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1 Introdu
tionThe importan
e of the di�erential-equation approa
h to the des
ription of the an-alyti
al properties of Feynman diagrams has been re
ognized a long time ago [1℄.Within dimension regularization [2℄, the di�erential-equation te
hnique [3℄, based onthe integration-by-part (IBP) relations [4℄, has been one of the most popular toolsfor the analyti
al evaluation of Feynman diagrams during the last de
ade [5℄. Herewe argue that linear systems of homogeneous di�erential equations may be derivedfor Feynman diagrams starting from their Mellin-Barnes representations withoutresorting to IBP relations [6℄.Our staring point is the multiple Mellin-Barnes representation of Feynman dia-grams [7,8,9℄, whi
h may be written in the following form:�(A; ~B;C; ~D; ~z) = Z +i1�i1 d~t�(~t)~z ~t= ConstZ +i1�i1 Ya;b;
;r dt
 �(Pmi=1Aaiti+Ba)�(Prj=1Cbjtj+Db)zPl �kltlk ; (1)where zk are ratios of Mandelstam variables and A; ~B;C; ~D;� are matri
es andve
tors depending linearly on the dimension n of spa
e-time and the powers of thepropagators. An important property of Feynman diagrams is that the matri
es Aand C only in
lude integers. Let us de�ne the polynomials Pi and Qi asPi(~t)Qi(~t) = �(~t+ ~ei)�(~t) ; (2)where ~ei is a unit ve
tor with nonzero element at the i-th pla
e. Then, the integralin Eq. (1) satis�es the following linear system of homogeneous di�erential equations:Qi(~t)��tj!�j 1zi�(A; ~B;C; ~D; ~z) = Pi(~t)��tj!�j �(A; ~B;C; ~D; ~z) ; (3)where �i = zid=dzi, we assume that, in Eq. (1), the number of variables zi is equal tonumber of integration variables ti, and, for simpli
ity, we put �ij = Æij . Moreover,the fun
tion � de�ned in Eq. (1) satis�es the di�erential 
ontiguous relations:�(A; ~B+ ~ea;C; ~D; ~z) =  mXi=1 Aai�i+Ba!�(A; ~B;C; ~D; ~z) ;�(A; ~B;C; ~D� ~eb; ~z) =0� rXj=1Cbj�j+Db1A�(A; ~B;C; ~D; ~z) : (4)This system of di�erential equations may be analyzed using the Gr�obner basis te
h-nique [10℄. Spe
i�
ally, (i) the holonomi
 rank r of the system in Eq. (3) 
an beevaluated,1 and (ii) starting from the dire
t di�erential operators in Eq. (4) and1This 
an also be done using a �nite number of prolongations and 
onverting the original system intoa PfaÆan system [11℄. 2



the system of di�erential equations in Eq. (3), the inverse di�erential operators 
anbe 
onstru
ted [12℄. By the a
tion of su
h di�erential operators on the fun
tion �,the value of any parameter Bj;Dk may be shifted by an arbitrary integer. Thisalgorithm is working for holonomi
 fun
tions if the number of linearly independentsolutions is �nite. As was shown in Ref. [13℄, within analyti
al regularization [14℄,Feynman diagrams satisfy holonomi
 systems of linear di�erential equations underthe 
ondition that all parti
les have di�erent masses. In fa
t, this statement is thebasis of the algorithm proposed in Ref. [15℄. To our understanding, a rigorous prooffor the 
ase of on-shell diagrams or diagrams with zero internal masses does notyet exist, albeit very interesting work has been done in this dire
tion [16℄. For ouranalysis, it is suÆ
ient to assume that there is a set of independent variables zi forea
h Mellin-Barnes integral2 in Eq. (1). Moreover, it has been shown [18℄ re
entlythat Mellin-Barnes integrals satisfy systems of di�erential equations 
orrespondingto Gelfand-Kapranov-Zelevisky hypergeometri
 equations [19℄. Another ne
essary
ondition is that two 
ontours di�ering by a translation by one unit along the realaxis are equivalent. From the analysis performed in Refs. [8,20℄, we expe
t that thisstatement is valid for all Feynman diagrams before 
onstru
ting " expansions.The aim of the present paper is to illustrate this approa
h and to outline howit 
an be used to 
ount master integrals, 
onsidering as examples one-fold Mellin-Barnes integrals and the 
orresponding Feynman diagrams. In fa
t, the evaluation ofmaster integrals is often the bottlene
k of multi-loop 
al
ulations of both Feynmandiagrams and s
attering amplitudes, espe
ially if several di�erent mass s
ales areinvolved, and any opportunity to redu
e their number below the a
hievements ofthe standard te
hniques of solving IBP relations, as implemented in various publi
lyavailable 
omputer 
odes, should be highly wel
ome. The te
hnique advo
ated heremay also allow one to gain deeper insights into the mathemati
al stru
tures ofmulti-s
ale Feynman diagrams.2 One-fold Mellin-Barnes integralLet us 
onsider the fun
tion�( ~A; ~B; ~C; ~D; z; r) = C� Z
+iR dtQKi=0 � (Ai + t)QLj=0 � (Cj � t)QRk=0 � (Bk + t)QJl=0 � (Dl � t)�(�t)zt+r ; (5)where C� is some z-independent 
onstant depending on ratios of � fun
tions witharguments being linear 
ombinations of powers of propagators and the spa
e-timedimension n. In the remainder of this letter, we assume that r = 0. In order torestore a nonzero value of r, it is suÆ
ient to substitute � ! � � r. Let us assumethat the di�eren
es between any two parameters Ai; Bj ; Ck;Dl are not integers.2 The appli
ation of the summation te
hnique to Mellin-Barnes integrals with zi = 1 was dis
ussed inRef. [17℄.
3



Then, this fun
tion satis�es the following homogeneous di�erential equation:(�1)L+1� RYi=1(�+Bi�1) LYj=1(��Cj)�( ~A; ~B; ~C; ~D; z)= (�1)Jz KYi=1(�+Ai) JYj=1(��Dj+1)�( ~A; ~B; ~C; ~D; z) ; (6)where � = zd=dz. Let us 
onsider the 
ase of the non-
on
uent fun
tion, for whi
hthe orders of the di�erential equations on the l.h.s. and r.h.s. of Eq. (6) are equalto ea
h other, viz. K + J = 1 + L+R � p ; (7)so that the fun
tion � satis�es a di�erential equation of order p. In this 
ase, thereare p linearly independent solutions of the di�erential equation. In a

ordan
e withTakayama's algorithm [12℄, the di�erential operators inverse to the operators de�nedby Eq. (4) 
an be 
onstru
ted, and the result of the di�erential redu
tion appliedto the fun
tion � has the following form:P0�( ~A+ ~m1; ~B + ~m2; ~C + ~m3; ~D + ~m4; z) = p�1Xi=0 Ri�i�( ~A; ~B; ~C; ~D; z) ; (8)where P0; Ri are some polynomials and ~mi are sets of integers.Theorem 1:Any Feynman diagram asso
iated with the fun
tion � de�ned by the Mellin-Barnesintegral in Eq. (5), under the 
onditions that all parameters as well the di�eren
esbetween any two parameters are not integer and Eq. (7) is valid, has p master in-tegrals (in
luding all integrals following from the original one by 
ontra
ting one ormore lines), where p is de�ned by Eq. (7).This theorem follows from Takayama's analysis of the di�erential equations inEq. (6) with irredu
ible monodromy groups.Under the 
onditions of Theorem 1 and the additional 
ondition Ci 6= Cj, it ispossible to 
lose the 
ontour of integration [8℄ and to write the fun
tion � in termsof linear 
ombinations of hypergeometri
 fun
tions whose series representations arewell de�ned in the vi
inity of the point z = 0:z�rC� �( ~A; ~B; ~C; ~D; z) = QKi=1 � (Ai)QLj=1 � (Cj)QRk=1 � (Bk)QJl=1 � (Dl)pFp�1 ~A;~1� ~D~B;~1� ~C (�1)1+L+Jz!+ LXm=1 zCmQKi=1 � (Ai+Cm)QLj=1;j 6=m � (Cj�Cm)QRk=1 � (Bk+Cm)QJl=1 � (Dl�Cm)� pFp�1 ~A+Cm;~1+Cm� ~D~B+Cm;~1+Cm� ~̂C (�1)L+Jz! ; (9)where ~̂C denotes the set of parameters ~C ex
luding Cm.4



Corollary 1:The number of nontrivial master integrals of a Feynman diagram satisfying the
onditions of Theorem 1 and the additional 
ondition that Ci 6= Cj is equal to thenumber of basi
 fun
tions for any hypergeometri
 fun
tion on the r.h.s. of Eq. (9).Comment 1:The appli
ation of the relation�(nx) = nnx�1=2(2�) 1�n2 �(x)��x+ 1n� � � ���x+ n� 1n � ; (10)where n is integer and x = t+ p=q, allows us to express any one-fold Mellin-Barnesintegral as an integral of the form de�ned by Eq. (1).A spe
ial 
onsideration is ne
essary when some parameters or some di�eren
esbetween parameters are integer. In this 
ase, the �nal expression for the di�erentialredu
tion of Horn-type hypergeometri
 fun
tions has a simpler form (for details, seeRef. [21℄). To evaluate the dimension of the solution spa
e of the solutions of thedi�erential equation in Eq. (6), a 
lassi
al te
hnique 
an be applied [22℄. However,for pra
ti
al appli
ations to Feynman diagrams, we only need two parti
ular 
ases,namely 
ase (i) when the di�eren
es between upper (Ai;Dj) and lower (Bk; Cl)parameters are positive integers and 
ase (ii) when some of the parameters arepositive integers.In 
ase (i), the original Mellin-Barnes integral in Eq. (5) may be simpli�ed asZ dtzt�(A+m+ t)�(A+ t) F (t) = (A+m�1+�)(A+m�2+�) � � � (A+�)Z dtztF (t) :(11)In this 
ase, the order of the di�erential equation in Eq. (6) is p � 1, and thereare p � 1 nontrivial master-integrals. After the appli
ation of step-up/step-downoperators to the r.h.s. of Eq. (9), we obtain the hypergeometri
 fun
tions p�1Fp�2,and Corollary 1 is valid.In 
ase (ii), the di�erential equation in Eq. (6) has a 
ommon di�erential fa
tor �,sin
e z (�+1) f(z) = � (zf(z)) : In this 
ase, the result of the di�erential redu
tionof Eq. (8) has the following form:P0�( ~A+ ~m1; ~B + ~m2; ~C + ~m3; ~D + ~m4; z) = p�2Xi=0 Ri�i�( ~A; ~B; ~C; ~D; z)+Rp�1(z) ;(12)where P0; Ri are some polynomials and ~mi are sets of integers. The same is true forthe r.h.s. of Eq. (9), so that Corollary 1 is again valid.Corollary 2:The number of nontrivial master-integrals of the Feynman diagram asso
iated withthe fun
tion � de�ned by Eq. (5), under the 
ondition that Ci 6= Cj, is equal tonumber of basi
 fun
tions for any hypergeometri
 fun
tion on the r.h.s. of Eq. (9).Comment 2:The di�erential equation in Eq. (6) 
an be fa
torized due to the relationz (�+1+a) f(z) = (�+a) (zf(z)) ; (13)5



where a is an arbitrary parameter. This equation 
orresponds to the fa
tor �(a �t)�(1 � a + t) in the numerator or denominator of the Mellin-Barnes integral inEq. (5).Comment 3:Also Tarasov [15℄ proposed that, in the framework of Ref. [13℄, there is a one-to-one 
orresponden
e between the number of master integrals obtained from theIBP relations and the dimension of the solution spa
e of a 
orresponding system ofdi�erential equations.In this way, we showed that our 
onje
ture presented in Ref. [21℄ is 
orre
t.Below, we present its multivariable generalization:Proposition 1:When a multivariable Mellin-Barnes integral 
an be presented as a linear 
ombina-tion of multivariable Horn-type hypergeometri
 fun
tions with rational 
oeÆ
ients3about some points zi = z0i , the holonomi
 rank of the 
orresponding system of lineardi�erential equations is equal to the holonomi
 rank of any hypergeometri
 fun
tionin its hypergeometri
 representation.The proof of this proposition is based on the same te
hnology, namely the 
om-parison of the holonomi
 rank of the system of di�erential equations in Eq. (3)with the holonomi
 rank of ea
h term of its hypergeometri
 representation. A two-variable example of this statement was presented in Ref. [23℄.Conje
ture 1:Any polynomial (rational) solution of a multivariable linear system of di�erentialequations related to a Feynman diagram 
an be written as a produ
t of one-loopbubble integrals and massless propagator or vertex integrals.3 Feynman diagramsSeveral examples of Feynman diagrams 
orresponding to the fun
tion � in Eq. (5)were presented in Refs. [21,23,24℄. The results of the analysis performed inRefs. [21,23,24℄ are in agreement with Corollary 2 of the present paper. Neverthe-less, for the illustration of the advo
ated te
hnique, we 
onsider here the diagramsdepi
ted in Fig. 1. In all examples, we put ri = 0, sin
e non-zero values of ri donot a�e
t the order of the di�erential equations and may be easily restored by therede�nitions �i ! �i � ri.3.1 One-loop vertex QED1Let us 
onsider the one-loop QED vertex diagram with one massive internal lineand two external lines being on mass shell, whi
h is labeled QED1 in Fig. 1. It is3We 
alled su
h a representation hypergeometri
.
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Figure 1: The diagrams on the r.h.s. emerge from the original one on the l.h.s. witharbitrary positive powers of propagators by the systemati
 
ontra
tion of one line.given byCQED1(�1; �2; j3) � Z dnk[(k � p1)2℄�1 [(k + p2)2℄�2 [k2 �m2℄j3 ����p21=p22=m2 (14)= i1�n�n=2(�m2)n2��12�j3� (n��12�j3) � (j3) � (�1) � (�2) 12�i Z i1�i1 dt�� k2m2�t �(�t)� �(�1+t)�(�2+t)���12+j3�n2 +t�� (n�j3�2�12�2t) ;where �12 = �1+�2 and k2 = (p1� p2)2. This diagram 
orresponds to a � fun
tionwith six parameters,CQED1(�1; �2; j3) = �QED1 ��1; �2; �12+j3� n2 ;�; n�j32 � �12; n�j3+12 � �12; 0;�; z� ;(15)and satis�es a third-order di�erential equation,[�(��C1)(��C2) + z(�+A1)(�+A2)(�+A3)℄ �QED1 (A1; A2; A3;�;C1; C2; 0;�; z)= 0 : (16)With the help of di�erential operators,�QED1(Ai + 1) = (� +Ai) �QED1(Ai) ; (17)7



it is easy to redu
e the value of A1 (or A2) to unity, and the one of A3 to 1 � C1or 1 � C2, depending on whether j3 is even or odd. In this 
ase, there is a doublefa
torization of the di�erential equation in Eq. (16) due to Eq. (13),�(��C1) [(��C2) + z(�+A2)℄ �QED1 (1; A2; 1� C1;�;C1; C2; 0;�; z) = 0 : (18)As a 
onsequen
e, there are two polynomial solutions. We 
on
lude from our analy-sis that there are three master integrals 
orresponding to the order of the di�erentialequation in Eq. (16): one is a nontrivial fun
tion and two are polynomials.3.2 One-loop vertex QED2Let us now 
onsider the one-loop QED vertex diagram with two massive internallines and two external lines being on mass shell, whi
h is labeled QED2 in Fig. 1.It is given byCQED2(j1; j2; �) � Z dnk[(k � p1)2 �m2℄j1 [(k + p2)2 �m2℄j2(k2)� ����p21=p22=m2= i1�n�n=2(�m2)n2�j12��� (n�j12�2�)� (j1) � (j2) � (n�j12��) 12�i Z i1�i1 dt�� k2m2�t��(�t)�(j1 + t)�(j2 + t)� �j12+�� n2+t�� (j12+2t) : (19)This diagram 
orresponds to a � fun
tion with six parameters,CQED2(j1; j2; �) = �QED2 �j1; j2; j12+�� n2 ; j122 ; j12+12 ; 0;�;�; z� : (20)Repeatedly applying di�erential operators, �QED2(Ai + 1) = (� +Ai) �QED2(Ai) ;and �QED2(Bi � 1) = (� +Bi�1) �QED2(Bi) ; we redu
e A1, A2, and B1 to unity,so that the six-parameter � fun
tion redu
es to a four-parameter one,�QED2 (1; 1; A; 1; B; 0;�; z) = �QED2 (1; A;B; 0;�; z) ; (21)whi
h satis�es a se
ond-order di�erential equation,� [(�+B � 1) + z(�+A)℄ �QED2 (1; A;B; 0;�; z) = 0 : (22)Consequently, there are two master integrals, one of whi
h is polynomial. Thisresult does not depend on whether � is integer or not.3.3 Two-loop sunset diagram J012Let us now 
onsider the two-loop sunset diagram from Ref. [25℄, whi
h is given byJ012(�; �; �) � Z dn(k1k2)[(k1 � p)2℄�[k21 �M2℄�[(k1 � k2)2 �m2℄� ����p2=m2= [i1�n�n=2℄2(�m2)n������� �n2���� (�) � (�) �(�) 12�i Z i1�i1 dt�M2m2 �t (23)� � ��+�� n2+t�� (�+�+��n+t) �(�t)� �n2���t�� (2n���2��2��2t)� (n�����t) � �3n2 �������t� :8



This integral 
orresponds to a � fun
tion with eight parameters and satis�es afourth-order di�erential equation,� ���n2 +�� ���n+ �2+�+�� ���n+ ��12 +�+���J012 = (24)z ���n2 +�+�� (��n+�+�+�) (��n+�+�+1)��� 3n2 +�+�+�+1��J012 :With the help of step-up/step-down operators, this equation 
an be written asfollows:���n2 +I1� (��n+I2) �����n+12+I3�� z��� 3n2 +I4���J012 = 0 : (25)Consequently, there are four master integrals, two of whi
h are polynomial. Alltopologi
ally possible integrals for this diagram are depi
ted in Fig. 1. The right-most one is polynomial in this approa
h. In order to have four master integrals, itis ne
essary that the diagram with the original topology has three master integrals,whi
h we may take to have the propagator powers (1; 1; 1), (1; 1; 2), and (1; 2; 1).We note that this is in a

ordan
e with the results of Ref. [26℄. However, one ofthese three master integrals should be polynomial. This polynomial solution was�rst derived in Ref. [27℄. An alternative derivation has re
ently be presented inRef. [28℄.3.4 Three-loop vertex diagram FLet us 
onsider the vertex diagram denoted as F3 in Fig. 1, whi
h is given byF (~�1; ~�2; ~�3; �1; �2) (26)= Z dn(k1k2k3)[(k�p1)2℄ ~�1 [(k+p2)2℄ ~�2 [k22�m2℄�1 [k23�m2℄�2 [(k1+k2+k23)℄ ~�3 ����p21=p22=0 ;where we have introdu
ed a \dressed" massless propagator, as in Eq. (45) of Ref. [21℄.Instead of three massless lines, we 
onsider q1, q2, and q3 massless lines 
orrespond-ing to propagators with powers �1, �2, and �3, respe
tively. In the present 
ase, thisis equivalent to the rede�nition �j ! �j � n2 (qj � 1) : The Mellin-Barnes integralfor the vertex diagram of Eq. (26) has the following form:F ( ~�1; ~�2; ~�3; �1; �2)= Const� 12�i Z i1�i1 dt�� p2m2�t �(�1+t)�(�2+t)� ��12� n2+t�� �n2+t�� (�12+2t)�� � ~�3� n2 q3�t�� �n2 q13�~�13+t�� �n2 q23�~�23+t�� �~�123� n2 (q123�1)�t�� �n2 (q3+1)��3+t�� �n2 q123�~�123+t� : (27)where Const is some 
onstant irrelevant for the di�erential equation.This diagram 
orresponds to a � fun
tion with twelve parameters. The �rstsimpli�
ation arises from the step�(�1+t)�(�2+t)� (�12+2t) ! �(I1+t)� �12+I2+t� ; (28)9



where Ia are integers. The further pro
edure strongly depends on whether the valuesof q1 and q2 are even or odd. For simpli
ity, we put q1 = q2 = q3 = 1 and denotethis integral as F3. Then the following step is valid:� �n2 q13�~�13+t�� �n2 q23�~�23+t�� �n2 (q3+1)��3+t� �����q1=q2=q3=1 ! � (n+I3+t) ; (29)so that F3 satis�es a homogeneous di�erential equation of fourth order that may bewritten in the following form:��+12+I1���+32n+I2���+n2 +I3� (�+n+I4)�F3= z (�+I5)���n2 +I7���+n2 +I6� (�+n+I8) �F3 : (30)Applying step-up/step-down operators, this equation 
an be 
onverted to the form��+n2� (�+n)���+12+I1���+32n+I2�� z (�+I3)���n2 +I4���F3 = 0 : (31)Consequently, for the vertex diagram F3 there are four master integrals, two ofwhi
h are polynomial. All topologi
ally possible integrals for this 
ase are shown inFig. 1. In order to have four master integrals, it is ne
essary that the diagram withthe original topology has two master integrals.4 Dis
ussion and 
on
lusionsWe proposed a novel way of �nding linear systems of homogeneous di�erential equa-tions for Feynman diagrams with arbitrary powers of propagators. It is based on theMellin-Barnes representation and does not rely on the IBP relations [4℄. Systems ofequations su
h as Eq. (3) are the left ideals in the Weyl algebra of linear di�erentialoperators with polynomial 
oeÆ
ients. Exploiting the Gr�obner basis te
hnique [10℄,the original diagrams may be expli
itly redu
ed to sets of basis fun
tions, and theirholonomi
 ranks, i.e. the numbers of their linearly independent solutions, may beevaluated.For the one-variable 
ase, we presented a very simple algorithm for 
ounting poly-nomial (rational) solutions of di�erential equations arising from the Mellin-Barnesrepresentations asso
iated with Feynman diagrams. This redu
es the problem tothe one of fa
torizing the homogeneous di�erential equation over the �eld of poly-nomials. We presented a few simple examples to illustrate our te
hnique. Thegeneralization of this algorithm to the multivariable 
ase is nontrivial.With the help of the new te
hnology presented here, we proved the 
onje
tureformulated in Ref. [21℄ regarding the 
ounting of the numbers of master integrals viahypergeometri
 representations. This result may be useful for sear
hing polynomial(rational) solutions of multivariable Feynman diagrams.We suggest that any polynomial (rational) solution 
orresponds to a produ
tof one-loop bubbles and massless single-s
ale diagrams with 
oeÆ
ients that are10



produ
ts of Gamma fun
tions (see Conje
ture 1). Even in the one-variable 
ase,su
h a 
orresponden
e does not emerge from the appli
ation of standard IBP rela-tions, as was pointed out in Refs. [27,28℄ for the 
ase of the two-loop sunset diagramJ012. With help of the te
hnique presented here, all su
h algebrai
 relations betweenmaster integrals of the type studied in Ref. [21,23,24℄ may be easily derived.Hypergeometri
 fun
tions provide us with a remarkable tool for deepening ourunderstanding of the mathemati
al stru
tures underlying Feynman diagrams, andthe present analysis allows us to draw the following pi
ture. From the fa
t thatany Feynman diagram with arbitrary powers of propagators is redu
ible to a setof master integrals, in
luding bubble diagrams and massless propagators, it followsthat a given Feynman diagram 
orresponds to a spe
ial fun
tion with a redu
iblemonodromy group (see also Ref. [29,30℄). The dimension of the irredu
ible part ofthe monodromy group, whi
h is equal to the dimension of the solution spa
e of thePfa� system of di�erential equations, is equal to the number of master integralsgenerated via IBP relations, provided the full set of the latter is exploited. It isinteresting to note that the simplest way of avoiding the redu
ibility of the mon-odromy group is to introdu
e di�erent non-integer parameters for ea
h propagator.This may be regarded as a generalization of the analyti
al regularization.The proposed method to derive di�erential equations from the Mellin-Barnesrepresentations of Feynman diagrams with non-unit values of zi 
an be dire
tlyapplied to study massless propagator diagrams at higher loop orders. In this 
ase,we have to ta
kle with multiple (threefold and higher) Mellin-Barnes integrals. Weshall return to this issue in a future publi
ation.A
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