�2 the gradient expansion of (24) is valid for � � pg=��. Inpartiular, the gradient expansion gets worse for small �.Now notie that in the last setion we have shown the relation �dV=d� =C0 dV=d� only up to terms of order g5 and that dD=d� is like dC0=d� oforder g2. Hene to order g5, the relation (61) is not exatly equivalent to(25). In any ase, the range of validity is not the same for both relations,sine (25) is valid for small gradients, while in the derivation of (61) we usedthe equation of motion.From above disussion, it seems that the gauge dependene of the walltension is suppressed at least by g2 if Z is ignored and that the inlusion ofthe Z fator might even postpone it to order g3. However, the breakdown ofthe gradient expansion in the symmetri phase prevents a gauge-independentdetermination of the wall tension in (57) to this order. In pratie, the ex-pression we obtained for the wave funtion normalization Z an even beomenegative for � � g� suh that no reasonable results an be obtained if theleading non-trivial order of Z is taken into aount. Also dC0=d� is of orderpg lose to the symmetri phase what indiates that a large gauge depen-dene arises if the gradient expansion is employed.The gauge dependene arises mostly from the symmetri phase and inte-gration of Eq. (59) leads to the estimate� d�d� ' 148�m2�T ; (63)for � not too small. Here m� denotes the Goldstone mass for � = 0, thatoinides with the Higgs mass mh in the symmetri phase. Compared withthe leading order result � ' 16m��2 ; (64)the unertainty from the gauge dependene sales as p� � g3=2,�� d�d� ' 18� m�T�2 : (65)This leads to a logarithmi dependene on �,�(�)=�(1)� 1 / g3=2 ln(�) ; (66)whih niely �ts with our numerial �ndings shown in Fig. 8. Espeially,26
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Figure 8: Dependene of the wall tension � on the gauge parameter �. Thethree values �0, �Z and �� denote the wall tension dedued, from V only, from Vand the naive Z and from the full momentum dependene in �, respetively. Foromparison, also the ritial Temperature T and the ritial �eld expetation value� are shown. The residual gauge dependene of the wall tension is of relative orderg3=2 ln(�), while for T it is very small, of order g3. In ontrast, the � dependene of� is expeted from the Nielsen identity, see Eq. (42), and its leading ontributionsales as gp�. The parameters of the upper plot are g = 1=3 and � = 0:015, whilethe lower uses g = 1=10 and � = 4:05 � 10�4.27



this means that for very small values of � the gauge dependene beomes en-haned. For � . g, the logarithm is ultimately ut o�, and the � dependeneis of the relative order g3=2 ln(g). Therefore, it seems that a hoie � � O(g)is slightly preferable for the omputation of the wall tension ompared to e.g.Landau gauge.Inluding the wave funtion orretion Z to the kineti term in the deter-mination of the wall tension mainly leads to a gauge-independent shift. Thisshift an be estimated as (details are again given in Appendix C)�� ' �11p2192� gm�T� : (67)This sales as ��=� � g what is parametrially larger than the gauge-dependent ontributions to the wall tension that sale as g3=2. The gaugedependene of the wall tension is not improved systematially by the inlu-sion of Z. Espeially, it is still of order g3=2. Nevertheless it turns out thata anellation of the �-dependent ontributions ours for � of order one.These �ndings are supported by our numerial results that are presented inTable 1 and Fig. 8. Some analytial details of this disussion are given inAppendix C.At this point, we would like to omment on [31℄ that ompared the walltension in the Landau and Feynman gauges for an e�etive three dimensionaltheory. There it was also found that inluding the Z fator does not lead toa systemati redution of the gauge dependene. Nevertheless, the analysisshowed that the gauge-independent ontributions from Z where as large asthe gauge-dependent ones. This disrepany ompared to our analysis is dueto the fat that the Goldstone mass was not resummed what leads to a largergauge dependene in the e�etive potential as stressed in setion 5.The fat that the inlusion of Z does not postpone the gauge dependeneof the wall tension to the relative order g2 or even g3 is related to the break-down of the gradient expansion in the symmetri phase, whih leads to adivergene of Z for �! 0. To avoid this problem, we would like to hek thegauge independene of the e�etive ation in the symmetri phase withoutresorting to the gradient expansion. In order to ahieve that, one an expandthe e�etive ation in � around the symmetri phase and obtains� = T Z d3p(2�)3 �(p)�(p)�(p) ; (68)28



with �(p) = p2 +m2h +�2(p) : (69)The gauge independene of the e�etive ation (12) then implies in leadingorder � d�2(p)d� = 2(p2 +m2h)dC(p)d� ; (70)where C(p) is now understood to be expanded in � instead of p. In the limit� ! 0, the only ontribution at one-loop order to �2 is the last diagramdepited in Fig. 12 involving the gauge and Goldstone boson and severaltadpole diagrams that however have no momentum dependene. Expliitalulation shows� d�2d� = g2T�4� ��m� + 2(p2 +m2�)p artan(p=m�)� ; (71)and dC=d� in aordane with (70). Notie also that �2 is �nite in the limitp! 0 if the limit �! 0 is taken �rst� d�2d� ' g2T�4� �m� + 83 p2m�� : (72)The mass term agrees hereby with the one derived from the potential (40),while the kineti term does notZsymm = 1� ��2�p2 ����p=0 = 1� g2T3�m� (2 + �) : (73)Sine the potential agrees independent from what limit (�! 0 or p! 0) istaken �rst, it is tempting to redue the gauge dependene of the wall tensionby interpolating between the two di�erent kineti terms Z and Zsymm. Inorder to implement this idea, we replae the wave funtion orretion inEq. (57) by Z(�; p) = 1� ��2(�; p)�p2 : (74)Here �2(�; p) is the full one-loop self-energy for a general expetation value� of the Higgs �eld, whih approahes the self-energy �2(p) disussed abovefor � ! 0. On the other hand, Z(�; p ! 0) agrees with the orretion tothe kineti term from Eq. (50). For any non-zero value of the momentum p,Z(�; p) has a regular behavior for �! 0, and indeed interpolates between Z29



g = 1=3 g = 2=3� 0.0075 0.015 0.025 0.06 0.1 0.15�0 (� = 1) 6.29 1.78 0.74 149 31.2 12.9Æ�0 0.11% 0.33% 0.79% 0.33% 0.70% 1.4%�Z (� = 1) 6.16 1.70 0.68 143 28.8 11.3Æ�Z -0.10% -0.25% -0.56% -0.21% -0.46% -0.97%�� (� = 1) 6.16 1.70 0.69 143 28.8 11.3Æ�� -0.07% -0.16% -0.32% -0.13% -0.25% -0.52%Table 1: Numerial results for the wall tension in units of 10�3v3, and theshift Æ� for a hange of the gauge parameter � from 1 to 0:1. The rows �0,�Z and �� denote the wall tension dedued, from V only, from V and thenaive Z and from the full momentum dependene in �, respetively.and Zsymm as a funtion of � provided that the momentum is hosen smallenough, p . mh. In Table 1 we show the resulting expression for the wall ten-sion, where we used p = mh=(2�) as the momentum ut-o�. Unfortunately,we found that qualitatively the gauge dependene did not improve signi�-antly by doing so, although it is slightly redued on a quantitative level.A omplete anellation of the gauge dependene at the relative g3=2 levelseems to require the use of the full momentum dependene of the e�etiveation without resorting to the gradient expansion.8 Sphaleron numerisIn this setion we briey disuss the sphaleron energy following [32℄. Thesphaleron is a stati Higgs-gauge on�guration that is a saddle point of theation (whih reets the energy of the on�guration). It has Chern-Simonsnumber 12 and is situated half-way between two gauge vaua. Our toy modeldoes not ontain a SU(2) gauge setor and hene no sphaleron transitions,but the Higgs potential in the Standard Model has essentially the same fea-tures of the Abelian Higgs and it is reasonable to feed the potential (40) intothe equations of motion of the sphaleron to estimate the gauge dependene ofthe sphaleron in the Standard Model. In the onventional analysis, the maindi�erene between the Abelian and the non-Abelian model in terms of the30



strength of the phase transition is that there are three times as many gaugebosons (and ghosts and Goldstones) ontributing to the ubi term henestrengthening the phase transition. We will mimi that by also presentingresults for larger than observed gauge ouplings.In the non-Abelian ase, perturbation theory is plagued by Linde's prob-lem in the symmetri phase suh that the expansion in the oupling onstantbeomes questionable for small Higgs vevs. Besides, ompared to the tun-neling rate disussed in the last setion, the onvergene of the gradientexpansion is even more problemati. The gradient expansion is formally anexpansion in the parameter p2=m2 where the relevant mass is the one of thegauge bosons. While for the tunneling boune this is O(g), in the ase ofthe sphaleron the expansion parameter is O(1) and hene not suppressed byany oupling onstant even in the broken phase. However, numerially theoeÆients D and Z � 1 are slightly smaller than C0 and Veff (in units ofm2A�2) suh that higher orders an be negleted if this trend ontinues. Thisissue is to ertain extend unrelated to the gauge dependene.At the same time, the sphaleron energy is proportional to � suh thatthe gauge dependene stemming from � annot possibly be aneled bythe gauge dependene of the e�etive ation solely in the surrounding ofthe broken phase. In order to quantify our lak of knowledge on Z andVeff in the symmetri phase, our strategy is to set Z to 1 in the numerialanalysis and use the gauge dependene of Veff to estimate the impat ofthose ontributions to the sphaleron energy.The di�erential equations to solve when a spherial Ansatz is used read�2d2fd�2 = 2f(1� f)(1� 2f)� 14�2h2(1� f); (75)dd� �2dhd� = 2h(1� f)2 + 1g2 dVhdh ; (76)with the asymptoti behaviorf ! ��2 ; h! �� for � ! 0 ;and f ! 1�  exp(��=2) ; h! 1� Æ� exp(���) for � !1 ; (77)where the parameter � is given by �2 = V 00h and the resaled potential isde�ned as Vh(h) = Veff (h � �) while the resaled oordinate is � = g�jxj.31



g = 1=3 g = 2=3� 0.0075 0.015 0.025 0.06 0.1 0.15�=v 0.965 0.549 0.325 2.07 1.03 0.535T=v 0.454 0.575 0.721 1.00 0.94 1.05Æ� 0:3% 0:7% 1:5% 0:6% 1:3% 3:0%ÆEsph 0:01% 0:01% 0:02% 0:05% 0:07% 0:10%Table 2: Numerial results for the sphaleron energy. The row Æ� ontainsthe shift for a hange of the gauge parameter � from 1 to 0:1. The rowontains the orresponding hange in sphaleron energy due to a hange inthe shape of the Higgs potential.We solve the equations numerially with a shooting algorithm similarto what is used to �nd the boune solution of the tunneling ation. Theparameters � and � are hosen and the equations are solved from someposition �� lose to the origin to a value �! � O(10). The parameters � and� are then varied and we searh for simultaneous zeros in the funtionsDf = 1� f + 2f 0 ;Dh = ��(1� h) + (�h)0 : (78)These two onditions ensure that the numerial solutions smoothly maththe asymptoti behavior given in (77). The sphaleron energy is then givenby E = 4p2��g Z 10 d� "4�dfd��2 + 8�2 (f(1� f))2+12�2�dhd��2 + (h(1� f))2 + �2g�2Vh# : (79)Some numerial results are given in Table 2. Main impat of the sphaleronenergy has the gauge-dependent shift in �. The gauge dependene in theritial temperature T and the shape of the e�etive potential are sublead-ing. Moreover, lose to borderline ase of sphaleron washout �=T � 1, theunertainty in the sphaleron energy never exeeds a few perent for StandardModel values of the gauge oupling. In summary, the unertainty stemming32



from the residual gauge dependene is subleading ompared to orretionsoming from two-loop ontributions to the e�etive potential [33, 10℄. Thisgauge dependene is inherited from the ritial vev�E dEd� ' gp�16�p2 T� ; (80)and sales as g. To remove this gauge dependene one would probably needto inlude the next-to-leading order of the kineti term of the gauge-bosons.There, a sizable gauge dependene is expeted in order to ensure a gauge-independent position of the pole in the gauge-boson propagator. Besides, thebreakdown of the gradient expansion should lead to even more severe e�etsthan in the ase of thermal tunneling as disussed above. This will furtherompliate the determination of the sphaleron energy with an auray be-yond the bound (80).9 SummaryLet us summarize our �ndings onerning the gauge dependene of the e�e-tive ation in the Abelian Higgs model in R�-gauges. We expliitly demon-strated various Nielsen identities in the regime where the use of perturbationtheory and the gradient expansion of the e�etive ation is feasible.In partiular, we have shown that the position of the minimum of the ef-fetive potential transforms in leading order aording to (14) under a hangein the gauge �xing parameter �. We would like to emphasize that this resultould only be obtained by alulating the e�etive potential onsistently toorder g3 using the ounting g3 � �. In partiular, this required the resum-mation of ontributions to the Goldstone boson mass7 of order mAT (wheremA denotes olletively the di�erent masses of the gauge bosons).Furthermore, we have demonstrated that the o�-shell e�etive ation ingradient expansion transforms aording to the Nielsen identity (25). How-ever, this relation annot guarantee the gauge independene of vauum tran-sitions for several reasons. First, the gradient expansion is not well justi�edin these ases sine the ontribution of the kineti term to the ation is ofequal size as (or even larger than) the ontribution from the salar potential.7At this point of the analysis, we depart from [34, 35, 36℄ that argue for a large gaugedependene of the e�etive ation. 33



Seond, even for small gradients the gradient expansion and the relation (25)break down at some point in the symmetri phase and vauum transitions arealso sensitive to this regime. Compared to the analysis at zero temperature[11℄, notie also the additional ontribution involving ~D that was missing butalso not important in the analysis presented there.Finally, we disussed the gauge dependene of the tunneling ation. Usingthe established proedure to alulate the tunneling ation perturbatively(meaning a anonial kineti term and the appropriate e�etive potential),we found for the gauge dependene of the wall tension the estimate�� d�d� ' 18� m�T�2 ; (81)what sales asp� � g3=2 (the Goldstone massm� is evaluated in the symmet-ri phase). Inluding orretions to the kineti term Z leads to orretions ofthe same order but the gauge dependene is not persistently redued. Thisis due to the fat that the latter orretions are sensitive to the e�etive a-tion very lose to the symmetri phase where the gradient expansion breaksdown.Sine we did not arrive at an expliitly gauge-independent result for �,this leaves the question what is the best gauge to hose. Our results developthe strongest � dependene for � � 0. For � & g the wall tension omputedusing a anonial kineti term depends logarithmially on �, while wheninluding the orretion to the kineti term the � dependene partially anelsand � is rather insensitive to � for � � 1. This ould indiate that a � valueof this order is the appropriate hoie and not Landau gauge (that is mostlyused in the literature and is reprodued in our ase by � ! 0). Nevertheless,quantitatively the dependene on � is rather small and inluding the two-loopontributions to the e�etive potential will probably have a larger impat inmost models (e.g. ontributions from the gluons [37℄). We also identi�edgauge-independent orretions to the wall tension that arise from the kinetiterm Z and sale as g. Also these ontributions are more important than thegauge-dependent ones.Several non-perturbative studies of tunneling in the Standard Model werepresented in refs. [20, 38℄ and a detailed omparison with the perturbative re-sults in Landau gauge was given in [39℄. Also there it was onluded that theorretions to the kineti term and two-loop ontributions to the e�etive po-tential are important to ahieve a good agreement with the non-perturbative34



results for the wall tension. Numerially, these orretions are far more im-portant than the gauge �xing dependene we disussed here.In ase of the sphaleron, the onvergene of the gradient expansion is alsoproblemati. As a naive estimate of the gauge dependene of the sphaleronenergy, we obtained �E dEd� ' gp�16�p2 T� ; (82)what is typially of a few perent. Over all, the e�etive potential enters inthe sphaleron energy mostly via the position of its minimum. Hene, im-proving the gauge dependene of the sphaleron energy will probably requirenot only to go beyond the gradient expansion but also to alulate the gaugedependene of the wave funtion orretions of the gauge �elds, what we didnot attempt here.The estimates (82) and (67) are solely based on the Nielsen identity forthe Higgs vev, C0 � �d�=d�. Therefore, the results an be readily arriedover to the Standard Model and some of its extensions as the two-Higgsdoublet model or singlet extensions. Compared to the Abelian Higgs model,the eletroweak setor of these models gives in leading order a gauge �xingdependene of the Higgs vev that is larger by a fator three.In onlusion, determining vauum transitions in an expliitly gauge-independent fashion is mostly hindered by the breakdown of the gradientexpansion of the e�etive ation (in partiular in the viinity of the symmet-ri phase). Still, in the osmologiallymost interesting regime with g� 1 and�=T & 1, the gauge dependene of the tunneling ation and the sphaleronenergy is rather small. The situation further improves when the essential u-bi ontributions to the e�etive potential do not solely arise from the gaugebosons (as in the present Abelian toy model) but e.g. from additional degreesof freedom (as in the light stop senario [40, 41, 42℄) or from the tree leveldynamis of an extended salar setor [43℄.AknowledgmentsWe thank W. Buhm�uller and M. Laine for helpful disussions. This workhas been supported by the German Siene Foundation (DFG) within theCollaborative Researh Center 676 \Partiles, Strings and the Early Uni-verse". 35
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and a similar expression for the the integrals with higher powers. Notie thatonly the zero mode n = 0 ontributes to the leading term and we neglethigher Matsubara modes in the following whenever this holds true.We �rst restrit ourselves to the broken phase where the masses are givenas m2A = 2g2�2 � m2 � yT 2 ; m2� = m2FP = �m2 : (86)Then one �nds for the ghost and Goldstone loops the ontributions13g2�2y(LB(�y) + 2�yMB(�y)) : (87)The diagram involving two gauge �elds requires the evaluation of produtsof the polarization projetions P ��(l) = l�l�=l2P ��(l + p=2)P��(l � p=2) ' 1� p2l2 + (p � l)2l4 +O(p3)' 1� 23 p2l2 +O(p3) : (88)and again the expansion of the integrand (84). The novel integrals are givenin appendix D. The ontribution from the term involving the p� polarizationtwie gives 13g2�2y (�LB(�y)� 2�yMB(�y) �4�LB(�y; �y; 0)� : (89)The ontribution involving one p� polarization yields83g2�y �LB(�y; y; 0) ; (90)and the ontribution with no p� polarization is2g2y��12LB(y)� yMB(y)� 23 �LB(y; y; 0)� : (91)Finally, the ontributions from the mixed gauge-Goldstone loop give4g2��13 �KB(�y; �y)� ; (92)and 4g2�23 �KB(�y; y)� : (93)39



In the broken phase, where m2FP = m2�, the ontributions proportional toLB in (87) and (89) anel eah other. The third term involving �LB in (89)anels in leading order against (92). Besides, the terms in (90) and (93)ombine to 83g2 ��y �LB(�y; y; 0) + �KB(�y; y)� ' 2g23�py ; (94)what is gauge-independent. Together with the ontribution in (91) this yieldsthe �nal result Z ' 1� 7g216�py : (95)Taking in addition the resummed gauge boson propagator�ip2 �m2LPL�� + �ip2 �m2T P T�� + �ip2 �m2FP P 0�� ; (96)into aount, where P 0�� = p�p�=p2, P T�� = g�� � u�u� � (~p�~p�)=~p2, PL�� =g�� � (p�p�)=p2� P T��, ~p� = p�� u�(up), u� = (1; 0; 0; 0), m2L = m2T + ag2T 2,and m2T = 2g2�2, we �ndZ = 1� g248�py �22� m3Tm3L� : (97)The above alulation an be extended to a on�guration in �eld spaeaway from the broken minimum. In that ase one annot set the Goldstonemass m� and the mass mFP of the ghost and of the time-like gauge bosonpolarization to be equal. In that ase we obtain the result given in Eq. (50)A similar alulation an be done for the fators D and ~D in (24). Theseare obtained from alulating the diagrams shown in Fig. 13 and Fig. 14, re-spetively, expanding in powers of the external momentum p�, and extrating
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and �� is arbitrary as long as 2g2� ��2 � m2�. Let us �rst evaluate this integralin the regime ��� �. This requires � � �=2g2 and leads to V ' m2��2 andm2� = ��2=4 = onst. The orresponding integral an be evaluated usingZ �x0 dxx �(1 + x2)3=2 � x3 � 1� � 32 �x�log(�x)� 43+log 2+O(log(�x)=�x): (101)We are mostly interested in the two leading terms. The onstant termdo not lead to a � dependene and the subleading orretions are of order� log(g)=g2� � g log(g)=�. In the wall tension, one annot hose �� paramet-rially smaller than �, but one an neglet the range of integration fromzero to a few, sine it does not ontribute to the two leading terms. Thismakes the result meaningful, sine the e�etive ation annot be trusted forx� 1 due to the breakdown of the gradient expansion. This also allows oneto expand the numerator of the integrand and to inlude the full mean �eldpotential and not just its linearization in the symmetri phase. The arisingintegral is Z �x0 dxx(1� x=x) �32x(1� x=x)(1� 2x=x)� 1�� 32 �x(1� �x=x)� log(�x) + log(1� �x=x)+ onst +O(log(�x)=�x) : (102)After this proedure, �x an be hosen as a �xed multiple of x, e.g. �x =x=2 = p2g2�=�. The linear term anels then against the ontributionfrom the boundary of integration (what an be heked using (48)) while thelogarithmi term reprodues the relation (63)��0 ' 148�Tm2� log(�) : (103)The onstant term is gauge-independent and orretions to this relation areof relative order g log(g)=�.Next, we examine if the logarithmi terms anels against the ontribu-tions arising from the wave funtion orretions Z. For larger values of x,the integrand an be expand as��Z = 12 Z ��0 d� ÆZpV : (104)43



This integral still diverges, but one an extrat a gauge-independent ontri-bution Z � 1 �!1���! g2T3� � 118mT � m2T16m3L� : (105)We will deal with this ontribution later.Sine the leading ontributions from the remaining ÆZ is of order log(�x),the potential an be linearized from the start and the integration of the�-dependent terms of ÆZ in (50) leads for large �x to a ontribution��Z ' � 112�Tm2��� 512 + 41� � + 4 log(1�p1� �)� 2 log(�)(1� �)3=2 � : (106)Note that the right-hand side is regular for � > 0, espeially it has no polefor � = 1. It is also possible to estimate the � dependene by evaluatingthe �-derivative similarly to Eq. (59), but inluding Z and using the Nielsenidentity Eq. (25). This leads to the same result as shown above. For � nottoo small, the � dependene of ��0 and ��Z are of the same order and haveopposite signs. However, there is no systemati anellation between the �dependenes of these two quantities. In any ase, it turns out that it is notjusti�ed to neglet the integration in x from zero to a few, sine the orre-sponding ontribution is potentially as large as the one we just presented.This ontribution annot reliably determined due to the breakdown of thegradient expansion lose to the symmetri phase. Ultimately this preventsus from obtaining a gauge-independent result for the wall tension.Finally, onsider the gauge-independent piee (105). The orrespondingontribution to the wall tension an be evaluated usingZ 10  s1� �x2(x2 + �)3=2 � 1!x(1� x) ' � 14 � for� = 00:0146� for� ' 1 : (107)Hene, the longitudinal gauge bosons ontribute via the wave funtion or-retion a term �� ' �11p2192� gm�T� ; (108)to the wall tension. Notie that this is of order g5=2 and parametrially largerthan the gauge-dependent ontributions we estimated before.44



D IntegralsIn the following we list the used one-loop integrals.IB(y) = 12�2 Xn Z dx x2 log (4�2n2 + x2 + y)' onst + 112y � 16�y3=2 + O(y2 log y) ; (109)JB(y) = 12�2 Xn Z dxx2 14�2n2 + x2 + y= ddyIB(y) ' � 14�y1=2 + O(y log y) ; (110)�KB(y1; y2) = 12�2 Z dx x2 1x2 + y1 1x2 + y2' 14� 1py1 +py2 + O(log y) ; (111)�LB(y1; y2; y3) = 12�2 Z dx x2 1x2 + y1 1x2 + y2 1x2 + y3' 14� 1(py1 +py2)(py1 +py3)(py3 +py2)+O(y�1) ;LB(y) = �LB(y; y; y) ;MB(y) = 12�2 Z dx x2 1(x2 + y1)4 ' 164�y5=2 +O(y�2) : (112)Referenes[1℄ S. R. Coleman and E. J. Weinberg, \Radiative Corretions as the Originof Spontaneous Symmetry Breaking," Phys. Rev. D 7 (1973) 1888.45
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