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1 IntrodutionThe importane of the di�erential-equation approah to the desription of the an-alytial properties of Feynman diagrams has been reognized a long time ago [1℄.Within dimension regularization [2℄, the di�erential-equation tehnique [3℄, based onthe integration-by-part (IBP) relations [4℄, has been one of the most popular toolsfor the analytial evaluation of Feynman diagrams during the last deade [5℄. Herewe argue that linear systems of homogeneous di�erential equations may be derivedfor Feynman diagrams starting from their Mellin-Barnes representations withoutresorting to IBP relations [6℄.Our staring point is the multiple Mellin-Barnes representation of Feynman dia-grams [7,8,9℄, whih may be written in the following form:�(A; ~B;C; ~D; ~z) = Z +i1�i1 d~t�(~t)~z ~t= ConstZ +i1�i1 Ya;b;;r dt �(Pmi=1Aaiti+Ba)�(Prj=1Cbjtj+Db)zPl �kltlk ; (1)where zk are ratios of Mandelstam variables and A; ~B;C; ~D;� are matries andvetors depending linearly on the dimension n of spae-time and the powers of thepropagators. An important property of Feynman diagrams is that the matries Aand C only inlude integers. Let us de�ne the polynomials Pi and Qi asPi(~t)Qi(~t) = �(~t+ ~ei)�(~t) ; (2)where ~ei is a unit vetor with nonzero element at the i-th plae. Then, the integralin Eq. (1) satis�es the following linear system of homogeneous di�erential equations:Qi(~t)��tj!�j 1zi�(A; ~B;C; ~D; ~z) = Pi(~t)��tj!�j �(A; ~B;C; ~D; ~z) ; (3)where �i = zid=dzi, we assume that, in Eq. (1), the number of variables zi is equal tonumber of integration variables ti, and, for simpliity, we put �ij = Æij . Moreover,the funtion � de�ned in Eq. (1) satis�es the di�erential ontiguous relations:�(A; ~B+ ~ea;C; ~D; ~z) =  mXi=1 Aai�i+Ba!�(A; ~B;C; ~D; ~z) ;�(A; ~B;C; ~D� ~eb; ~z) =0� rXj=1Cbj�j+Db1A�(A; ~B;C; ~D; ~z) : (4)This system of di�erential equations may be analyzed using the Gr�obner basis teh-nique [10℄. Spei�ally, (i) the holonomi rank r of the system in Eq. (3) an beevaluated,1 and (ii) starting from the diret di�erential operators in Eq. (4) and1This an also be done using a �nite number of prolongations and onverting the original system intoa PfaÆan system [11℄. 2



the system of di�erential equations in Eq. (3), the inverse di�erential operators anbe onstruted [12℄. By the ation of suh di�erential operators on the funtion �,the value of any parameter Bj;Dk may be shifted by an arbitrary integer. Thisalgorithm is working for holonomi funtions if the number of linearly independentsolutions is �nite. As was shown in Ref. [13℄, within analytial regularization [14℄,Feynman diagrams satisfy holonomi systems of linear di�erential equations underthe ondition that all partiles have di�erent masses. In fat, this statement is thebasis of the algorithm proposed in Ref. [15℄. To our understanding, a rigorous prooffor the ase of on-shell diagrams or diagrams with zero internal masses does notyet exist, albeit very interesting work has been done in this diretion [16℄. For ouranalysis, it is suÆient to assume that there is a set of independent variables zi foreah Mellin-Barnes integral2 in Eq. (1). Moreover, it has been shown [18℄ reentlythat Mellin-Barnes integrals satisfy systems of di�erential equations orrespondingto Gelfand-Kapranov-Zelevisky hypergeometri equations [19℄. Another neessaryondition is that two ontours di�ering by a translation by one unit along the realaxis are equivalent. From the analysis performed in Refs. [8,20℄, we expet that thisstatement is valid for all Feynman diagrams before onstruting " expansions.The aim of the present paper is to illustrate this approah and to outline howit an be used to ount master integrals, onsidering as examples one-fold Mellin-Barnes integrals and the orresponding Feynman diagrams. In fat, the evaluation ofmaster integrals is often the bottlenek of multi-loop alulations of both Feynmandiagrams and sattering amplitudes, espeially if several di�erent mass sales areinvolved, and any opportunity to redue their number below the ahievements ofthe standard tehniques of solving IBP relations, as implemented in various publilyavailable omputer odes, should be highly welome. The tehnique advoated heremay also allow one to gain deeper insights into the mathematial strutures ofmulti-sale Feynman diagrams.2 One-fold Mellin-Barnes integralLet us onsider the funtion�( ~A; ~B; ~C; ~D; z; r) = C� Z+iR dtQKi=0 � (Ai + t)QLj=0 � (Cj � t)QRk=0 � (Bk + t)QJl=0 � (Dl � t)�(�t)zt+r ; (5)where C� is some z-independent onstant depending on ratios of � funtions witharguments being linear ombinations of powers of propagators and the spae-timedimension n. In the remainder of this letter, we assume that r = 0. In order torestore a nonzero value of r, it is suÆient to substitute � ! � � r. Let us assumethat the di�erenes between any two parameters Ai; Bj ; Ck;Dl are not integers.2 The appliation of the summation tehnique to Mellin-Barnes integrals with zi = 1 was disussed inRef. [17℄.
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Then, this funtion satis�es the following homogeneous di�erential equation:(�1)L+1� RYi=1(�+Bi�1) LYj=1(��Cj)�( ~A; ~B; ~C; ~D; z)= (�1)Jz KYi=1(�+Ai) JYj=1(��Dj+1)�( ~A; ~B; ~C; ~D; z) ; (6)where � = zd=dz. Let us onsider the ase of the non-onuent funtion, for whihthe orders of the di�erential equations on the l.h.s. and r.h.s. of Eq. (6) are equalto eah other, viz. K + J = 1 + L+R � p ; (7)so that the funtion � satis�es a di�erential equation of order p. In this ase, thereare p linearly independent solutions of the di�erential equation. In aordane withTakayama's algorithm [12℄, the di�erential operators inverse to the operators de�nedby Eq. (4) an be onstruted, and the result of the di�erential redution appliedto the funtion � has the following form:P0�( ~A+ ~m1; ~B + ~m2; ~C + ~m3; ~D + ~m4; z) = p�1Xi=0 Ri�i�( ~A; ~B; ~C; ~D; z) ; (8)where P0; Ri are some polynomials and ~mi are sets of integers.Theorem 1:Any Feynman diagram assoiated with the funtion � de�ned by the Mellin-Barnesintegral in Eq. (5), under the onditions that all parameters as well the di�erenesbetween any two parameters are not integer and Eq. (7) is valid, has p master in-tegrals (inluding all integrals following from the original one by ontrating one ormore lines), where p is de�ned by Eq. (7).This theorem follows from Takayama's analysis of the di�erential equations inEq. (6) with irreduible monodromy groups.Under the onditions of Theorem 1 and the additional ondition Ci 6= Cj, it ispossible to lose the ontour of integration [8℄ and to write the funtion � in termsof linear ombinations of hypergeometri funtions whose series representations arewell de�ned in the viinity of the point z = 0:z�rC� �( ~A; ~B; ~C; ~D; z) = QKi=1 � (Ai)QLj=1 � (Cj)QRk=1 � (Bk)QJl=1 � (Dl)pFp�1 ~A;~1� ~D~B;~1� ~C (�1)1+L+Jz!+ LXm=1 zCmQKi=1 � (Ai+Cm)QLj=1;j 6=m � (Cj�Cm)QRk=1 � (Bk+Cm)QJl=1 � (Dl�Cm)� pFp�1 ~A+Cm;~1+Cm� ~D~B+Cm;~1+Cm� ~̂C (�1)L+Jz! ; (9)where ~̂C denotes the set of parameters ~C exluding Cm.4



Corollary 1:The number of nontrivial master integrals of a Feynman diagram satisfying theonditions of Theorem 1 and the additional ondition that Ci 6= Cj is equal to thenumber of basi funtions for any hypergeometri funtion on the r.h.s. of Eq. (9).Comment 1:The appliation of the relation�(nx) = nnx�1=2(2�) 1�n2 �(x)��x+ 1n� � � ���x+ n� 1n � ; (10)where n is integer and x = t+ p=q, allows us to express any one-fold Mellin-Barnesintegral as an integral of the form de�ned by Eq. (1).A speial onsideration is neessary when some parameters or some di�erenesbetween parameters are integer. In this ase, the �nal expression for the di�erentialredution of Horn-type hypergeometri funtions has a simpler form (for details, seeRef. [21℄). To evaluate the dimension of the solution spae of the solutions of thedi�erential equation in Eq. (6), a lassial tehnique an be applied [22℄. However,for pratial appliations to Feynman diagrams, we only need two partiular ases,namely ase (i) when the di�erenes between upper (Ai;Dj) and lower (Bk; Cl)parameters are positive integers and ase (ii) when some of the parameters arepositive integers.In ase (i), the original Mellin-Barnes integral in Eq. (5) may be simpli�ed asZ dtzt�(A+m+ t)�(A+ t) F (t) = (A+m�1+�)(A+m�2+�) � � � (A+�)Z dtztF (t) :(11)In this ase, the order of the di�erential equation in Eq. (6) is p � 1, and thereare p � 1 nontrivial master-integrals. After the appliation of step-up/step-downoperators to the r.h.s. of Eq. (9), we obtain the hypergeometri funtions p�1Fp�2,and Corollary 1 is valid.In ase (ii), the di�erential equation in Eq. (6) has a ommon di�erential fator �,sine z (�+1) f(z) = � (zf(z)) : In this ase, the result of the di�erential redutionof Eq. (8) has the following form:P0�( ~A+ ~m1; ~B + ~m2; ~C + ~m3; ~D + ~m4; z) = p�2Xi=0 Ri�i�( ~A; ~B; ~C; ~D; z)+Rp�1(z) ;(12)where P0; Ri are some polynomials and ~mi are sets of integers. The same is true forthe r.h.s. of Eq. (9), so that Corollary 1 is again valid.Corollary 2:The number of nontrivial master-integrals of the Feynman diagram assoiated withthe funtion � de�ned by Eq. (5), under the ondition that Ci 6= Cj, is equal tonumber of basi funtions for any hypergeometri funtion on the r.h.s. of Eq. (9).Comment 2:The di�erential equation in Eq. (6) an be fatorized due to the relationz (�+1+a) f(z) = (�+a) (zf(z)) ; (13)5



where a is an arbitrary parameter. This equation orresponds to the fator �(a �t)�(1 � a + t) in the numerator or denominator of the Mellin-Barnes integral inEq. (5).Comment 3:Also Tarasov [15℄ proposed that, in the framework of Ref. [13℄, there is a one-to-one orrespondene between the number of master integrals obtained from theIBP relations and the dimension of the solution spae of a orresponding system ofdi�erential equations.In this way, we showed that our onjeture presented in Ref. [21℄ is orret.Below, we present its multivariable generalization:Proposition 1:When a multivariable Mellin-Barnes integral an be presented as a linear ombina-tion of multivariable Horn-type hypergeometri funtions with rational oeÆients3about some points zi = z0i , the holonomi rank of the orresponding system of lineardi�erential equations is equal to the holonomi rank of any hypergeometri funtionin its hypergeometri representation.The proof of this proposition is based on the same tehnology, namely the om-parison of the holonomi rank of the system of di�erential equations in Eq. (3)with the holonomi rank of eah term of its hypergeometri representation. A two-variable example of this statement was presented in Ref. [23℄.Conjeture 1:Any polynomial (rational) solution of a multivariable linear system of di�erentialequations related to a Feynman diagram an be written as a produt of one-loopbubble integrals and massless propagator or vertex integrals.3 Feynman diagramsSeveral examples of Feynman diagrams orresponding to the funtion � in Eq. (5)were presented in Refs. [21,23,24℄. The results of the analysis performed inRefs. [21,23,24℄ are in agreement with Corollary 2 of the present paper. Neverthe-less, for the illustration of the advoated tehnique, we onsider here the diagramsdepited in Fig. 1. In all examples, we put ri = 0, sine non-zero values of ri donot a�et the order of the di�erential equations and may be easily restored by therede�nitions �i ! �i � ri.3.1 One-loop vertex QED1Let us onsider the one-loop QED vertex diagram with one massive internal lineand two external lines being on mass shell, whih is labeled QED1 in Fig. 1. It is3We alled suh a representation hypergeometri.
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Figure 1: The diagrams on the r.h.s. emerge from the original one on the l.h.s. witharbitrary positive powers of propagators by the systemati ontration of one line.given byCQED1(�1; �2; j3) � Z dnk[(k � p1)2℄�1 [(k + p2)2℄�2 [k2 �m2℄j3 ����p21=p22=m2 (14)= i1�n�n=2(�m2)n2��12�j3� (n��12�j3) � (j3) � (�1) � (�2) 12�i Z i1�i1 dt�� k2m2�t �(�t)� �(�1+t)�(�2+t)���12+j3�n2 +t�� (n�j3�2�12�2t) ;where �12 = �1+�2 and k2 = (p1� p2)2. This diagram orresponds to a � funtionwith six parameters,CQED1(�1; �2; j3) = �QED1 ��1; �2; �12+j3� n2 ;�; n�j32 � �12; n�j3+12 � �12; 0;�; z� ;(15)and satis�es a third-order di�erential equation,[�(��C1)(��C2) + z(�+A1)(�+A2)(�+A3)℄ �QED1 (A1; A2; A3;�;C1; C2; 0;�; z)= 0 : (16)With the help of di�erential operators,�QED1(Ai + 1) = (� +Ai) �QED1(Ai) ; (17)7



it is easy to redue the value of A1 (or A2) to unity, and the one of A3 to 1 � C1or 1 � C2, depending on whether j3 is even or odd. In this ase, there is a doublefatorization of the di�erential equation in Eq. (16) due to Eq. (13),�(��C1) [(��C2) + z(�+A2)℄ �QED1 (1; A2; 1� C1;�;C1; C2; 0;�; z) = 0 : (18)As a onsequene, there are two polynomial solutions. We onlude from our analy-sis that there are three master integrals orresponding to the order of the di�erentialequation in Eq. (16): one is a nontrivial funtion and two are polynomials.3.2 One-loop vertex QED2Let us now onsider the one-loop QED vertex diagram with two massive internallines and two external lines being on mass shell, whih is labeled QED2 in Fig. 1.It is given byCQED2(j1; j2; �) � Z dnk[(k � p1)2 �m2℄j1 [(k + p2)2 �m2℄j2(k2)� ����p21=p22=m2= i1�n�n=2(�m2)n2�j12��� (n�j12�2�)� (j1) � (j2) � (n�j12��) 12�i Z i1�i1 dt�� k2m2�t��(�t)�(j1 + t)�(j2 + t)� �j12+�� n2+t�� (j12+2t) : (19)This diagram orresponds to a � funtion with six parameters,CQED2(j1; j2; �) = �QED2 �j1; j2; j12+�� n2 ; j122 ; j12+12 ; 0;�;�; z� : (20)Repeatedly applying di�erential operators, �QED2(Ai + 1) = (� +Ai) �QED2(Ai) ;and �QED2(Bi � 1) = (� +Bi�1) �QED2(Bi) ; we redue A1, A2, and B1 to unity,so that the six-parameter � funtion redues to a four-parameter one,�QED2 (1; 1; A; 1; B; 0;�; z) = �QED2 (1; A;B; 0;�; z) ; (21)whih satis�es a seond-order di�erential equation,� [(�+B � 1) + z(�+A)℄ �QED2 (1; A;B; 0;�; z) = 0 : (22)Consequently, there are two master integrals, one of whih is polynomial. Thisresult does not depend on whether � is integer or not.3.3 Two-loop sunset diagram J012Let us now onsider the two-loop sunset diagram from Ref. [25℄, whih is given byJ012(�; �; �) � Z dn(k1k2)[(k1 � p)2℄�[k21 �M2℄�[(k1 � k2)2 �m2℄� ����p2=m2= [i1�n�n=2℄2(�m2)n������� �n2���� (�) � (�) �(�) 12�i Z i1�i1 dt�M2m2 �t (23)� � ��+�� n2+t�� (�+�+��n+t) �(�t)� �n2���t�� (2n���2��2��2t)� (n�����t) � �3n2 �������t� :8



This integral orresponds to a � funtion with eight parameters and satis�es afourth-order di�erential equation,� ���n2 +�� ���n+ �2+�+�� ���n+ ��12 +�+���J012 = (24)z ���n2 +�+�� (��n+�+�+�) (��n+�+�+1)��� 3n2 +�+�+�+1��J012 :With the help of step-up/step-down operators, this equation an be written asfollows:���n2 +I1� (��n+I2) �����n+12+I3�� z��� 3n2 +I4���J012 = 0 : (25)Consequently, there are four master integrals, two of whih are polynomial. Alltopologially possible integrals for this diagram are depited in Fig. 1. The right-most one is polynomial in this approah. In order to have four master integrals, itis neessary that the diagram with the original topology has three master integrals,whih we may take to have the propagator powers (1; 1; 1), (1; 1; 2), and (1; 2; 1).We note that this is in aordane with the results of Ref. [26℄. However, one ofthese three master integrals should be polynomial. This polynomial solution was�rst derived in Ref. [27℄. An alternative derivation has reently be presented inRef. [28℄.3.4 Three-loop vertex diagram FLet us onsider the vertex diagram denoted as F3 in Fig. 1, whih is given byF (~�1; ~�2; ~�3; �1; �2) (26)= Z dn(k1k2k3)[(k�p1)2℄ ~�1 [(k+p2)2℄ ~�2 [k22�m2℄�1 [k23�m2℄�2 [(k1+k2+k23)℄ ~�3 ����p21=p22=0 ;where we have introdued a \dressed" massless propagator, as in Eq. (45) of Ref. [21℄.Instead of three massless lines, we onsider q1, q2, and q3 massless lines orrespond-ing to propagators with powers �1, �2, and �3, respetively. In the present ase, thisis equivalent to the rede�nition �j ! �j � n2 (qj � 1) : The Mellin-Barnes integralfor the vertex diagram of Eq. (26) has the following form:F ( ~�1; ~�2; ~�3; �1; �2)= Const� 12�i Z i1�i1 dt�� p2m2�t �(�1+t)�(�2+t)� ��12� n2+t�� �n2+t�� (�12+2t)�� � ~�3� n2 q3�t�� �n2 q13�~�13+t�� �n2 q23�~�23+t�� �~�123� n2 (q123�1)�t�� �n2 (q3+1)��3+t�� �n2 q123�~�123+t� : (27)where Const is some onstant irrelevant for the di�erential equation.This diagram orresponds to a � funtion with twelve parameters. The �rstsimpli�ation arises from the step�(�1+t)�(�2+t)� (�12+2t) ! �(I1+t)� �12+I2+t� ; (28)9



where Ia are integers. The further proedure strongly depends on whether the valuesof q1 and q2 are even or odd. For simpliity, we put q1 = q2 = q3 = 1 and denotethis integral as F3. Then the following step is valid:� �n2 q13�~�13+t�� �n2 q23�~�23+t�� �n2 (q3+1)��3+t� �����q1=q2=q3=1 ! � (n+I3+t) ; (29)so that F3 satis�es a homogeneous di�erential equation of fourth order that may bewritten in the following form:��+12+I1���+32n+I2���+n2 +I3� (�+n+I4)�F3= z (�+I5)���n2 +I7���+n2 +I6� (�+n+I8) �F3 : (30)Applying step-up/step-down operators, this equation an be onverted to the form��+n2� (�+n)���+12+I1���+32n+I2�� z (�+I3)���n2 +I4���F3 = 0 : (31)Consequently, for the vertex diagram F3 there are four master integrals, two ofwhih are polynomial. All topologially possible integrals for this ase are shown inFig. 1. In order to have four master integrals, it is neessary that the diagram withthe original topology has two master integrals.4 Disussion and onlusionsWe proposed a novel way of �nding linear systems of homogeneous di�erential equa-tions for Feynman diagrams with arbitrary powers of propagators. It is based on theMellin-Barnes representation and does not rely on the IBP relations [4℄. Systems ofequations suh as Eq. (3) are the left ideals in the Weyl algebra of linear di�erentialoperators with polynomial oeÆients. Exploiting the Gr�obner basis tehnique [10℄,the original diagrams may be expliitly redued to sets of basis funtions, and theirholonomi ranks, i.e. the numbers of their linearly independent solutions, may beevaluated.For the one-variable ase, we presented a very simple algorithm for ounting poly-nomial (rational) solutions of di�erential equations arising from the Mellin-Barnesrepresentations assoiated with Feynman diagrams. This redues the problem tothe one of fatorizing the homogeneous di�erential equation over the �eld of poly-nomials. We presented a few simple examples to illustrate our tehnique. Thegeneralization of this algorithm to the multivariable ase is nontrivial.With the help of the new tehnology presented here, we proved the onjetureformulated in Ref. [21℄ regarding the ounting of the numbers of master integrals viahypergeometri representations. This result may be useful for searhing polynomial(rational) solutions of multivariable Feynman diagrams.We suggest that any polynomial (rational) solution orresponds to a produtof one-loop bubbles and massless single-sale diagrams with oeÆients that are10



produts of Gamma funtions (see Conjeture 1). Even in the one-variable ase,suh a orrespondene does not emerge from the appliation of standard IBP rela-tions, as was pointed out in Refs. [27,28℄ for the ase of the two-loop sunset diagramJ012. With help of the tehnique presented here, all suh algebrai relations betweenmaster integrals of the type studied in Ref. [21,23,24℄ may be easily derived.Hypergeometri funtions provide us with a remarkable tool for deepening ourunderstanding of the mathematial strutures underlying Feynman diagrams, andthe present analysis allows us to draw the following piture. From the fat thatany Feynman diagram with arbitrary powers of propagators is reduible to a setof master integrals, inluding bubble diagrams and massless propagators, it followsthat a given Feynman diagram orresponds to a speial funtion with a reduiblemonodromy group (see also Ref. [29,30℄). The dimension of the irreduible part ofthe monodromy group, whih is equal to the dimension of the solution spae of thePfa� system of di�erential equations, is equal to the number of master integralsgenerated via IBP relations, provided the full set of the latter is exploited. It isinteresting to note that the simplest way of avoiding the reduibility of the mon-odromy group is to introdue di�erent non-integer parameters for eah propagator.This may be regarded as a generalization of the analytial regularization.The proposed method to derive di�erential equations from the Mellin-Barnesrepresentations of Feynman diagrams with non-unit values of zi an be diretlyapplied to study massless propagator diagrams at higher loop orders. In this ase,we have to takle with multiple (threefold and higher) Mellin-Barnes integrals. Weshall return to this issue in a future publiation.AknowledgmentsWe are grateful to Oleg Veretin for useful disussions and to Oleg Tarasov for hisinterest to our work. This work was supported in part by the German FederalMinistry for Eduation and Researh BMBF through Grant No. 05 HT6GUA, bythe German Researh Foundation DFG through the Collaborative Researh CentreNo. 676 Partiles, Strings and the Early Universe|The Struture of Matter andSpae-Time, and by the Helmholtz Assoiation HGF through the Helmholtz AllianeHa 101 Physis at the Terasale.Referenes[1℄ T. Regge, Algebrai Topology Methods in the Theory of Feynman Rela-tivisti Amplitudes, Battelle Renontres: 1967 Letures in Mathematis andPhysis, C.M. DeWitt, J.A. Wheeler (Eds.), (W.A. Benjamin, New York,1968), pp. 433{458.[2℄ G. 't Hooft, M. Veltman, Nul. Phys. B 44 (1972) 189.[3℄ A.V. Kotikov, Phys. Lett. B 254 (1991) 158;E. Remiddi, Nuovo Cim. A 110 (1997) 1435.[4℄ F.V. Tkahov, Phys. Lett. B 100 (1981) 65;K.G. Chetyrkin, F.V. Tkahov, Nul. Phys. B 192 (1981) 159.11
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