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AbstratStarting from the e�etive ation of high energy QCD we derive Ward identities forGreen's funtions of reggeized gluons. They follow from the gauge invariane of thee�etive ation, and allow to derive new representations of amplitudes ontaining phys-ial partiles as well as reggeized gluons. We expliitly demonstrate their validity forthe BFKL kernel, and we present a new derivation of the kernel.1 Generalized Ward IdentitiesGauge invariane has been the guide to onstrut, within QCD, an e�etive ation [1, 2℄whih introdues the �elds of reggeized gluons and desribes the high energy behav-ior of QCD. It automatially leads to the onstrution of gauge invariant amplitudesand Green's funtions of reggeized gluon and physial partiles. The e�etive ationgenerates a set of extended Feynman rules [3℄ with interations whih are loal in ra-pidity and whih may be used to ompute amplitudes involving reggeized gluons. Sinereggeized gluons are o� shell and belong to unphysial polarizations1, it is importantto investigate symmetry properties derived from gauge invariane. As in normal QCD,gauge symmetry plays an important role in doing expliit alulations.In this paper we extend the BRST invariane of QCD to Green's funtions ofreggeized gluons and derive a generalized set of Ward identities (Setion 1). We �ndit onvenient to �rst reapitulate a few identities for amplitudes in normal QCD. Wethen extend these identities to the Green's funtions and amplitudes derived from thee�etive ation ase. In the seond part of our paper (Setion 2) we demonstrate, as a�rst appliation, the validity of these Ward identities for the 4-point funtion of fourreggeized gluons, and we give a new derivation of the BFKL kernel.1Really the reggeized gluons an be onsidered as gauge invariant states having the physial polarizationsin the rossing hannel t and lying on the Regge trajetory.
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1.1 QCDIn this setion we remind whih kind of simple QED-like Ward identities we may expetfor a general QCD sattering amplitude.QCD is a theory with SU(N) Yang-Mills gluon �elds oupled to quarks. Thistheory has a unitary S-matrix presented in terms of transversely polarized oloredgluon and quark �elds as on shell asymptoti states, even if these are not the trulyphysial states as hadrons and mesons of the on�ning phase.Let us denote a physial transverse gluon polarization vetor (� = 1; 2 in fourdimensions) ��(�)(k). The orresponding states satisfy the Lorentz ondition k���(�)(k) =0. The additional solutions of this equation with the longitudinal polarization ��L(k) =(k)k� are deoupled from the physial states. In other words the sattering amplitudewith suh longitudinal gluons is zero.In the following we shall just onsider amplitudes with external physial on shellquarks and gluons and possibly one or more longitudinally polarized gluons. They sat-isfy a tower of Ward-like identities. We an interpret them as saying that longitudinalpolarization states (�L) deouple from physial polarization states (��). In pratie onehas assoiated to the on shell physial sattering amplitudeM = ��11 (q1)��22 (q2) � � � ��nn (qn)M�1�2����n(q1; q2; � � � ; qn) (1.1)the tower of identitiesq�11 ��22 (q2)��33 (q3) � � � ��nn (qn)M�1�2����n(q1; q2; q3; � � � ; qn�1; qn) = 0� � �q�11 q�22 ��33 (q3) � � � ��n�1n�1 (qn�1)��nn (qn)M�1�2����n(q1; q2; q3; � � � ; qn�1; qn) = 0� � �q�11 q�22 � � � q�n�1n�1 ��nn (qn)M�1�2����n(q1; q2; q3; � � � ; qn�1; qn) = 0� � �q�11 q�22 � � � q�n�1n�1 q�nn M�1�2����n(q1; q2; q3; � � � ; qn�1; qn) = 0: (1.2)Any single or multiple ontration with longitudinal polarizations gives zero if all theother lines are ontrated with physial polarization vetors and are on shell. This isa onsequene of the fat that QCD is a gauge invariant theory.Let us now reall how to prove these identities2. It is onvenient to use the globalBRST symmetry of the gauge �xed QCD ation. Let us start from the QCD lagrangiandensity with the so alled general Lorentz gauge �xing (Lorentz invariant) and theassoiated ghost terms inluded (restriting to the gluon setor (�eld va�) sine thequark setor is trivial in our analysis)L(v�) = �14F a��F a�� � va���Ba � �2BaBa + ���a(D�)a ; (1.3)where Ba is an auxiliary �eld whih satis�es the equation of motion Ba = 1���va� andD� is the usual ovariant derivative. One an therefore write the onjugated momenta�ai = F a0i ; �aB = �va0 ; �a = ��0�a ; �a� = (D0)a : (1.4)2This proof is not original and an be found in the literature.2



The global BRST symmetry is de�ned byÆ�va� = �(D�)a ; Æ�a = �12�gfadede Æ��a = �Ba Æ�Ba = 0 ; (1.5)where � is the in�nitesimal Grassmann parameter of the transformation. In terms ofthe momenta one an immediately write, using the N�other theorem, the onservedBRST harge Q = Z d3x h�ai (Di )a � g2fade�a de + �a�Bai ; (1.6)whih, after quantization, generates the quantum BRST transformation.The BRST transformation is nilpotent and therefore Q2 = 0. We remind thatthe "large" Hilbert spae an ontain states with negative norm. There are, at �xedolor, six di�erent asymptoti states: va (transverse)� are the two states with physialpolarizations, then there are other two gluons states, one of them desribed by theauxiliary �eld Ba, and �nally there are the a ghost and the �a antighost �elds.The physial states are the transverse polarized gluons whih are annihilated by theBRST harge Q. The subspae of the large Hilbert spae whih belongs to the kernelof Q ontains the physial states plus the zero norm states (jBi and ji ). The physialHilbert spae is the quotient of suh a spae with respet to the subspae of zero normstates, i.e. Hphys = Cohomology(Q) = kerQ=imQ. From the BRST transformationsit is easy to see that Ba = ifQ; �ag.Having realled these basi fats now we an see how to obtain the Ward Identitiesgiven in eq. (1.2). Consider the redution formula for a S matrix element where ngluon asymptoti states have been removed and replaed by momentum ontration,leaving m inoming and p outgoing physial states. Taking the Fourier transform (F)one has q�11 � � � q�nn M�1�2����n(q1; � � � ; qn; k1; � � � ; km+p) =F [2x1 � � �2xnhphysoutjT��v�(x1) � � � ��v�(xn)jphysini℄ =�nF [2x1 � � �2xnhphysoutjTB(x1) � � �B(xn)jphysini℄ =(i�)nF [2x1 � � �2xnhphysoutjTfQ; �(x1)g � � � fQ; �(xn)g)jphysini℄ = 0: (1.7)The 2xi 's are introdued to keep trak of the standard relation between Green's fun-tions and S matrix elements but they do not play any role in deriving the identity. Letus stress that the momenta orresponding to the dependene in x1; � � � xn are not onshell. The expression is zero thanks to the nilpotent property of Q and to the fat thatQjphysi = 0.1.2 E�etive ation with reggeized gluonsLet us now onsider the ase of our interest, the E�etive Ation [1℄ whih inludesreggeized gluons. This ation is non loal, and it has been onstruted in suh a waythat it is gauge invariant, inluding the reggeized gluons (whih are not on mass shell)as external states. In order to ahieve this one has to introdue, order by order inperturbation theory, a well-de�ned set of indued interations of reggeized gluons with3



normal gluons. All these indued interations, as well as the onventional QCD inter-ations, are ontained in the gauge invariant e�etive ation for gluons and reggeizedgluons.Let us write the e�etive ation whih desribes the oupling of the reggeized gluonsto a luster entered at rapidity y0 where all the produed partiles belong to a rapidityinterval � � log s, whih means that jy � y0j < �. We denote the gluon �eld asv�(x) = �iT ava�(x) and the reggeized gluons �elds as A�(x) = �iT aAa�(x), whihsatisfy the kinematial onstraints ��A� = 0 ; (1.8)aording to the quasi-multi-reggeon kinematis. The reggeized gluons are harater-ized by n+� and n�� polarization vetors.The e�etive ation for a given rapidity interval � reads [1℄S = Z ddx [L(v�)� Tr (V+2A� + V�2A+) + 2Tr (A+2A�)℄ ; (1.9)Here the �rst term oinides with the gauge �xed QCD lagrangian in (1.3), and theseond one desribes the interation of the reggeized gluons �elds with the gluonsthrough the indued terms:V�(v) = �1g��P exp �g2 Z x��1 v�(y)dy�! = v��gv� 1�� v�+g2v� 1�� v� 1�� v�� � � � ;(1.10)In ontrast to these interations terms whih are loal in rapidity, the last term, thekineti term for the reggeized gluons, desribes the interation of partiles with di�erentrapidities. We note that, in this ation, the reggeized gluons play a role similar tolassial �elds, i.e. within eah rapidity luster they do not appear in loops. For thelast two terms in Eq. (1.9) we an also introdue a more ompat notation. We de�neA� = 12 �A+(n�)� +A�(n+)�� = 2 (A+(n�)� +A�(n+)�)V� = 12 �V +(n�)� + V �(n+)�� = 2 (V+(n�)� + V�(n+)�) (1.11)with the normalization n+ � n� = 2 and n+ � n� = 12 . Note that we have ��A� = 0,due to Eq. (1.8), whih is similar to the Lorentz ondotion for the real gluons. Thisallows to write, in Eq. (1.9), the kineti term of the reggeized gluon as 12Tr (A2A) andthe indued interation part as �12Tr (V2A).Under gauge transformations one has Æv� = [D�; �℄ whih implies on the induedterms a variation ÆV� = �� ��; (D�)�1�. Therefore, realling the kinematial on-straints in Eq. (1.8), one notes that, after integration by parts, the variation of theterms in the traes is zero provided the funtion �(x) whih desribes the gauge trans-formation vanishes as x ! 1 and ÆA� = 0. Apart from the gauge �xing and ghostterms we have therefore a fully gauge invariant e�etive ation by onsidering gaugeinvariant reggeized gluons. After introduing gauge �xing and ghost terms this ationenjoys, similarly to the normal QCD ase, a global BRST symmetry with assoiatedonserved anonial harge Q suh that Æ�A� = 0.4



The objets in whih we are interested are the gauge invariant sattering amplitudeswhih, in general, involve quarks, on shell physial gluon states and reggeized gluons(the extensions to the N = 4 SYM ase is straightforward). Suh sattering amplitudesare onstruted from the Green's funtions using the LSZ redution with respet tothe lines with the physial quark and gluon states. For example, an amplitude with aphysial gluon and two reggeized gluons (the BFKL prodution vertex) is related tothe following Green funtionh0jTA�1(x1)A�2(x2)v�3(x3)j0i : (1.12)Choosing the unphysial polarizations for eah of the reggeized gluons and the physialpolarization for the normal gluon, taking the Fourier transform in the LSZ redutionformula and removing for the latter the physial pole, we have the e�etive BFKLprodution vertex M = n��1 n+�2 ��3(k)M�1�2�3(q1; q2; k) ; (1.13)where the polarization vetor n� belongs to the reggeized gluon with momentum q1(with a large "+" omponent), and the vetor n+ to the gluon with momentum q2(with a large "�" omponent).Note that this amplitude ontains indued terms whih ouple the reggeized gluonsto the usual gluons (rhs of (1.10)). These ontributions are neessary for restoring thegauge invariane of the amplitude. We shall use two di�erent equivalent notations towrite the Ward identities. In the notation of [3℄, starting from (1.10), not all Feynmandiagrams are proportional to the produt of two external polarization vetors, n��1 n+�2 .Indued terms whih do not ontain the vetor n� have to be left out in the Wardidentity in q1, terms without n+ do not partiipate in the Ward identity in q2 (suhterms ome from the seond, third,... terms in Eq. (1.10), i.e. from those interationswhere the external reggeized gluon ouples to two or more elementary gluons). InEq. (1.13) we have introdued a simpli�ed notation whih allows to write the fullamplitude using a uniform ontration with the n� vetors. This follows from havingintrodued the general objets of Eq. (1.11) ontaining both polarizations, whih, afterontrations with n�, give the spei� polarized terms.Let us now formulate, for this example, the Ward identity in the external reggeonline with momentum q1. The argument is analogous to the one used in the previoussetion for pure QCD and is based on the gauge invariane of the E�etive Ation forreggeized gluons. Sine we have seen that under a BRST transformation the reggeizedgluons do not hange, the orresponding quantum states jA�i are also annihilated bythe BRST operator Q and we an extend the Hilbert spae orresponding to gaugeinvariant states adding also the reggeized gluon states, whih an be onsidered onthe mass shell as physial states in the t-hannel. From it one may onstrut themulti-partile Fok spae. As before, therefore, in order to obtain a Ward identitystarting from the Green's funtion in Eq. (1.12) we onsider a new Green's funtion,obtained replaing at point x1 the reggeized gluon �eld operator A�1(x1) by the oper-ator ��1v�1(x1): h0jT��1v�1(x1)A�2(x2)v�3(x3)j0i: (1.14)Proeeding now in the same way as in Eq. (1.7), using the relation ��1v�1(x1) =i�fQ; �(x1)g , applying the LSZ redution to the physial gluon line and �xing the5



polarization of the reggeized gluon at point x2, we end up with the following identity0 = q�11 n+�2 ��3(k) ~M�2�3�1 (q1; q2; k) : (1.15)It is important to note that the replaement A�1(x1)! ��1v�1(x1) eliminates all thoseindued ontributions in Eq. (1.10), where the reggeized gluon q1 ends on two gluons(for example at tree level here one annot have indued terms of higher order). Inthe same time the reggeized gluon with momentum q2 interats with all verties inEq. (1.10).Let us generalize these arguments. Using the same notation as in Eq. (1.13), theamplitudes are of the formM = ��11 (k1) � � � ��nn (kn)n��1 � � �n��ln+�1 � � �n+�rM�1����l�1����r�1����n (k1;� � �; kn; q1;� � �; ql; q01;� � �; q0r);(1.16)where the tensor amplitudeM�1����l�1����r�1����n (k1; � � � ; kn; q1; � � � ; ql; q01; � � � ; q0r) is onstrutedfrom �elds of reggeized gluons, A�1 ; :::; A�l , A�1 ; :::; A�r , and physial gluon �eldsv�1 ; :::v�n . At this stage, the amplitude M ontains all the indued interation as-soiated to the r "+" polarized reggeized gluons and to the l "�" polarized reggeizedgluons. By suitable replaements A�(x)! ��v�(x) one an now write a tower of Ward-like identities for the reggeized gluons whih are analogous to the ones in eq. (1.2). Theyare obtained from Eq. (1.16) by replaing the orresponding polarization vetors of thereggeized gluons by the ontration with the momentum, taking into aount that thetensor amplitude must be substituted by a new one, ~M�1����l�1����r�1����n , sine the terms or-responding to the indued interations of the line with ontrations must be removed.Indeed, as in our example, the replaement A�(x)! ��v�(x) eliminates those induedgraphs where the reggeized gluon ouples to two (or more) gluon �elds. In the notationof [3℄, these are exatly those graphs whih do not have a polarization vetor n� forthe reggeized gluon and do not partiipate in the Ward identity. In a similar way oneobtains also Ward identities for the gluon �elds.Our Ward identities therefore take the form:0 = ��11 (k1) � � � k�i1i1 � � � k�i�i� � � � ��nn (kn)n��1 � � � q�m1m1 � � � q�m�m� � � � n��l �n+�1 � � � q0�p1p1 � � � q0�pp � � �n+�r ~M�1����n�1����l�1����r(k1; � � �; kn; q1; � � �; ql; q01; � � �; q0r); (1.17)where the subsets �, � and  of physial polarization states, "-" polarized and "+"polarized reggeized gluons, respetively, have been replaed by the orresponding mo-mentum ontrations. We stress that ~M is related to the modi�ed produt of �eldoperators where some of the reggeized gluon �elds A� have been replaed by gluon�elds v�.In the following we will show that these Ward identities an be used to obtain anew (and useful) representation for amplitudes and Green's funtions, in whih theunphysial polarizations of reggeized gluons are substituted by transverse momentumvetors.2 An appliation: the BFKL kernelAs a �rst appliation, we investigate the use of Ward identities for the real part ofthe BFKL kernel. As a result, we will present a new derivation of the kernel. We6



proeed as follows. Making use of the e�etive ation we begin with the LO 4-pointfuntion of four reggeized gluons where, in ontrast to the usual derivation based onthe s-hannel unitarity, the produed s-hannel gluon is o� shell, and its longitudinalmomenta (Sudakov or light one variables) are not yet integrated. At this stage, thereggeized gluons arry unphysial polarizations. Beginning with one of the reggeizedgluons, we derive a Ward identity and use it to substitute the unphysial polarizationvetor by the orresponding transverse momentum vetor. Repeating this proedure,step by step, for the remaining gluons we arrive at a representation of the BFKL kernelin whih for all four reggeized gluons the unphysial polarization vetors n+ or n� arereplaed by transverse momentum vetors. We then show that after the integrationover the longitudinal momentum of the s-hannel gluon this new form of the BFKLkernel oinides with the standard expression. Finally, we re-formulate our results andshow that they are in agreement with the Ward identities stated in setion 1.2.1 Derivation from the e�etive ationWe begin with the notation for the e�etive diagrams shown in Fig.1:
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with ���0(q1; q01) = g�� �(n+)�02 q01� + (n�)�02 2q+1 + (2q1 � q01)�0?!+g��0 �(n+)�2 2q01� � (n�)�2 q+1 + (2q01 � q1)�?��g��0(q1 + q01)�: (2.20)It will be onvenient to introdue a short-hand notation for the indued terms3:I��0R (q21 ; q01�) = �� q21q01� (n�)�(n�)�0�I��L (q012; q+1 ) = ��(n+)�(n+)� q021q+1 � ; (2.21)suh that (2.19) takes the form:C�(q1; q01) = (n�)����0(q1; q01)(n+)�0+I��0R (q21 ; q01�)(n+)�0+(n�)�I��L (q012; q+1 ): (2.22)Contration with the momentum of the produed gluon leads to:(n�)����0(q1; q01)(n+)�0k� = 2(q21 � q012): (2.23)Inluding the indued terms, IL and IR, gauge invariane of the prodution vertex isrestored: C�(q1; q01)k� = 0: (2.24)Inluding the olor struture, Figs.1a and b have the olor oeÆientsf1da1f2a2d (2.25)and f2da1f1a2d; (2.26)resp. The quarti interation in Fig.1 provides the same two olor strutures with thefollowing oeÆients:(n�)�(n�)� �g��g�0�0 � g�0�g��0� (n+)�0(n+)�0 = �4 (2.27)and (n�)�(n�)� �g��g�0�0 � g��0g��0� (n+)�0(n+)�0 = �4: (2.28)The third olor struture of the quarti oupling, f12lfla2a1 , will be disregarded sineit orrespond to the olor otet t-hannel. Putting everything together we �nd, fromFig.1a,1k2C�(q1; q01)C�(q2; q02) + quarti oupling = 8k2  q2 + q21q022 + q22q012k+k� ! (2.29)3The subsripts 'L' and 'R' follow the notation of [3℄: 'left entral' and 'right entral'8



(note that, on the rhs of this equation, k2 = k�k� = k+k�+k2? denotes the square of afour vetor; all other squared momenta are e�etively purely transverse). Without thepiee of the quarti oupling there would be the additional term k22 inside the braket.We write (2.29) also in another form:(2:29) = 8 q2k+k� + 1k2 �k2?q2 + (q21q022 + q22q012)k+k� ! : (2.30)Here the numerator of the seond term has the property that it vanishes whenever anyof the transverse momenta q1, q2, q01, or q02 goes to zero. In order to make this 'zeroproperty' expliit, we list a few alternative forms of the vertex:(2:29) = 8� q2k+k� + 2k2 (q1?q2?) (q01?q02?) + (q1? � q2?) (q01? � q02?)k+k� �= 8� q2k+k� + 2k2 (q1?q01?) (q2?q02?) + (q1? � q01?) (q2? � q02?)k+k� �= 8� q2k+k� + 1k2 q1q�2q01�q02 + q�1q2q01q02�k+k� � : (2.31)In the �rst two lines we have introdued a ross produt-like notation (q1? � q2?) =q1xq2y�q1yq2x, while in the last line we have used omplex notation where p = px+ ipy(note that, following the Sudakov notation, we use p�? = (0; 0; px; py)). Beause ofk+ = �k0+, k� = k0� one easily reognizes the anellation of the �rst term, one weadd the rossed graph. We shall show in setions 2 and 3 that, after the use of theWard identities, the �rst piee, 8 q2k+k� , whih destroys the zero property will be absenteven before adding the rossed graph.Before we study the integration over the longitudinal variable, k� = �q01�, wemention another important feature of the representations (2.31). In this form, theBFKL kernel is losely related to the Weizs�aker-Williams approximation in whih theinteration of the reggeized gluons, at vanishing transverse momenta, an be expressedin terms of on-shell gluon sattering amplitudes.Next we turn to the integration over the longitudinal variable, k� = �q01�. Letus �x, in (2.30), k+ at some positive value. As we said before, the �rst term, 8 q2k+k� ,anels after adding the ontribution from the rossed graph. The seond term with theadditional denominator 1=k+k� onverges for large k�, but the singularity at k� = 0needs to be regularized. From the analysis of Feynman graphs we �nd an infrareduto� jk�j > �2=ps whih implies the following de�nition of the k� integral:I = Z dk�k+k� 1k+k� + k2? + i� :=  Z ��2=ps�1 +Z 1�2=ps! dk�k+k� 1k+k� + k2? + i� ; (2.32)where �2 denotes a momentum sale of the order of the transverse momenta. Addingand subtrating the ontribution of a small semiirle in the upper half omplex plane,in the �rst ase the upper half plane has no singularity, and the integral vanishes. Fromthe subtration of the semiirle we are left withI = i�k+k2? : (2.33)9



The same result is obtained if we add and subtrat a semiirle in the lower half plane.Obviously, this result is independent of any i� desription of the pole at k� = 0.Proeeding in the same way for the region k+ < 0, we �ndI = � i�k+k2? : (2.34)Inluding the integration over k+ we �nd, for the sum over both regions,Z dk+I = 2i�k2? Z ps�2=ps dk+k+ : (2.35)The same result is obtained if we use the prinipal value presription whih followsfrom the derivation of the e�etive BFKL prodution vertex from Feynman graphs:the two graphs whih desribe the radiation of the produed s-hannel gluon from theverties to the left of the BFKL vertex imply:Z dk�k� ! Z dk� 12 � 1k� + i� + 1k� � i�� : (2.36)When applied to the seond part of (2.32), we again arrive at (2.33)Z dk�k2 + i� q21q022 + q22q012k+k� = i�k+ q21q022 + q22q012k2? : (2.37)Note that both our symmetri hoie of the infrared uto� in (2.32) and the prinipalvalue presription in (2.36) are related the fat that we are onsidering even signatureamplitudes.For the rossed graph we interhange q1 and q2 and replae k = q1 � q01 by k0 =q2 � q01. Using k0+ = �k+ we obtain:Z dk0�k02 + i� q21q012 + q22q022k0+k0� = i�k0+ q21q012 + q22q022k02? : (2.38)In this way, the BFKL kernel is rossing symmetri under the exhange q1 ! q2.We onlude by mentioning that we would have obtained the same result for thelongitudinal integrations by using the identity1k2 + i� = P 1k2 � i�Æ(k2): (2.39)The prinipal value term vanishes sine we integrate over positive and negative valuesof k+ and k�.2.2 Ward identities on the rhs, q01 and q02In the following we searh for an alternative expression whih improves the onvergenein the longitudinal omponent, q01�, To this end we replae the (n+) and (n�) vetorsof the t-hannel gluons by transverse momenta. We begin with the two gluons on therhs, and in seond step, apply the same proedure to the gluons on the lhs. We begin10



with the Ward identity in the upper t-hannel gluon on the rhs with momentum q01.We �nd: �(n�)����0(q1; q01) + I��0R (q21 ; q01�)� q01�0 = �k2(n�)� � q01�k� (2.40)(if the produed gluon were on mass shell, and we would multiply with a physialpolarization vetor the rhs would vanish). When ontrating the rhs, in Fig.1a, withthe lower prodution vertex, the piee proportional to k� vanishes beause of the gaugeinvariane property of the lower vertex. We thus are left with:1k2C�(q2; q02)�(n�)����0(q1; q01) + I��0R (q21; q01�)� q01�0 = �2(q02)� + 4q022q+2 : (2.41)The �rst term anels if we add the ontribution from the quarti oupling, obtainedfrom (2.27) by replaing (n+)�0 by q01�0 and observing q01� = �q02�. Similarly, therossed graph in Fig.1b yields:�(n�)����0(q2; q01) + I��0R (q22; q01�)� q01�0 = �k02(n�)� � q01�k0� (2.42)and 1k02C�(q1; q02)�(n�)����0(q2; q01) + I��0R (q22 ; q01�)� q01�0 = �2(q02)� + 4q022q+1 : (2.43)Again, the �rst term vanishes if we add the quarti oupling. The seond piees of(2.41) (2.43) sum up to zero, sine q+1 + q+2 ' 0.As a result, we have veri�ed the following Ward identity:h 1k2 �(n�)����0(q1; q01) + I��0R (q21 ; q01�)�C�(q2; q02)+1k02 �(n�)����0(q2; q01) + I��0R (q22 ; q01�)�C�(q1; q02) + quarti ouplingsiq01�0 = 0:(2.44)Therefore, in h 1k2 �(n�)����0(q1; q01) + I��0R (q21 ; q01�)�C�(q2; q02)+1k02 �(n�)����0(q2; q01) + I��0R (q22 ; q01�)�C�(q1; q02) + quarti ouplingsi(n+)�0(2.45)we an substitute (q01 = n+2 q01� + q01?)(n+)�0 ! �2(q01?)�0q01� : (2.46)Taking into aount that a purely transverse vetor, ontrated with IL or with thequarti oupling gives zero ontribution, the 4-point funtion an written in the fol-lowing form:h� 2q01� (n�)����0(q1; q01)(q01)?�0 + (n�)�I��L (q012; q+1 )iC�(q2; q02)+h� 2q01� (n�)����0(q2; q01)(q01)?�0 + (n�)�I��L (q012; q+2 )iC�(q1; q02): (2.47)11



Here (n�)����0(q1; q01)(q01)?�0 = (n�)�(2q1 � q01)? � q01? + 2q01�(q01?)�; (2.48)and for the produed gluon we have the Ward identityh� 2q01� (n�)����0(q1; q01)(q01)?�0 + (n�)�I��L (q012; q+1 )ik� = 0: (2.49)apart from the usual Ward identity for C� (see Eq. (2.24)). Next we proeed to theWard identity in the lower gluon, q02. In analogy with (2.40) we haveh(n�)����0(q2; q02) + I��0R (q22 ; q02�)iq02�0 = �k2(n�)� + q02�k�: (2.50)After ontration with the square braket in the �rst line of (2.47) we obtainh� 2q01� (n�)����0(q1; q01)(q01)?�0 + (n�)�I��L (q012; q+1 )ih(n�)����0(q2; q02) + IR ��0(q22 ; q02�)iq02� 0= 4k2 q012q+1 : (2.51)A similar treatment of the rossed graph leads toh� 2q01� (n�)����0(q2; q01)(q01)?�0 + (n�)�I��L (q012; q+2 )ih(n�)����0(q1; q02) + IR ��0(q21 ; q02�)iq02�0= 4k2 q012q+2 ; (2.52)and the sum of both anels. Repeating the steps as desribed above in Eqs (2.46)-(2.48) we �nd for the 4-point funtion:1k2 h� 2q01� (n�)����0(q1; q01)(q01)?�0 + (n�)�I��L (q012; q+1 )i�h� 2q02� (n�)����0(q2; q02)(q02)�0? + (n�)�IL ��(q022; q+2 )i+ 1k02 h� 2q01� (n�)����0(q2; q01)(q01)?�0 + (n�)�I��L (q012; q+2 )i�h� 2q02� (n�)����0(q1; q02)(q02)�0? + (n�)�IL ��(q012; q+1 )i: (2.53)Note that in this expression the quarti ontribution no longer appears, and the diver-gene � k2, in (2.29) is no longer present.It is interesting to ompare (2.53) with the known result. After some algebra we�nd for the �rst produt on the rhs:1k2 h8q2 � 8(q012 + q022)�1 + k2?k+k��+ 8q21q022 + q012q22k+k� i: (2.54)12



The integral over q0�1 , however, is still logarithmially divergent, and only after addingthe analogous expression for the rossed graph this divergene anels and we areallowed to lose the integration ontour.The new representation Eq.(2.54) of the 4-point funtion di�ers from our startingexpression Eq. (2.29) only through the seond term whih an be written as �8(q012 +q022)=k+k�. One an easily hek that, when adding the rossed term (obtained byinterhanging q1 and q2), we �nd� 8(q012 + q022)=k+k� � 8(q012 + q022)=k0+k0� = 0; (2.55)sine k0+ = �k+ and k0� = k�. As a result, the sum of Eq.(2.54)) plus its rossedgraph equals the sum of Eq. (2.29) plus its rossed ounterpart.2.3 Ward identities on the lhs, q1 and q2In the �nal step we start from (2.53) and make use of Ward identities in the two gluonson the left hand. Beginning with q1 we �rst ompute(q1)����0(q1; q01)(q01)?�0 = k�q1? � q01? � k2q01?� + q012(q01?� � q�1 )= k� �q1? � q01? � q012�� k2q01?� � (n+)�2 q012q01�:(2.56)Together with the indued term we get:(q1)�h� 2q01����0(q1; q01)(q01)?�0 + I��L (q012; q+1 )i = � 2q01� �k� �q1? � q01? � q012�� k2q01?�� :(2.57)and (q1)�h� 2q01����0(q1; q01)(q01)?�0 + I��L (q012; q+1 )ih� 2q02� (n�)����0(q2; q02)(q02)�0? + (n�)�IL ��(q022; q+2 )i = �8k2 q01? � q02?q01� : (2.58)The rossed graph (seond term in (2.53)) gives the same result with the denominatorreplaed by q02�, i.e. in the sum both ontributions anel. The replaement (2.46)leads to 1k2 h 4q+1 q01� (q1)?����0(q1; q01)(q01)?�0i�h� 2q02� (n�)����0(q2; q02)(q02)�0? + (n�)�IL ��(q022; q+2 )i+ 1k02 h� 2q01� (n�)����0(q2; q01)(q01)?�0 + (n�)�I��L (q012; q+2 )i�h 4q+1 q02� (q1)�?���0(q1; q02)(q02)�0?i (2.59)with �(q1)?����0(q1; q01)(q01)?�0�= (q1?)�(2q1 � q01)?q01? + (q01?)�(2q01 � q1)?q1? � (q1 + q01)�q1?q01? (2.60)13



and the Ward identity k� �(q1?)����0(q1; q01)(q01?)�0� = 0: (2.61)Finally the gluon q2. Starting from the �rst produt of (2.59) we need to alulate:1k2 h 4q+1 q01� (q1?)����0(q1; q01)(q01?)�0i�h� 2q02� (q2)����0(q2; q02)(q02?)�0 + (q2)�IL ��(q022; q+2 )i: (2.62)Using (2.57) we obtain, after some algebra:8q+1 q01�q02� (q1?)����0(q1; q01)(q01?)�0(q02)?� = 8q+1 q01�q02� �q1?q2? q01?q02? � q1?q02? q2?q01?� :(2.63)Similarly, from the seond produt of (2.59) we �nd:8q+1 q01�q02� (q1?)����0(q1; q02)(q01?)�0(q01?)� = 8q+1 q01�q02� �q1?q2? q01?q02? � q1?q01? q2?q02?� :(2.64)The sum of the rhs of (2.63) and (2.64) is easily reognized as the sum of the quartiouplings (2.27) and (2.28) :8q+1 q01�q02� (q1?)�(q2?)�h �g��g�0�0�g�0�g��0�+�g��g�0�0�g��0g��0� i(q01?)�0(q02?)�0 :(2.65)This means that the Ward identity in the fourth leg requires an in homogenous term,namely the quarti oupling multiplied by the four transverse momenta. With thisterm being inluded, our �nal expression for the 4-point funtion of 4 reggeized gluonsbeomes:16q+1 q+2 q01�q02� (q1?)�(q2?)�h 1k2 ���0(q1; q01)g�����0(q2; q02) + 1k02 ���0(q2; q01)g�����0(q1; q02)+�g��g�0�0�g�0�g��0�+�g��g�0�0�g��0g��0� i(q01?)�0(q02?)�0 : (2.66)The re-appearane of the quarti oupling an be understood from the observationthat, in the high energy limit, quarti ouplings give nonzero ontributions only in afew speial ases: for example, when multiplied with two (n�) and two (n+) vetors (asit is done in (2.27) and (2.28)) or when multiplied with four transverse momenta (as itis done in (2.66). Other 'mixed' ases (as in (2.53): two (n�) vetors from the left, twotransverse momenta form the right) lead to vanishing ontributions. Inspeting (2.66)one an see that the "zero property" mentioned before is manifestly realized separatelyfor eah ontribution of a single permutation of the external lines.Finally we present the expliit expression for (2.66). After some algebra one �ndsfor the �rst part:(q1?)�(q2?)����0(q1; q01)g�����0(q2; q02)(q01?)�0(q02?)�0 =(k+k� + k2?)q1?q01? q2?q02? + 12 �((k2?)2q2 � k2?(q21q022 + q012q22)� : (2.67)14



Together with the ontribution of the quarti oupling we have:8(k+k�)2 hk2?k2 �k2?q2 � (q21q022 + q012q22)�� �k2?q2 � (q21q022 + q012q22)� i; (2.68)whih an be simpli�ed into:(2:68) = 8k+k� �k2?q2 + q21q022 + q012q22k2 (2.69)An analogous result holds for the rossed graph.It is interesting to ompare this result with (2.30): the use of the Ward identities hasled to the disappearane of the term proportional to q2. This was the term for whih,in (2.30), the integral of the longitudinal momentum was divergent; furthermore, thisterm had prevented the graph to have the 'zero property'. It was only after takingthe sum of both graphs, the unrossed and rossed ones, that this term disappeared.Now, after the use of the Ward identities, the longitudinal integration onverges foreah graph separately, and also the zero property holds for eah graph. With the helpof the alternative expressions given in (2.31), this feature is seen most expliitly.This argument shows that our use of the Ward identities is nothing but a rearrange-ment in the sum of the two terms, unrossed plus rossed graph: in the representation(2.29) eah single graph has a divergent k� behavior, both in the infrared and ultravi-olet region (the latter anels in the sum). In ontrast to this, in (2.66) eah term hasa 'good' ultraviolet behavior. Our experiene from using either of the two representa-tions an be summarized by stating that both unrossed and rossed graph ontributewith equal weight.We �nally mention that (2.66) ould also have been obtained by proeeding in adi�erent order: e.g., �rst the Ward identity in q01, then in q1, in q2 ,and �nally in q02 .Here the quarti oupling would have ontributed also in intermediate steps.3 General strategyAfter having presented this expliit alulation let us return to the identities formulatedin setion 1.3.1 Interpretation of BFKL resultsLet us �rst show that our results for the BFKL kernel, in fat, are equivalent to theWard identities of setion 1.It will be onvenient to introdue a few graphial notations. Returning to theprodution vertex (2.22) we introdue the following notation:
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Straight lines stand for elementary gluons (not neessarily on shell), wavy lines forreggeized gluons. Lines to the left of the prodution vertex arry the polarization ve-tor (n�), those to the right (n+). The rosses denote the reggeons whih end on anindued vertex (i.e. ouple to two or more elementary gluons). Lines with a suh aross, in ontrast to the reggeon lines without rosses, do not partiipate in the Wardidentity. The blobs in the enter denote all diagrams derived from the e�etive ation(inluding all permutation of the external legs). Note that the quarti ouplings onlyappear in the �rst diagram on the left. With this notation, we write symbolially inFig. 3 the 4-point funtion as a sum of 11 terms:
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i jFig.3: indued verties in the BFKL kernel.Diagrams a-j denote the 10 ontributions ontaining indued terms in one or two ex-ternal legs.Now it is easy to summarize our �ndings. First we have shown the Ward identityin q01: n�n�M (1)q01n+ = 0: (3.70)where M (1) ontains all terms exept for 'b', 'g', 'h', and 'i' (for the remaining induedterms it is understood that the ontration with the polarization vetors n+, n� onlyapplies to the legs without rosses; for example, in 'a' only the three legs with momentaq01, q02 and q2 an be ontrated). We then used this result to replae (n+) by T (q01) =�2q01?q01� . In short, n�n�M (1)n+n+ = n�n�M (1) T (q01)n+: (3.71)In order to arrive at the omplete 4-point funtion, we have to re-add the induedterms 'b', 'g', 'h' and 'i'. Fig.3 illustrates this result: the full 4-point funtion is givenby the sum of all diagrams where, for the upper right reggeon, the '+' is replaed byT (q01). The diagrams 'b', 'g', 'h', and 'i' remain unhanged. Note that, inside these10 indued terms, several ontributions atually vanish: this is beause the induedverties IL and IR vanish when ontrated with a purely transverse vetor (see ouromment after (2.36)).In the seond step, we have used the Ward identity in q02:n�n�M (2) T (q01) q02 = 0; (3.72)16



where M (2) now ontains all graphs exept for those with a ross in the lower rightreggeon ('d', 'f', 'h', and 'j'). This identity allowed us to write the 4-point funtion assum of all diagrams of Fig.3, with the '+' in both the upper and the lower reggeons onthe rhs being replaed by 'T' (again, many ontributions are atually zero).Our third step derived the Ward identity in q1, where all diagrams exept for 'a','e', 'f', 'i' ontributed q1n�M (3)T (q01)T (q02) = 0; (3.73)and we obtained a representation for the 4-point funtion where, in Fig.3, all '-' labelsfor the upper left reggeon are replaed by a'T'. Finally, the Ward identity in q2:T (q1)q2M (4)T (q01)T (q02) = 0 (3.74)led to our �nal representation of the 4-point funtion in whih we have transversemomentum vetors for all reggeon linesT (q1)T (q2)M0T (q01)T (q02): (3.75)A loser look at the indued terms shows that they are all absent, leading to the resultin whih only the �rst graph in Fig.3, M0, ontributes.By ombining the identities (3.70), (3.72), (3.73), and (3.74) (plus others obtainedby suitable permutations of the arguments) one derives the generalized Ward identitiesof setion 1. For example, we interhange, in (3.70), the arguments on the rhs:n�n�M (1)n+q02 = 0 (3.76)(with a suitably modi�ed M (1)). Taking the di�erene between (3.76) and (3.72) weobtain: n�n� ~Mq01q02 = 0: (3.77)Note that in ~M the indued graphs 'b', 'g', and 'i' have anelled. In a similar way onederives identities with three and four ontrations, e.g.q1q2M (4)q01q02 = 0: (3.78)The identities (3.70), (3.77), and (3.78) are speial ases of the general lass ofidentities whih have been disussed in setion 1.3.2 A general strategyAfter this example it should have beome lear how to use, in more general ases, theWard identities for replaing unphysial polarization vetors by transverse momentumvetors. We simply invert the order of the arguments: starting from the whole towerof Ward identities (1.17) and forming suitable linear ombinations we arrive at our
17



results 2.53 and 2.66. Let us demonstrate this in detail:q1n�Mn+n+ = 0n�n�Mq01n+ = 0q1q2Mn+n+ = 0n�n�Mq01q02 = 0q1n�Mq01n+ = 0q1q2Mq01n+ = 0q1n�Mq01q02 = 0q1q2Mq01q02 = 0; (3.79)where, in eah of these equations, M ontains a slightly di�erent set of indued graphs(for simpliity, we always use the same symbol 'M '). In order to keep trak of theseindued terms, it is helpful to draw expliitly diagrams as we did in Fig.3. In thenotation of setion 1, the sum of all diagrams belongs to Green's funtions with A �elds.In order to obtain, in one of the identities (3.79), a 'q' ontration, one substitutes forthe orresponding external leg A ! ��v�. This automatially removes all indueddiagrams with a ross in the orresponding reggeon line, and the Ward identity appliesto the sum of all remaining diagrams. In this way an easily see, for eah of theequations (3.79), whih indued graphs are ontained in M and whih ones are leftout.Next we take linear ombinations. For example, from the seond equation of(3.79),together with the identity 1q01� q01 = n+ � T (q01) (3.80)we derive n�n�Mn+n+ = n�n�MT (q01)n+; (3.81)whih oinides with our �rst result (after (3.71)). The M on the lhs ontains alldiagrams of Fig.3: in ~M on the rhs all diagrams without a ross in the reggeon q01 arrya 'T ' vetor, the ones with a ross are unhanged. This de�nes M on the rhs.Considering the seond and fourth relations in eq. (3.79) we an obtain anotheruseful identity n�n�Mq01T (q02) = 0; (3.82)where all diagrams with a ross in the upper right reggeon are left out. On applyingthis to the rhs of eq. 3.81 we obtain our result (2.53):n�n�Mn+n+ = n�n�MT (q01)T (q02); (3.83)where on the rhs of this equation all diagrams without rosses in q01 or q02 are ontratedwith 'T' vetors (some of them vanish). Diagrams with rosses remain unhanged.Let us onstrut some other relations (from now on we always use the same notationM without mentioning in detail whih diagrams are to be dropped of kept):n�q2Mn+q02 = 0; n�q2Mn+n+ = 0) n�q2Mn+T (q02) = 0n�q2Mq01n+ = 0; n�q2Mq01q02 = 0) n�q2Mq01T (q02) = 0 : (3.84)18



Combining the two results we arrive atn�q2MT (q01)T (q02) = 0: (3.85)Together with eq. (3.83) we �ndn�n�Mn+n+ = n�T (q2)MT (q01)T (q02): (3.86)where T (q2) = �2q2?q+2 , and we have de�ned, in analogy with (3.80)1q2+ q2 = n� � T (q2): (3.87)Let us �nally derive our last result, (2.66). From (3.79) we deriveq1q2Mn+q02 = 0; q1q2Mn+n+ = 0) q1q2Mn+T (q02) = 0q1q2Mq01n+ = 0; q1q2Mq01q02 = 0) q1q2Mq01T (q02) = 0 ; (3.88)whih an be ombined into q1q2MT (q01)T (q02) = 0: (3.89)We have also a relation similar to the one in eq. (3.85)q1n�MT (q01)T (q02) = 0: (3.90)Combining the last two equations we obtainq1T (q02)MT (q01)T (q02) = 0: (3.91)Finally, ombining this with eq. (3.86), we get our �nal result for the BFKL kernel(2.66): n�n�Mn+n+ = T (q1)T (q2)MT (q01)T (q02): (3.92)In a future investigation we will apply this tehnique to the 3! 3 Green's funtion,deriving the useful relationn+n+n+Mn�n�n� = T (q1)T (q2)T (q3)MT (q01)T (q02)T (q03): (3.93)4 OutlookIn this paper we have derived Ward identities of Green's funtions and satteringamplitudes involving physial (on-shell) partiles and reggeized gluons. As a �rst ap-pliation, we have veri�ed these identities for the BFKL kernel, and we have arrivedat a new representation.We believe that these identities will be partiularly useful for omputing higherorder Green's funtions of reggeized gluons, e.g. n ! m Green's funtions. Thesimplest ase, the BFKL Green's, has been originally derived from s-hannel unitarity,i.e from the imaginary part of a 2 ! 2 sattering amplitude. In suh a derivation,the produed s-hannel gluon is taken to be on shell, and the orresponding Æ-funtion19



an be used to perform the integration over one of the longitudinal omponents ofthe momentum variables. However, in higher order Green's funtions, e.g. in the3! 3 ase of the Odderon, the 3! 3 kernel an no longer be derived from s-hanneldisontinuities, and a full integration over longitudinal momenta of s-hannel gluonshas to be performed. This raises the question of the onvergene of the integration,whih is obtained only after summing over all the permutations needed to have Bosesymmetry. The Ward identities disussed in this paper an be used to obtain ultravioletonvergent expressions of single ontributions without the need to perform the fullsum. In the ontext of our disussion of the BFKL kernel we have demonstrated thatis is useful to have at hand a representation in whih the integration over longitudinalmomenta is onvergent in the ultraviolet region: this will beome ruial to simplify thealulations for the ase of the LO 3! 3 kernel whih is urrently under investigation[4℄. From the general point of view these Ward identities permit to rewrite n �!m reggeized gluon transition amplitudes (as in (2.66)) without indued terms. Thissuggests that one may searh for a formulation of the E�etive Ation, equivalentto the existing one, in whih the indued terms an be ompletely omitted. A similarapproah an be also repeated in gravity in an E�etive Ation whih inludes reggeizedgravitons.Aknowledgements:J.B. gratefully aknowledges the support of the Galileo Galilei Institute where part ofthis work was done. He has also been supported by the Premio 2011 de ExeleniaCienti�a 'Abate Juan Ignaio Molina'. G.P.V. thanks the II Institut f�ur TheoretishePkysik of the Hamburg University for the hospitality.Referenes[1℄ L. N. Lipatov, Nul. Phys. B 452 (1995) 369 [hep-ph/9502308℄.[2℄ L. N. Lipatov, Phys. Rept. 286 (1997) 131 [hep-ph/9610276℄.[3℄ E. N. Antonov, L. N. Lipatov, E. A. Kuraev and I. O. Cherednikov, Nul. Phys. B721 (2005) 111 [hep-ph/0411185℄.[4℄ J. Bartels, V. Fadin, L. N. Lipatov, G. P.Vaa, in preparation.

20

http://arxiv.org/abs/hep-ph/9502308
http://arxiv.org/abs/hep-ph/9610276
http://arxiv.org/abs/hep-ph/0411185

	1 Generalized Ward Identities
	1.1 QCD
	1.2 Effective action with reggeized gluons

	2 An application: the BFKL kernel
	2.1 Derivation from the effective action
	2.2 Ward identities on the rhs, q'1 and q'2
	2.3 Ward identities on the lhs, q1 and q2

	3 General strategy
	3.1 Interpretation of BFKL results
	3.2 A general strategy

	4 Outlook

