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Abstra
tStarting from the e�e
tive a
tion of high energy QCD we derive Ward identities forGreen's fun
tions of reggeized gluons. They follow from the gauge invarian
e of thee�e
tive a
tion, and allow to derive new representations of amplitudes 
ontaining phys-i
al parti
les as well as reggeized gluons. We expli
itly demonstrate their validity forthe BFKL kernel, and we present a new derivation of the kernel.1 Generalized Ward IdentitiesGauge invarian
e has been the guide to 
onstru
t, within QCD, an e�e
tive a
tion [1, 2℄whi
h introdu
es the �elds of reggeized gluons and des
ribes the high energy behav-ior of QCD. It automati
ally leads to the 
onstru
tion of gauge invariant amplitudesand Green's fun
tions of reggeized gluon and physi
al parti
les. The e�e
tive a
tiongenerates a set of extended Feynman rules [3℄ with intera
tions whi
h are lo
al in ra-pidity and whi
h may be used to 
ompute amplitudes involving reggeized gluons. Sin
ereggeized gluons are o� shell and belong to unphysi
al polarizations1, it is importantto investigate symmetry properties derived from gauge invarian
e. As in normal QCD,gauge symmetry plays an important role in doing expli
it 
al
ulations.In this paper we extend the BRST invarian
e of QCD to Green's fun
tions ofreggeized gluons and derive a generalized set of Ward identities (Se
tion 1). We �ndit 
onvenient to �rst re
apitulate a few identities for amplitudes in normal QCD. Wethen extend these identities to the Green's fun
tions and amplitudes derived from thee�e
tive a
tion 
ase. In the se
ond part of our paper (Se
tion 2) we demonstrate, as a�rst appli
ation, the validity of these Ward identities for the 4-point fun
tion of fourreggeized gluons, and we give a new derivation of the BFKL kernel.1Really the reggeized gluons 
an be 
onsidered as gauge invariant states having the physi
al polarizationsin the 
rossing 
hannel t and lying on the Regge traje
tory.
1
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1.1 QCDIn this se
tion we remind whi
h kind of simple QED-like Ward identities we may expe
tfor a general QCD s
attering amplitude.QCD is a theory with SU(N
) Yang-Mills gluon �elds 
oupled to quarks. Thistheory has a unitary S-matrix presented in terms of transversely polarized 
oloredgluon and quark �elds as on shell asymptoti
 states, even if these are not the trulyphysi
al states as hadrons and mesons of the 
on�ning phase.Let us denote a physi
al transverse gluon polarization ve
tor (� = 1; 2 in fourdimensions) ��(�)(k). The 
orresponding states satisfy the Lorentz 
ondition k���(�)(k) =0. The additional solutions of this equation with the longitudinal polarization ��L(k) =
(k)k� are de
oupled from the physi
al states. In other words the s
attering amplitudewith su
h longitudinal gluons is zero.In the following we shall just 
onsider amplitudes with external physi
al on shellquarks and gluons and possibly one or more longitudinally polarized gluons. They sat-isfy a tower of Ward-like identities. We 
an interpret them as saying that longitudinalpolarization states (�L) de
ouple from physi
al polarization states (��). In pra
ti
e onehas asso
iated to the on shell physi
al s
attering amplitudeM = ��11 (q1)��22 (q2) � � � ��nn (qn)M�1�2����n(q1; q2; � � � ; qn) (1.1)the tower of identitiesq�11 ��22 (q2)��33 (q3) � � � ��nn (qn)M�1�2����n(q1; q2; q3; � � � ; qn�1; qn) = 0� � �q�11 q�22 ��33 (q3) � � � ��n�1n�1 (qn�1)��nn (qn)M�1�2����n(q1; q2; q3; � � � ; qn�1; qn) = 0� � �q�11 q�22 � � � q�n�1n�1 ��nn (qn)M�1�2����n(q1; q2; q3; � � � ; qn�1; qn) = 0� � �q�11 q�22 � � � q�n�1n�1 q�nn M�1�2����n(q1; q2; q3; � � � ; qn�1; qn) = 0: (1.2)Any single or multiple 
ontra
tion with longitudinal polarizations gives zero if all theother lines are 
ontra
ted with physi
al polarization ve
tors and are on shell. This isa 
onsequen
e of the fa
t that QCD is a gauge invariant theory.Let us now re
all how to prove these identities2. It is 
onvenient to use the globalBRST symmetry of the gauge �xed QCD a
tion. Let us start from the QCD lagrangiandensity with the so 
alled general Lorentz gauge �xing (Lorentz invariant) and theasso
iated ghost terms in
luded (restri
ting to the gluon se
tor (�eld va�) sin
e thequark se
tor is trivial in our analysis)L(v�) = �14F a��F a�� � va���Ba � �2BaBa + ���
a(D�
)a ; (1.3)where Ba is an auxiliary �eld whi
h satis�es the equation of motion Ba = 1���va� andD� is the usual 
ovariant derivative. One 
an therefore write the 
onjugated momenta�ai = F a0i ; �aB = �va0 ; �a
 = ��0�
a ; �a�
 = (D0
)a : (1.4)2This proof is not original and 
an be found in the literature.2



The global BRST symmetry is de�ned byÆ�va� = �(D�
)a ; Æ�
a = �12�gfade
d
e Æ��
a = �Ba Æ�Ba = 0 ; (1.5)where � is the in�nitesimal Grassmann parameter of the transformation. In terms ofthe momenta one 
an immediately write, using the N�other theorem, the 
onservedBRST 
harge Q = Z d3x h�ai (Di 
)a � g2fade�a
 
d
e + �a�
Bai ; (1.6)whi
h, after quantization, generates the quantum BRST transformation.The BRST transformation is nilpotent and therefore Q2 = 0. We remind thatthe "large" Hilbert spa
e 
an 
ontain states with negative norm. There are, at �xed
olor, six di�erent asymptoti
 states: va (transverse)� are the two states with physi
alpolarizations, then there are other two gluons states, one of them des
ribed by theauxiliary �eld Ba, and �nally there are the 
a ghost and the �
a antighost �elds.The physi
al states are the transverse polarized gluons whi
h are annihilated by theBRST 
harge Q. The subspa
e of the large Hilbert spa
e whi
h belongs to the kernelof Q 
ontains the physi
al states plus the zero norm states (jBi and j
i ). The physi
alHilbert spa
e is the quotient of su
h a spa
e with respe
t to the subspa
e of zero normstates, i.e. Hphys = Cohomology(Q) = kerQ=imQ. From the BRST transformationsit is easy to see that Ba = ifQ; �
ag.Having re
alled these basi
 fa
ts now we 
an see how to obtain the Ward Identitiesgiven in eq. (1.2). Consider the redu
tion formula for a S matrix element where ngluon asymptoti
 states have been removed and repla
ed by momentum 
ontra
tion,leaving m in
oming and p outgoing physi
al states. Taking the Fourier transform (F)one has q�11 � � � q�nn M�1�2����n(q1; � � � ; qn; k1; � � � ; km+p) =F [2x1 � � �2xnhphysoutjT��v�(x1) � � � ��v�(xn)jphysini℄ =�nF [2x1 � � �2xnhphysoutjTB(x1) � � �B(xn)jphysini℄ =(i�)nF [2x1 � � �2xnhphysoutjTfQ; �
(x1)g � � � fQ; �
(xn)g)jphysini℄ = 0: (1.7)The 2xi 's are introdu
ed to keep tra
k of the standard relation between Green's fun
-tions and S matrix elements but they do not play any role in deriving the identity. Letus stress that the momenta 
orresponding to the dependen
e in x1; � � � xn are not onshell. The expression is zero thanks to the nilpotent property of Q and to the fa
t thatQjphysi = 0.1.2 E�e
tive a
tion with reggeized gluonsLet us now 
onsider the 
ase of our interest, the E�e
tive A
tion [1℄ whi
h in
ludesreggeized gluons. This a
tion is non lo
al, and it has been 
onstru
ted in su
h a waythat it is gauge invariant, in
luding the reggeized gluons (whi
h are not on mass shell)as external states. In order to a
hieve this one has to introdu
e, order by order inperturbation theory, a well-de�ned set of indu
ed intera
tions of reggeized gluons with3



normal gluons. All these indu
ed intera
tions, as well as the 
onventional QCD inter-a
tions, are 
ontained in the gauge invariant e�e
tive a
tion for gluons and reggeizedgluons.Let us write the e�e
tive a
tion whi
h des
ribes the 
oupling of the reggeized gluonsto a 
luster 
entered at rapidity y0 where all the produ
ed parti
les belong to a rapidityinterval � � log s, whi
h means that jy � y0j < �. We denote the gluon �eld asv�(x) = �iT ava�(x) and the reggeized gluons �elds as A�(x) = �iT aAa�(x), whi
hsatisfy the kinemati
al 
onstraints ��A� = 0 ; (1.8)a

ording to the quasi-multi-reggeon kinemati
s. The reggeized gluons are 
hara
ter-ized by n+� and n�� polarization ve
tors.The e�e
tive a
tion for a given rapidity interval � reads [1℄S = Z ddx [L(v�)� Tr (V+2A� + V�2A+) + 2Tr (A+2A�)℄ ; (1.9)Here the �rst term 
oin
ides with the gauge �xed QCD lagrangian in (1.3), and these
ond one des
ribes the intera
tion of the reggeized gluons �elds with the gluonsthrough the indu
ed terms:V�(v) = �1g��P exp �g2 Z x��1 v�(y)dy�! = v��gv� 1�� v�+g2v� 1�� v� 1�� v�� � � � ;(1.10)In 
ontrast to these intera
tions terms whi
h are lo
al in rapidity, the last term, thekineti
 term for the reggeized gluons, des
ribes the intera
tion of parti
les with di�erentrapidities. We note that, in this a
tion, the reggeized gluons play a role similar to
lassi
al �elds, i.e. within ea
h rapidity 
luster they do not appear in loops. For thelast two terms in Eq. (1.9) we 
an also introdu
e a more 
ompa
t notation. We de�neA� = 12 �A+(n�)� +A�(n+)�� = 2 (A+(n�)� +A�(n+)�)V� = 12 �V +(n�)� + V �(n+)�� = 2 (V+(n�)� + V�(n+)�) (1.11)with the normalization n+ � n� = 2 and n+ � n� = 12 . Note that we have ��A� = 0,due to Eq. (1.8), whi
h is similar to the Lorentz 
ondotion for the real gluons. Thisallows to write, in Eq. (1.9), the kineti
 term of the reggeized gluon as 12Tr (A2A) andthe indu
ed intera
tion part as �12Tr (V2A).Under gauge transformations one has Æv� = [D�; �℄ whi
h implies on the indu
edterms a variation ÆV� = �� ��; (D�)�1�. Therefore, re
alling the kinemati
al 
on-straints in Eq. (1.8), one notes that, after integration by parts, the variation of theterms in the tra
es is zero provided the fun
tion �(x) whi
h des
ribes the gauge trans-formation vanishes as x ! 1 and ÆA� = 0. Apart from the gauge �xing and ghostterms we have therefore a fully gauge invariant e�e
tive a
tion by 
onsidering gaugeinvariant reggeized gluons. After introdu
ing gauge �xing and ghost terms this a
tionenjoys, similarly to the normal QCD 
ase, a global BRST symmetry with asso
iated
onserved 
anoni
al 
harge Q su
h that Æ�A� = 0.4



The obje
ts in whi
h we are interested are the gauge invariant s
attering amplitudeswhi
h, in general, involve quarks, on shell physi
al gluon states and reggeized gluons(the extensions to the N = 4 SYM 
ase is straightforward). Su
h s
attering amplitudesare 
onstru
ted from the Green's fun
tions using the LSZ redu
tion with respe
t tothe lines with the physi
al quark and gluon states. For example, an amplitude with aphysi
al gluon and two reggeized gluons (the BFKL produ
tion vertex) is related tothe following Green fun
tionh0jTA�1(x1)A�2(x2)v�3(x3)j0i : (1.12)Choosing the unphysi
al polarizations for ea
h of the reggeized gluons and the physi
alpolarization for the normal gluon, taking the Fourier transform in the LSZ redu
tionformula and removing for the latter the physi
al pole, we have the e�e
tive BFKLprodu
tion vertex M = n��1 n+�2 ��3(k)M�1�2�3(q1; q2; k) ; (1.13)where the polarization ve
tor n� belongs to the reggeized gluon with momentum q1(with a large "+" 
omponent), and the ve
tor n+ to the gluon with momentum q2(with a large "�" 
omponent).Note that this amplitude 
ontains indu
ed terms whi
h 
ouple the reggeized gluonsto the usual gluons (rhs of (1.10)). These 
ontributions are ne
essary for restoring thegauge invarian
e of the amplitude. We shall use two di�erent equivalent notations towrite the Ward identities. In the notation of [3℄, starting from (1.10), not all Feynmandiagrams are proportional to the produ
t of two external polarization ve
tors, n��1 n+�2 .Indu
ed terms whi
h do not 
ontain the ve
tor n� have to be left out in the Wardidentity in q1, terms without n+ do not parti
ipate in the Ward identity in q2 (su
hterms 
ome from the se
ond, third,... terms in Eq. (1.10), i.e. from those intera
tionswhere the external reggeized gluon 
ouples to two or more elementary gluons). InEq. (1.13) we have introdu
ed a simpli�ed notation whi
h allows to write the fullamplitude using a uniform 
ontra
tion with the n� ve
tors. This follows from havingintrodu
ed the general obje
ts of Eq. (1.11) 
ontaining both polarizations, whi
h, after
ontra
tions with n�, give the spe
i�
 polarized terms.Let us now formulate, for this example, the Ward identity in the external reggeonline with momentum q1. The argument is analogous to the one used in the previousse
tion for pure QCD and is based on the gauge invarian
e of the E�e
tive A
tion forreggeized gluons. Sin
e we have seen that under a BRST transformation the reggeizedgluons do not 
hange, the 
orresponding quantum states jA�i are also annihilated bythe BRST operator Q and we 
an extend the Hilbert spa
e 
orresponding to gaugeinvariant states adding also the reggeized gluon states, whi
h 
an be 
onsidered onthe mass shell as physi
al states in the t-
hannel. From it one may 
onstru
t themulti-parti
le Fo
k spa
e. As before, therefore, in order to obtain a Ward identitystarting from the Green's fun
tion in Eq. (1.12) we 
onsider a new Green's fun
tion,obtained repla
ing at point x1 the reggeized gluon �eld operator A�1(x1) by the oper-ator ��1v�1(x1): h0jT��1v�1(x1)A�2(x2)v�3(x3)j0i: (1.14)Pro
eeding now in the same way as in Eq. (1.7), using the relation ��1v�1(x1) =i�fQ; �
(x1)g , applying the LSZ redu
tion to the physi
al gluon line and �xing the5



polarization of the reggeized gluon at point x2, we end up with the following identity0 = q�11 n+�2 ��3(k) ~M�2�3�1 (q1; q2; k) : (1.15)It is important to note that the repla
ement A�1(x1)! ��1v�1(x1) eliminates all thoseindu
ed 
ontributions in Eq. (1.10), where the reggeized gluon q1 ends on two gluons(for example at tree level here one 
annot have indu
ed terms of higher order). Inthe same time the reggeized gluon with momentum q2 intera
ts with all verti
es inEq. (1.10).Let us generalize these arguments. Using the same notation as in Eq. (1.13), theamplitudes are of the formM = ��11 (k1) � � � ��nn (kn)n��1 � � �n��ln+�1 � � �n+�rM�1����l�1����r�1����n (k1;� � �; kn; q1;� � �; ql; q01;� � �; q0r);(1.16)where the tensor amplitudeM�1����l�1����r�1����n (k1; � � � ; kn; q1; � � � ; ql; q01; � � � ; q0r) is 
onstru
tedfrom �elds of reggeized gluons, A�1 ; :::; A�l , A�1 ; :::; A�r , and physi
al gluon �eldsv�1 ; :::v�n . At this stage, the amplitude M 
ontains all the indu
ed intera
tion as-so
iated to the r "+" polarized reggeized gluons and to the l "�" polarized reggeizedgluons. By suitable repla
ements A�(x)! ��v�(x) one 
an now write a tower of Ward-like identities for the reggeized gluons whi
h are analogous to the ones in eq. (1.2). Theyare obtained from Eq. (1.16) by repla
ing the 
orresponding polarization ve
tors of thereggeized gluons by the 
ontra
tion with the momentum, taking into a

ount that thetensor amplitude must be substituted by a new one, ~M�1����l�1����r�1����n , sin
e the terms 
or-responding to the indu
ed intera
tions of the line with 
ontra
tions must be removed.Indeed, as in our example, the repla
ement A�(x)! ��v�(x) eliminates those indu
edgraphs where the reggeized gluon 
ouples to two (or more) gluon �elds. In the notationof [3℄, these are exa
tly those graphs whi
h do not have a polarization ve
tor n� forthe reggeized gluon and do not parti
ipate in the Ward identity. In a similar way oneobtains also Ward identities for the gluon �elds.Our Ward identities therefore take the form:0 = ��11 (k1) � � � k�i1i1 � � � k�i�i� � � � ��nn (kn)n��1 � � � q�m1m1 � � � q�m�m� � � � n��l �n+�1 � � � q0�p1p1 � � � q0�p
p
 � � �n+�r ~M�1����n�1����l�1����r(k1; � � �; kn; q1; � � �; ql; q01; � � �; q0r); (1.17)where the subsets �, � and 
 of physi
al polarization states, "-" polarized and "+"polarized reggeized gluons, respe
tively, have been repla
ed by the 
orresponding mo-mentum 
ontra
tions. We stress that ~M is related to the modi�ed produ
t of �eldoperators where some of the reggeized gluon �elds A� have been repla
ed by gluon�elds v�.In the following we will show that these Ward identities 
an be used to obtain anew (and useful) representation for amplitudes and Green's fun
tions, in whi
h theunphysi
al polarizations of reggeized gluons are substituted by transverse momentumve
tors.2 An appli
ation: the BFKL kernelAs a �rst appli
ation, we investigate the use of Ward identities for the real part ofthe BFKL kernel. As a result, we will present a new derivation of the kernel. We6



pro
eed as follows. Making use of the e�e
tive a
tion we begin with the LO 4-pointfun
tion of four reggeized gluons where, in 
ontrast to the usual derivation based onthe s-
hannel unitarity, the produ
ed s-
hannel gluon is o� shell, and its longitudinalmomenta (Sudakov or light 
one variables) are not yet integrated. At this stage, thereggeized gluons 
arry unphysi
al polarizations. Beginning with one of the reggeizedgluons, we derive a Ward identity and use it to substitute the unphysi
al polarizationve
tor by the 
orresponding transverse momentum ve
tor. Repeating this pro
edure,step by step, for the remaining gluons we arrive at a representation of the BFKL kernelin whi
h for all four reggeized gluons the unphysi
al polarization ve
tors n+ or n� arerepla
ed by transverse momentum ve
tors. We then show that after the integrationover the longitudinal momentum of the s-
hannel gluon this new form of the BFKLkernel 
oin
ides with the standard expression. Finally, we re-formulate our results andshow that they are in agreement with the Ward identities stated in se
tion 1.2.1 Derivation from the e�e
tive a
tionWe begin with the notation for the e�e
tive diagrams shown in Fig.1:
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2Fig.1: the BFKL kernel.The 4-point fun
tion (whi
h, after integration over the longitudinal 
omponent of themomentum k, will be
ome the BFKL kernel) is obtained from squares of two e�e
tiveprodu
tion verti
es plus the quarti
 intera
tion. In 
ontrast to the usual derivationof the BFKL kernel, we take the produ
ed gluon to be o�-shell and do the longitu-dinal integration later. The upper e�e
tive produ
tion vertex in Fig.1a has the form(disregarding, for the moment, the 
olor stru
ture):C�(q1; q01) = 2"�q+12 � q21q01�� (n�)� + q01�2 � q021q+1 ! (n+)� � �q1 + q01��?# :(2.18)Within the e�e
tive a
tion the produ
tion vertex is derived from the triple gluon Yang-Mills vertex 
 and from the two indu
ed verti
es:C�(q1; q01) = (n�)�
���0(q1; q01)(n+)�0�� q21q01� (n�)�(n�)�0� (n+)�0 � (n�)��(n+)�(n+)� q021q+1 � (2.19)

7



with 
���0(q1; q01) = g�� �(n+)�02 q01� + (n�)�02 2q+1 + (2q1 � q01)�0?!+g��0 �(n+)�2 2q01� � (n�)�2 q+1 + (2q01 � q1)�?��g��0(q1 + q01)�: (2.20)It will be 
onvenient to introdu
e a short-hand notation for the indu
ed terms3:I��0R (q21 ; q01�) = �� q21q01� (n�)�(n�)�0�I��L (q012; q+1 ) = ��(n+)�(n+)� q021q+1 � ; (2.21)su
h that (2.19) takes the form:C�(q1; q01) = (n�)�
���0(q1; q01)(n+)�0+I��0R (q21 ; q01�)(n+)�0+(n�)�I��L (q012; q+1 ): (2.22)Contra
tion with the momentum of the produ
ed gluon leads to:(n�)�
���0(q1; q01)(n+)�0k� = 2(q21 � q012): (2.23)In
luding the indu
ed terms, IL and IR, gauge invarian
e of the produ
tion vertex isrestored: C�(q1; q01)k� = 0: (2.24)In
luding the 
olor stru
ture, Figs.1a and b have the 
olor 
oeÆ
ientsf
1da1f
2a2d (2.25)and f
2da1f
1a2d; (2.26)resp. The quarti
 intera
tion in Fig.1
 provides the same two 
olor stru
tures with thefollowing 
oeÆ
ients:(n�)�(n�)� �g��g�0�0 � g�0�g��0� (n+)�0(n+)�0 = �4 (2.27)and (n�)�(n�)� �g��g�0�0 � g��0g��0� (n+)�0(n+)�0 = �4: (2.28)The third 
olor stru
ture of the quarti
 
oupling, f
1
2lfla2a1 , will be disregarded sin
eit 
orrespond to the 
olor o
tet t-
hannel. Putting everything together we �nd, fromFig.1a,1k2C�(q1; q01)C�(q2; q02) + quarti
 
oupling = 8k2  q2 + q21q022 + q22q012k+k� ! (2.29)3The subs
ripts 'L' and 'R' follow the notation of [3℄: 'left 
entral' and 'right 
entral'8



(note that, on the rhs of this equation, k2 = k�k� = k+k�+k2? denotes the square of afour ve
tor; all other squared momenta are e�e
tively purely transverse). Without thepie
e of the quarti
 
oupling there would be the additional term k22 inside the bra
ket.We write (2.29) also in another form:(2:29) = 8 q2k+k� + 1k2 �k2?q2 + (q21q022 + q22q012)k+k� ! : (2.30)Here the numerator of the se
ond term has the property that it vanishes whenever anyof the transverse momenta q1, q2, q01, or q02 goes to zero. In order to make this 'zeroproperty' expli
it, we list a few alternative forms of the vertex:(2:29) = 8� q2k+k� + 2k2 (q1?q2?) (q01?q02?) + (q1? � q2?) (q01? � q02?)k+k� �= 8� q2k+k� + 2k2 (q1?q01?) (q2?q02?) + (q1? � q01?) (q2? � q02?)k+k� �= 8� q2k+k� + 1k2 q1q�2q01�q02 + q�1q2q01q02�k+k� � : (2.31)In the �rst two lines we have introdu
ed a 
ross produ
t-like notation (q1? � q2?) =q1xq2y�q1yq2x, while in the last line we have used 
omplex notation where p = px+ ipy(note that, following the Sudakov notation, we use p�? = (0; 0; px; py)). Be
ause ofk+ = �k0+, k� = k0� one easily re
ognizes the 
an
ellation of the �rst term, on
e weadd the 
rossed graph. We shall show in se
tions 2 and 3 that, after the use of theWard identities, the �rst pie
e, 8 q2k+k� , whi
h destroys the zero property will be absenteven before adding the 
rossed graph.Before we study the integration over the longitudinal variable, k� = �q01�, wemention another important feature of the representations (2.31). In this form, theBFKL kernel is 
losely related to the Weizs�a
ker-Williams approximation in whi
h theintera
tion of the reggeized gluons, at vanishing transverse momenta, 
an be expressedin terms of on-shell gluon s
attering amplitudes.Next we turn to the integration over the longitudinal variable, k� = �q01�. Letus �x, in (2.30), k+ at some positive value. As we said before, the �rst term, 8 q2k+k� ,
an
els after adding the 
ontribution from the 
rossed graph. The se
ond term with theadditional denominator 1=k+k� 
onverges for large k�, but the singularity at k� = 0needs to be regularized. From the analysis of Feynman graphs we �nd an infrared
uto� jk�j > �2=ps whi
h implies the following de�nition of the k� integral:I = Z dk�k+k� 1k+k� + k2? + i� :=  Z ��2=ps�1 +Z 1�2=ps! dk�k+k� 1k+k� + k2? + i� ; (2.32)where �2 denotes a momentum s
ale of the order of the transverse momenta. Addingand subtra
ting the 
ontribution of a small semi
ir
le in the upper half 
omplex plane,in the �rst 
ase the upper half plane has no singularity, and the integral vanishes. Fromthe subtra
tion of the semi
ir
le we are left withI = i�k+k2? : (2.33)9



The same result is obtained if we add and subtra
t a semi
ir
le in the lower half plane.Obviously, this result is independent of any i� des
ription of the pole at k� = 0.Pro
eeding in the same way for the region k+ < 0, we �ndI = � i�k+k2? : (2.34)In
luding the integration over k+ we �nd, for the sum over both regions,Z dk+I = 2i�k2? Z ps�2=ps dk+k+ : (2.35)The same result is obtained if we use the prin
ipal value pres
ription whi
h followsfrom the derivation of the e�e
tive BFKL produ
tion vertex from Feynman graphs:the two graphs whi
h des
ribe the radiation of the produ
ed s-
hannel gluon from theverti
es to the left of the BFKL vertex imply:Z dk�k� ! Z dk� 12 � 1k� + i� + 1k� � i�� : (2.36)When applied to the se
ond part of (2.32), we again arrive at (2.33)Z dk�k2 + i� q21q022 + q22q012k+k� = i�k+ q21q022 + q22q012k2? : (2.37)Note that both our symmetri
 
hoi
e of the infrared 
uto� in (2.32) and the prin
ipalvalue pres
ription in (2.36) are related the fa
t that we are 
onsidering even signatureamplitudes.For the 
rossed graph we inter
hange q1 and q2 and repla
e k = q1 � q01 by k0 =q2 � q01. Using k0+ = �k+ we obtain:Z dk0�k02 + i� q21q012 + q22q022k0+k0� = i�k0+ q21q012 + q22q022k02? : (2.38)In this way, the BFKL kernel is 
rossing symmetri
 under the ex
hange q1 ! q2.We 
on
lude by mentioning that we would have obtained the same result for thelongitudinal integrations by using the identity1k2 + i� = P 1k2 � i�Æ(k2): (2.39)The prin
ipal value term vanishes sin
e we integrate over positive and negative valuesof k+ and k�.2.2 Ward identities on the rhs, q01 and q02In the following we sear
h for an alternative expression whi
h improves the 
onvergen
ein the longitudinal 
omponent, q01�, To this end we repla
e the (n+) and (n�) ve
torsof the t-
hannel gluons by transverse momenta. We begin with the two gluons on therhs, and in se
ond step, apply the same pro
edure to the gluons on the lhs. We begin10



with the Ward identity in the upper t-
hannel gluon on the rhs with momentum q01.We �nd: �(n�)�
���0(q1; q01) + I��0R (q21 ; q01�)� q01�0 = �k2(n�)� � q01�k� (2.40)(if the produ
ed gluon were on mass shell, and we would multiply with a physi
alpolarization ve
tor the rhs would vanish). When 
ontra
ting the rhs, in Fig.1a, withthe lower produ
tion vertex, the pie
e proportional to k� vanishes be
ause of the gaugeinvarian
e property of the lower vertex. We thus are left with:1k2C�(q2; q02)�(n�)�
���0(q1; q01) + I��0R (q21; q01�)� q01�0 = �2(q02)� + 4q022q+2 : (2.41)The �rst term 
an
els if we add the 
ontribution from the quarti
 
oupling, obtainedfrom (2.27) by repla
ing (n+)�0 by q01�0 and observing q01� = �q02�. Similarly, the
rossed graph in Fig.1b yields:�(n�)�
���0(q2; q01) + I��0R (q22; q01�)� q01�0 = �k02(n�)� � q01�k0� (2.42)and 1k02C�(q1; q02)�(n�)�
���0(q2; q01) + I��0R (q22 ; q01�)� q01�0 = �2(q02)� + 4q022q+1 : (2.43)Again, the �rst term vanishes if we add the quarti
 
oupling. The se
ond pie
es of(2.41) (2.43) sum up to zero, sin
e q+1 + q+2 ' 0.As a result, we have veri�ed the following Ward identity:h 1k2 �(n�)�
���0(q1; q01) + I��0R (q21 ; q01�)�C�(q2; q02)+1k02 �(n�)�
���0(q2; q01) + I��0R (q22 ; q01�)�C�(q1; q02) + quarti
 
ouplingsiq01�0 = 0:(2.44)Therefore, in h 1k2 �(n�)�
���0(q1; q01) + I��0R (q21 ; q01�)�C�(q2; q02)+1k02 �(n�)�
���0(q2; q01) + I��0R (q22 ; q01�)�C�(q1; q02) + quarti
 
ouplingsi(n+)�0(2.45)we 
an substitute (q01 = n+2 q01� + q01?)(n+)�0 ! �2(q01?)�0q01� : (2.46)Taking into a

ount that a purely transverse ve
tor, 
ontra
ted with IL or with thequarti
 
oupling gives zero 
ontribution, the 4-point fun
tion 
an written in the fol-lowing form:h� 2q01� (n�)�
���0(q1; q01)(q01)?�0 + (n�)�I��L (q012; q+1 )iC�(q2; q02)+h� 2q01� (n�)�
���0(q2; q01)(q01)?�0 + (n�)�I��L (q012; q+2 )iC�(q1; q02): (2.47)11



Here (n�)�
���0(q1; q01)(q01)?�0 = (n�)�(2q1 � q01)? � q01? + 2q01�(q01?)�; (2.48)and for the produ
ed gluon we have the Ward identityh� 2q01� (n�)�
���0(q1; q01)(q01)?�0 + (n�)�I��L (q012; q+1 )ik� = 0: (2.49)apart from the usual Ward identity for C� (see Eq. (2.24)). Next we pro
eed to theWard identity in the lower gluon, q02. In analogy with (2.40) we haveh(n�)�
���0(q2; q02) + I��0R (q22 ; q02�)iq02�0 = �k2(n�)� + q02�k�: (2.50)After 
ontra
tion with the square bra
ket in the �rst line of (2.47) we obtainh� 2q01� (n�)�
���0(q1; q01)(q01)?�0 + (n�)�I��L (q012; q+1 )ih(n�)�
���0(q2; q02) + IR ��0(q22 ; q02�)iq02� 0= 4k2 q012q+1 : (2.51)A similar treatment of the 
rossed graph leads toh� 2q01� (n�)�
���0(q2; q01)(q01)?�0 + (n�)�I��L (q012; q+2 )ih(n�)�
���0(q1; q02) + IR ��0(q21 ; q02�)iq02�0= 4k2 q012q+2 ; (2.52)and the sum of both 
an
els. Repeating the steps as des
ribed above in Eqs (2.46)-(2.48) we �nd for the 4-point fun
tion:1k2 h� 2q01� (n�)�
���0(q1; q01)(q01)?�0 + (n�)�I��L (q012; q+1 )i�h� 2q02� (n�)�
���0(q2; q02)(q02)�0? + (n�)�IL ��(q022; q+2 )i+ 1k02 h� 2q01� (n�)�
���0(q2; q01)(q01)?�0 + (n�)�I��L (q012; q+2 )i�h� 2q02� (n�)�
���0(q1; q02)(q02)�0? + (n�)�IL ��(q012; q+1 )i: (2.53)Note that in this expression the quarti
 
ontribution no longer appears, and the diver-gen
e � k2, in (2.29) is no longer present.It is interesting to 
ompare (2.53) with the known result. After some algebra we�nd for the �rst produ
t on the rhs:1k2 h8q2 � 8(q012 + q022)�1 + k2?k+k��+ 8q21q022 + q012q22k+k� i: (2.54)12



The integral over q0�1 , however, is still logarithmi
ally divergent, and only after addingthe analogous expression for the 
rossed graph this divergen
e 
an
els and we areallowed to 
lose the integration 
ontour.The new representation Eq.(2.54) of the 4-point fun
tion di�ers from our startingexpression Eq. (2.29) only through the se
ond term whi
h 
an be written as �8(q012 +q022)=k+k�. One 
an easily 
he
k that, when adding the 
rossed term (obtained byinter
hanging q1 and q2), we �nd� 8(q012 + q022)=k+k� � 8(q012 + q022)=k0+k0� = 0; (2.55)sin
e k0+ = �k+ and k0� = k�. As a result, the sum of Eq.(2.54)) plus its 
rossedgraph equals the sum of Eq. (2.29) plus its 
rossed 
ounterpart.2.3 Ward identities on the lhs, q1 and q2In the �nal step we start from (2.53) and make use of Ward identities in the two gluonson the left hand. Beginning with q1 we �rst 
ompute(q1)�
���0(q1; q01)(q01)?�0 = k�q1? � q01? � k2q01?� + q012(q01?� � q�1 )= k� �q1? � q01? � q012�� k2q01?� � (n+)�2 q012q01�:(2.56)Together with the indu
ed term we get:(q1)�h� 2q01�
���0(q1; q01)(q01)?�0 + I��L (q012; q+1 )i = � 2q01� �k� �q1? � q01? � q012�� k2q01?�� :(2.57)and (q1)�h� 2q01�
���0(q1; q01)(q01)?�0 + I��L (q012; q+1 )ih� 2q02� (n�)�
���0(q2; q02)(q02)�0? + (n�)�IL ��(q022; q+2 )i = �8k2 q01? � q02?q01� : (2.58)The 
rossed graph (se
ond term in (2.53)) gives the same result with the denominatorrepla
ed by q02�, i.e. in the sum both 
ontributions 
an
el. The repla
ement (2.46)leads to 1k2 h 4q+1 q01� (q1)?�
���0(q1; q01)(q01)?�0i�h� 2q02� (n�)�
���0(q2; q02)(q02)�0? + (n�)�IL ��(q022; q+2 )i+ 1k02 h� 2q01� (n�)�
���0(q2; q01)(q01)?�0 + (n�)�I��L (q012; q+2 )i�h 4q+1 q02� (q1)�?
���0(q1; q02)(q02)�0?i (2.59)with �(q1)?�
���0(q1; q01)(q01)?�0�= (q1?)�(2q1 � q01)?q01? + (q01?)�(2q01 � q1)?q1? � (q1 + q01)�q1?q01? (2.60)13



and the Ward identity k� �(q1?)�
���0(q1; q01)(q01?)�0� = 0: (2.61)Finally the gluon q2. Starting from the �rst produ
t of (2.59) we need to 
al
ulate:1k2 h 4q+1 q01� (q1?)�
���0(q1; q01)(q01?)�0i�h� 2q02� (q2)�
���0(q2; q02)(q02?)�0 + (q2)�IL ��(q022; q+2 )i: (2.62)Using (2.57) we obtain, after some algebra:8q+1 q01�q02� (q1?)�
���0(q1; q01)(q01?)�0(q02)?� = 8q+1 q01�q02� �q1?q2? q01?q02? � q1?q02? q2?q01?� :(2.63)Similarly, from the se
ond produ
t of (2.59) we �nd:8q+1 q01�q02� (q1?)�
���0(q1; q02)(q01?)�0(q01?)� = 8q+1 q01�q02� �q1?q2? q01?q02? � q1?q01? q2?q02?� :(2.64)The sum of the rhs of (2.63) and (2.64) is easily re
ognized as the sum of the quarti

ouplings (2.27) and (2.28) :8q+1 q01�q02� (q1?)�(q2?)�h �g��g�0�0�g�0�g��0�+�g��g�0�0�g��0g��0� i(q01?)�0(q02?)�0 :(2.65)This means that the Ward identity in the fourth leg requires an in homogenous term,namely the quarti
 
oupling multiplied by the four transverse momenta. With thisterm being in
luded, our �nal expression for the 4-point fun
tion of 4 reggeized gluonsbe
omes:16q+1 q+2 q01�q02� (q1?)�(q2?)�h 1k2 
���0(q1; q01)g��
���0(q2; q02) + 1k02 
���0(q2; q01)g��
���0(q1; q02)+�g��g�0�0�g�0�g��0�+�g��g�0�0�g��0g��0� i(q01?)�0(q02?)�0 : (2.66)The re-appearan
e of the quarti
 
oupling 
an be understood from the observationthat, in the high energy limit, quarti
 
ouplings give nonzero 
ontributions only in afew spe
ial 
ases: for example, when multiplied with two (n�) and two (n+) ve
tors (asit is done in (2.27) and (2.28)) or when multiplied with four transverse momenta (as itis done in (2.66). Other 'mixed' 
ases (as in (2.53): two (n�) ve
tors from the left, twotransverse momenta form the right) lead to vanishing 
ontributions. Inspe
ting (2.66)one 
an see that the "zero property" mentioned before is manifestly realized separatelyfor ea
h 
ontribution of a single permutation of the external lines.Finally we present the expli
it expression for (2.66). After some algebra one �ndsfor the �rst part:(q1?)�(q2?)�
���0(q1; q01)g��
���0(q2; q02)(q01?)�0(q02?)�0 =(k+k� + k2?)q1?q01? q2?q02? + 12 �((k2?)2q2 � k2?(q21q022 + q012q22)� : (2.67)14



Together with the 
ontribution of the quarti
 
oupling we have:8(k+k�)2 hk2?k2 �k2?q2 � (q21q022 + q012q22)�� �k2?q2 � (q21q022 + q012q22)� i; (2.68)whi
h 
an be simpli�ed into:(2:68) = 8k+k� �k2?q2 + q21q022 + q012q22k2 (2.69)An analogous result holds for the 
rossed graph.It is interesting to 
ompare this result with (2.30): the use of the Ward identities hasled to the disappearan
e of the term proportional to q2. This was the term for whi
h,in (2.30), the integral of the longitudinal momentum was divergent; furthermore, thisterm had prevented the graph to have the 'zero property'. It was only after takingthe sum of both graphs, the un
rossed and 
rossed ones, that this term disappeared.Now, after the use of the Ward identities, the longitudinal integration 
onverges forea
h graph separately, and also the zero property holds for ea
h graph. With the helpof the alternative expressions given in (2.31), this feature is seen most expli
itly.This argument shows that our use of the Ward identities is nothing but a rearrange-ment in the sum of the two terms, un
rossed plus 
rossed graph: in the representation(2.29) ea
h single graph has a divergent k� behavior, both in the infrared and ultravi-olet region (the latter 
an
els in the sum). In 
ontrast to this, in (2.66) ea
h term hasa 'good' ultraviolet behavior. Our experien
e from using either of the two representa-tions 
an be summarized by stating that both un
rossed and 
rossed graph 
ontributewith equal weight.We �nally mention that (2.66) 
ould also have been obtained by pro
eeding in adi�erent order: e.g., �rst the Ward identity in q01, then in q1, in q2 ,and �nally in q02 .Here the quarti
 
oupling would have 
ontributed also in intermediate steps.3 General strategyAfter having presented this expli
it 
al
ulation let us return to the identities formulatedin se
tion 1.3.1 Interpretation of BFKL resultsLet us �rst show that our results for the BFKL kernel, in fa
t, are equivalent to theWard identities of se
tion 1.It will be 
onvenient to introdu
e a few graphi
al notations. Returning to theprodu
tion vertex (2.22) we introdu
e the following notation:
= + ++

I
R

−
I

L

−+Fig.2: indu
ed verti
es in the produ
tion vertex.15



Straight lines stand for elementary gluons (not ne
essarily on shell), wavy lines forreggeized gluons. Lines to the left of the produ
tion vertex 
arry the polarization ve
-tor (n�), those to the right (n+). The 
rosses denote the reggeons whi
h end on anindu
ed vertex (i.e. 
ouple to two or more elementary gluons). Lines with a su
h a
ross, in 
ontrast to the reggeon lines without 
rosses, do not parti
ipate in the Wardidentity. The blobs in the 
enter denote all diagrams derived from the e�e
tive a
tion(in
luding all permutation of the external legs). Note that the quarti
 
ouplings onlyappear in the �rst diagram on the left. With this notation, we write symboli
ally inFig. 3 the 4-point fun
tion as a sum of 11 terms:
+
+−
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− +
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− +
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X X +−

X X

i jFig.3: indu
ed verti
es in the BFKL kernel.Diagrams a-j denote the 10 
ontributions 
ontaining indu
ed terms in one or two ex-ternal legs.Now it is easy to summarize our �ndings. First we have shown the Ward identityin q01: n�n�M (1)q01n+ = 0: (3.70)where M (1) 
ontains all terms ex
ept for 'b', 'g', 'h', and 'i' (for the remaining indu
edterms it is understood that the 
ontra
tion with the polarization ve
tors n+, n� onlyapplies to the legs without 
rosses; for example, in 'a' only the three legs with momentaq01, q02 and q2 
an be 
ontra
ted). We then used this result to repla
e (n+) by T (q01) =�2q01?q01� . In short, n�n�M (1)n+n+ = n�n�M (1) T (q01)n+: (3.71)In order to arrive at the 
omplete 4-point fun
tion, we have to re-add the indu
edterms 'b', 'g', 'h' and 'i'. Fig.3 illustrates this result: the full 4-point fun
tion is givenby the sum of all diagrams where, for the upper right reggeon, the '+' is repla
ed byT (q01). The diagrams 'b', 'g', 'h', and 'i' remain un
hanged. Note that, inside these10 indu
ed terms, several 
ontributions a
tually vanish: this is be
ause the indu
edverti
es IL and IR vanish when 
ontra
ted with a purely transverse ve
tor (see our
omment after (2.36)).In the se
ond step, we have used the Ward identity in q02:n�n�M (2) T (q01) q02 = 0; (3.72)16



where M (2) now 
ontains all graphs ex
ept for those with a 
ross in the lower rightreggeon ('d', 'f', 'h', and 'j'). This identity allowed us to write the 4-point fun
tion assum of all diagrams of Fig.3, with the '+' in both the upper and the lower reggeons onthe rhs being repla
ed by 'T' (again, many 
ontributions are a
tually zero).Our third step derived the Ward identity in q1, where all diagrams ex
ept for 'a','e', 'f', 'i' 
ontributed q1n�M (3)T (q01)T (q02) = 0; (3.73)and we obtained a representation for the 4-point fun
tion where, in Fig.3, all '-' labelsfor the upper left reggeon are repla
ed by a'T'. Finally, the Ward identity in q2:T (q1)q2M (4)T (q01)T (q02) = 0 (3.74)led to our �nal representation of the 4-point fun
tion in whi
h we have transversemomentum ve
tors for all reggeon linesT (q1)T (q2)M0T (q01)T (q02): (3.75)A 
loser look at the indu
ed terms shows that they are all absent, leading to the resultin whi
h only the �rst graph in Fig.3, M0, 
ontributes.By 
ombining the identities (3.70), (3.72), (3.73), and (3.74) (plus others obtainedby suitable permutations of the arguments) one derives the generalized Ward identitiesof se
tion 1. For example, we inter
hange, in (3.70), the arguments on the rhs:n�n�M (1)n+q02 = 0 (3.76)(with a suitably modi�ed M (1)). Taking the di�eren
e between (3.76) and (3.72) weobtain: n�n� ~Mq01q02 = 0: (3.77)Note that in ~M the indu
ed graphs 'b', 'g', and 'i' have 
an
elled. In a similar way onederives identities with three and four 
ontra
tions, e.g.q1q2M (4)q01q02 = 0: (3.78)The identities (3.70), (3.77), and (3.78) are spe
ial 
ases of the general 
lass ofidentities whi
h have been dis
ussed in se
tion 1.3.2 A general strategyAfter this example it should have be
ome 
lear how to use, in more general 
ases, theWard identities for repla
ing unphysi
al polarization ve
tors by transverse momentumve
tors. We simply invert the order of the arguments: starting from the whole towerof Ward identities (1.17) and forming suitable linear 
ombinations we arrive at our
17



results 2.53 and 2.66. Let us demonstrate this in detail:q1n�Mn+n+ = 0n�n�Mq01n+ = 0q1q2Mn+n+ = 0n�n�Mq01q02 = 0q1n�Mq01n+ = 0q1q2Mq01n+ = 0q1n�Mq01q02 = 0q1q2Mq01q02 = 0; (3.79)where, in ea
h of these equations, M 
ontains a slightly di�erent set of indu
ed graphs(for simpli
ity, we always use the same symbol 'M '). In order to keep tra
k of theseindu
ed terms, it is helpful to draw expli
itly diagrams as we did in Fig.3. In thenotation of se
tion 1, the sum of all diagrams belongs to Green's fun
tions with A �elds.In order to obtain, in one of the identities (3.79), a 'q' 
ontra
tion, one substitutes forthe 
orresponding external leg A ! ��v�. This automati
ally removes all indu
eddiagrams with a 
ross in the 
orresponding reggeon line, and the Ward identity appliesto the sum of all remaining diagrams. In this way 
an easily see, for ea
h of theequations (3.79), whi
h indu
ed graphs are 
ontained in M and whi
h ones are leftout.Next we take linear 
ombinations. For example, from the se
ond equation of(3.79),together with the identity 1q01� q01 = n+ � T (q01) (3.80)we derive n�n�Mn+n+ = n�n�MT (q01)n+; (3.81)whi
h 
oin
ides with our �rst result (after (3.71)). The M on the lhs 
ontains alldiagrams of Fig.3: in ~M on the rhs all diagrams without a 
ross in the reggeon q01 
arrya 'T ' ve
tor, the ones with a 
ross are un
hanged. This de�nes M on the rhs.Considering the se
ond and fourth relations in eq. (3.79) we 
an obtain anotheruseful identity n�n�Mq01T (q02) = 0; (3.82)where all diagrams with a 
ross in the upper right reggeon are left out. On applyingthis to the rhs of eq. 3.81 we obtain our result (2.53):n�n�Mn+n+ = n�n�MT (q01)T (q02); (3.83)where on the rhs of this equation all diagrams without 
rosses in q01 or q02 are 
ontra
tedwith 'T' ve
tors (some of them vanish). Diagrams with 
rosses remain un
hanged.Let us 
onstru
t some other relations (from now on we always use the same notationM without mentioning in detail whi
h diagrams are to be dropped of kept):n�q2Mn+q02 = 0; n�q2Mn+n+ = 0) n�q2Mn+T (q02) = 0n�q2Mq01n+ = 0; n�q2Mq01q02 = 0) n�q2Mq01T (q02) = 0 : (3.84)18



Combining the two results we arrive atn�q2MT (q01)T (q02) = 0: (3.85)Together with eq. (3.83) we �ndn�n�Mn+n+ = n�T (q2)MT (q01)T (q02): (3.86)where T (q2) = �2q2?q+2 , and we have de�ned, in analogy with (3.80)1q2+ q2 = n� � T (q2): (3.87)Let us �nally derive our last result, (2.66). From (3.79) we deriveq1q2Mn+q02 = 0; q1q2Mn+n+ = 0) q1q2Mn+T (q02) = 0q1q2Mq01n+ = 0; q1q2Mq01q02 = 0) q1q2Mq01T (q02) = 0 ; (3.88)whi
h 
an be 
ombined into q1q2MT (q01)T (q02) = 0: (3.89)We have also a relation similar to the one in eq. (3.85)q1n�MT (q01)T (q02) = 0: (3.90)Combining the last two equations we obtainq1T (q02)MT (q01)T (q02) = 0: (3.91)Finally, 
ombining this with eq. (3.86), we get our �nal result for the BFKL kernel(2.66): n�n�Mn+n+ = T (q1)T (q2)MT (q01)T (q02): (3.92)In a future investigation we will apply this te
hnique to the 3! 3 Green's fun
tion,deriving the useful relationn+n+n+Mn�n�n� = T (q1)T (q2)T (q3)MT (q01)T (q02)T (q03): (3.93)4 OutlookIn this paper we have derived Ward identities of Green's fun
tions and s
atteringamplitudes involving physi
al (on-shell) parti
les and reggeized gluons. As a �rst ap-pli
ation, we have veri�ed these identities for the BFKL kernel, and we have arrivedat a new representation.We believe that these identities will be parti
ularly useful for 
omputing higherorder Green's fun
tions of reggeized gluons, e.g. n ! m Green's fun
tions. Thesimplest 
ase, the BFKL Green's, has been originally derived from s-
hannel unitarity,i.e from the imaginary part of a 2 ! 2 s
attering amplitude. In su
h a derivation,the produ
ed s-
hannel gluon is taken to be on shell, and the 
orresponding Æ-fun
tion19




an be used to perform the integration over one of the longitudinal 
omponents ofthe momentum variables. However, in higher order Green's fun
tions, e.g. in the3! 3 
ase of the Odderon, the 3! 3 kernel 
an no longer be derived from s-
hanneldis
ontinuities, and a full integration over longitudinal momenta of s-
hannel gluonshas to be performed. This raises the question of the 
onvergen
e of the integration,whi
h is obtained only after summing over all the permutations needed to have Bosesymmetry. The Ward identities dis
ussed in this paper 
an be used to obtain ultraviolet
onvergent expressions of single 
ontributions without the need to perform the fullsum. In the 
ontext of our dis
ussion of the BFKL kernel we have demonstrated thatis is useful to have at hand a representation in whi
h the integration over longitudinalmomenta is 
onvergent in the ultraviolet region: this will be
ome 
ru
ial to simplify the
al
ulations for the 
ase of the LO 3! 3 kernel whi
h is 
urrently under investigation[4℄. From the general point of view these Ward identities permit to rewrite n �!m reggeized gluon transition amplitudes (as in (2.66)) without indu
ed terms. Thissuggests that one may sear
h for a formulation of the E�e
tive A
tion, equivalentto the existing one, in whi
h the indu
ed terms 
an be 
ompletely omitted. A similarapproa
h 
an be also repeated in gravity in an E�e
tive A
tion whi
h in
ludes reggeizedgravitons.A
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