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DESY 12-065, Edinburgh 2012/04, HU-EP-12/14, Liverpool LTH 919Wilson loops to 20th order numerial stohasti perturbation theoryR. Horsley,1 G. Hotzel �,2 E.-M. Ilgenfritz,3, 4 R. Millo,5 H. Perlt,2P. E. L. Rakow,5 Y. Nakamura,6 G. Shierholz,7 and A. Shiller21Shool of Physis, University of Edinburgh, Edinburgh EH9 3JZ, UK2Institut f�ur Theoretishe Physik, Universit�at Leipzig, D-04109 Leipzig, Germany3Institut f�ur Physik, Humboldt-Universit�at zu Berlin, D-12489 Berlin, Germany4Joint Institute for Nulear Researh, VBLHEP, 141980 Dubna, Russia5Theoretial Physis Division, Department of Mathematial Sienes,University of Liverpool, Liverpool L69 3BX, UK6RIKEN Advaned Institute for Computational Siene, Kobe, Hyogo 650-0047, Japan7Deutshes Elektronen-Synhrotron DESY, D-22603 Hamburg, GermanyWe alulate perturbative ontributions of Wilson loops of various sizes up to order 20 in SU(3)pure lattie gauge theory at di�erent lattie sizes for Wilson gauge ation using the tehnique ofnumerial stohasti perturbation theory. This allows us to investigate the perturbative series forvarious Wilson loops at high orders of perturbation theory. We observe di�erenes in the behaviorof those series as funtion of the loop order n. Up to n = 20 we do not �nd evidene for the fatorialgrowth of the expansion oeÆients often assumed to haraterize an asymptoti series. Based on theatually observed behavior we sum the series in a model parametrized by hypergeometri funtions.For Wilson loops of moderate sizes the summed series in boosted perturbation theory reah stableplateaus already for moderate orders in perturbation theory. The oeÆients in the boosted seriesbeome muh more stable in the result of smoothing the oeÆients of the original series e�etedby the hypergeometri model. We introdue generalized ratios of Wilson loops of di�erent sizes.Together with the orresponding Wilson loops from standard Monte Carlo measurements they enableus to assess their non-perturbative parts.PACS numbers: 11.15.Ha, 12.38.G, 12.38.Cy,12.38.AwKeywords: Lattie gauge theory, stohasti perturbation theoryI. INTRODUCTIONSine the non-perturbative gluon ondensate hasbeen introdued by Shifman, Vainshtein and Za-kharov [1℄ there have been many attempts to ob-tain reliable numerial values for this quantity. Ithas beome lear very soon that lattie gauge the-ory provides a promising tool to alulate the gluonondensate from �rst priniples using Wilson loopsWNM of various sizes N�M . The perturbative ex-pansion of the Wilson loop { whih does not dependon an external sale { is espeially simple sine itannot depend on logarithms. In [2, 3℄ the pla-quette was used whereas larger Wilson loops havebeen investigated in [4, 5℄. In all ases it turned out,that the knowledge { as preisely as possible { ofthe large order perturbative tail of the Wilson loopsis ruial. In the last deade, the appliation of nu-merial stohasti perturbation theory (NSPT) [6℄has pushed the perturbative order of the plaquetteup to order n = 10 [7℄ and even n = 16 [8℄.Apart from the desired evaluation of the gluon�Present address: Institut f�ur Physik, Humboldt-Universit�atzu Berlin, D-12489 Berlin, Germany

ondensate, there is a general interest in the be-havior of perturbative series in QCD (for an inves-tigation see [9℄). In perturbation theory observablesan be written as series of the formO � Xn n�n ; (1)where � denotes some generi oupling, e.g. �s. Itis generally believed that these series are asymp-toti ones, and it is often assumed that for largen the leading growth of the oeÆients n an beparametrized as [10℄n � C1 (C2)n �(n+ C3) (2)with some onstants C1; C2; C3, i.e., they show afatorial behavior.Using the tehnique of NSPT one an reahloop orders of perturbation theory where a possibleset-in of this assumed behavior beomes testable.In [11℄ Narison and Zakharov disussed the di�er-ene between short and long perturbative series andits impat on the determination of the gluon on-densate.In this paper we present perturbative alula-tions of Wilson loops in NSPT for the Wilson gauge
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2ation (with � = 6=g2)SW [U ℄ = �XP �1� 16Tr�UP + UyP�� (3)up to order n = 20 for lattie sizes L4 with L =4; 6; 8; 12. The omputation for L = 12 were per-formed on a NEC SX-9 omputer of RCNP at Os-aka University, all others on Linux/HP lusters atLeipzig University.The paper is organized as follows. In Setion IIwe explain how the loop order expansion of Wilsonloops has been obtained in NSPT. In Setion IIIwe disuss a model whih allows us to sum up om-pletely the obtained Wilson loops series on �nitelatties. As an alternative we apply boosted per-turbation theory onsisting in a rearrangement ofthe series suh that already for a summation up torelatively low loop number good onvergene of thesummed series an be ahieved. These results areused to estimate the gluon ondensate in SetionIV. Finally we draw our onlusions.Some preliminary results have been presented inreent lattie proeedings [12, 13℄. In the presentwork we give the omputational details of theLangevin alulation for the �nal statistis reahedand signi�antly extend the analysis part usingboosting and series summation as well as addingnew aspets to the analysis of Wilson loops of mod-erate size.II. NSPT AND WILSON LOOPS UP TO 20LOOPSA. The strategy of NSPTNumerial stohasti perturbation theory {based on stohasti quantization [14℄ { allows per-turbative alulations on �nite latties up to �nitebut high loop order n, unrivalled by the standarddiagrammati approah in lattie perturbation the-ory. Pratial limits are set only by omputer time,storage limitations and mahine preision. For in-stane, in order to alulate in the n-loop orderin the simplest realization of NSPT in the Eulersheme, one has to keep simultaneously links orre-sponding to roughly 2n gauge �eld on�gurationsfor a given lattie size. If one wants to keep forpratial reasons also the gauge �elds (vetor po-tentials) besides the gauge �eld links themselves,the storage requirement is even doubled. In addi-tion, the omputer time of the Langevin simulationsales quite severely, we found it roughly goes liken3.

The algorithm of NSPT has been introdued anddisussed in detail in [6, 15℄. For onveniene, wewill here repeat the main points for pure SU(3) lat-tie gauge theory. The stohasti evolution of thegauge �eld links Ux;�, loated at the link betweenlattie sites x and x + �̂, ours in an additional\Langevin time" � . This proess is desribed bythe Langevin equation��� Ux;�(� ; �) = i �rx;�SW [U ℄��x;�(�)	 Ux;�(� ; �) :(4)The so-alled drift term is given by the variationof the Eulidean gauge ation SW [U ℄: it is writtenin terms of the left Lie derivative rx;� whih keepsthe links in the SU(3) group manifold. The proessis made stohasti by additive white noise �x;�(�).In the limit of large � the distribution of subse-quent, simultaneous gauge link �elds onverges tothe Gibbs measure P [U ℄ / exp(�SW [U ℄).As in any numerial approah one needs to dis-retize the \Langevin time" as a sequene � ! k�,with running step number k. It is known that, inorder to extrat orret equilibrium physis, oneneeds to perform the double extrapolation k ! 1and � ! 0, the latter in order not to violate de-tailed balane. For the numerial solution of theLangevin equation we adhere to a partiular ver-sion of the Euler sheme that guarantees all thelink matries Ux;� 2 SU(3) to stay in the groupmanifold:Ux;�(k + 1; �) = exp�i Fx;�[U; �℄� Ux;�(k; �) (5)with the fore term for the update of the gauge linksUx;�(k; �) in the formFx;�[U; �℄ = �rx;�SW [U ℄ +p� �x;� ; (6)� being a traeless 3�3 noise matrix. In ase of theWilson gauge ation that fore term takes the formFx;� = ��12 XUP�Ux;� h�UP � UyP��13Tr�UP � UyP� 1�+p� �x;� : (7)We expand eah link matrix at any time stepin the bare oupling onstant g around the trivialvauum Ux;� = 1. Sine � = 6=g2, the expansionreadsUx;�(k; �)! 1+ Xm�1��m=2U (m)x;� (k; �) : (8)If one resales the time step to " = ��, the expan-sion (8) onverts the Langevin equation (5) into a



3system of simultaneous updates in terms of the ex-pansion oeÆients of U (m)x;� (k; �) and of similar ex-pansion oeÆients for the fore Fx;� in (7), but freeof adjustable onstants. While the random noise �enters only the lowest order equation, higher ordersare rendered stohasti by the noise propagatingfrom lower to higher order terms. The system isusually trunated aording to the maximal orderof the perturbative gauge link �elds one is inter-ested in.For NSPT it is indispensable to perform stohas-ti gauge �xing by using a variant of gauge trans-formations UGx;� = Gx Ux;�Gyx+�̂ (9)with Gx derived from the Landau gauge and ex-panded in powers of 1=p� � g. A onvenient so-lution for the gauge transformation G omes withthe hoieGx = exp(��X� �Ax+�̂=2;� �Ax��̂=2;�a �) ;(10)where the series variant of the expression has to betaken. Here the (antihermitean) vetor potentialAx+�̂=2;� is related to the link matries Ux;� viaAx+�̂=2;� = logUx;� ; (11)and an expansion similar to (8) taking values in thealgebra su(3) is applied for the potential.The need for stohasti gauge �xing omes fromthe fat that the di�usion of the longitudinal om-ponent of the A� �elds is unbounded and henetheir norms would diverge in the ourse of thestohasti proess. Although gauge-invariant quan-tities are in priniple not a�eted by these diver-genes, the performane eventually runs into trou-ble due to loss of auray. It turns out that onestep of (9) using (10) alternating with the Langevinstep (5) is suÆient to keep utuations under on-trol, if � is hosen of order � � ".The inuene of zero modes of the gluon �eld onthe performane of the Langevin proess has beenritially disussed in [15℄. Sine zero modes (on-stant modes) of the gauge �elds do not ontributeto the disretized divergene present in (10), theywould not be subtrated by performing the gaugetransformation. We take the simplest presriptionof subtrating zero modes at every order by hand.This ompletes the spei�ation how NSPT is usedin our alulations.Let us remark that, whenever we speak aboutontributions of some order to an observable on-struted out of links, this has to be understood in

the sense of an expansionhOi ! Xm�0��m=2hO(m)i ; (12)and the expansion oeÆient hO(m)i are extratedout of the expanded r.h.s. of (8) by omparing o-eÆients of equal powers ��m=2 (or gm). In thenotation of (12) even integersm orrespond to gen-uine loop ontributions (with loop order m=2). Inthe omputer implementation of NSPT we prati-ally measure observables for various small but �-nite values of ". The �nal result is then obtainedby performing the extrapolation to " ! 0 for theobservables in eah loop order.B. NSPT results for Wilson loops in highorder perturbation theoryIn lattie gauge theory the Wilson loop as a gaugeinvariant quantity built only out of gauge �eld linksis de�ned as the trae of a produt of link �eldsalong a losed path CWC [U ℄ = 13 Tr Y(x;�)2CUx;� : (13)Having at our disposal the expansion of the links(at �nite Langevin step size) lose to the trivialvauum U (0)x;� � 1 to all orders in g / 1=p�1Ux;� � Xm�0U (m)x;� gm ; (14)we onstrut perturbative Wilson loops within agiven \Langevin on�guration" (at �xed \Langevintime"). Inserting the expansion (14) for the linksin (13) we ollet terms of equal power in g on theright hand side and identify these with the n-thloop order ontribution W (n)C on the left hand sideXn=0;1=2;1;3=2;:::W (n)C g2n =13 Tr Y(x;�)2Ch Xmx;��0U (mx;�)x;� gmx;�i : (15)The �nal result involves averaging over di�erenton�gurations obtained during the Langevin evo-lution and the extrapolation to "! 0.1 From now we use as expansion parameter the gauge ou-pling g, using the same notation for the oeÆients U(m)x;� .



4Here we onsider retangular Wilson loops C ofsize N �M , where we restrit the maximal sidelength of the Wilson loop to half of the lattie sizeL=2 for a lattie L4. Therefore, we identify the gen-eral perturbative loop order expansion of the Wil-son loopWNM in terms of the bare lattie ouplingg as WNM = Xn=0;1=2;1;3=2;::: W (n)NM g2n (16)with the Wilson loop expansion oeÆients W (n)NM(W (0)NM � 1). The integer powers n = 1; 2; : : : inthe series (16) denote the perturbative loop ordersas in diagrammati perturbation theory.In addition, following (15) we measure analoguesof the loop oeÆients W (n)NM also for half-integern = 3=2; 5=2; : : : (Due to the olor trae the oef-�ient with n = 1=2 is identially equal to zero).Averages over oeÆients with those half-integers{ whih desribe non-loop ontributions { shouldvanish numerially after averaging over a suÆientnumber of measurements and de�ne some level of\noise" for �nite statistis to be ompared to theloop ontributions. While higher loop order on-tributions derease fast with the loop number, the\noise" does not derease suÆiently fast, stayingnear zero. Therefore, we adopt here the riterionthat we an take the expansion oeÆients for agiven loop order n for granted (\reliable") only ifthey an be learly distinguished numerially fromthe noisy results for adjaent non-loop ontribu-tions of orders n � 1=2 and n + 1=2. We do notrule out the possibility of an extrapolation to zeroLangevin step size rossing in a systemati way thenoise region near zero from a positive/negative o-eÆient at large " to a negative/positive oeÆientat smallest ". The oeÆient extrapolated to " = 0might be as small as the noise of the adjaent non-loop ontributions.Let us add some details of the perturbativeLangevin simulation: Instead of having one linkon�guration as in usual Monte Carlo studies, wehave to handle 40 link on�gurations building our\perturbative" on�guration for eah g order toreah loop order 20 at eah Langevin step. So, un-avoidably, the di�erent orders in g are orrelated,sine we have to use a orrelated system of Langevinequations for eah order.Any simulation for a hosen Langevin step size" starts from a link on�guration, where the ze-roth order in g of the expanded links is put equalto one (and remains so during all the evolution),whereas all non-zero orders in g are set initially tozero (a \old" start). So any loop ontribution is by

onstrution vanishing at the beginning. Startingfrom here with the Langevin proess inluding thenoise term, the non-zero g orders of the links iter-atively obtain non-zero values at eah link positionstarting from the lowest order in g. Therefore, thehighest order in g needs the highest minimal num-ber of Langevin steps to reah equilibrium. Withdereasing step size " that minimal number also in-reases.As a riterion to reah the equilibrium of theLangevin proess, we studied the behavior of theperturbative plaquette. By monitoring the highestorder of the plaquette at the lowest hosen step size" = 0:01, we observed that equilibrium is reahedafter roughly 2000 Langevin steps. To be on thesafe side we have disarded the �rst 5000 Langevinsteps after a \old" start before we began mea-surements of the perturbative Wilson loops. Toinrease statistis, we also reated new \parallel"Langevin trajetories (keeping the same parameter") starting from a on�guration already in equilib-rium (given in replias representing all orders in g)after hanging the seeds for the white noise. Only inthese ases the strategy of averaging over indepen-dent realizations of noise has been followed. Other-wise, subsequent sequenes of noise are onsideredas independent.We have observed that the autoorrelations in-rease on one side with inreasing loop order andon the other side with inreasing Wilson loop size.The perturbative Wilson loops have been measuredafter eah 20th Langevin step to redue autoorrela-tions. The integrated autoorrelation times are in-luded in the error estimate of the measured quan-tities. Typially for the 1�1 Wilson loop the esti-mated autoorrelation was O(1) at the lowest loop-orders and inreased up to O(10) at the highestloop orders. So the relative errors signi�antly in-rease with the loop order. As a result, we haveolleted the following statistis in measuring theperturbative Wilson loops for the di�erent hosen�nite Langevin steps sizes and lattie volumes asshown in Table I. The statistis has to be under-stood as follows: The thermalization is not in-luded, e.g. 21000 measurements at lattie volumeL4 with L = 8 and " = 0:01 in the Table or-responds to 420000 Langevin steps in equilibrium.Those measurements are performed for all ordersin g, the reahed results are shown in the Figuresbelow.Let us �rst disuss the auray and some prob-lems we have met in performing the extrapolationto vanishing Langevin step size ". Having severaldi�erent expansion oeÆients W (n)NM (") for vari-ous " values at a given loop order n available, we



5" L = 4 L = 6 L = 8 L = 120.010 19522 16390 21000 56720.015 12182 13366 18500 |0.020 11186 12726 18750 54640.030 10120 10210 17500 53340.040 9620 9466 17500 52000.050 9500 8500 16500 |0.070 9500 8500 16250 5476TABLE I: Number of Wilson loops measurements upto loop order 20 at various lattie volumes L4 andLangevin time steps ".perform the extrapolation to the oeÆient W (n)NMorresponding to zero step size by a linear plusquadrati �t ansatzW (n)NM (") =W (n)NM +A(n)NM "+B(n)NM "2 : (17)The " behavior depends on the loop order n andthe Wilson loop size N�M , as well as on the lat-tie volume. To illustrate the overall behavior wepresent here results for the plaquette W11 and theWilson loop W33 for lattie size L = 12.The measured perturbative plaquette valuesW (n)11 at all integer loop orders n > 0 (rememberthat W (0)NM � 1) behave in a similar way: they areall negative and tend to values di�erent from zerowhih an be determined with very good auray.Exept for n = 2 the zero Langevin step size limitis approahed from below with dereasing step size". The learly non-vanishing �t results dereasemonotonially in magnitude with inreasing looporder. This is demonstrated in the left of Figure 1,see also the Tables in the Appendix. The oeÆ-ients of odd powers of g should be zero, beausethe ation is unhanged under g $ �g. These non-loop oeÆients are shown in the right-hand panelof Figure 1. We observe that these oeÆients areindeed orders of magnitude smaller than the oef-�ients for even powers of g. To show the qualityof the "! 0 extrapolation we zoom into the smalland large loop number behavior of the expansionoeÆients. This is demonstrated in Figure 2. Forbetter visibility, part of the expansion oeÆientsat low loop numbers n are multiplied by fatorsgiven in the Figure.Now we onsider the Wilson loop W33. In Fig-ure 3 we show how the loop and non-loop expan-sion oeÆients for various Langevin step sizes be-have as funtion of n. We observe that the noise ofthe non-loop oeÆients is muh larger than in theplaquette ase, whih has to be expeted for Wil-

son loops with larger areas. For the smallest half-integer n the magnitude of the noise is larger thanthe atual (integer) loop results at muh larger n.But still our riterion is ful�lled that a Wilson loopoeÆient at a given loop order n should be largerthan the magnitude of the noise for the adjaentn� 1=2 and n+ 1=2 non-loop ontributions.Contrary to the plaquette ase, the loop expan-sion oeÆients alternate in sign for n � 3. Inabsolute value the step-size extrapolation " ! 0approahes the extrapolated value from above. Forloop number n = 4 the situation is di�erent (seeleft Figure 4): The extrapolation of the expansionoeÆient to zero Langevin step starts at a posi-tive value W (4)33 (" = 0:07), rosses \zero" with de-reasing " and points towards a negative valueW (4)33at zero Langevin step. Remember that near zerowe have the \noise", shown in that Figure as well,by the adjaent non-loop ontributions 3:5 and 4:5.The magnitude of that noise is omparable to W (4)33for " = 0:03 only, and a reliable almost linear ex-trapolation to zero Langevin step is possible. Forthe next higher loop numbers n > 4 the extrapo-lation to zero Langevin step beomes learly non-linear as shown in more detail in the right of Fig-ure 4 for some loop numbers n. The extrapolatedzero step size results are still learly distinguishablefrom the adjaent non-loop expansion oeÆients.Therefore, aording to our riterion, those extrap-olations an be onsidered as reliable. For largerloop numbers n � 10 the " dependene beomesless non-linear again. For those n the expansionoeÆients of W33 as funtion of n behave similarto those of the plaquette though their slope slightlydi�ers.In Figure 5 we show some results for the loopoeÆients (extrapolated to " = 0) of elongated(W (n)N1 , left) and square (W (n)NN , right) Wilson loopsfor various size N as funtion of loop order n fora 124 lattie and ompare them to the noise. Atlarger n, a behavior without sign hanges is ob-served for all onsidered Wilson loops that ouldbe interpreted as \asymptoti". We note that thepreision of the extrapolated loop oeÆients forthe larger Wilson loops drops down and also thesignal to noise ratio dereases. Still, the signal forthe shown Wilson loops is learly above the noisefor all orders. For square Wilson loops with N � 4(not shown) or other larger Wilson loops the statis-tis was insuÆient to get a lear signal out of thenoise for larger orders (see also Appendix). In theanalysis below we onentrate on the smallest Wil-son loops.In addition we have to raise the question aboutthe in�nite volume limit of the series. In the per-
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FIG. 5: Seleted loop oeÆients W (n)NM for L = 12 versus loop order n together with typial values in magnitudeof non-loop oeÆients. Positive/negative signs of the oeÆients are given by open/full symbols, all W (n)11 <0;W (n)21 < 0. Left: elongated Wilson loops N �1 with N = 1; : : : 6, right: square Wilson loops N �N withN = 1; : : : ; 4. WNN L NSPT (1-loop) Bali (1-loop) NSPT (2-loop) Bali (2-loop)W22 4 �0:87468(13) �0:87500 0:10404(07) 0:104066 �0:90752(12) �0:90762 0:11830(10) 0:118378 �0:91147(03) �0:91141 0:11998(02) 0:1199312 �0:91264(02) �0:91261 0:12043(01) 0:12038W33 6 �1:50088(30) �1:50093 0:60906(34) 0:608668 �1:52849(12) �1:52803 0:63654(08) 0:6363212 �1:53552(06) �1:53533 0:64388(01) 0:64360W44 8 �2:14092(23) �2:14016 1:52436(28) 1:5233112 �2:17001(10) �2:16922 1:57160(10) 1:57006TABLE II: Comparison of one- and two-loop results for NSPT and �nite volume standard lattie perturbationtheory [16℄.the one- and ten-loop expansion oeÆient. Fromthe volume dependene of all orders and sizes of theWilson loop we onlude that we an treat the lat-tie volume 124 being already near to the in�nitevolume limit. Therefore, in the subsequent analysis we use that lattie size as a reasonable approxima-tion for volume independent results of the series.In the Appendix we present the expansion oeÆ-ients for all available lattie volumes and Wilsonloop sizes.
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FIG. 6: Extrapolation L!1 for W (n)11 for loop orders n = 1 (left) and n = 10 (right).III. PERTURBATIVE SERIES OF WILSONLOOPS AT LARGE ORDERSThere is plenty of evidene that perturbativeseries in ontinuum QCD are divergent, at bestasymptoti. This would mean that, beginning fromsome perturbative order n > n?, the oeÆients ofthe series should grow fatorially. The situationmight be di�erent for perturbative series on �nitelatties. Here we have both ultraviolet and infraredut-o�s and the growth ould be modi�ed signi�-antly. With our omputed oeÆients of the loopexpansion up to order n = 20 we are able to hekthis to a so far inaessible level.For �nite latties one ould try to use the rawNSPT oeÆients for evaluating the orrespondingunderlying in�nite series. This requires to deduea kind of asymptoti model providing the ompleteperturbative answer. Formally, one an use suh amodel designed for �nite latties also in a versionadapted to the oeÆients extrapolated to L!1.Although the extrapolation seems to yield smoothlimits, it is ertainly not allowed to sum a seriesbased on these extrapolated oeÆients up to in-�nity. In this ase there exist at least two possibili-ties. The �rst onsists in taking into aount possi-ble renormalon e�ets and estimating the trunatedtail of the series (f. e.g. [9℄). This proedure, how-ever, strongly depends on whether a lear fatorialgrowth of the oeÆients in the perturbative re-gion under onsideration has been identi�ed. Wewill see that this is very diÆult to justify from ourresults. A seond possibility onsists in applyingboosting, i.e. a rearrangement of the series, result-ing in a (rather) stable plateau of the trunatedsum as funtion of the maximal perturbative or-der n� that is inluded, and to use this as the �nal

perturbative result at given oupling.A. PlaquetteIn 2001, when only the �rst 10 loops of the pla-quette series as expansion in the bare oupling wereknown from [7℄, some of the present authors triedplotting the data in various ways in order to �nd a�t ansatz whih ould desribe the known data andwould be able to predit the unknown higher oef-�ients [18℄. A logarithmi plot of W (n)11 against nshows a urve with dereasing slope, well desribedby an asymptoti behaviorW (n)11 � n�(1+) un; (19)i.e. an exponential in n, multiplied by a power of n(see Figure 1 and Tables in the Appendix). This isa somewhat unexpeted result, beause a series ofthis type has a �nite radius of onvergene, g2 <1=u, and sums to give a result with a power-lawsingularity of the form(1� ug2) : (20)A more sensitive way of showing the large n be-havior of a series is the Domb-Sykes plot [19℄. Ifthe series has the formXn ng2n (21)we alulate rn, the ratio of neighboring oeÆ-ients, rn � nn�1 ; (22)



10and plot it as a funtion of 1=n. The interept as1=n ! 0 (if the limit exists) gives the radius ofonvergene. The behavior for small 1=n (i.e. largen) tells us the nature of the dominant singularity.A funtion with the power-law singularity (20) hasthe expansion(1� ug2) = 1� ug2 + � � �+ �(n� )�(n+ 1)�(�) (ug2)n + � � � (23)whih leads to the ratio of neighboring oeÆientsdepending on the parameters u and nn�1 = u�1� 1 + n � : (24)Therefore, the Domb-Dykes plot n versus 1=n is astraight-line graph.The atual Domb-Sykes plot for the measuredperturbative plaquette showed a small urvature.To allow for this we added one more parameter andmade a �t of the formrn = u�1� 1 + n+ s� : (25)This desribed the data for n 2 [3; 10℄ well, withthe parameter values [18℄u = 0:961(9);  = 0:99(7); s = 0:44(10) : (26)We now have 10 more oeÆients. How well do the�t parameters (26) predit the new data? In Fig-ure 7 we ompare the urrent data with the predi-tion made in 2001.The data lie very near the predition. We havedoubled the maximum n value without seeing anybreakdown of the behavior seen at lower n. In par-tiular, the series still looks like a series with a �niterange of onvergene, g2 < 1:04.B. A model for summing up the Wilson loopseriesNow we have in addition also Wilson loops largerthan the plaquette at our disposal. In Figure 8 weshow the oeÆient ratios rn for some small sizeWilson loops for n � 5. We have seen that atlarge order n the oeÆients in the plaquette se-ries have the asymptoti behavior of (19). What isthe asymptoti behavior of the other Wilson loops?Is it similar?A sensitive way to investigate this is to look atthe ratio between the oeÆients of the Wilson

loops series and the plaquette series. If both havesimilar behaviors at large order nW (n)NMW (n)11 � n�(1+0) (u0)nn�(1+) un = n(�0)�u0u �n : (27)We plot the ratio (27) for variousNM values in Fig-ure 9, as a log-log plot against n. The plot showsthat at large n the ratio sales like a power of n,suggesting that the parameter u in (19) is the samefor all Wilson loops, but the power  depends onthe size of the loop. Therefore, u0 = u to a verygood approximation. This means that for all Wil-son loops the series have the same apparent radiusof onvergene, g2 < 1=u. However the urves fordi�erent Wilson loops have di�erent slopes at largen, indiating di�erent asymptoti powers of n, i.e.di�erent values of .In Figure 8 one learly reognizes that for largerloop size the ratios deviate from the almost perfetstraight line behavior seen for W11. This deviationan be desribed rather well by a modi�ation of(25) taking into aount some urvature, espeiallyfor larger loop-sizes N �M . Parametrizing thesee�ets by an additional parameter p we make theansatzrn = nn�1 = u�1� 1 + n �+ pn(n+ s) (28)where the �rst term is the asymptoti form (24)without urvature. Relation (28) an be trans-formed into a reursion relation,n = ( rn n�1 ; if n > n0 ;n0 ; if n = n0: (29)Here n0 is the input value for some lowest mea-sured perturbative oeÆient W (n0)NM at loop ordern = n0 to begin the reursive reonstrution. Re-lation (29) an be solved ton;hyp = dn0 (� � � � 1)n (� + � � 1)n(s+ 1)n n! un ;� = 12p( + s+ 1)2 � 4p=u ; (30)� = s+ 3� 2 ;with (a)n � �(a+ n)=�(a) being the Pohhammersymbol. The oeÆient dn0 is given bydn0 = n0! n0un0 Qn0i=1 (s+ i)Qn0k=1((� � 2 + k)2 � �2) : (31)Aepting suh a parametrization one an followdi�erent strategies:
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FIG. 7: Current ratio data for the plaquette, ompared with the predition of 2001 [18℄, plotted with the originalparameters. The predition was based on data with n � 10, i.e. to the right of the vertial blue bar. The seond�gure zooms in on the region of new data.
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FIG. 8: Domb-Sykes plots for WNM for n � 5 togetherwith the �t result using (28).� Use the raw oeÆients n and/or n;hyp �xedby the �tted values of the parameters in theloop order range 1 � n � 20 as determinedby the NSPT omputation to investigate theperturbative series. This will be done in thenext Setion III C.� Assume that the oeÆients n;hyp, found assolution of (29), belong to an in�nite seriesand try to sum up the series on a �nite lattie.This will be disussed in the following.The in�nite series we want to ompute is de�ned

FIG. 9: A log-log plot of the ratio (27), plotted fordi�erent sizes of Wilson loops. To guide the eyes, thedata points for the loop orders are onneted by lines.byW (n0)NM;1 = 1 + n0Xn=1 n g2n + 1Xn=n0+1 n;hyp g2n� 1 + 1Xn=1W (n)NM;hyp g2n ; (32)where the �rst n0 oeÆients n �W (n)NM are givenby the NSPT measurements and the n;hyp arethe solutions of (29). For later use we have in-trodued the general oeÆients W (n)NM;hyp. Themathing ondition for (32) is that at n0 we haven0 = n0;hyp. Introduing the hypergeometri



12funtion 2F12F1 (a; b; ; t) = 1Xn=0 An tn � 1Xn=0 (a)n (b)n()n n! tn ;(33)we get the losed expressionW (n0)NM;1 = 1+ n0Xn=1 (n � dn0An un) g2n+dn0h2F1 �� � � � 1; � + � � 1; s+ 1;u g2��1i : (34)The result expressed in terms of 2F1 �a; b; ;u g2�has a branh ut disontinuity at the positive g2-axis for g2 > 1=u. This means that the parameteru in (28) (just as well as in (25)) determines theonvergene radius: for g2 < 1=u the series anbe summed up to n = 1 without analyti on-tinuation into the omplex plane. All parametersu; ; p; s depend on the orresponding underlyingdata set. As disussed above (see also Figure 9) wewill assume that the onvergene radius is the samefor all Wilson loop sizes whih implies a ommonvalue for u.We found that Wilson loops larger in size thanthe plaquette (e.g., W21;W31;W22) give rise to ra-tios rn (for n < 5) that show a pronouned osillat-ing behavior. Therefore, we restrit the �t of theratio funtion (28) to the data for n > n0 = 4 only.The �t results are shown in Figure 8 as thin lines.It should be pointed out that �tting the param-eters (u; ; p; s) in ansatz (28) to the NSPT data isnon-trivial. We have determined the optimal valuesby minimizing the funtionÆ2(u; ; p; s) = 20Xn=n0+1 [rn(u; ; p; s)� rn(NSPT)℄2[rn(NSPT)℄2 ;(35)where rn(NSPT) are the ratios omputed from theorresponding NSPT data. The most sensitive pa-rameter in (28) is s. Therefore, we vary s over aertain range smin < s < smax by a small inre-ment �s as s0(k) = smin + k�s (k - integer) andminimize Æ2(u; ; p; s0(k)) with respet to (u; ; p)at every s0(k) whih is held �xed. The smallest ofall minimized Æ2min(u; ; p; s0(k)) de�nes the start-ing set (u?; ?; p?; s0(k?)) for a �nal minimization�t - now with respet to all parameters (u; ; p; s).In Figure 10 we show one example for Æ2min for W22with n0 = 4. One reognizes a ouple of shallowloal minima (besides the absolute one) where min-imization proedures ould have been trapped. InTable III we give the results of our minimal �t fun-
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FIG. 10: Æ2min as funtion of parameter s for W22.WNM Æ2min u  p sW11 8 � 10�6 0.9694(4) 1.13(5) 1.5+1:3�0:6 0.7+3:0�1:8W21 1 � 10�5 0.9694(5) 1.02(4) 1.6(5) �1.4(8)W31 2 � 10�5 0.9694(6) 0.91(4) 1.7(2) �3.3(2)W22 4 � 10�5 0.9694(9) 0.82(4) 1.9(2) �3.9(1)TABLE III: Minimal value of Æ2min and resulting �t pa-rameters. The �t range in n is [5; 20℄.tion and the �nal �t parameters for various Wilsonloops. The given errors (�u;�;�p;�s) are theextreme values within the error ellipsoid obtainedfrom the relationÆ2(u? +�u; ? +�; p? +�p; s? +�s)= 2 Æ2(u?; ?; p?; s?) ; (36)where (u?; ?; p?; s?) are the best �t parameters.For extrapolation of the perturbative series we usehypergeometri �ts in the interval [5; 20℄. Fits tothe oeÆients in this range are exellent, with rel-ative errors � 0:5%.The hypergeometri �t still gives a fairly gooddesription of the data all the way down to n = 1.For most loop sizes a �t from n = 1 to 20 desribesthe data within � 5%, exept for the 2�1 loop,whih has some errors � 10%. Given that the oef-�ients vary through 4 orders of magnitude in thisinterval, an error of 5 or 10% is still impressive.All the Wilson loops show rather similar behaviorat large order n, see Figure 11. At small n they lookquite di�erent from the plaquette, with a mixtureof positive and negative terms. It is interesting thatthere is often a \noth" just before the asymptoti
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FIG. 11: The hypergeometri �t to the oeÆients W (n)NM for the four small Wilson loops. Solid symbols representpositive terms, open symbols are negative terms. The blue line is an equal weight �t, inluding all points fromW (0)NM to W (20)NM . The agreement is remarkably good.region begins, i.e. a partiularly steep drop to asmall oeÆient, followed by a jump bak up again.This is partiularly dramati in the 2�2 Wilsonloop, where the n = 3 oeÆient is about 600 timessmaller than the n = 2 oeÆient. The noth givesrise to big hanges in rn, for example for the 2�2loop we have: : : ; r2 = �0:1319; r3 = +0:0016;r4 = �11:98; r5 = +0:9722; : : : (37)The noth orresponds to the singularity in theDomb-Sykes plot. The anomalously large rn valueours when n is lose to the pole at n = �s in(28). This is demonstrated in Figure 12 where the�t to the parameters has been extended to the rangen 2 [2; 20℄. Using this �t range one learly reog-nizes the orresponding pole terms.Our analysis shows that we an reprodue ourNSPT data up to order n = 20 for Wilson loopsof moderate size (at least the elongated ones) with

this hypergeometri model suÆiently well. Thismeans that we do not �nd any evidene for a fa-torial behavior whih should result in a behaviorrn � n. In Setion II B we showed that in therange 4 � L � 12 the volume dependene of eahindividual perturbative oeÆient is rather smoothand already very weak at sizes like L � 12. So wedo not expet a signi�ant hange extrapolating theresults to in�nite lattie size.Even beyond the apparent radius of onvergene(g2 = 1=u; � � 5:82) the perturbative series stillhas some information on the Wilson loops. In thatase the terms in the series derease initially, beforereahing a minimum and then growing. Summingthe series up to the minimum term would give anapproximation to the Wilson loop. The minimumterm in the series an be estimated from the ondi-tion on the ratio of neighboring oeÆients in (22)rnmin g2 = 1. The orresponding minimal numbernmin in the summation is approximately (negleting
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FIG. 12: Domb-Sykes plots for WNM with �ts to the parameters in the range n 2 [2; 20℄.the parameters s and p)nmin � (1 + )ug2ug2 � 1 = 6u (1 + )6u� � � 12� � � (38)for � < 6u. So, at � = 5:7 we would have tosum about 100 terms before reahing the mini-mum (assuming, of ourse, that the hypergeomet-ri form remains appliable), and even at � = 5:2(g2 = 1:15) we would still have about 20 dereasingterms before reahing the minimum term. To stayon the safe side, we have not used any data beyondthe apparent onvergene radius g in our analy-sis of non-perturbative Wilson loops desribed be-low. We have restrited ourselves to � � 5:85, i.e.g2 � 1:026.C. Boosted perturbation theoryIt is well-known that the bare lattie oupling g isa bad expansion parameter by virtue of lattie arte-fats like tadpoles. There is hope that, by rede�n-ing the bare oupling g into a boosted oupling gband the orresponding rearrangement of the series,a better onvergene behavior an be ahieved [20℄.For the ase of perturbative Wilson loops this ideahas been applied for the �rst time by Rakow [8℄.

Let us denote the perturbative Wilson loopsummed up to order n? using the bare ouplingg by WNM (g; n?) = 1 + n?Xn=1 W (n)NM g2n (39)and all in the following any series in g2 a \naiveseries". We de�ne the boosted oupling asg2b = g2W11(g; n?) : (40)The orresponding \boosted series" for an arbitraryWilson loop WNM is then given byWNM;b(gb; n?) = 1 + n?Xn=1 W (n)NM;b g2nb (41)with oeÆients W (n)NM;b to be alulated fromW (k)NM and W (l)11 with k; l � n. SettingWNM (g; n?) =WNM;b(gb; n?) (42)and inserting (40) into the right hand side of (42),we an ompute the boosted oeÆientsW (n)NM;b or-der by order.



15It should be emphasized that the presribed pro-edure is done by solving a hierarhial set of re-ursive equations. Espeially for large loop ordersn these equations involve hundreds or thousands ofterms. Using the NSPT raw data W (n)NM with theirerrors gives rise to signi�ant numerial instabili-ties in the boosted result for larger n. Therefore,it turned out to be advantageous to use the o-eÆients W (n)NM;hyp (32) as input for the reursiveequations. Using that form up to loop order n � 20means that we are smoothing the data of the naiveseries. In addition we are in the position to extendthe maximal loop order beyond n = 20. This leadsto a stable numerial result for the boosted oeÆ-ients W (n)NM;b;hyp. An additional improvement anbe ahieved by replaing the lowest order pertur-bative oeÆients at L = 12 by the orrespond-ing oeÆients of the in�nite volume limit. In theAppendix we give those numbers for the one- andtwo-loop oeÆients obtained in the diagrammatiapproah [21{23℄.In Figure 13 we ompare the perturbative oeÆ-
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FIG. 13: Comparison of perturbative oeÆients for thenaive series (W (n)11 ), the boosted series from NSPT rawdata (W (n)11;b) and the boosted series using the hyperge-ometri model (W (n)11;b;hyp). The boosted oupling (40)is used, positive/negative signs of the oeÆients aregiven by open/full symbols.ients of the plaquette for the NSPT raw dataW (n)11with the W (n)11;b alulated from the raw data andthe W (n)11;b;hyp. The boosted oeÆients obtainedvia the model show a smooth dereasing behaviorwith muh smaller errors than the boosted oeÆ-ients based on the raw data, all the way down tothe highest order n = 20. The superior result on-erning the error is due to the fat that the errorsof the model-�tted oeÆients are omputed from

the orrelated errors of the parameters (u; ; p; s)as disussed in the preeding setion. The errorsof the boosted oeÆients (when onstruted fromthe raw data) are alulated with standard errorpropagation through the set of reurrene equationsinvolving thousands of terms. Sine the perturba-tive plaquette (as the non-perturbative plaquette)is less than one, W11(g; n?) < 1, it is lear from(40) that g2b > g2. On the other hand, we �ndjW (n)11;bj � jW (n)11 j for n > 4 as shown in Figure 13.We remark that also the boosted oeÆients areharaterized by osillating signs as funtion of theloop order n for smaller n (open vs. �lled symbols).The above mentioned numerial problems relat-ing the boosted series to the naive series obtaineddiretly from NSPT would be less severe if we ouldstart from a oupling onstant whih was loser togb. Therefore in [8℄ one of us proposed a simulationwith a shifted \referene" oupling onstant, gref .Instead of simulating NSPT with the ation (3), weould use the slightly modi�ed ationSref [U ℄ = 6 1g2ref + r̂1 + r̂2 g2ref!�XP �1� 16Tr�UP + UyP�� (43)where now UP is expanded as a power series in grefrather than g. Physially, the ation is still theusual plaquette ation { all we have done is to re-de�ne the oupling onstant. This modi�ed ationleads to hanges in the drift term of (4). The advan-tage is that the simulation now gives us a series forthe plaquette in terms of the oupling gref , relatedto the bare oupling by1g2 = 1g2ref + r̂1 + r̂2 g2ref : (44)If we hoose the parameters r̂1 and r̂2 well, the newintermediate oupling will be lose to the boostedoupling, so the transformation from gref ! gb willbe numerially stable and will not introdue largeunertainties as in the transformation from g2 !g2b .In [8℄ simulations have been performed with r̂1 =1=3; r̂2 = 0:033911. These values were hosen suhthat g2b = g2ref + O(g8ref ), making the transforma-tion between the two ouplings numerially robust.The resulting boosted series is shown in Table IV.The results are ompatible with those found bytransforming both the naive series from the NSPTraw data and from the hypergeometri model, re-spetively, but the error bars are now onsiderablyredued. In partiular, the hange in the behavior



16n W (n)11;b from (43) W (n)11;b from NSPT raw data W (n)11;b from (32)1 �0:333334(42) �1=3 �1=32 0:077187(30) 0:0772001181(8) 0:0772001181(8)3 �0:016817(10) �0:0168321(4) �0:0168321(4)4 0:0030488(10) 0:0030612(3) 0:0030612(3)5 �0:0006101(14) �0:00061867(9) �0:000620(11)6 0:0000831(7) 0:000087(2) 0:0000911(14)7 �0:00002209(34) �0:000024(2) �0:0000275(89)8 �0:00000007(30) 0:0000009(28) 0:0000024(43)9 �0:00000138(11) �0:0000017(33) �0:0000024(17)10 �0:00000042(8) �0:00000029(360) �0:00000011(58)11 �0:000000201(12) �0:00000022(380) �0:00000033(18)12 �0:000000087(14) 0:000000012(3877) �0:000000073(51)TABLE IV: CoeÆients for the plaquette in boosted perturbation theory, alulated using the modi�ed ation (43)on a 124 lattie. They are ompared to the orresponding oeÆients from the NSPT raw data (seond olumn)and the hypergeometri model data (third olumn). The loop order n given in the table is restrited by the orderused in [8℄.beyond n = 8, from an alternating series to a single-sign series is on�rmed in this alulation. So farwe have only applied this method to the series de-sribing the plaquette, but we expet that it wouldalso be useful for the larger Wilson loops.The suessful hypergeometri model �t to theNSPT raw data (as presented in the preeding se-tion) and the very smooth behavior of the boostedoeÆients based on the �t formula (34) allows usto extend the aessible loop order for the oeÆ-ients both in the naive and boosted series far be-yond n = 20 loops. In Figure 14 the orrespond-ing oeÆients for W11, W21, W31 and W22 areshown throughout the extended range of loop or-ders n � 40 relying on the information ontainedin the set of smoothed data represented by the hy-pergeometri model.In Figure 15 we ompare the e�et of trunatingthe sum at order n? for the naive and boosted series,both on the basis of the hypergeometri model. Theorresponding trunation error TNM (n?) is de�nedby TNM (n?) = ���WNM (n?)�W (n0)NM;1���W (n0)NM;1 ; (45)where WNM (n?) is either the naive (WNM (g; n?))or the boosted (WNM;b(gb; n?)) trunated series.As the asymptoti value W (n0)NM;1 we take the hy-pergeometri sum (32) with n0 = 4 omputed atthe hosen g2 = 6=� = 1. Even though part of thederease in the boosted oeÆients is \eaten" up bythe fat that g2b (= 1:6832) > g2(= 1), we see that

the boosted series is learly superior. For example,for W11 we have a trunation error � 10�3 at 10thorder in the boosted series, but we would have togo nearly to the 30th order in naive perturbationtheory to ahieve the same auray.Figure 15 suggests that using the naive pertur-bative series for W11;hyp(g; n?) in (40) to omputeg2b for a given g2 is a poor hoie. A muh betteronvergene towards the total perturbative plaque-tte is obtained by using the oeÆients W (n)11;b;hyp.This suggests to de�ne the boosted oupling g2b (g2)by solving the impliit equationg2b = g2W11;b;hyp(gb; n?) (46)whereW11;b;hyp(gb; n?) = 1 + n?Xn=1 W (n)11;b;hyp g2nb : (47)One essential justi�ation for hoosing (46) is thebehavior of the perturbative series of a Wilson loopfor large � (small g2) in omparison to the non-perturbative measurement: in this oupling rangethe Wilson loop should be dominated by the pertur-bative ontent. We introdue the relative di�erenefWNM (�)� 1 = WNM;PT (�)�WNM;MC(�)WNM;MC(�) :(48)where the index \PT" stands for the perturbativevalue of the Wilson loop and \MC" denotes theMonte Carlo result. This quantity should tend to
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FIG. 14: CoeÆients for the naive and boosted series based on the hypergeometri model for W11, W21 , W31 andW22 as funtion of the loop order n.
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FIG. 15: Trunation errors TNM (n?) (45) for W11 (left) and W31 (right) at L = 12 and � = 6 using the naive andthe boosted series on the basis of the hypergeometri model. The hypergeometri model values for the total sumare W (n0=4)11;1 = 0:59409(8) and W (n0=4)31;1 = 0:25337(22).zero for large �. In Figure 16 we plot fW11(�)�1 asfuntion of �. The � dependene learly shows thatthe boosted oupling omputed from (46) gives thebest behavior for the small g2 where the plaquette from that perturbative series pratially oinideswith the Monte Carlo value. Wilson loops withlarger loop sizes show a similar behavior.Note that the de�nitions of the boosted oupling
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FIG. 16: fW11(�) � 1 as funtion of � = 6=g2 forn? = 20: \naive" with W11;PT = W11(g; 20); \boost"with W11;PT = W11;b(gb; 20) and g2b omputed from(40); \improved boost" with W11;PT = W11;b(gb; 20)and gb omputed from (46). (Full/open symbols denotepositive/negative numbers.)using either (46) or (40) are alulated from a per-turbative input exlusively. Using boosting in stan-dard Monte Carlo measurements, the boosted ou-pling g2b is de�ned by dividing the bare ouplingsquared g2 by the measured plaquette at given �value. Numerially, this oupling onstant behavesin a similar way as that obtained from (46). This isanother argument to use expression (46) as de�ni-tion for the boosted oupling in perturbation the-ory.IV. THE NON-PERTURBATIVE PART OFWILSON LOOPSA. Reliability of high order lattieperturbation theoryThere is muh debate to whih extent high orderlattie perturbation theory an be trusted and howits results an be used to extrat physial quanti-ties. In [24℄ the authors have investigated the inu-ene of the �nite volume on the possibility to �ndinfrared renormalons. Using the steepest desent(sd) method, they dedue an upper bound on theorder of perturbation theory nsd above whih pos-sible infrared e�ets are tamed for dimension fouroperators n < nsd � 4 logL+  ; (49)where L is the lattie size. However, it is diÆult todetermine the value of  { in [24℄ it was estimatedas  = O(1).

As shown in the preeding Setion III C we foundthat boosted perturbation theory using the rawNSPT oeÆients in the range 1 � n � 12 givesalready reliable results for the summed series. Fur-thermore, from the disussion at the end of SetionII B (see Figure 6) we feel on�dent that the �nitesize e�ets are under ontrol { whih would not bethe ase if there are infrared e�ets.On �nite latties one annot expet renormalonsbeause of hard ultraviolet (k < 1=a) and infrared(k � 2�=La) ut-o�s. However, one might expetquadrati and quarti divergenes. For the plaque-tte W11 one ould write (see, e.g. [25℄)W11 = C1(aQ) h1i+ C2(aQ) a4 hGGi ; (50)with hGGi denoting a ondensate of dimension four.There ould be a mixing between operators 1 andGG whih would result in an a4-ontribution to C1:C1(aQ) = C01 (aQ) + C41 (aQ) (aQ)4 : (51)The oeÆients Ci1(aQ) themselves diverge at mostas powers of log(aQ). The existene of a quarti di-vergene would spoil the determination of the on-densate. This type of divergene is onneted to apole in the Borel transform of the orresponding,assumed divergent perturbative series with a fato-rial growth of the expansion oeÆients [26℄. Wedo not observe suh a fatorial growth up to looporder n = 20. This is a fat, whih we have toaept and appreiate theoretially [27, 28℄.B. Ratios of Wilson loopsA preise separation of the non-perturbative partof Wilson loops from the orresponding quanti-ties measured on the lattie requires a perturbativeomputation to very high order. From the disus-sion in Setion III C it is lear that boosted pertur-bation theory provides an optimal tool for that. Weuse the version of boosting inluding the hypergeo-metri model to smooth the NSPT bare oeÆientsand go beyond loop order n = 20. The boosted ou-pling is omputed from (46) with n? = 40. Addi-tionally we restrit ourselves to moderate loop sizeswhih ensures that the boosted oeÆients an bedetermined with suÆient auray.Let us introdue generi ratios of powers of Wil-son loops (together with their boosted perturbativeexpansion) asRk;mNM;N 0M 0 = (WNM )k(WN 0M 0)m =Xn [Rk;mNM;N 0M 0 ℄(n) g2nb :(52)



19In most of the following examples we restrit our-selves to referene loops of size N 0 = M 0 = 1 (pla-quette) and integer powers k;m > 0. A generaliza-tion to largerN 0;M 0 and also to non-integer powersk and m an be easily performed.We onsider now the partiular ratios R1;221;11 andR1;331;11. They ful�ll the area relationk � SNM = m � SN 0M 0 ; (53)where SNM is the area of the Wilson loop WNM{ in our ase of planar retangular loops we haveSNM = N�M . From onsiderations of naturalnesswe would expet the onvergene behavior of thesetypes of ratios to be better than other ratios thatare not onstrained by the area relation (53). We�rst ompare the perturbative oeÆients of theseratios with the orresponding oeÆients of Wilsonloops W (n)NM . Figure 17 shows that the oeÆientsof the ratios behave similar to the oeÆients of theWilson loops (shown for omparison as thin lineswithout errors) themselves.Now we de�ne the quantity�A = APT �AMC ; (54)where �A is then the non-perturbative value of thequantity A and the ratioeA = APTAMC : (55)In the ase of Wilson loops �A > 0 and �A �APT . Sine we know the non-perturbative piee tobe muh smaller than the perturbative one we anexpand eA in powers of �A. To �rst order we haveeA ' 1 + �AAPT : (56)Applying this expansion taking in plae of eA theratios eR for the R introdued in (52) we haveeRk;mNM;N 0M 0 ' 1+k �WNMWNM;PT �m �WN0M0WN 0M 0;PT : (57)In Figure 18 we show an example for some ra-tios eRk;mNM;N 0M 0 at � = 6. We have used our ownMonte Carlo measurements of Wilson loops gener-ated at the same lattie size [29℄. One reognizesthat for large n? the ratios tend to eRk;mNM;N 0M 0 ' 1.For smaller powers m and k this behavior is morepronouned. Additionally, one �nds that the \non-natural" hoie (k;m) = (3; 3) leads to a signi�-antly di�erent behavior. Thus, Figure 18 stronglysuggests to use powers (k;m) whih obey the arearelation (53).

Using for A in the eA de�nition (55) the quan-tity Rk;mNM;N 0M 0 (52) one an easily derive a formulato determine the \deviation from perturbation the-ory", �WNM , for a N�M Wilson loop as�WNM (WN 0M 0) = (58)h1� exp�� ddk log� eRk;mNM;N 0M 0��i WNM;PT ;where we made expliit the dependene of �WNMon the referene loop WN 0M 0 . Values of (N;M; k)and (N 0M 0;m) are related by (53). Inserting theboosted perturbative series for WNM;PT and theMonte Carlo measured values WNM;MC for vari-ous values of the inverse oupling � into (58) oneobtains rather easily the desired a-dependent non-perturbative part �WNM (a) of WNM using one'sfavorite known relation �(a).C. Condensate of dimension four on thelattieOne speial ase of the non-perturbative part ofWilson loops is �W11 = W11;PT �W11;MC whihis diretly onneted to the gluon ondensate intro-dued in [1℄. There is a ommonly used relationbetween the Monte Carlo measured plaquette andits perturbative ounterpartW11;MC =W11;PT � a4�236 ��b0g3�(g) � h��GGi ;(59)whih de�nes the gluon ondensate h��GGi on thelattie2. In ontrast to (58), relation (59) allowsus to determine the gluon ondensate from the1� 1 Wilson loop only. An alternative ould beto �nd �W11 from (58) hoosing a suitable refer-ene Wilson loop. As disussed in Setion IVA thisis stritly valid only in the absene of renormalonambiguities whih is assumed to be the ase in thefollowing.In (59) it is assumed that there is only a sin-gle, non-perturbative quantity of dimension fourontributing to the plaquette. It has been speu-lated [30℄ that in the di�erene between the pertur-bative and the lattie Monte Carlo plaquette alsoan a2-ontribution might be present. That di�er-ene depends on n? denoting the trunation of theperturbative series as expressed by the n? depen-2 In (59) �(g) denotes the standard �-funtion with b0 beingits leading oeÆient.
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FIG. 18: eRk;m21;11 for (k;m) = (1; 2); (2; 4) and (3; 3)as funtion of loop order n? up to whih the ratio issummed up.dene of the orresponding oeÆients:�W11(n?) = W11;PT (n?)�W11;MC= 2(n?) a2 + 4(n?) a4 : (60)In [11℄ Narison and Zakharov have presented argu-ments that a non-zero value of the oeÆient 2(n?)is an artefat due to the trunation { above somevalue of n? that oeÆient should vanish.For the estimate of the gluon ondensate we arein the position to take the most preise perturba-tive values available - in our omputation these arethe summed series based on hypergeometri fun-tions (n? ! 1) given in (34) with the parametersof Table III. So we an ask the question, whetherthere is a signi�ant a2-dependene for the non-perturbative parts �WNM derived from (58) mak-

ing a orresponding ansatz as in (60).To �nd the dependene of the non-perturbativepart on the lattie spaing a, we onsider the lat-tie oupling region �min � � � �max. �min = 5:85is determined by the onvergene radius of the per-turbative series. In the analysis we have used non-perturbative Wilson loops from the same lattiesize as the largest NSPT lattie and have hosen�max = 6:3. To relate the di�erent lattie ouplings� to a=r0, where r0 is the Sommer sale, we use [31℄.In the left of Figure 19 we show �W11(a) as fun-tion of a4. One observes that there is not muhroom for an additional a2-dependene. On theother hand, we �nd a signi�ant bending for largera(g2) whih an be parametrized as an (a4)2 orre-tion term. This might be a sign of breaking salingon the oarsest latties, or it ould be the signa-ture of higher-dimensional ondensates onsideredin [32℄. That orretion is relatively small for �W11 .For larger Wilson loops we �nd this deviation froma pure a4-dependene more pronouned as shown inthe right of Figure 19. We should mention that, us-ing the summed perturbative series of the hyperge-ometri model, the non-perturbative parts �WNMare independent of the hoie of the referene loops(as indiated in (58)) and also agree for the plaque-tte ase with the simple subtration sheme (59).In Figure 20 we plot 4(n?) for various Wilsonloops. One reognizes a pronouned plateau forn? > 30. In Table V we give the values of theoeÆients 4 both for the boosted series summedup to n? = 40 and as obtained from the in�niteseries, respetively. On dimensional grounds onewould expet that 4 would be approximately pro-portional to the square of the Wilson loop area [32℄.From Table V we do see an inrease in 4, but it
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FIG. 20: CoeÆient 4 as funtion of the inverse looporder 1=n? for di�erent Wilson loops. The data pointsat \1=n? = 0" represent the series summed to in�nityusing the hypergeometri model.4 from boosting 4 from the hypergeometri(n? = 40) modelW11 0:30(3) 0:31(3)W21 0:54(5) 0:56(5)W31 0:47(9) 0:49(10)W22 0:67(10) 0:70(11)TABLE V: CoeÆients 4 for the Wilson loops WNMobtained from boosted perturbation theory up to n? =40 and from the series summed to in�nity using thehypergeometri model.is muh slower than area squared (in fat the a4term in the 3�1 loop is smaller than the 2�1 loop,

though the error bars overlap).Introduing the Sommer sale r0, a physial valuefor the ondensate an be extrated from the oeÆ-ient 4. If we approximate��b0 g3�(g) � � 1 in (59), weextrat from �W11 the gluon ondensate as given inTable VI. This value is slightly lower than the valuer40 h��GGi h��GGi [GeV4℄�W11 1:16(12) 0:028(3)TABLE VI: Gluon ondensate at L = 12 (r0 = 0:5 fm).0:04(1) GeV4 found in [8℄. The main reason for thedi�erene is that in [8℄ the boosted series was trun-ated at n? = 12, while in the present work wemake an estimate of the ontribution from higherterms in the boosted series.V. SUMMARYIn this paper we presented the result of NSPTalulations for Wilson loops of various sizes usingthe Wilson gauge ation. Within the framework ofNSPT we were able to determine the perturbativeoeÆients of those loops up to loop order n = 20for di�erent lattie sizes as numerially lear sig-nals.Up to that order we did not observe signs of a fa-torial n-dependene as expeted for an asymptotiseries. Assuming that this behavior is not spoiled atlarger n, we were able to desribe the n dependene



22of the series by a simple reursion relating subse-quent orders. Solving that relation, the sum overall orders has been represented by a hypergeomet-ri funtion. Its branh ut disontinuity de�nes aonvergene radius of the series at positive g2.Using the naive perturbative series of the Wil-son loops in the bare oupling squared g2 = 6=�,the summed series up to n? onverges only slowlyto some asymptoti value. This has led us to ap-ply boosting { a rearrangement of the perturba-tive series in terms of the so-alled boosted ou-pling as expansion parameter where we expet thatthe summed series reahes a stable plateau alreadyafter moderate loop orders. For moderate Wilsonloop sizes these plateaus have been found.The transformation from the naive perturbativeseries to the boosted series is numerially deliate,involving large anellations. Simply transform-ing the NSPT raw expansion oeÆients leads tovery noisy boosted oeÆients beyond n � 8. Toget around this problem we \smoothed" the oef-�ients of the naive perturbative series using thepresented hypergeometri model before alulat-ing the boosted series. The resulting \smoothed"boosted oeÆients are muh more stable, and thisstrongly suggests that the observed rapid fall-o� ofthe boosted oeÆients ontinues to large loop or-ders.We introdued ratios of powers of Wilson loopswhih then have been treated within boosted per-turbation theory. In many ases the trunationerrors for these ratios are muh smaller than thetrunation errors for the Wilson loops themselves.The results of the boosted perturbative seriesare extremely lose to the Monte Carlo values ofthe Wilson loops, the same applies to their ratios.For � > 6 (g2 < 1) the di�erenes are typiallyin the third or fourth deimal plae. Looking atthe small deviations between Monte Carlo resultsand boosted perturbation theory allows for a de-termination of the non-perturbative parts of Wil-son loops. We �nd that the dominant behavior ofthe non-perturbative part sales like a4.As a speial ase we have alulated the gluonondensate h��GGi from the plaquette. The foundnumber is somewhat larger than that in the phe-nomenologial SVZ sum rule approah [1℄ { at leastfor our 124 lattie. Our number agrees within er-rors with the estimate h��GGi = 0:024(8) GeV4presented by Narison in [33℄ whih is based on astudy of heavy quarkonia mass splittings.We have heked the regularly reappearing laim,that the Wilson loop has, in addition to its \anon-ial" a4 dependene, a signi�ant part showing aa2 power dependene. Our results show that in

the hosen �{region the non-perturbative parts ofthe Wilson loops WNM an be well desribed byan a4-ansatz with an (a4)2 orretion term. Forthe di�erene between the perturbative and the lat-tie Monte Carlo plaquette �W11 this orretion israther small.If in�nite or large order perturbation theory wasto reet the long distane properties of QCD, wewould expet the Wilson loops to show an area-law behavior and the stati potential to grow lin-early with distane. As a result, the Borel trans-form would exhibit a pole at 1=b0 = 16�2=11, andthe oeÆients of the perturbative series shouldshow a fatorial growth. (Then, for omparison,the gluon ondensate would show up as a pole at2=b0 = 32�2=11.) Instead, we �ndW (R; T ) / TR (61)for R = 2; 3; 4 and T = 5, within a few per ent,and no sign of an infrared renormalon3. This resultholds for all ouplings within the radius of onver-gene of the perturbative series, 0 < g2 . 1:1.In Figure 21 we show the potential di�erene �V
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FIG. 21: The perturbative potential di�erene �V ob-tained from the perturbative Wilson loops up to looporder 20 as funtion of the distane R and g2.as funtion of R and g2 alulated from the series3 We have nothing to add to [34℄ and to the argument of [35℄that there is no physial signi�ane to these ambiguities.



23variant of the Creutz ratio�V (R) = V (R� 1)� V (R)= logW (R; T )W (R� 1; T � 1)W (R; T � 1)W (R� 1; T ) (62)using the perturbative Wilson loops up to looporder 20. For a linearly inreasing potential onewould expet �V to be a onstant proportional tothe string tension. In fat, �V dereases with R forall g2 within the radius of onvergene onsistentwith the expeted Coulomb behavior 1=(R(R�1)).A look at the � funtion suggests, furthermore,that the perturbative theory is separated from thestrong oupling phase through a pole, similar to thesupersymmetri Yang-Mills theory [36℄, indiatingthat there is no diret ontradition with the strongoupling expansion. A similar result to (61) wasfound in Monte Carlo simulations of gauge-�xednon-ompat lattie QCD [37, 38℄, whih as welltake into aount small utuations of the gauge�elds only.This leads us to onlude - on the basis of ourpresent results, nota bene - that the perturbativeseries arry no information on the on�ning proper-ties of the theory and the non-trivial features of theQCD vauum. The positive aspet of this result isthat the perturbative tail an be leanly separatedfrom the Monte Carlo results for the plaquette.AknowledgementsThis investigation has been supported partly byDFG under ontrat SCHI 422/8-1 and by the EUgrant 227431 (Hadron Physis2). R.M. is supportedby the Researh Exeutive Ageny (REA) of theEuropean Union under Grant Agreement PITN-GA-2009-238353 (ITN STRONGnet). We thankthe RCNP at Osaka university for providing om-puter resoures. AppendixWe present in Tables A1 - A7 all onsidered ret-angular perturbative Wilson loops of sizes N�Mwith N;M = 1; : : : ; L=2 for di�erent sizes L of theused hyperubi latties L4 in the formWNM = 1 + 20Xn=1W (n)NM g2n : (63)The expansion oeÆients W (n)NM are the result ofthe extrapolation to zero Langevin step size using

(17). The reported errors are the �t errors fromthe extrapolation " ! 0. The presented numbersfor larger Wilson loops and higher loop orders areolleted irrespetive of possible problems with thesignal to noise ratio at a given order n as disussedin Setion II B and have to be taken with are. InTable A8 we give some perturbative Wilson loopsas result of an in�nite series using the desribed hy-pergeometri model for various � values at L = 12.In Table A9 we ollet the values for known looporder oeÆients in the in�nite volume limit. ForW11 the �rst three loop order oeÆients are givenin [22, 23℄ whereas for the larger Wilson loops onlythe �rst two loop orders are known [21℄. The �rstorder oeÆients an be omputed to high prei-sion.



24n W (n)11 W (n)21 W (n)221 �0:332147(22) �0:567064(34) �0:874683(122)2 �0:033411(15) �0:004571(25) 0:104041(63)3 �0:013368(13) �0:010094(28) �0:000735(58)4 �0:006983(1) �0:006394(13) �0:002683(12)5 �0:004179(8) �0:004167(9) �0:002284(1)6 �0:002719(6) �0:002859(8) �0:001777(9)7 �0:001872(6) �0:002041(8) �0:001368(1)8 �0:001342(5) �0:001503(8) �0:001063(9)9 �0:000992(5) �0:001134(7) �0:000834(8)10 �0:000752(4) �0:000874(6) �0:000663(7)11 �0:000581(4) �0:000684(5) �0:000534(6)12 �0:000456(4) �0:000544(5) �0:000433(6)13 �0:000363(3) �0:000437(4) �0:000355(6)14 �0:000292(3) �0:000355(4) �0:000293(6)15 �0:000238(3) �0:000291(4) �0:000243(5)16 �0:000195(2) �0:000240(4) �0:000204(5)17 �0:000161(2) �0:000200(3) �0:000171(5)18 �0:000134(2) �0:000167(3) �0:000145(5)19 �0:000112(2) �0:000141(3) �0:000123(4)20 �0:000094(2) �0:000119(3) �0:000105(4)TABLE A1: Perturbative oeÆients for L = 4.n W (n)11 W (n)21 W (n)22 W (n)31 W (n)32 W (n)331 �0:333112(15) �0:573644(44) �0:907518(112) �0:798086(71) �1:193307(174) �1:500876(291)2 �0:033829(6) �0:003938(26) 0:118297(96) 0:075949(52) 0:313019(171) 0:609060(335)3 �0:013641(4) �0:010199(9) 0:000024(16) �0:002820(12) �0:005402(37) �0:050954(108)4 �0:007202(2) �0:006571(5) �0:002375(9) �0:003622(3) �0:000139(18) �0:000273(38)5 �0:004366(3) �0:004366(6) �0:002227(12) �0:002878(6) �0:000573(8) �0:000083(34)6 �0:002881(4) �0:003047(7) �0:001813(12) �0:002190(8) �0:000684(1) �0:000138(7)7 �0:002014(4) �0:002214(7) �0:001440(12) �0:001675(8) �0:000629(13) �0:000147(12)8 �0:001467(4) �0:001661(7) �0:001151(12) �0:001303(8) �0:000551(13) �0:000156(1)9 �0:001103(4) �0:001278(6) �0:000927(1) �0:001028(7) �0:000473(1) �0:000157(8)10 �0:000850(3) �0:001004(5) �0:000755(8) �0:000824(6) �0:000404(8) �0:000150(7)11 �0:000669(3) �0:000802(4) �0:000622(6) �0:000670(5) �0:000346(6) �0:000139(6)12 �0:000535(3) �0:000650(3) �0:000518(4) �0:000551(4) �0:000298(4) �0:000126(5)13 �0:000434(2) �0:000533(3) �0:000435(3) �0:000458(3) �0:000257(2) �0:000114(5)14 �0:000356(2) �0:000442(2) �0:000368(2) �0:000384(2) �0:000222(2) �0:000102(4)15 �0:000295(2) �0:000370(2) �0:000313(2) �0:000324(2) �0:000192(2) �0:000091(4)16 �0:000247(2) �0:000312(2) �0:000268(2) �0:000276(2) �0:000167(2) �0:000080(3)17 �0:000208(2) �0:000265(2) �0:000231(2) �0:000236(2) �0:000145(2) �0:000071(3)18 �0:000177(2) �0:000227(2) �0:000200(2) �0:000203(2) �0:000127(2) �0:000063(2)19 �0:000151(2) �0:000195(2) �0:000173(2) �0:000175(2) �0:000111(2) �0:000056(2)20 �0:000130(1) �0:000169(2) �0:000151(2) �0:000152(2) �0:000098(2) �0:000050(2)TABLE A2: Perturbative oeÆients for L = 6.



25n W (n)11 W (n)21 W (n)22 W (n)31 W (n)411 �0:333236(8) �0:574473(16) �0:911469(27) �0:800665(29) �1:023410(49)2 �0:033852(5) �0:003818(8) 0:119976(19) 0:076987(16) 0:206839(26)3 �0:013670(3) �0:010214(4) 0:000196(7) �0:002770(7) �0:002536(14)4 �0:007229(3) �0:006594(4) �0:002321(9) �0:003628(5) �0:001501(7)5 �0:004389(2) �0:004397(4) �0:002243(5) �0:002892(6) �0:001525(6)6 �0:002903(2) �0:003080(3) �0:001845(5) �0:002209(5) �0:001309(6)7 �0:002034(2) �0:002246(2) �0:001478(5) �0:001697(3) �0:001076(4)8 �0:001487(1) �0:001693(2) �0:001194(6) �0:001328(3) �0:000880(3)9 �0:001122(1) �0:001310(2) �0:000973(7) �0:001057(3) �0:000725(3)10 �0:000869(1) �0:001035(3) �0:000800(7) �0:000854(3) �0:000601(3)11 �0:000687(1) �0:000832(3) �0:000664(6) �0:000700(3) �0:000502(3)12 �0:000553(1) �0:000678(3) �0:000555(6) �0:000579(3) �0:000423(3)13 �0:000451(2) �0:000560(3) �0:000468(5) �0:000484(3) �0:000358(3)14 �0:000372(2) �0:000467(3) �0:000398(5) �0:000408(3) �0:000306(3)15 �0:000310(2) �0:000393(3) �0:000340(5) �0:000346(3) �0:000262(3)16 �0:000261(2) �0:000333(3) �0:000292(5) �0:000296(3) �0:000226(3)17 �0:000221(2) �0:000284(3) �0:000252(4) �0:000254(3) �0:000195(3)18 �0:000189(1) �0:000244(2) �0:000219(4) �0:000220(3) �0:000170(3)19 �0:000162(1) �0:000211(2) �0:000191(4) �0:000191(3) �0:000148(3)20 �0:000140(1) �0:000183(2) �0:000167(3) �0:000167(2) �0:000130(2)TABLE A3: Perturbative oeÆients for L = 8.n W (n)32 W (n)33 W (n)42 W (n)43 W (n)441 �1:204201(52) �1:528486(114) �1:485430(97) �1:830535(174) �2:140917(228)2 0:320661(27) 0:636544(74) 0:595785(62) 1:028662(168) 1:524356(276)3 �0:005468(14) �0:055098(20) �0:048959(22) �0:174438(58) �0:396169(154)4 �0:000135(19) �0:000547(45) �0:000495(31) 0:002744(73) 0:025146(116)5 �0:000592(1) �0:000131(15) �0:000219(24) �0:000108(45) 0:000200(94)6 �0:000687(12) �0:000159(28) �0:000216(20) �0:000068(44) 0:000011(96)7 �0:000652(1) �0:000208(13) �0:000238(13) �0:000082(17) �0:000067(33)8 �0:000588(1) �0:000214(17) �0:000246(11) �0:000089(14) �0:000057(28)9 �0:000514(1) �0:000196(16) �0:000233(11) �0:000077(15) �0:000027(26)10 �0:000443(9) �0:000174(13) �0:000209(9) �0:000063(12) �0:000011(14)11 �0:000380(7) �0:000153(1) �0:000183(7) �0:000054(8) �0:000010(7)12 �0:000326(6) �0:000136(8) �0:000160(6) �0:000048(7) �0:000013(5)13 �0:000281(6) �0:000120(7) �0:000141(5) �0:000043(6) �0:000015(4)14 �0:000243(5) �0:000107(7) �0:000124(5) �0:000039(5) �0:000015(4)15 �0:000210(5) �0:000095(6) �0:000109(5) �0:000035(5) �0:000013(4)16 �0:000183(5) �0:000084(5) �0:000096(5) �0:000032(5) �0:000011(4)17 �0:000160(5) �0:000075(5) �0:000086(5) �0:000029(4) �0:000010(4)18 �0:000141(4) �0:000068(4) �0:000076(4) �0:000027(4) �0:000009(3)19 �0:000124(4) �0:000061(4) �0:000068(4) �0:000025(3) �0:000008(3)20 �0:000110(4) �0:000055(4) �0:000061(4) �0:000023(3) �0:000007(2)TABLE A4: Perturbative oeÆients for L = 8 (ontinued).



26n W (n)11 W (n)21 W (n)22 W (n)31 W (n)41 W (n)51 W (n)611 �0:333320(4) �0:574758(4) �0:912636(19) �0:801260(5) �1:024718(1) �1:247323(13) �1:469522(15)2 �0:033898(1) �0:003835(2) 0:120423(2) 0:077139(9) 0:207624(22) 0:387381(18) 0:616194(13)3 �0:013698(3) �0:010247(5) 0:000136(15) �0:002788(4) �0:002610(3) �0:020698(3) �0:067876(11)4 �0:007251(3) �0:006625(7) �0:002337(13) �0:003640(8) �0:001503(7) �0:000967(6) �0:000342(11)5 �0:004410(3) �0:004425(6) �0:002255(11) �0:002914(9) �0:001539(1) �0:000784(1) �0:000475(6)6 �0:002922(3) �0:003106(6) �0:001861(9) �0:002233(7) �0:001326(1) �0:000724(12) �0:000406(15)7 �0:002052(3) �0:002272(4) �0:001503(7) �0:001726(5) �0:001101(5) �0:000645(6) �0:000373(8)8 �0:001504(2) �0:001718(3) �0:001217(4) �0:001355(3) �0:000906(3) �0:000557(4) �0:000334(6)9 �0:001138(2) �0:001333(2) �0:000994(2) �0:001082(2) �0:000748(1) �0:000475(2) �0:000289(3)10 �0:000884(1) �0:001056(2) �0:000820(2) �0:000876(2) �0:000621(1) �0:000403(2) �0:000251(3)11 �0:000700(1) �0:000851(1) �0:000683(3) �0:000719(2) �0:000519(2) �0:000344(2) �0:000218(3)12 �0:000565(1) �0:000696(2) �0:000574(4) �0:000597(3) �0:000438(3) �0:000295(4) �0:000191(4)13 �0:000462(1) �0:000577(2) �0:000487(4) �0:000502(3) �0:000373(4) �0:000256(4) �0:000168(4)14 �0:000383(1) �0:000484(2) �0:000418(4) �0:000426(3) �0:000321(4) �0:000223(4) �0:000149(3)15 �0:000320(1) �0:000409(2) �0:000361(4) �0:000364(3) �0:000278(3) �0:000196(3) �0:000132(2)16 �0:000271(1) �0:000350(2) �0:000314(3) �0:000315(2) �0:000243(2) �0:000173(2) �0:000117(1)17 �0:000231(1) �0:000301(2) �0:000275(2) �0:000274(2) �0:000213(2) �0:000153(2) �0:000105(1)18 �0:000199(1) �0:000261(2) �0:000242(2) �0:000239(2) �0:000188(2) �0:000136(2) �0:000094(2)19 �0:000172(1) �0:000228(1) �0:000213(3) �0:000210(2) �0:000166(2) �0:000122(3) �0:000085(2)20 �0:000150(1) �0:000200(1) �0:000189(3) �0:000185(2) �0:000147(3) �0:000109(3) �0:000077(2)TABLE A5: Perturbative oeÆients for L = 12.n W (n)32 W (n)33 W (n)42 W (n)43 W (n)44 W (n)52 W (n)531 �1:207005(31) �1:535522(52) �1:491384(41) �1:845142(72) �2:170005(100) �2:148586(117) �0:000077(2)2 0:322694(4) 0:643882(9) 0:601963(23) 1:048051(37) 1:571598(94) 1:538376(110) �0:000077(2)3 �0:005740(18) �0:056823(24) �0:050320(9) �0:181032(13) �0:418636(81) �0:404144(11) �0:000077(2)4 �0:000112(19) �0:000446(44) �0:000514(12) 0:003334(36) 0:028597(70) 0:027039(50) �0:000077(2)5 �0:000592(11) �0:000136(15) �0:000182(2) �0:000224(12) �0:000196(13) �0:000207(18) �0:000077(2)6 �0:000685(9) �0:000113(15) �0:000197(8) �0:000059(18) �0:000019(16) 0:000003(30) �0:000077(2)7 �0:000663(7) �0:000178(12) �0:000241(6) �0:000074(13) �0:000064(18) �0:000054(20) �0:000077(2)8 �0:000598(4) �0:000196(5) �0:000248(4) �0:000074(11) �0:000031(14) �0:000043(20) �0:000077(2)9 �0:000523(2) �0:000192(5) �0:000234(5) �0:000067(9) �0:000024(4) �0:000027(11) �0:000077(2)10 �0:000453(3) �0:000177(3) �0:000210(3) �0:000059(1) �0:000013(8) �0:000015(8) �0:000077(2)11 �0:000391(5) �0:000161(7) �0:000188(6) �0:000056(8) �0:000015(11) �0:000018(14) �0:000077(2)12 �0:000339(6) �0:000148(9) �0:000170(7) �0:000058(11) �0:000023(7) �0:000025(12) �0:000077(2)13 �0:000297(6) �0:000137(9) �0:000155(7) �0:000059(8) �0:000029(5) �0:000028(7) �0:000077(2)14 �0:000261(5) �0:000126(7) �0:000141(5) �0:000058(5) �0:000030(5) �0:000029(4) �0:000077(2)15 �0:000230(4) �0:000116(5) �0:000128(3) �0:000055(4) �0:000026(8) �0:000026(6) �0:000077(2)16 �0:000204(3) �0:000106(5) �0:000116(3) �0:000051(6) �0:000023(11) �0:000023(8) �0:000077(2)17 �0:000182(3) �0:000096(7) �0:000105(4) �0:000047(8) �0:000020(12) �0:000021(9) �0:000077(2)18 �0:000162(4) �0:000087(8) �0:000095(5) �0:000043(9) �0:000018(11) �0:000020(9) �0:000077(2)19 �0:000145(5) �0:000078(9) �0:000086(6) �0:000040(9) �0:000017(9) �0:000020(8) �0:000077(2)20 �0:000130(5) �0:000071(9) �0:000077(6) �0:000037(8) �0:000016(6) �0:000018(6) �0:000077(2)TABLE A6: Perturbative oeÆients for L = 12 (ontinued).



27n W (n)54 W (n)55 W (n)62 W (n)63 W (n)64 W (n)65 W (n)661 �2:484945(156) �2:807271(225) �2:052506(78) �2:448879(142) �2:794661(184) �3:121967(258) �3:438947(291)2 2:181680(181) 2:906812(327) 1:391688(52) 2:114904(186) 2:879504(270) 3:716609(450) 4:631615(573)3 �0:790329(77) �1:342663(185) �0:341621(19) �0:751605(84) �1:322744(141) �2:086833(280) �3:069039(366)4 0:101235(36) 0:260769(172) 0:020658(33) 0:093854(31) 0:255213(42) 0:548424(285) 1:025063(600)5 �0:002457(18) �0:015589(148) �0:000052(25) �0:002038(23) �0:015007(49) �0:056854(283) �0:156497(515)6 0:000160(35) 0:000420(19) �0:000080(18) 0:000078(14) 0:000253(48) 0:001978(79) 0:008403(118)7 �0:000078(29) �0:000175(44) �0:000076(11) �0:000051(12) �0:000048(49) �0:000388(108) �0:000301(267)8 �0:000020(16) �0:000011(8) �0:000059(11) �0:000045(23) �0:000034(33) 0:000034(26) �0:000051(119)9 �0:000008(6) 0:000015(11) �0:000049(9) �0:000022(1) �0:000009(25) �0:000004(50) 0:000008(124)10 0:000007(12) 0:000030(16) �0:000037(4) 0:000003(1) 0:000015(17) 0:000056(16) 0:000093(31)11 �0:000005(12) 0:000008(1) �0:000035(3) 0:000002(17) �0:000004(1) �0:000014(7) �0:000066(26)12 �0:000016(6) �0:000002(2) �0:000037(5) �0:000005(11) �0:000011(4) �0:000022(9) �0:000049(5)13 �0:000020(4) �0:000006(1) �0:000038(3) �0:000012(5) �0:000013(11) �0:000010(9) �0:000026(17)14 �0:000019(6) �0:000008(3) �0:000038(1) �0:000016(5) �0:000009(11) �0:000004(8) 0:000002(22)15 �0:000015(8) �0:000007(6) �0:000036(2) �0:000016(5) �0:000004(9) �0:000001(7) 0:000012(11)16 �0:000010(1) �0:000005(8) �0:000033(3) �0:000015(6) �0:000002(7) 0:000000(6) 0:000014(3)17 �0:000008(1) �0:000004(9) �0:000030(5) �0:000013(7) �0:000001(6) 0:000000(5) 0:000009(5)18 �0:000007(8) �0:000003(7) �0:000028(5) �0:000012(6) 0:000000(5) �0:000001(4) 0:000002(4)19 �0:000007(6) �0:000003(5) �0:000025(5) �0:000011(5) 0:000000(3) �0:000002(3) �0:000002(3)20 �0:000006(4) �0:000002(3) �0:000023(4) �0:000010(4) 0:000000(2) �0:000002(2) �0:000004(5)TABLE A7: Perturbative oeÆients for L = 12 (ontinued).� W111 W121 W131 W1225:85 0:57595(14) 0:36021(22) 0:22936(28) 0:16659(41)5:9 0:58254(11) 0:36901(16) 0:23814(21) 0:17557(29)5:95 0:588518(92) 0:37692(13) 0:24602(17) 0:18354(24)6 0:594092(80) 0:38429(11) 0:25337(14) 0:19095(20)6:05 0:599358(71) 0:39125(10) 0:26034(12) 0:19797(17)6:1 0:604372(63) 0:397894(90) 0:26702(11) 0:20469(15)6:15 0:609172(57) 0:404260(81) 0:273454(99) 0:21118(14)6:2 0:613784(52) 0:410391(75) 0:279676(89) 0:21745(12)6:25 0:618228(48) 0:416313(67) 0:285714(81) 0:22355(11)6:3 0:622521(44) 0:422047(62) 0:291587(74) 0:22949(10)6:35 0:626675(41) 0:427612(57) 0:297310(68) 0:235295(94)6:4 0:630703(38) 0:433020(53) 0:302895(63) 0:240961(87)6:45 0:634612(35) 0:438283(49) 0:308354(58) 0:246508(80)6:5 0:638412(33) 0:443412(45) 0:313694(54) 0:251941(75)6:55 0:642108(31) 0:448415(44) 0:318922(50) 0:257270(70)6:6 0:645708(29) 0:453299(40) 0:324046(47) 0:262499(65)6:65 0:649216(27) 0:458071(37) 0:329071(44) 0:267634(61)6:7 0:652637(25) 0:462737(35) 0:334001(41) 0:272680(57)6:75 0:655977(23) 0:467302(33) 0:338842(39) 0:277641(54)6:8 0:659239(22) 0:471771(31) 0:343596(36) 0:282521(50)TABLE A8: Summed series of perturbative Wilson loops at L = 12 using the desribed hypergeometri model asfuntion of �.



28WNM W (1)NM;1 W (2)NM;1 W (3)NM;1W11 [22, 23℄ �1=3 �0:0339109931(3) �0:0137063(2)W21 [21℄ �0:57483367 �0:003857(17)W31 [21℄ �0:80146372 0:07717(5)W22 [21℄ �0:91287436 0:12040(7)TABLE A9: CoeÆients of lowest loop orders in thein�nite volume limit.
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