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DESY 12-073CERN-PH-TH/2012-127On the gauge dependen
e of va
uumtransitions at �nite temperatureMathias Garnya, Thomas Konstandina;b{a DESY, Notkestr. 85, 22607 Hamburg, Germanyb CERN Theory Division, 1211 Geneva, SwitzerlandAbstra
tIn prin
iple, observables as for example the sphaleron rate or thetunneling rate in a �rst-order phase transition are gauge-independent.However, in pra
ti
e a gauge dependen
e is introdu
ed in expli
it per-turbative 
al
ulations due to the breakdown of the gradient expansionof the e�e
tive a
tion in the symmetri
 phase. We exemplify the sit-uation using the e�e
tive potential of the Abelian Higgs model in thegeneral renormalizable gauge. Still, we �nd that the quantitative de-penden
e on the gauge 
hoi
e is small for gauges that are 
onsistentwith the perturbative expansion.
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1 Introdu
tionFun
tional methods are an indispensable tool in studying the physi
s of spon-taneous symmetry breaking and phase transitions [1, 2, 3, 4℄. The mainadvantage in this approa
h is that the e�e
tive a
tion en
odes the groundstate of the system in a transparent way. On the te
hni
al side, it fa
ilitatesthe resummation of tadpole diagrams and redu
es perturbative 
al
ulationto the subset of one-parti
le-irredu
ible diagrams.A large drawba
k of the e�e
tive a
tion is however that it is not expli
itlygauge-independent [5, 6, 7, 8, 9, 10℄. This makes it ne
essary to distinguishbetween the gauge dependen
e that is expe
ted from the one that is intro-du
ed by approximation s
hemes that break the gauge invarian
e addition-ally. The �rst 
lass of gauge dependen
es is well represented by the Nielsenidentities while the se
ond 
an for example arise from the use of a loop ex-pansion in perturbation theory or from the expansion of the e�e
tive a
tionin gradients.The aim of the present work is to disentangle these di�erent sour
es ofgauge dependen
e for va
uum transitions [11℄ at �nite temperature in theAbelian Higgs model. After a general introdu
tion to the model (Se
tion2) and the Nielsen identities (Se
tions 3 and 4), the e�e
tive potential is
al
ulated (Se
tion 5). The main fo
us is hereby on resummation of infrarede�e
ts at �nite temperature. In this se
tion, it is also expli
itly demonstratedthat the position of the minimum of the e�e
tive potential transforms under
hanges of the gauge �xing parameter � a

ording to the Nielsen identity.Subsequently (Se
tion 6), the same is demonstrated for the (o�-shell) e�e
tivea
tion in the gradient expansion. Finally (Se
tions 7 and 8), the gaugedependen
e of the tunneling a
tion and the sphaleron energy are dis
ussed.In these 
ases an additional 
ompli
ation arises, namely the breakdown ofthe gradient expansion in the symmetri
 phase. We dis
uss, to what extendthe gauge dependen
e of these phenomena 
an be quanti�ed and potentiallyredu
ed before we 
on
lude (Se
tion 9).2 The modelIn the following we lay out the details of the model under 
onsideration.In order to simplify the analysis and to fo
us on the main impa
t of thegauge dependen
e of the e�e
tive a
tion, we dis
uss an Abelian Higgs model.2



This model has all ne
essary ingredients that o

ur in the Standard Modelbut does not 
ontain fermions or the 
orre
t symmetry breaking pattern asobserved in Nature. Nevertheless, for the order of perturbation theory wework at these features are not important and the presented arguments 
animmediately be 
arried over to the Standard Model 
ase.The Lagrangian is given byL = D���D��� 14F��F �� � V (���) ; (1)with the s
alar potentialV (���) = ��2��� + �4 (���)2 = �4 (���� v2)2: (2)The gauge 
ovariant derivative is given by D�� = (�� � igA�)�, while the�eld strength tensor reads F�� = ��A� � ��A�.We are interested in the e�e
tive a
tion � that is obtained [1, 3℄ byLegendre transformation of the generating fun
tional of 
onne
ted Greensfun
tions W (j) eiW (j) = Z D�DAei R d4xL(�)+j� ;�(�) = W (j)� Z d4x j ������=dW=dj : (3)This implies after a shift in the integration variable �! � + �ei� = Z D�DAei R d4xL(�+�)+j� : (4)By 
onstru
tion the �eld in the shifted theory does not have a va
uum expe
-tation value (vev). Hen
e, the bi-linear term 
ontaining the sour
e j has to
an
els all tadpole diagrams and beyond this 
an
ellation, the sour
e j hasno impa
t on the e�e
tive a
tion. Therefore � 
ontains only the 
onne
tedone-parti
le-irredu
ible va
uum diagrams in the shifted theory. The e�e
tivepotential is obtained by restri
ting the e�e
tive a
tion to homogeneous �eldexpe
tation values �, Veff = �= R d4x.For perturbative 
al
ulations, the Lagrange density has to be supple-mented by a gauge �xing pro
edure that results in an additional gauge �xingterm and a 
ontribution from the Fadeev-Popov ghosts.3



A 
ommon 
hoi
e is to use the general Lorentz gaugeLorentz gauge : Lgf = � 12� (��A�)2 ;LFP = ��
� 
 : (5)In this gauge the Fadeev-Popov ghosts do not 
ouple to the remaining par-ti
les, but the Goldstone boson and the unphysi
al k� polarization of thegauge boson mix after spontaneous symmetry breaking. Nevertheless, thisproblem is removed in the Landau gauge, � ! 0.Another 
ommon 
hoi
e is the R�-gauge [12℄R�-gauge : Lgf = � 12� (��A� + ig�(���� ���))2 ;LFP = ��
 (�+ �g2(��� + ���)) 
 : (6)The 
ontribution 
ontaining the ba
kground �eld � is designed to 
an
elthe mixing term between the Goldstone mode and the k� polarization ofthe gauge boson thus partially diagonalizing the propagator stru
ture of thetheory. However, having an expli
it dependen
e on the ba
kground �eld inthe gauge �xing term leads to some 
ompli
ations.First of all, in Lorentz-gauge a shift in � is equivalent to atta
hing an ex-ternal � �eld to the diagram [13, 4℄ (this follows immediately from inspe
tingthe Feynman rules). Hen
e the tadpole 
an be obtained from the derivativeof the e�e
tive a
tion. In general gauges this only holds in the minimum ofthe potential (where the tadpole has to vanish) while in Lorentz gauge thisis also true away from the extrema of the potential.One 
onsequen
e of this fa
t is that the two-point fun
tions of the Higgsand Goldstone bosons (at vanishing external momentum) 
an be obtainedfrom the se
ond derivatives of the e�e
tive potential. In parti
ular, theGoldstone bosons are massless in the broken phase (what 
an be a 
urseor a blessing). In R�-gauge the Goldstone bosons have a mass already ontree-level for � 6= 0.Furthermore, any tadpole that is generated in a higher loop perturbative
al
ulation 
an in Lorentz gauge be absorbed by adjusting the appropriate
ounterterms. This is parti
ularly handy in zero temperature 
al
ulationswhere the Higgs vev is an input observable parameter and kept �xed orderby order in the perturbative expansion. Espe
ially when several ba
kground�elds are present, it is not guaranteed in the R�-gauge that the tadpoles4




an be absorbed into the 
ounterterms of the Lagrangian what makes itte
hni
ally more diÆ
ult to keep the vevs �xed in higher loop 
al
ulations[13℄. Note that at �nite temperature this feature is not so important, sin
epart of the shift of the vev by loop e�e
ts is physi
al and one has to dealwith a temperature-dependent vev anyway.The behavior of the e�e
tive a
tion under gauge transformations wasoriginally analyzed in the Lorentz gauge by Nielsen [5℄. Similar relationshave been derived shortly after for R�-gauges [6, 7, 8℄ but their appli
ationis somewhat more involved. Still the general pi
ture is the same as in the
ase of the original Nielsen identities: While the value of the e�e
tive a
tionin its extrema is gauge-independent, the position of the extrema 
an have agauge dependen
e. This implies that the 
riti
al temperature of the phasetransition is gauge-independent. For va
uum transitions, the 
on�gurationsthat extremize the e�e
tive a
tion 
an be gauge-dependent while the valueof the a
tion for the 
on�guration is not. The prove of this is sket
hed in thenext se
tion.Ultimately, we aim to dis
uss the gauge dependen
e of the sphaleronenergy and the tunneling rate. In this work we fo
us on the R�-gauge for tworeasons. First, we �nd it te
hni
ally easier to eliminate the mixing betweenthe gauge boson and the Goldstone boson and to deal with the pe
uliarities ofthe R�-gauge than to perform loop 
al
ulations in the general Lorentz gauge1. Se
ond, the 
onvergen
e of the perturbation theory is in the Lorentz gaugeless obvious than in the R�-gauge [14, 15, 16℄.3 Nielsen identity in R� gaugeIn this se
tion we brie
y review the Nielsen identities for the e�e
tive poten-tial, paying spe
ial attention to the additional 
ompli
ations arising in theR�-gauge. In order to derive the Nielsen identity for a general gauge �xingwe write the latter in the form,Lgf = � 12�F 2 ;LFP = ��
 � ÆFÆA��� + ÆFÆ� ig� + ÆFÆ�� (�ig��)� 
 ; (7)1See [11℄ for a zero temperature analysis of the gauge dependen
e of the e�e
tive a
tionin general Lorentz gauge. 5



where F = ��A� in Lorentz gauge and F = ��A� + ig�(~��� � �� ~�) forthe R�-gauge. For the derivation of the Nielsen identities, it is 
onvenientto dis
riminate the �eld expe
tation value � � h�i that appears due tothe Legendre transformation of the generating fun
tional from the expli
itdependen
e on the ba
kground �eld in the gauge �xing term, whi
h is denotedby ~� here and 
an be 
onsidered as an external parameter at this stage ofthe 
al
ulation. Both �elds will be identi�ed in the end, but for now wedistinguish them.The dependen
e on F in general leads to a gauge dependen
e of the e�e
-tive a
tion �. For an arbitrary 
hange in the gauge �xing term parametrizedby F ! F + ÆF and � ! � + Æ� the 
hange of the fun
tional W is givenby [8℄ ÆW = � i Z d4x Z d4y ji hÆg�i(x)
(x)�
(y)Æ0F (y)i ; (8)where Æ0F � ÆF � F=(2�)Æ�. Furthermore, we 
olle
tively denote by �i all�eld expe
tation values that the e�e
tive a
tion depends on, and by Æg�i thevariation of the 
orresponding �eld operator under a gauge transformationÆg� = ig�; Æg�� = �ig��; ÆgA� = �� : (9)The expe
tation value of an operator hOi is de�ned in the usual path integralsense.The fun
tional W is gauge invariant up to the sour
e term involving jiand the gauge �xing term Lgf+LFP . The identity (8) re
e
ts the fa
t that a
hange in the gauge �xing fun
tional 
an via a gauge transformation shiftedinto a 
hange of the sour
e term. Now, noti
e that for any external parameter� one has the relationd�(�; �)d� �����=
onst = dW (j; �)d� ����j=
onst ; (10)what 
an be veri�ed using the de�nition (3). The gauge �xing parameters �and ~� are external parameters su
h that one 
an translate (8) into a relationfor � if the left hand side is understood as being varied with � kept �xed,namely Æ� = i Z d4x Z d4y Æ�Æ�i(x)hÆg�i(x)
(x)�
(y)Æ0F (y)i : (11)
6



This immediately yields the Nielsen identity for the e�e
tive a
tion, whi
hresults when only 
onsidering a 
hange in the gauge parameter �,� ���� = � Z d4x� Æ�ÆA�(x)CA�(x) + Æ�Æ�(x)C�(x) + Æ�Æ��(x)C��(x)� ; (12)where the 
oeÆ
ients, taking a possible � dependen
e of F into a

ount, aregiven byCA�(x) = i2 Z d4yh��
(x)�
(y)(F (y)� 2��F (y)=��)i ;C�(x) = i2 Z d4yhig�(x)
(x)�
(y)(F (y)� 2��F (y)=��)i ;C��(x) = i2 Z d4yh(�ig��(x))
(x)�
(y)(F (y)� 2��F (y)=��)i : (13)For a 
onstant �eld expe
tation value, 
hosen to lie along the real axis � = ��,and vanishing ba
kground gauge �eld A� = 0, one obtains the well-knownNielsen identity for the e�e
tive potential,� �Veff(�)�� + C0�Veff (�)�� = 0 : (14)The 
oeÆ
ient C0 is obtained when evaluating C(x) � C� + C��j�=�� for a
onstant �eld expe
tation value �. In R�-gauge, the general expression forC(x) readsC(x) = ig2p2 Z d4y D�
(x)�(x)
(y)���A�(y) +p2g� ~��(y)�E ; (15)while in Lorentz gauge the se
ond summand is absent. Here we have insertedthe de
omposition � = � + (h + i�)=p2 where h and � denote the Higgsand Goldstone �eld operators, respe
tively. Note that the restri
tion to onereal ba
kground �eld and vanishing gauge �elds 
an lead to spurious minimain the e�e
tive potential but is justi�ed in our 
lass of gauges [6℄. This ismostly due to the invarian
e of the full Lagrangian (in
luding gauge �xingand sour
es) under the transformation �! �� and A� ! �A�.For the Lorentz gauge these identities 
an be used dire
tly when insertingthe gauge �xing term F = ��A�. In the R�-gauge, the e�e
tive a
tiondepends in addition parametri
ally on the external �eld ~�, i.e. � = �[�; ~�℄.7



We are ultimately interested in deriving a Nielsen identity for the e�e
tivea
tion ��[�℄ � �[�; ~�℄j~�=�. Compared to the Lorentz gauge the 
ompli
ationarises that the �eld derivatives appearing in Eq. (12) a
t only on �, while the�eld derivative of ��[�℄ 
ontains also a part proportional to the derivative ofthe e�e
tive a
tion with respe
t to the ba
kground �eld ~�. Nevertheless, it ispossible to derive a Nielsen identity also for ��[�℄. The key observation is thatthe dependen
e on the ba
kground �eld ~� enters only via the gauge �xingterm [8℄. For that reason, the 
hange of the e�e
tive a
tion when varying theba
kground �eld also obeys a Nielsen identity, whi
h 
an be dire
tly obtainedfrom Eq. (11),Æ�Æ ~�(y) = i Z d4x Æ�Æ�i(x) �Æg�i(x)
(x)�
(y)�F (y)� ~� � : (16)An analogous relation holds for the derivative with respe
t to the 
omplex
onjugated �eld. One 
an use the relation above to express the derivatives of�� in terms of the derivatives of � with respe
t to the �eld expe
tation values�, �� and A�, Æ��Æ�i(y) = Z d4x Xj=A�;�;�� Cij(y; x) Æ�Æ�j(x) ��~�=� ; (17)where Cij(y; x) = ÆijÆ(x� y) + i�Æg�j(x)
(x)�
(y)�F (y)� ~�i � : (18)These relations imply that, if the �elds ful�ll the equation of motions de-rived from the e�e
tive a
tion �[�; ~�℄, i.e. Æ�=Æ�j = 0, then the same �eld
on�gurations also 
orrespond to a stationary point of the e�e
tive a
tion��[�℄. In addition, if C is invertible, it follows that the e�e
tive a
tion ��[�℄also ful�lls a Nielsen identity whi
h is of the same form as Eq. (12) ex
eptthat the 
oeÆ
ients are repla
ed by the 
oeÆ
ients �Ci given by�Ci(y) = Z d4xCj(x) (C�1)ji(x; y) ; (19)for i = A�; �; ��. Con
retely, for the 
ase of the R�-gauge 
onsidered here,and assuming a vanishing ba
kground gauge �eld, one hasCij = ÆijÆ(x� y) (20)+ ig2�� h�(x)
(x)�
(y)��(y)i �h��(x)
(x)�
(y)��(y)i�h�(x)
(x)�
(y)�(y)i h��(x)
(x)�
(y)�(y)i : �8



χ

c

Figure 1: One-loop diagram 
ontributing to the Nielsen 
oeÆ
ient C0.When 
onsidering an expe
tation value that is 
onstant in spa
e-time, theright-hand side 
an depend only on the di�eren
e of the 
oordinates, x� y,and the equations 
an be simpli�ed. The resulting Nielsen identity for thee�e
tive potential for 
onstant and real �eld expe
tation value in R�-gaugehas then the form � � �Veff(�)�� + �C0� �Veff (�)�� = 0 ; (21)where �Veff(�) = Veff(�; ~�)j~�=�, and�C0 = C0�1� ig2� Z d4(x� y)h�(x)
(x)�
(y)�(y)i��1 : (22)The leading 
ontribution arises at one-loop level. For a 
onstant ba
kground�eld, only a single diagram 
ontributes to C0 in the R�-gauge, whi
h 
an berepresented by the diagram shown in Fig 1. The 
oeÆ
ients �C0 and C0 di�eronly at higher orders, whi
h we do not 
onsider in the following. Therefore,we use the notation C0 also in the 
ase of R�-gauge. Before 
he
king (21)expli
itly in Se
tion 5, we give attention to an analogous identity for thekineti
 term in the next se
tion.4 The Gradient Expansion of the Nielsen Iden-tityAs we have just dis
ussed, the e�e
tive a
tion 
ontains a 
ertain gauge de-penden
e. Nevertheless, the a
tion evaluated in a saddle point is gauge-independent what is for homogeneous �elds re
e
ted by the Nielsen identi-ties. This is expli
itly demonstrated in the subsequent se
tion for the broken9



phase of the e�e
tive potential where the 
onvergen
e of perturbation the-ory is well under 
ontrol. However, the sphaleron energy is not a spatially
onstant 
on�guration and in parti
ular also depends on the e�e
tive a
tionevaluated in the symmetri
 phase. This is problemati
, sin
e even thoughthe sphaleron energy is gauge-independent in prin
iple, a gauge dependen
e
an be introdu
ed due to the breakdown of the gradient expansion. Still,even for 
on�gurations that do not ful�ll the equations of motion, a gauge-transformation a
ts on the (o�-shell) e�e
tive a
tion a

ording to the Nielsenidentity. In the following we derive this relation for the e�e
tive a
tion ingradient expansion following [11℄.To be spe
i�
, 
onsider the e�e
tive a
tion in gradient expansion� = Z d4x �Z(�) ������� Veff(�) +O(�4)� ; (23)where we introdu
ed a renormalization Z of the kineti
 term that in thesphaleron 
ase depends on temperature T , the �eld value � and the gaugeparameter �. The 
oeÆ
ient C(x) from the last se
tion that enters the Nielsenidentity for the e�e
tive a
tion depends fun
tionally on the �eld value. It
an be expanded in �eld gradients as [11℄C(x) = C0(�) +D(�)������� ��[ ~D(�)���℄ +O(�4) ; (24)where the 
oeÆ
ients depend on the �eld value evaluated at position x. Notethat the term involving ~D 
orresponds to a total derivative. Nevertheless itgives rise to a non-zero 
ontribution to the right-hand side of the Nielsenidentity for the e�e
tive a
tion, and it turns out that it has to be taken intoa

ount in a 
onsistent gradient expansion. This term has been negle
tedin [11℄ but was not important there at leading order due to the di�erent
ounting � � g4. The Nielsen identity is ful�lled when in leading order ingradients the identity (21) for the e�e
tive potential is established, while inthe next order in gradients one �nds2� �Z�� = �C0�Z�� � 2Z�C0�� +D�Veff�� + ~D�2Veff��2 : (25)Noti
e that this relation 
annot ensure the gauge independen
e of thetunnel a
tion or the sphaleron rate, sin
e the gradient expansion does not2At �nite temperature the 
orre
tion to the kineti
 term 
an di�er in general for thetemporal and spatial 
omponents. The Nielsen identity 
an be easily generalized to this
ase. In the following, Z refers to the 
orre
tion 
orresponding to the spatial 
omponents.10



apply in these 
ases, due to ������ ' Veff . Still, this relation 
onstitutes anessential 
he
k of the 
onsisten
y of the perturbative s
heme that is used toevaluate the e�e
tive a
tion. The topi
 of the subsequent se
tions is to studythis identity in the Abelian Higgs model 
lose to the broken phase expli
itly,where perturbative evaluation of all quantities is plausible.5 The e�e
tive potential to order g3 and �In the following we reprodu
e the e�e
tive potential to order g3 and � 
loseto the broken phase. Subsequently, we dis
uss its gauge dependen
e and the
orresponding Nielsen identity. Before we do so, we brie
y motivate why a
ounting g3 � � is the appropriate 
hoi
e in the 
ontext of 
osmology and�nite temperature. It is well known that in the present model the strength ofthe phase transition 
ru
ially depends on 
ubi
 
ontributions to the e�e
tivepotential of the form (g�)3T . At the same time the strength of the phasetransition is for viable baryogenesis [17, 18℄ 
onstrained by �
=T � g3=� >1. So the largest value of � that is interesting in 
osmology is of orderg3. Besides, for larger values of �, the 
onvergen
e of perturbation theorybe
omes worse and 
ompletely breaks down at � � g2. For smaller valuesof �, the 
onvergen
e of the perturbative expansion improves. However, thehigh temperature expansion that we want to employ in the following wouldbreak down sin
e for � � g4, we �nd mW=T � g�
=T � 1. Therefore, we
ount in the following �
 � T and � � g3 as was done in [19℄ 3.At one-loop order the e�e
tive potential is given byVeff(�) = V (�) + 12T 4Xi ni IB(m2i =T 2) ; (26)where the sum runs over all spe
ies, ni depends on the statisti
 of the �eld,and the fun
tion IB is given byIB(y) = 12�2 Xn Z dx x2 log (4�2n2 + x2 + y)' 
onst + 112y � 16�y3=2 +O(y2) : (27)Noti
e that the zero temperature 
ontributions are of order y2 and are ne-gle
ted in the following.3At zero temperature, the 
ounting � � g4 is more appropriate [11, 1℄.11



The tree level inverse propagators of the Higgs, Goldstone, gauge �eldsand ghosts are respe
tivelyiP�1h=�=FP = p2 �m2h=�=FP ;iP�1A = p2g�� � (1� 1=�)p�p� �m2Ag�� ;where we have introdu
ed the �eld-dependent massesm2h = �2 (3�2 � v2) ;m2� = �2 (�2 � v2)� 2�g2�2 ;m2A = 2g2�2 ;m2FP = 2�g2�2 : (28)These expressions 
an be used to write the e�e
tive potential in the mean�eld approximation (using the leading terms in (27))Vmean�field = �4 ��2 � v2�2 + T 224 ��2 (3�2 � v2) + ��2 (�2 � v2) + 2�g2�2�+ 2 �3g2�2 + g2��2�� 4�g2�2�= �4 ��2 � v2�2 + T 224 ��(2�2 � v2) + 6g2�2� ; (29)where the di�erent 
ontributions are from the Higgs, the Goldstone, thegauge bosons and the ghosts, respe
tively.Noti
e that at tree level and for � = v, the poles of the Goldstone,the k� polarization and the ghosts are all situated at p2 = 2�g2�2 and the
orresponding 
ontributions to the e�e
tive a
tion 
an
el 4. However, at �nitetemperature the minimum of the e�e
tive a
tion moves away from � = v andhigher loop 
orre
tions be
ome important that have to be resummed. In thefollowing we show that these two e�e
ts indeed 
an
el ea
h other in leadingorder.The ne
essity of resummation [2, 21℄ at �nite temperature arises be
auseof diagrams as depi
ted in Fig. 2. In general, all �nite temperature 
ontri-4 A term that depends on � but not on � 
an be 
an
eled by an appropriate measurefor the ghost �elds [8℄. 12
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ΣFigure 2: The daisy diagrams that are resummed.
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Figure 3: The leading 
ontributions to the self-energy of the gauge bosons.butions to the self-energies are UV �nite. On
e the sum over the Matsubarafrequen
ies is performed (or if the real time formalism is used), the integrand
ontains the parti
le distribution fun
tions that are exponentially suppressedfor momenta larger than the temperature. Hen
e, the graphs that are ap-parently UV divergent 
an be estimated to be of order of the temperature.In parti
ular, tadpole diagrams of the self-energy that arise from the gaugeintera
tion are of order g2T 2 (e.g. the 
ontributions to the self-energy of thegauge bosons shown in Fig. 3).If the parti
le in the loop has a mass ml and the self-energy is of orderg2T 2, adding self-energies leads to additional fa
torsg2T 2(2�nT )2 + p2 +m2l : (30)As long as n > 0, this yields only a subleading 
orre
tion of order g2. Still,13



for the zero mode n = 0, this 
ontribution 
an be sizable and the a

ordingdiagrams have to be resummed. This problem is parti
ularly severe whenm2l � g2T 2 and the 
onvergen
e of the perturbative expansion 
ru
ially de-pends on this resummation. This is for example the 
ase for the longitudinalgauge bosons, that in the symmetri
 phase are massless on tree level, butre
eive self-energy 
orre
tions of order � � g2T 2 at one-loop. But even inthe broken phase the self-energy and the mass are both of order g2�2 andresummation is essential.In order to resum these diagrams 
onsistently, one has to absorb at leasta part �0 of the self-energy into the propagator. In the broken phase, thedetails how this is done do not really matter as long asm2eff = m2l + �0 � �� �0 : (31)This ensures that IR divergen
es are tamed and the perturbative series 
on-verges. These self-energy 
ontributions depend on the temperature and theyhave to be 
ompensated by introdu
ing a 
ounterterm of equal size in orderto avoid a temperature-dependent regularization s
heme. These 
ountert-erms 
ontribute at higher loop level as we will see below. �0 
an in prin
ipledepend on momentum and also on the Matsubara number n. A parti
u-larly simple 
hoi
e is to only absorb the self-energy of the zero mode in thepropagator [19℄.For the 
hoi
e of resummation s
heme, it is 
ru
ial that in the present
ontext we are only interested in stati
 quantities. If non-stati
 quantitiesas the plasmon damping rate are 
onsidered, the resummation of the zeromodes is not enough to ensure the 
onvergen
e of perturbation theory asdis
ussed in [22℄. In this 
ase more elaborate s
hemes like hard thermal loopresummation have to be employed [23℄.In the broken phase (and for � � 1), it suÆ
es to absorb the leading termof the self-energy of the gauge bosons. After this is done, the pole stru
tureof all gauge boson propagators is proper in leading order and 
orre
tions
an be treated perturbatively. On the other hand, the symmetri
 phase ismore problemati
 be
ause the transverse polarizations remain massless inperturbative 
al
ulations.Within the 
ontext of non-Abelian gauge theories, adding additionallines using the self-intera
tion vertex of the gauge bosons results in a fa
-tor g2T=mA what is of order g in the broken phase. In the symmetri
 phase,on the other hand, the mass of the transverse polarizations is known [23, 24℄14



to be non-perturbative and only of order g2T what leads to the well knownLinde's problem. For the Abelian 
ase, there is no self-intera
tion of gaugebosons and the mass of the transverse polarization should vanish in the sym-metri
 phase [25℄. But also here the 
onvergen
e of the perturbative expan-sion is not obvious [26, 24℄.Compared to the unresummed one-loop result in Eq. (27) resumming onlythe zero modes gives an additional 
ontributionT Z d3p(2�)3 log p2 +m2 + �0p2 +m2 : (32)One way to evaluate this expression is to determine its derivative with respe
tto m2 whi
h leads toT Z d3p(2�)3 � 1p2 +m2 + �0 � 1p2 +m2�= � T4� �pm2 + �0 �pm2� : (33)Therefore, the resummation of the zero mode only a�e
ts the 
ubi
 term inEq. (27). The resummed gauge boson masses are given bym2T = 2g2�2 ;m2L = 2g2�2 + a2g2�2 : (34)Here, we parametrized the thermal mass of the longitudinal gauge boson withthe parameter a be
ause it depends e.g. on the fermioni
 matter 
ontent ofthe model and is quite di�erent in the Standard Model than in our example
al
ulation.Now 
onsider the Goldstone bosons that seem to be more interesting thanthe gauge �elds due to the � dependen
e in their mass. The Goldstone bosonsare massless on tree level for � = 0, su
h that resummation 
an have a largeimpa
t on them. If the leading high temperature 
ontributions are taken intoa

ount, the self-energy arises from the diagrams in Fig. 2 and the e�e
tivemass is given byorder g2 : m2�;eff = �2 (�2 � v2) + 2�g2�2 + T 212 (�+ 3g2): (35)This �ts ni
ely with the mean �eld result in Eq. (29). If our 
ounting was� � g2, the mean �eld result would give the 
orre
t leading order result for15
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hFigure 4: The leading 
ontributions to the self-energy of the Goldstone bosons.the e�e
tive potential and the above expression shows that the Goldstoneboson has a mass 2�g2�2 to this order. This ensures that the 
ubi
 termsof the Goldstone boson and the ghost 
an
el in the broken phase on
e thenext to leading order is taken into a

ount. However, our 
ounting is � � g3,and to leading order the 
ubi
 terms 
oming from the three physi
al gaugebosons are important. Even though this term is �-independent, it indu
esan additional shift in the vev su
h that the masses of the Goldstone bosonand the ghosts do not 
oin
ide any more in the broken minimum of thepotential. This problem is parti
ularly severe for small �, sin
e the ghostbe
omes massless while the Goldstone boson has a mass of orderm2�;eff � 1� d� T m3A � g3T 2; (36)so the 
ubi
 
ontribution from the Goldstone boson is (partially) s
reenedwhile the 
ontribution from the remaining ghost is not. This introdu
es agauge dependen
e of order g3 into the e�e
tive potential.The solution to this dilemma is that there is a subleading 
ontributionfrom the gauge bosons to the self-energy of the Goldstone bosons. This iseasily seen by realizing that the integral that arises in the tadpole 
ontribu-tion JB(y) = 12�2 Xn Z dxx2 14�2n2 + x2 + y ; (37)is nothing else than the derivative of the one-loop va
uum 
ontribution in16



χ χ

A

Figure 5: Two-loop 
ontribution to the e�e
tive potential. The box denotes the
ounterterm of the thermal mass.Eq. (27) JB(y) = ddyIB(y) : (38)Hen
e there is a 
ontribution from the two-loop diagrams [19℄ depi
ted inFig. 5 that is of order g2mAT 3 � g3T 3�. If � . g this 
ontribution needsto be resummed. This then ensures that the Goldstone boson has the samemass as the ghost in the minimum of the potential to order g3 and their
ubi
 
ontributions 
an
el ea
h other on
e they are taken into a

ount. Theresummed Goldstone mass is given byorder g3 : m2�;eff = �2 (�2 � v2) + 2�g2�2 + T 212 (�+ 3g2) (39)�Tg24� (2mT +mL) :In the following, we denote this expression for the Goldstone mass by m2�.Finally, we 
omment on the 
ontribution from the Higgs. Be
ause theHiggs has a mass of order ��2, its 
ubi
 
ontribution and thermal mass arenot relevant to our analysis. Still, there is a subtlety 
oming from the fa
tthat the loop 
ontribution to the self-energy in Fig. 6 is of order �2�2T=m�and diverges in the limit � ! 0. This divergen
e is due to the fa
t that theself-energy is evaluated at vanishing external momentum. If it is evaluatedwith external momenta 
lose to the Higgs mass, it is of order �2�2T=k ��3=2T� what is small 
ompared to the tree level mass and no resummation isne
essary. Anyway, the numeri
al impa
t of this 
ontribution is very smallas long as � is not stri
tly zero. 17
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Figure 6: The Goldstone 
ontributions to the self-energy of the Higgs boson.In 
on
lusion, we arrive to the following expression for the e�e
tive po-tential to order g3 and �V(g3;�) = �4 ��2 � v2�2 + T 224 ��(2�2 � v2) + 6g2�2�� T12� �2m3T +m3L +m3� �m3FP � : (40)We emphasize that the resummed mass of the Goldstone boson is given by(39). As argued before, the 
ontribution from the Goldstone boson plus ghostis small when evaluated 
lose to the minimum of the potential. For small� � �=g2 it is of order �3=2, while for � � 1 one �ndsÆV � � T12� �(m2�)3=2 � (m2FP )3=2� � �TmFP8� (m2� �m2FP ) ; (41)whi
h is of order g� � g4 and also subleading. However, if it is not negle
ted,it indu
es a slight shift in the minimum of orderÆ� ' ÆV 0V 00 ' gp� T8p2� : (42)A shift in the position of the minimum is expe
ted on general grounds, be-
ause the �eld value is not a physi
al observable. Note that 
lose to the
riti
al temperature this shift is sub-leading,Æ�=�
 � gp� ; (43)be
ause in our 
ounting �
=T
 � 1. Other 
ontributions to the potential oforder g� 
ould eventually redu
e this shift but a
tually this shift persists18



even if higher order 
ontributions are taken into a

ount. This 
an be seenby inspe
ting all two-loop diagrams. It turns out that even though some
ontributions are nominally of order g4, they either do not depend on �or are not linear in the temperature, so formally they 
annot 
an
el (41)
ompletely. However, one expe
ts at higher order a 
ontribution of the form12Æ�2
V 00 ' g2��512�2T 2�2
 ; (44)to the potential 
lose to the broken phase that removes the remaining gaugedependen
e of the e�e
tive a
tion evaluated in the minimum. That thisterm is not in
luded in the potential (40) introdu
es a subleading gaugedependen
e in the 
riti
al temperature of orderÆTT ' ��256�2 ; (45)what is nominally of order g3 and numeri
ally very small.Let us now dis
uss to what extent the potential (40) respe
ts the Nielsenidentity (14). First, we show that the shift (42) in the position of the min-imum is supported by the Nielsen identity. As a fun
tion of the parameter� and �, the potential develops iso-potential 
urves, i.e. there is a fun
tion��(�0; �) that ful�lls ��(�0; �0) = �0 and a

ording to (14)� dd�V (��; �) = � d��d� ���V + � ���V = C0 ���V + � ���V = 0 : (46)An expli
it expression for the fun
tion C0 is given in (15). The leading
ontribution obtained by evaluating the diagram shown in Fig. 1 readsC0 ' 12g2��T Z d3p(2�)3 1p2 �m2� 1p2 �m2FP ; (47)that gives C0 ' 18� g2��Tm� +mFP ' gp� T16p2� ; (48)where the last expression is obtained when evaluating the masses 
lose to thebroken phase. This agrees ni
ely with our �ndings in (42) and the relationC0 = �d��=d�. Using (48), it is also possible to verify expli
itly that theNielsen identity for the e�e
tive potential (14) is indeed satis�ed also away19



from the broken minimum, up to higher order 
orre
tions. Namely, takingthe �-derivative of the e�e
tive potential given in (40) one �nds� �V�� = � 14�g2��2T (m� �mFP ) : (49)The right-hand side is of higher order 
lose to the minimum where m� �mFP , su
h that the value of the e�e
tive potential in the minimum is �-independent, up to higher order 
orre
tions, as dis
ussed before. Using that�V�� ' 2�(m2� �m2FP ) +O(g4; �g) in 
ombination with (48) then shows thatthe Nielsen identity is respe
ted also away from the broken minimum.6 Gauge Independen
e in the Gradient Ex-pansionLet us return to the relation (25) that ensures the gauge independen
e ofthe e�e
tive a
tion in the gradient expansion. An expli
it 
al
ulation of thewave fun
tion 
orre
tion appearing in the derivative expansion of the e�e
tivea
tion yields (see Appendix B)Z = 1� g2T3�  118mT � m2T16m3L + 2m� +mT � 2mFP +mT+ �m� +mFP � 7�16mFP � �m2FP16m3� (1 + Æ=�)2! ; (50)where we have de�nedÆ � ��2m2FP ���(m2� �m2FP ) ' �4g2 � g2T8� � 2mT + 1mL� : (51)Within our 
ounting, Æ is of order g and hen
e subleading. Still, wekeep these 
orre
tions sin
e unlike two-loop 
ontributions they are linearin the temperature and (as we shall see) 
an
el among themselves. The �dependen
e of Z arises via the masses m� and mFP , apart from the expli
itdependen
e on �. Formally, the �-dependent terms are of the same order asthe �-independent ones. In the limit � ! 0, the wave fun
tion 
orre
tionagrees with the one obtained in Landau gauge (see appendix A of [27℄).20



Note that 
lose to the broken minimum where m� � mFP , the leading�-dependent terms 
an
el and the � dependen
e be
omes suppressed. Thisbehavior is pre
isely the one expe
ted from the Nielsen identity (25), be
ause
lose to the broken minimum all terms on the right-hand side are at most oforder g2. Namely, the term proportional to �C0=�� is of higher order be
ause
lose to the broken minimum C0 be
omes approximately �-independent. Theterm involving C0�Z=�� is suppressed be
ause both fa
tors are of order g,and the term proportional to the derivative of the e�e
tive potential alsohas to vanish in the broken minimum by de�nition. Finally, the last term issuppressed as well be
ause the Higgs mass is of order � � g3. In order to
he
k expli
itly that the Nielsen identity (25) is also ful�lled for �eld 
on-�gurations away from the broken minimum, we have 
omputed the leading
ontributions to the 
oeÆ
ients D and ~D 
ontributing to the derivative ex-pansion (24) of the Nielsen 
oeÆ
ient C(x) for the full e�e
tive a
tion. Itis possible to relate these 
oeÆ
ients to Feynman diagrams obtained fromatta
hing one or two external Higgs �eld lines to the one-loop graph shownin Fig. 1 that 
orresponds to the leading 
ontribution to C(x). The diagramsand the expli
it expressions are shown in Appendix B.One 
an 
he
k that, with these 
oeÆ
ients (98), the result for Z fromEq. (50), and C0 from Eq. (48), the Nielsen identity (25) for the 
orre
tion ofthe kineti
 term is indeed satis�ed to order g2. For this 
al
ulation, we foundit helpful to express also the leading 
ontributions to the �eld derivatives ofC0 and V in terms of the Goldstone and ghost masses,�C0�� ' g2T�8� m2� �m2FP (1 + Æ=�)m�(m� +mFP )2 ; (52)and �V=�� ' 2�(m2��m2FP ), as well as �2V=��2 ' 2(m2��m2FP )+4m2FP Æ=�up to 
orre
tions of order O(g4; �g). Two numeri
al examples are given inFig. 7.In 
on
lusion, we have the following �ndings:First: The fun
tion C0 is 
lose to the broken phase of order gp�T andhen
e the � dependen
e of the 
riti
al �eld value �
 is subleading. Anotherimportant 
onsequen
e is that the �rst-order nature of the phase transitionis a gauge-independent statement [5, 6℄ in the regime where the perturbativeexpansion 
onverges 5.5In our 
urrent s
heme this also entails the 
ondition that � is not mu
h larger thanO(1). 21
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Figure 7: The di�erent 
ontributions to the Nielsen identity (25) for Z(�) andtheir sum. The labels (a) to (e) are the �ve 
ontributions in (25) from left to right.The parameters of the upper plot are g = 1=3 and � = 0:015, while the lower usesg = 1=10 and � = 4:05 � 10�4. This ensures �
=T
 � 1 in both 
ases. The gaugeparameter is � = 0:5. 22



Se
ond: The Nielsen identity (25) for Z is in leading order (g2) ful�lledeverywhere. The derivative �C0=�� is of order g2T=�p�. Hen
e, a

ordingto (25) ��Z=�� 
an be at most of order g2 if �Z=�� is at most of order g.From the expli
it result (50) it turns out that, in the broken phase, indeed��Z=�� is of order g2 while �Z=�� is of order g. Finally, D is of order 1=g, soall terms in (25) are of the same order and their sum to this order vanishes.Third: Even though we 
annot 
he
k the equation (25) in full general-ity to order g3, the one-loop terms are the only 
ontributions to this orderthat are linear in the temperature. These 
ontributions 
an
el among them-selves. The remaining terms in (25) to order g3 (denoted by � in Fig. 7)result from the 
ontributions proportional to T 2 
oming from the produ
t ofone-loop terms in C0dZ=d�. These have to 
an
el against genuine two-loop
ontributions that we did not 
al
ulate.Fourth: Close to the symmetri
 phase the fun
tions Z, D and ~D divergewhat makes the gauge dependen
e introdu
ed by subleading 
ontributionslarge. However, this does not indi
ate a breakdown of perturbation theory.What breaks down is the gradient expansion of the e�e
tive a
tion � and ofthe fun
tion C that was used to arrive at the relation (25). In prin
iple, if thegradient expansion was avoided, expli
itly gauge-independent results 
ouldbe obtained. Nevertheless, in pra
ti
e the gradient expansion is typi
allyused to determine observables like the sphaleron energy or the tunnelingrate perturbatively. In the next se
tions, we dis
uss to what extend thisintrodu
es a gauge dependen
e to the 
onventional analysis found in theliterature.7 Thermal TunnelingWe start the dis
ussion of thermal tunneling by assuming that the gradi-ent expansion of the e�e
tive a
tion is sound and only later investigate towhat extent this really holds true. The rate of thermal tunneling is mostlydetermined by the a
tion of the so-
alled boun
e solution of the e�e
tive a
-tion [28, 29℄. The (Eu
lidean) a
tion with O(3) symmetry is in leading ordergiven by � = 4�T Z d� �2 (������Z(�) + V (�)) : (53)To simplify the dis
ussion, we assume that the temperature is 
lose to the
riti
al temperature where the solutions of the equation of motion is in the23



`thin-wall-regime'. In this 
ase, the �eld only 
hanges in a region � � R� L,where R denotes the size of the nu
leated bubbles while L denotes the wallthi
kness of the boun
e solution [29℄. In this approximation, the a
tion 
anbe rewritten as� = 4�T R2 Z d� �(���)2 Z(�) + V (�)�� 4�3T R3� ; (54)where � denotes the potential di�eren
e between the symmetri
 and the bro-ken phase. The �rst integral is invariant under a shift in � leading to a
onservation of (���)2 Z(�)� V (�) = 
onst : (55)For the 
on�guration that dominates the path integral in the tunneling pro-
ess the 
onstant on the right side vanishes. This gives for the a
tion� = 4�T �R2 � 4�3T R3� ; (56)where we de�ned the wall tension6� = Z d� �(���)2 Z(�) + V (�)� = Z �
0 d�pV (�)Z(�) : (57)Finally, the bubble size R 
an be obtained by extremizing this expression,what gives the well-known result [30℄R = 2�� ; � = 16�3T �3�2 : (58)This little exer
ise shows that a gauge-independent tunneling rate 
an inthe thin-wall regime only be obtained if the wall tension is gauge-independent(the potential di�eren
e � is obviously gauge-independent due to Nielsen'sidentity). At �rst sight, it seems to be impossible that the wall tension isgauge-independent: In the e�e
tive potential the gauge dependen
e startsat relative order g, while in Z the gauge dependen
e �rst o

urs at relativeorder g2. However this argument is not sound, sin
e the gauge dependen
earising from the potential is further suppressed in the wall tension. To see6Our de�nition of the wall tension di�ers from the usual de�nition by a fa
tor p2 dueto our 
onventions for the kineti
 term. 24



this, one 
an ignore the subleading 
ontributions in Z to order g2. This givesthen for the wall tension� dd�� ' Z �
0 d� � dd�pV ' Z �
0 d�C0 dd�pV ' � Z �
0 d� dC0d� pV : (59)Here we used that the potential vanishes in both phases in the thin-wallapproximation. dC0=d� is in the broken phase of order g2 su
h that thegauge dependen
e of the e�e
tive potential 
an in the wall tension 
an
elagainst the gauge dependen
e in Z.Is this result spe
i�
 to the thin-wall regime and how does this �t to-gether with the statement (25)? On �rst sight, (25) only ensure the gaugeindependen
e of the a
tion in the gradient expansion, or more spe
i�
allyas long as Z������ � V . On the other hand, for the tunneling boun
esolution both terms are of the same order and this expansion does not apply.However, in the present 
ontext there is a way to derive a similar relation as(25) for the tunneling boun
e without this 
onstraint. Starting from (8), afun
tional derivative with respe
t to j(x) yields� d�(x)d� = C(x; �(x); �) ; (60)in 
ase �(x) ful�lls the equation of motion, j(x) = 0. So, there is a 
lass ofsolutions '(x; �) with dd��(�(x); �)j�(x)='(x;�) = 0 : (61)Using this relation in (53) yields0 = 4�T Z d� �2������� �2dCd� + dZd�C + � dZd� �+ � dVd� + CdVd�� : (62)So qualitatively the same pi
ture emerges as in the thin-wall regime. Torelative order g, the shift (60) in 
ombination with (14) ensures the gaugeindependen
e but only be
ause dC=d� is of order g2 while C is of order g.Using the expansion (24) in (61) then leads to a relation similar to (25).Unlike the 
ondition Z������ � V , the expansion (24) is well justi�ed inthe present 
ontext at least in the broken phase. Nominally the expansionparameter is p2=m2 su
h that with p2�2
 � V � g3�4
 and masses of order25



m2 � 2�g2�2 the gradient expansion of (24) is valid for � � pg=��
. Inparti
ular, the gradient expansion gets worse for small �.Now noti
e that in the last se
tion we have shown the relation �dV=d� =C0 dV=d� only up to terms of order g5 and that dD=d� is like dC0=d� oforder g2. Hen
e to order g5, the relation (61) is not exa
tly equivalent to(25). In any 
ase, the range of validity is not the same for both relations,sin
e (25) is valid for small gradients, while in the derivation of (61) we usedthe equation of motion.From above dis
ussion, it seems that the gauge dependen
e of the walltension is suppressed at least by g2 if Z is ignored and that the in
lusion ofthe Z fa
tor might even postpone it to order g3. However, the breakdown ofthe gradient expansion in the symmetri
 phase prevents a gauge-independentdetermination of the wall tension in (57) to this order. In pra
ti
e, the ex-pression we obtained for the wave fun
tion normalization Z 
an even be
omenegative for � � g�
 su
h that no reasonable results 
an be obtained if theleading non-trivial order of Z is taken into a

ount. Also dC0=d� is of orderpg 
lose to the symmetri
 phase what indi
ates that a large gauge depen-den
e arises if the gradient expansion is employed.The gauge dependen
e arises mostly from the symmetri
 phase and inte-gration of Eq. (59) leads to the estimate� d�d� ' 148�m2�T
 ; (63)for � not too small. Here m� denotes the Goldstone mass for � = 0, that
oin
ides with the Higgs mass mh in the symmetri
 phase. Compared withthe leading order result � ' 16m��2
 ; (64)the un
ertainty from the gauge dependen
e s
ales as p� � g3=2,�� d�d� ' 18� m�T
�2
 : (65)This leads to a logarithmi
 dependen
e on �,�(�)=�(1)� 1 / g3=2 ln(�) ; (66)whi
h ni
ely �ts with our numeri
al �ndings shown in Fig. 8. Espe
ially,26
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Figure 8: Dependen
e of the wall tension � on the gauge parameter �. Thethree values �0, �Z and �� denote the wall tension dedu
ed, from V only, from Vand the naive Z and from the full momentum dependen
e in �, respe
tively. For
omparison, also the 
riti
al Temperature T
 and the 
riti
al �eld expe
tation value�
 are shown. The residual gauge dependen
e of the wall tension is of relative orderg3=2 ln(�), while for T
 it is very small, of order g3. In 
ontrast, the � dependen
e of�
 is expe
ted from the Nielsen identity, see Eq. (42), and its leading 
ontributions
ales as gp�. The parameters of the upper plot are g = 1=3 and � = 0:015, whilethe lower uses g = 1=10 and � = 4:05 � 10�4.27



this means that for very small values of � the gauge dependen
e be
omes en-han
ed. For � . g, the logarithm is ultimately 
ut o�, and the � dependen
eis of the relative order g3=2 ln(g). Therefore, it seems that a 
hoi
e � � O(g)is slightly preferable for the 
omputation of the wall tension 
ompared to e.g.Landau gauge.In
luding the wave fun
tion 
orre
tion Z to the kineti
 term in the deter-mination of the wall tension mainly leads to a gauge-independent shift. Thisshift 
an be estimated as (details are again given in Appendix C)�� ' �11p2192� gm�T
�
 : (67)This s
ales as ��=� � g what is parametri
ally larger than the gauge-dependent 
ontributions to the wall tension that s
ale as g3=2. The gaugedependen
e of the wall tension is not improved systemati
ally by the in
lu-sion of Z. Espe
ially, it is still of order g3=2. Nevertheless it turns out thata 
an
ellation of the �-dependent 
ontributions o

urs for � of order one.These �ndings are supported by our numeri
al results that are presented inTable 1 and Fig. 8. Some analyti
al details of this dis
ussion are given inAppendix C.At this point, we would like to 
omment on [31℄ that 
ompared the walltension in the Landau and Feynman gauges for an e�e
tive three dimensionaltheory. There it was also found that in
luding the Z fa
tor does not lead toa systemati
 redu
tion of the gauge dependen
e. Nevertheless, the analysisshowed that the gauge-independent 
ontributions from Z where as large asthe gauge-dependent ones. This dis
repan
y 
ompared to our analysis is dueto the fa
t that the Goldstone mass was not resummed what leads to a largergauge dependen
e in the e�e
tive potential as stressed in se
tion 5.The fa
t that the in
lusion of Z does not postpone the gauge dependen
eof the wall tension to the relative order g2 or even g3 is related to the break-down of the gradient expansion in the symmetri
 phase, whi
h leads to adivergen
e of Z for �! 0. To avoid this problem, we would like to 
he
k thegauge independen
e of the e�e
tive a
tion in the symmetri
 phase withoutresorting to the gradient expansion. In order to a
hieve that, one 
an expandthe e�e
tive a
tion in � around the symmetri
 phase and obtains� = T Z d3p(2�)3 �(p)�(p)�(p) ; (68)28



with �(p) = p2 +m2h +�2(p) : (69)The gauge independen
e of the e�e
tive a
tion (12) then implies in leadingorder � d�2(p)d� = 2(p2 +m2h)dC(p)d� ; (70)where C(p) is now understood to be expanded in � instead of p. In the limit� ! 0, the only 
ontribution at one-loop order to �2 is the last diagramdepi
ted in Fig. 12 involving the gauge and Goldstone boson and severaltadpole diagrams that however have no momentum dependen
e. Expli
it
al
ulation shows� d�2d� = g2T�4� ��m� + 2(p2 +m2�)p ar
tan(p=m�)� ; (71)and dC=d� in a

ordan
e with (70). Noti
e also that �2 is �nite in the limitp! 0 if the limit �! 0 is taken �rst� d�2d� ' g2T�4� �m� + 83 p2m�� : (72)The mass term agrees hereby with the one derived from the potential (40),while the kineti
 term does notZsymm = 1� ��2�p2 ����p=0 = 1� g2T3�m� (2 + �) : (73)Sin
e the potential agrees independent from what limit (�! 0 or p! 0) istaken �rst, it is tempting to redu
e the gauge dependen
e of the wall tensionby interpolating between the two di�erent kineti
 terms Z and Zsymm. Inorder to implement this idea, we repla
e the wave fun
tion 
orre
tion inEq. (57) by Z(�; p) = 1� ��2(�; p)�p2 : (74)Here �2(�; p) is the full one-loop self-energy for a general expe
tation value� of the Higgs �eld, whi
h approa
hes the self-energy �2(p) dis
ussed abovefor � ! 0. On the other hand, Z(�; p ! 0) agrees with the 
orre
tion tothe kineti
 term from Eq. (50). For any non-zero value of the momentum p,Z(�; p) has a regular behavior for �! 0, and indeed interpolates between Z29



g = 1=3 g = 2=3� 0.0075 0.015 0.025 0.06 0.1 0.15�0 (� = 1) 6.29 1.78 0.74 149 31.2 12.9Æ�0 0.11% 0.33% 0.79% 0.33% 0.70% 1.4%�Z (� = 1) 6.16 1.70 0.68 143 28.8 11.3Æ�Z -0.10% -0.25% -0.56% -0.21% -0.46% -0.97%�� (� = 1) 6.16 1.70 0.69 143 28.8 11.3Æ�� -0.07% -0.16% -0.32% -0.13% -0.25% -0.52%Table 1: Numeri
al results for the wall tension in units of 10�3v3, and theshift Æ� for a 
hange of the gauge parameter � from 1 to 0:1. The rows �0,�Z and �� denote the wall tension dedu
ed, from V only, from V and thenaive Z and from the full momentum dependen
e in �, respe
tively.and Zsymm as a fun
tion of � provided that the momentum is 
hosen smallenough, p . mh. In Table 1 we show the resulting expression for the wall ten-sion, where we used p = mh=(2�) as the momentum 
ut-o�. Unfortunately,we found that qualitatively the gauge dependen
e did not improve signi�-
antly by doing so, although it is slightly redu
ed on a quantitative level.A 
omplete 
an
ellation of the gauge dependen
e at the relative g3=2 levelseems to require the use of the full momentum dependen
e of the e�e
tivea
tion without resorting to the gradient expansion.8 Sphaleron numeri
sIn this se
tion we brie
y dis
uss the sphaleron energy following [32℄. Thesphaleron is a stati
 Higgs-gauge 
on�guration that is a saddle point of thea
tion (whi
h re
e
ts the energy of the 
on�guration). It has Chern-Simonsnumber 12 and is situated half-way between two gauge va
ua. Our toy modeldoes not 
ontain a SU(2) gauge se
tor and hen
e no sphaleron transitions,but the Higgs potential in the Standard Model has essentially the same fea-tures of the Abelian Higgs and it is reasonable to feed the potential (40) intothe equations of motion of the sphaleron to estimate the gauge dependen
e ofthe sphaleron in the Standard Model. In the 
onventional analysis, the maindi�eren
e between the Abelian and the non-Abelian model in terms of the30



strength of the phase transition is that there are three times as many gaugebosons (and ghosts and Goldstones) 
ontributing to the 
ubi
 term hen
estrengthening the phase transition. We will mimi
 that by also presentingresults for larger than observed gauge 
ouplings.In the non-Abelian 
ase, perturbation theory is plagued by Linde's prob-lem in the symmetri
 phase su
h that the expansion in the 
oupling 
onstantbe
omes questionable for small Higgs vevs. Besides, 
ompared to the tun-neling rate dis
ussed in the last se
tion, the 
onvergen
e of the gradientexpansion is even more problemati
. The gradient expansion is formally anexpansion in the parameter p2=m2 where the relevant mass is the one of thegauge bosons. While for the tunneling boun
e this is O(g), in the 
ase ofthe sphaleron the expansion parameter is O(1) and hen
e not suppressed byany 
oupling 
onstant even in the broken phase. However, numeri
ally the
oeÆ
ients D and Z � 1 are slightly smaller than C0 and Veff (in units ofm2A�2
) su
h that higher orders 
an be negle
ted if this trend 
ontinues. Thisissue is to 
ertain extend unrelated to the gauge dependen
e.At the same time, the sphaleron energy is proportional to �
 su
h thatthe gauge dependen
e stemming from �
 
annot possibly be 
an
eled bythe gauge dependen
e of the e�e
tive a
tion solely in the surrounding ofthe broken phase. In order to quantify our la
k of knowledge on Z andVeff in the symmetri
 phase, our strategy is to set Z to 1 in the numeri
alanalysis and use the gauge dependen
e of Veff to estimate the impa
t ofthose 
ontributions to the sphaleron energy.The di�erential equations to solve when a spheri
al Ansatz is used read�2d2fd�2 = 2f(1� f)(1� 2f)� 14�2h2(1� f); (75)dd� �2dhd� = 2h(1� f)2 + 1g2 dVhdh ; (76)with the asymptoti
 behaviorf ! ��2 ; h! �� for � ! 0 ;and f ! 1� 
 exp(��=2) ; h! 1� Æ� exp(���) for � !1 ; (77)where the parameter � is given by �2 = V 00h and the res
aled potential isde�ned as Vh(h) = Veff (h � �
) while the res
aled 
oordinate is � = g�
jxj.31



g = 1=3 g = 2=3� 0.0075 0.015 0.025 0.06 0.1 0.15�
=v 0.965 0.549 0.325 2.07 1.03 0.535T
=v 0.454 0.575 0.721 1.00 0.94 1.05Æ�
 0:3% 0:7% 1:5% 0:6% 1:3% 3:0%ÆEsph 0:01% 0:01% 0:02% 0:05% 0:07% 0:10%Table 2: Numeri
al results for the sphaleron energy. The row Æ�
 
ontainsthe shift for a 
hange of the gauge parameter � from 1 to 0:1. The row
ontains the 
orresponding 
hange in sphaleron energy due to a 
hange inthe shape of the Higgs potential.We solve the equations numeri
ally with a shooting algorithm similarto what is used to �nd the boun
e solution of the tunneling a
tion. Theparameters � and � are 
hosen and the equations are solved from someposition �� 
lose to the origin to a value �! � O(10). The parameters � and� are then varied and we sear
h for simultaneous zeros in the fun
tionsDf = 1� f + 2f 0 ;Dh = ��(1� h) + (�h)0 : (78)These two 
onditions ensure that the numeri
al solutions smoothly mat
hthe asymptoti
 behavior given in (77). The sphaleron energy is then givenby E = 4p2��
g Z 10 d� "4�dfd��2 + 8�2 (f(1� f))2+12�2�dhd��2 + (h(1� f))2 + �2g�2Vh# : (79)Some numeri
al results are given in Table 2. Main impa
t of the sphaleronenergy has the gauge-dependent shift in �
. The gauge dependen
e in the
riti
al temperature T
 and the shape of the e�e
tive potential are sublead-ing. Moreover, 
lose to borderline 
ase of sphaleron washout �
=T
 � 1, theun
ertainty in the sphaleron energy never ex
eeds a few per
ent for StandardModel values of the gauge 
oupling. In summary, the un
ertainty stemming32



from the residual gauge dependen
e is subleading 
ompared to 
orre
tions
oming from two-loop 
ontributions to the e�e
tive potential [33, 10℄. Thisgauge dependen
e is inherited from the 
riti
al vev�E dEd� ' gp�16�p2 T�
 ; (80)and s
ales as g. To remove this gauge dependen
e one would probably needto in
lude the next-to-leading order of the kineti
 term of the gauge-bosons.There, a sizable gauge dependen
e is expe
ted in order to ensure a gauge-independent position of the pole in the gauge-boson propagator. Besides, thebreakdown of the gradient expansion should lead to even more severe e�e
tsthan in the 
ase of thermal tunneling as dis
ussed above. This will further
ompli
ate the determination of the sphaleron energy with an a

ura
y be-yond the bound (80).9 SummaryLet us summarize our �ndings 
on
erning the gauge dependen
e of the e�e
-tive a
tion in the Abelian Higgs model in R�-gauges. We expli
itly demon-strated various Nielsen identities in the regime where the use of perturbationtheory and the gradient expansion of the e�e
tive a
tion is feasible.In parti
ular, we have shown that the position of the minimum of the ef-fe
tive potential transforms in leading order a

ording to (14) under a 
hangein the gauge �xing parameter �. We would like to emphasize that this result
ould only be obtained by 
al
ulating the e�e
tive potential 
onsistently toorder g3 using the 
ounting g3 � �. In parti
ular, this required the resum-mation of 
ontributions to the Goldstone boson mass7 of order mAT (wheremA denotes 
olle
tively the di�erent masses of the gauge bosons).Furthermore, we have demonstrated that the o�-shell e�e
tive a
tion ingradient expansion transforms a

ording to the Nielsen identity (25). How-ever, this relation 
annot guarantee the gauge independen
e of va
uum tran-sitions for several reasons. First, the gradient expansion is not well justi�edin these 
ases sin
e the 
ontribution of the kineti
 term to the a
tion is ofequal size as (or even larger than) the 
ontribution from the s
alar potential.7At this point of the analysis, we depart from [34, 35, 36℄ that argue for a large gaugedependen
e of the e�e
tive a
tion. 33



Se
ond, even for small gradients the gradient expansion and the relation (25)break down at some point in the symmetri
 phase and va
uum transitions arealso sensitive to this regime. Compared to the analysis at zero temperature[11℄, noti
e also the additional 
ontribution involving ~D that was missing butalso not important in the analysis presented there.Finally, we dis
ussed the gauge dependen
e of the tunneling a
tion. Usingthe established pro
edure to 
al
ulate the tunneling a
tion perturbatively(meaning a 
anoni
al kineti
 term and the appropriate e�e
tive potential),we found for the gauge dependen
e of the wall tension the estimate�� d�d� ' 18� m�T
�2
 ; (81)what s
ales asp� � g3=2 (the Goldstone massm� is evaluated in the symmet-ri
 phase). In
luding 
orre
tions to the kineti
 term Z leads to 
orre
tions ofthe same order but the gauge dependen
e is not persistently redu
ed. Thisis due to the fa
t that the latter 
orre
tions are sensitive to the e�e
tive a
-tion very 
lose to the symmetri
 phase where the gradient expansion breaksdown.Sin
e we did not arrive at an expli
itly gauge-independent result for �,this leaves the question what is the best gauge to 
hose. Our results developthe strongest � dependen
e for � � 0. For � & g the wall tension 
omputedusing a 
anoni
al kineti
 term depends logarithmi
ally on �, while whenin
luding the 
orre
tion to the kineti
 term the � dependen
e partially 
an
elsand � is rather insensitive to � for � � 1. This 
ould indi
ate that a � valueof this order is the appropriate 
hoi
e and not Landau gauge (that is mostlyused in the literature and is reprodu
ed in our 
ase by � ! 0). Nevertheless,quantitatively the dependen
e on � is rather small and in
luding the two-loop
ontributions to the e�e
tive potential will probably have a larger impa
t inmost models (e.g. 
ontributions from the gluons [37℄). We also identi�edgauge-independent 
orre
tions to the wall tension that arise from the kineti
term Z and s
ale as g. Also these 
ontributions are more important than thegauge-dependent ones.Several non-perturbative studies of tunneling in the Standard Model werepresented in refs. [20, 38℄ and a detailed 
omparison with the perturbative re-sults in Landau gauge was given in [39℄. Also there it was 
on
luded that the
orre
tions to the kineti
 term and two-loop 
ontributions to the e�e
tive po-tential are important to a
hieve a good agreement with the non-perturbative34



results for the wall tension. Numeri
ally, these 
orre
tions are far more im-portant than the gauge �xing dependen
e we dis
ussed here.In 
ase of the sphaleron, the 
onvergen
e of the gradient expansion is alsoproblemati
. As a naive estimate of the gauge dependen
e of the sphaleronenergy, we obtained �E dEd� ' gp�16�p2 T
�
 ; (82)what is typi
ally of a few per
ent. Over all, the e�e
tive potential enters inthe sphaleron energy mostly via the position of its minimum. Hen
e, im-proving the gauge dependen
e of the sphaleron energy will probably requirenot only to go beyond the gradient expansion but also to 
al
ulate the gaugedependen
e of the wave fun
tion 
orre
tions of the gauge �elds, what we didnot attempt here.The estimates (82) and (67) are solely based on the Nielsen identity forthe Higgs vev, C0 � �d�=d�. Therefore, the results 
an be readily 
arriedover to the Standard Model and some of its extensions as the two-Higgsdoublet model or singlet extensions. Compared to the Abelian Higgs model,the ele
troweak se
tor of these models gives in leading order a gauge �xingdependen
e of the Higgs vev that is larger by a fa
tor three.In 
on
lusion, determining va
uum transitions in an expli
itly gauge-independent fashion is mostly hindered by the breakdown of the gradientexpansion of the e�e
tive a
tion (in parti
ular in the vi
inity of the symmet-ri
 phase). Still, in the 
osmologi
allymost interesting regime with g� 1 and�
=T
 & 1, the gauge dependen
e of the tunneling a
tion and the sphaleronenergy is rather small. The situation further improves when the essential 
u-bi
 
ontributions to the e�e
tive potential do not solely arise from the gaugebosons (as in the present Abelian toy model) but e.g. from additional degreesof freedom (as in the light stop s
enario [40, 41, 42℄) or from the tree leveldynami
s of an extended s
alar se
tor [43℄.A
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Figure 9: Feynman rules for s
alars in the Abelian Higgs model.A Feynman RulesThe Feynman rules for the s
alar parti
les are shown in Fig. 9 while theFeynman rules involving the ve
tor parti
les are given in Fig. 10.B Wave fun
tion 
orre
tionsIn this se
tion, we present some results on the 
oeÆ
ient of the kineti
 termZ in the R�-gauge and also for the fun
tions D and ~D. As mentioned inse
tion 2, derivatives with respe
t to the ba
kground �eld � are in the R�-gauge not related to diagrams with external Higgs �elds. In order to remedythis issue, we repla
e in the gauge �xing terms the ba
kground �eld ~� by~�+~h=p2 where ~h will be treated as an external �eld. The fun
tion Z is then
36
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tors in the Abelian Higgs model.related to the two-point fun
tions involving h and ~h viaZ�� = �2�p��p� (�hh +�h~h +�~hh +�~h~h) : (83)The additional Feynman rules involving the external �eld ~h are shown inFig. 11. For the sphaleron and thermal tunneling, we only need the spatial
omponents Zii at �nite temperature.On the one loop level the possible diagrams are of the form depi
ted inFig. 12 where the external lines 
an be either h or ~h. On one loop level itis more pra
ti
al to �rst perform the sum in (83) before the integrals areevaluated. The momentum dependen
e stems from the integrands1(l + p=2)2 +m2 1(l � p=2)2 +m2' 1(l2 +m2)2 � 12 p2(l2 +m2)3 + (p � l)2(l2 +m2)4' 1(l2 +m2)2 � 16 p2(l2 +m2)3 � 13 p2m2(l2 +m2)4 ; (84)
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 term of the e�e
tive a
tion.that 
an be evaluated usingLB(y) = 12�2 Xn Z dx x2 1(4�2n2 + x2 + y)3= 12 �2�2yJB(y) ' 132�y�3=2 ; (85)38



and a similar expression for the the integrals with higher powers. Noti
e thatonly the zero mode n = 0 
ontributes to the leading term and we negle
thigher Matsubara modes in the following whenever this holds true.We �rst restri
t ourselves to the broken phase where the masses are givenas m2A = 2g2�2 � m2 � yT 2 ; m2� = m2FP = �m2 : (86)Then one �nds for the ghost and Goldstone loops the 
ontributions13g2�2y(LB(�y) + 2�yMB(�y)) : (87)The diagram involving two gauge �elds requires the evaluation of produ
tsof the polarization proje
tions P ��(l) = l�l�=l2P ��(l + p=2)P��(l � p=2) ' 1� p2l2 + (p � l)2l4 +O(p3)' 1� 23 p2l2 +O(p3) : (88)and again the expansion of the integrand (84). The novel integrals are givenin appendix D. The 
ontribution from the term involving the p� polarizationtwi
e gives 13g2�2y (�LB(�y)� 2�yMB(�y) �4�LB(�y; �y; 0)� : (89)The 
ontribution involving one p� polarization yields83g2�y �LB(�y; y; 0) ; (90)and the 
ontribution with no p� polarization is2g2y��12LB(y)� yMB(y)� 23 �LB(y; y; 0)� : (91)Finally, the 
ontributions from the mixed gauge-Goldstone loop give4g2��13 �KB(�y; �y)� ; (92)and 4g2�23 �KB(�y; y)� : (93)39



In the broken phase, where m2FP = m2�, the 
ontributions proportional toLB in (87) and (89) 
an
el ea
h other. The third term involving �LB in (89)
an
els in leading order against (92). Besides, the terms in (90) and (93)
ombine to 83g2 ��y �LB(�y; y; 0) + �KB(�y; y)� ' 2g23�py ; (94)what is gauge-independent. Together with the 
ontribution in (91) this yieldsthe �nal result Z ' 1� 7g216�py : (95)Taking in addition the resummed gauge boson propagator�ip2 �m2LPL�� + �ip2 �m2T P T�� + �ip2 �m2FP P 0�� ; (96)into a

ount, where P 0�� = p�p�=p2, P T�� = g�� � u�u� � (~p�~p�)=~p2, PL�� =g�� � (p�p�)=p2� P T��, ~p� = p�� u�(up), u� = (1; 0; 0; 0), m2L = m2T + ag2T 2,and m2T = 2g2�2, we �ndZ = 1� g248�py �22� m3Tm3L� : (97)The above 
al
ulation 
an be extended to a 
on�guration in �eld spa
eaway from the broken minimum. In that 
ase one 
annot set the Goldstonemass m� and the mass mFP of the ghost and of the time-like gauge bosonpolarization to be equal. In that 
ase we obtain the result given in Eq. (50)A similar 
al
ulation 
an be done for the fa
tors D and ~D in (24). Theseare obtained from 
al
ulating the diagrams shown in Fig. 13 and Fig. 14, re-spe
tively, expanding in powers of the external momentum p�, and extra
ting
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Figure 13: The diagrams 
ontributing to the fun
tion D.the 
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Figure 14: The diagrams 
ontributing to the fun
tion ~D.C Wall tensionIn this se
tion we dis
uss the gauge dependen
e of the wall tension in moredetail.First, we show that an expli
it 
al
ulation reprodu
es the dependen
eadvo
ated in (63) by use of the Nielsen identity. The wall tension (withoutin
luding the Z fa
tor) is given by�0 = Z d�pV0 + ÆV ; (99)where we split the potential into a gauge-independent pie
e V0 and the 
on-tribution arising from the Goldstone bosons (41). The 
ontribution to thewall tension from the broken phase is nearly gauge-independent as long asthe integration boundaries are adapted 
onsistently. Close to the symmetri
phase, two sour
es of gauge dependen
e arises. The �rst stems from the up-per boundary of integration and the se
ond from ÆV . Due to ÆV � V0 one�nds ��0 = 12 Z ��0 d� ÆVpV +pV C0�������0 ; (100)42



and �� is arbitrary as long as 2g2� ��2 � m2�. Let us �rst evaluate this integralin the regime ��� �
. This requires � � �=2g2 and leads to V ' m2��2 andm2� = ��2
=4 = 
onst. The 
orresponding integral 
an be evaluated usingZ �x0 dxx �(1 + x2)3=2 � x3 � 1� � 32 �x�log(�x)� 43+log 2+O(log(�x)=�x): (101)We are mostly interested in the two leading terms. The 
onstant termdo not lead to a � dependen
e and the subleading 
orre
tions are of order� log(g)=g2� � g log(g)=�. In the wall tension, one 
annot 
hose �� paramet-ri
ally smaller than �
, but one 
an negle
t the range of integration fromzero to a few, sin
e it does not 
ontribute to the two leading terms. Thismakes the result meaningful, sin
e the e�e
tive a
tion 
annot be trusted forx� 1 due to the breakdown of the gradient expansion. This also allows oneto expand the numerator of the integrand and to in
lude the full mean �eldpotential and not just its linearization in the symmetri
 phase. The arisingintegral is Z �x0 dxx(1� x=x
) �32x(1� x=x
)(1� 2x=x
)� 1�� 32 �x(1� �x=x
)� log(�x) + log(1� �x=x
)+ 
onst +O(log(�x)=�x) : (102)After this pro
edure, �x 
an be 
hosen as a �xed multiple of x
, e.g. �x =x
=2 = p2g2�=�. The linear term 
an
els then against the 
ontributionfrom the boundary of integration (what 
an be 
he
ked using (48)) while thelogarithmi
 term reprodu
es the relation (63)��0 ' 148�T
m2� log(�) : (103)The 
onstant term is gauge-independent and 
orre
tions to this relation areof relative order g log(g)=�.Next, we examine if the logarithmi
 terms 
an
els against the 
ontribu-tions arising from the wave fun
tion 
orre
tions Z. For larger values of x,the integrand 
an be expand as��Z = 12 Z ��0 d� ÆZpV : (104)43



This integral still diverges, but one 
an extra
t a gauge-independent 
ontri-bution Z � 1 �!1���! g2T3� � 118mT � m2T16m3L� : (105)We will deal with this 
ontribution later.Sin
e the leading 
ontributions from the remaining ÆZ is of order log(�x),the potential 
an be linearized from the start and the integration of the�-dependent terms of ÆZ in (50) leads for large �x to a 
ontribution��Z ' � 112�T
m2��� 512 + 41� � + 4 log(1�p1� �)� 2 log(�)(1� �)3=2 � : (106)Note that the right-hand side is regular for � > 0, espe
ially it has no polefor � = 1. It is also possible to estimate the � dependen
e by evaluatingthe �-derivative similarly to Eq. (59), but in
luding Z and using the Nielsenidentity Eq. (25). This leads to the same result as shown above. For � nottoo small, the � dependen
e of ��0 and ��Z are of the same order and haveopposite signs. However, there is no systemati
 
an
ellation between the �dependen
es of these two quantities. In any 
ase, it turns out that it is notjusti�ed to negle
t the integration in x from zero to a few, sin
e the 
orre-sponding 
ontribution is potentially as large as the one we just presented.This 
ontribution 
annot reliably determined due to the breakdown of thegradient expansion 
lose to the symmetri
 phase. Ultimately this preventsus from obtaining a gauge-independent result for the wall tension.Finally, 
onsider the gauge-independent pie
e (105). The 
orresponding
ontribution to the wall tension 
an be evaluated usingZ 10  s1� �x2(x2 + �)3=2 � 1!x(1� x) ' � 14 � for� = 00:0146� for� ' 1 : (107)Hen
e, the longitudinal gauge bosons 
ontribute via the wave fun
tion 
or-re
tion a term �� ' �11p2192� gm�T
�
 ; (108)to the wall tension. Noti
e that this is of order g5=2 and parametri
ally largerthan the gauge-dependent 
ontributions we estimated before.44



D IntegralsIn the following we list the used one-loop integrals.IB(y) = 12�2 Xn Z dx x2 log (4�2n2 + x2 + y)' 
onst + 112y � 16�y3=2 + O(y2 log y) ; (109)JB(y) = 12�2 Xn Z dxx2 14�2n2 + x2 + y= ddyIB(y) ' � 14�y1=2 + O(y log y) ; (110)�KB(y1; y2) = 12�2 Z dx x2 1x2 + y1 1x2 + y2' 14� 1py1 +py2 + O(log y) ; (111)�LB(y1; y2; y3) = 12�2 Z dx x2 1x2 + y1 1x2 + y2 1x2 + y3' 14� 1(py1 +py2)(py1 +py3)(py3 +py2)+O(y�1) ;LB(y) = �LB(y; y; y) ;MB(y) = 12�2 Z dx x2 1(x2 + y1)4 ' 164�y5=2 +O(y�2) : (112)Referen
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