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hasti
 perturbation theoryR. Horsley,1 G. Hotzel �,2 E.-M. Ilgenfritz,3, 4 R. Millo,5 H. Perlt,2P. E. L. Rakow,5 Y. Nakamura,6 G. S
hierholz,7 and A. S
hiller21S
hool of Physi
s, University of Edinburgh, Edinburgh EH9 3JZ, UK2Institut f�ur Theoretis
he Physik, Universit�at Leipzig, D-04109 Leipzig, Germany3Institut f�ur Physik, Humboldt-Universit�at zu Berlin, D-12489 Berlin, Germany4Joint Institute for Nu
lear Resear
h, VBLHEP, 141980 Dubna, Russia5Theoreti
al Physi
s Division, Department of Mathemati
al S
ien
es,University of Liverpool, Liverpool L69 3BX, UK6RIKEN Advan
ed Institute for Computational S
ien
e, Kobe, Hyogo 650-0047, Japan7Deuts
hes Elektronen-Syn
hrotron DESY, D-22603 Hamburg, GermanyWe 
al
ulate perturbative 
ontributions of Wilson loops of various sizes up to order 20 in SU(3)pure latti
e gauge theory at di�erent latti
e sizes for Wilson gauge a
tion using the te
hnique ofnumeri
al sto
hasti
 perturbation theory. This allows us to investigate the perturbative series forvarious Wilson loops at high orders of perturbation theory. We observe di�eren
es in the behaviorof those series as fun
tion of the loop order n. Up to n = 20 we do not �nd eviden
e for the fa
torialgrowth of the expansion 
oeÆ
ients often assumed to 
hara
terize an asymptoti
 series. Based on thea
tually observed behavior we sum the series in a model parametrized by hypergeometri
 fun
tions.For Wilson loops of moderate sizes the summed series in boosted perturbation theory rea
h stableplateaus already for moderate orders in perturbation theory. The 
oeÆ
ients in the boosted seriesbe
ome mu
h more stable in the result of smoothing the 
oeÆ
ients of the original series e�e
tedby the hypergeometri
 model. We introdu
e generalized ratios of Wilson loops of di�erent sizes.Together with the 
orresponding Wilson loops from standard Monte Carlo measurements they enableus to assess their non-perturbative parts.PACS numbers: 11.15.Ha, 12.38.G
, 12.38.Cy,12.38.AwKeywords: Latti
e gauge theory, sto
hasti
 perturbation theoryI. INTRODUCTIONSin
e the non-perturbative gluon 
ondensate hasbeen introdu
ed by Shifman, Vainshtein and Za-kharov [1℄ there have been many attempts to ob-tain reliable numeri
al values for this quantity. Ithas be
ome 
lear very soon that latti
e gauge the-ory provides a promising tool to 
al
ulate the gluon
ondensate from �rst prin
iples using Wilson loopsWNM of various sizes N�M . The perturbative ex-pansion of the Wilson loop { whi
h does not dependon an external s
ale { is espe
ially simple sin
e it
annot depend on logarithms. In [2, 3℄ the pla-quette was used whereas larger Wilson loops havebeen investigated in [4, 5℄. In all 
ases it turned out,that the knowledge { as pre
isely as possible { ofthe large order perturbative tail of the Wilson loopsis 
ru
ial. In the last de
ade, the appli
ation of nu-meri
al sto
hasti
 perturbation theory (NSPT) [6℄has pushed the perturbative order of the plaquetteup to order n = 10 [7℄ and even n = 16 [8℄.Apart from the desired evaluation of the gluon�Present address: Institut f�ur Physik, Humboldt-Universit�atzu Berlin, D-12489 Berlin, Germany


ondensate, there is a general interest in the be-havior of perturbative series in QCD (for an inves-tigation see [9℄). In perturbation theory observables
an be written as series of the formO � Xn 
n�n ; (1)where � denotes some generi
 
oupling, e.g. �s. Itis generally believed that these series are asymp-toti
 ones, and it is often assumed that for largen the leading growth of the 
oeÆ
ients 
n 
an beparametrized as [10℄
n � C1 (C2)n �(n+ C3) (2)with some 
onstants C1; C2; C3, i.e., they show afa
torial behavior.Using the te
hnique of NSPT one 
an rea
hloop orders of perturbation theory where a possibleset-in of this assumed behavior be
omes testable.In [11℄ Narison and Zakharov dis
ussed the di�er-en
e between short and long perturbative series andits impa
t on the determination of the gluon 
on-densate.In this paper we present perturbative 
al
ula-tions of Wilson loops in NSPT for the Wilson gauge

http://arxiv.org/abs/1205.1659v2


2a
tion (with � = 6=g2)SW [U ℄ = �XP �1� 16Tr�UP + UyP�� (3)up to order n = 20 for latti
e sizes L4 with L =4; 6; 8; 12. The 
omputation for L = 12 were per-formed on a NEC SX-9 
omputer of RCNP at Os-aka University, all others on Linux/HP 
lusters atLeipzig University.The paper is organized as follows. In Se
tion IIwe explain how the loop order expansion of Wilsonloops has been obtained in NSPT. In Se
tion IIIwe dis
uss a model whi
h allows us to sum up 
om-pletely the obtained Wilson loops series on �nitelatti
es. As an alternative we apply boosted per-turbation theory 
onsisting in a rearrangement ofthe series su
h that already for a summation up torelatively low loop number good 
onvergen
e of thesummed series 
an be a
hieved. These results areused to estimate the gluon 
ondensate in Se
tionIV. Finally we draw our 
on
lusions.Some preliminary results have been presented inre
ent latti
e pro
eedings [12, 13℄. In the presentwork we give the 
omputational details of theLangevin 
al
ulation for the �nal statisti
s rea
hedand signi�
antly extend the analysis part usingboosting and series summation as well as addingnew aspe
ts to the analysis of Wilson loops of mod-erate size.II. NSPT AND WILSON LOOPS UP TO 20LOOPSA. The strategy of NSPTNumeri
al sto
hasti
 perturbation theory {based on sto
hasti
 quantization [14℄ { allows per-turbative 
al
ulations on �nite latti
es up to �nitebut high loop order n, unrivalled by the standarddiagrammati
 approa
h in latti
e perturbation the-ory. Pra
ti
al limits are set only by 
omputer time,storage limitations and ma
hine pre
ision. For in-stan
e, in order to 
al
ulate in the n-loop orderin the simplest realization of NSPT in the Eulers
heme, one has to keep simultaneously links 
orre-sponding to roughly 2n gauge �eld 
on�gurationsfor a given latti
e size. If one wants to keep forpra
ti
al reasons also the gauge �elds (ve
tor po-tentials) besides the gauge �eld links themselves,the storage requirement is even doubled. In addi-tion, the 
omputer time of the Langevin simulations
ales quite severely, we found it roughly goes liken3.

The algorithm of NSPT has been introdu
ed anddis
ussed in detail in [6, 15℄. For 
onvenien
e, wewill here repeat the main points for pure SU(3) lat-ti
e gauge theory. The sto
hasti
 evolution of thegauge �eld links Ux;�, lo
ated at the link betweenlatti
e sites x and x + �̂, o

urs in an additional\Langevin time" � . This pro
ess is des
ribed bythe Langevin equation��� Ux;�(� ; �) = i �rx;�SW [U ℄��x;�(�)	 Ux;�(� ; �) :(4)The so-
alled drift term is given by the variationof the Eu
lidean gauge a
tion SW [U ℄: it is writtenin terms of the left Lie derivative rx;� whi
h keepsthe links in the SU(3) group manifold. The pro
essis made sto
hasti
 by additive white noise �x;�(�).In the limit of large � the distribution of subse-quent, simultaneous gauge link �elds 
onverges tothe Gibbs measure P [U ℄ / exp(�SW [U ℄).As in any numeri
al approa
h one needs to dis-
retize the \Langevin time" as a sequen
e � ! k�,with running step number k. It is known that, inorder to extra
t 
orre
t equilibrium physi
s, oneneeds to perform the double extrapolation k ! 1and � ! 0, the latter in order not to violate de-tailed balan
e. For the numeri
al solution of theLangevin equation we adhere to a parti
ular ver-sion of the Euler s
heme that guarantees all thelink matri
es Ux;� 2 SU(3) to stay in the groupmanifold:Ux;�(k + 1; �) = exp�i Fx;�[U; �℄� Ux;�(k; �) (5)with the for
e term for the update of the gauge linksUx;�(k; �) in the formFx;�[U; �℄ = �rx;�SW [U ℄ +p� �x;� ; (6)� being a tra
eless 3�3 noise matrix. In 
ase of theWilson gauge a
tion that for
e term takes the formFx;� = ��12 XUP�Ux;� h�UP � UyP��13Tr�UP � UyP� 1�+p� �x;� : (7)We expand ea
h link matrix at any time stepin the bare 
oupling 
onstant g around the trivialva
uum Ux;� = 1. Sin
e � = 6=g2, the expansionreadsUx;�(k; �)! 1+ Xm�1��m=2U (m)x;� (k; �) : (8)If one res
ales the time step to " = ��, the expan-sion (8) 
onverts the Langevin equation (5) into a



3system of simultaneous updates in terms of the ex-pansion 
oeÆ
ients of U (m)x;� (k; �) and of similar ex-pansion 
oeÆ
ients for the for
e Fx;� in (7), but freeof adjustable 
onstants. While the random noise �enters only the lowest order equation, higher ordersare rendered sto
hasti
 by the noise propagatingfrom lower to higher order terms. The system isusually trun
ated a

ording to the maximal orderof the perturbative gauge link �elds one is inter-ested in.For NSPT it is indispensable to perform sto
has-ti
 gauge �xing by using a variant of gauge trans-formations UGx;� = Gx Ux;�Gyx+�̂ (9)with Gx derived from the Landau gauge and ex-panded in powers of 1=p� � g. A 
onvenient so-lution for the gauge transformation G 
omes withthe 
hoi
eGx = exp(��X� �Ax+�̂=2;� �Ax��̂=2;�a �) ;(10)where the series variant of the expression has to betaken. Here the (antihermitean) ve
tor potentialAx+�̂=2;� is related to the link matri
es Ux;� viaAx+�̂=2;� = logUx;� ; (11)and an expansion similar to (8) taking values in thealgebra su(3) is applied for the potential.The need for sto
hasti
 gauge �xing 
omes fromthe fa
t that the di�usion of the longitudinal 
om-ponent of the A� �elds is unbounded and hen
etheir norms would diverge in the 
ourse of thesto
hasti
 pro
ess. Although gauge-invariant quan-tities are in prin
iple not a�e
ted by these diver-gen
es, the performan
e eventually runs into trou-ble due to loss of a

ura
y. It turns out that onestep of (9) using (10) alternating with the Langevinstep (5) is suÆ
ient to keep 
u
tuations under 
on-trol, if � is 
hosen of order � � ".The in
uen
e of zero modes of the gluon �eld onthe performan
e of the Langevin pro
ess has been
riti
ally dis
ussed in [15℄. Sin
e zero modes (
on-stant modes) of the gauge �elds do not 
ontributeto the dis
retized divergen
e present in (10), theywould not be subtra
ted by performing the gaugetransformation. We take the simplest pres
riptionof subtra
ting zero modes at every order by hand.This 
ompletes the spe
i�
ation how NSPT is usedin our 
al
ulations.Let us remark that, whenever we speak about
ontributions of some order to an observable 
on-stru
ted out of links, this has to be understood in

the sense of an expansionhOi ! Xm�0��m=2hO(m)i ; (12)and the expansion 
oeÆ
ient hO(m)i are extra
tedout of the expanded r.h.s. of (8) by 
omparing 
o-eÆ
ients of equal powers ��m=2 (or gm). In thenotation of (12) even integersm 
orrespond to gen-uine loop 
ontributions (with loop order m=2). Inthe 
omputer implementation of NSPT we pra
ti-
ally measure observables for various small but �-nite values of ". The �nal result is then obtainedby performing the extrapolation to " ! 0 for theobservables in ea
h loop order.B. NSPT results for Wilson loops in highorder perturbation theoryIn latti
e gauge theory the Wilson loop as a gaugeinvariant quantity built only out of gauge �eld linksis de�ned as the tra
e of a produ
t of link �eldsalong a 
losed path CWC [U ℄ = 13 Tr Y(x;�)2CUx;� : (13)Having at our disposal the expansion of the links(at �nite Langevin step size) 
lose to the trivialva
uum U (0)x;� � 1 to all orders in g / 1=p�1Ux;� � Xm�0U (m)x;� gm ; (14)we 
onstru
t perturbative Wilson loops within agiven \Langevin 
on�guration" (at �xed \Langevintime"). Inserting the expansion (14) for the linksin (13) we 
olle
t terms of equal power in g on theright hand side and identify these with the n-thloop order 
ontribution W (n)C on the left hand sideXn=0;1=2;1;3=2;:::W (n)C g2n =13 Tr Y(x;�)2Ch Xmx;��0U (mx;�)x;� gmx;�i : (15)The �nal result involves averaging over di�erent
on�gurations obtained during the Langevin evo-lution and the extrapolation to "! 0.1 From now we use as expansion parameter the gauge 
ou-pling g, using the same notation for the 
oeÆ
ients U(m)x;� .



4Here we 
onsider re
tangular Wilson loops C ofsize N �M , where we restri
t the maximal sidelength of the Wilson loop to half of the latti
e sizeL=2 for a latti
e L4. Therefore, we identify the gen-eral perturbative loop order expansion of the Wil-son loopWNM in terms of the bare latti
e 
ouplingg as WNM = Xn=0;1=2;1;3=2;::: W (n)NM g2n (16)with the Wilson loop expansion 
oeÆ
ients W (n)NM(W (0)NM � 1). The integer powers n = 1; 2; : : : inthe series (16) denote the perturbative loop ordersas in diagrammati
 perturbation theory.In addition, following (15) we measure analoguesof the loop 
oeÆ
ients W (n)NM also for half-integern = 3=2; 5=2; : : : (Due to the 
olor tra
e the 
oef-�
ient with n = 1=2 is identi
ally equal to zero).Averages over 
oeÆ
ients with those half-integers{ whi
h des
ribe non-loop 
ontributions { shouldvanish numeri
ally after averaging over a suÆ
ientnumber of measurements and de�ne some level of\noise" for �nite statisti
s to be 
ompared to theloop 
ontributions. While higher loop order 
on-tributions de
rease fast with the loop number, the\noise" does not de
rease suÆ
iently fast, stayingnear zero. Therefore, we adopt here the 
riterionthat we 
an take the expansion 
oeÆ
ients for agiven loop order n for granted (\reliable") only ifthey 
an be 
learly distinguished numeri
ally fromthe noisy results for adja
ent non-loop 
ontribu-tions of orders n � 1=2 and n + 1=2. We do notrule out the possibility of an extrapolation to zeroLangevin step size 
rossing in a systemati
 way thenoise region near zero from a positive/negative 
o-eÆ
ient at large " to a negative/positive 
oeÆ
ientat smallest ". The 
oeÆ
ient extrapolated to " = 0might be as small as the noise of the adja
ent non-loop 
ontributions.Let us add some details of the perturbativeLangevin simulation: Instead of having one link
on�guration as in usual Monte Carlo studies, wehave to handle 40 link 
on�gurations building our\perturbative" 
on�guration for ea
h g order torea
h loop order 20 at ea
h Langevin step. So, un-avoidably, the di�erent orders in g are 
orrelated,sin
e we have to use a 
orrelated system of Langevinequations for ea
h order.Any simulation for a 
hosen Langevin step size" starts from a link 
on�guration, where the ze-roth order in g of the expanded links is put equalto one (and remains so during all the evolution),whereas all non-zero orders in g are set initially tozero (a \
old" start). So any loop 
ontribution is by


onstru
tion vanishing at the beginning. Startingfrom here with the Langevin pro
ess in
luding thenoise term, the non-zero g orders of the links iter-atively obtain non-zero values at ea
h link positionstarting from the lowest order in g. Therefore, thehighest order in g needs the highest minimal num-ber of Langevin steps to rea
h equilibrium. Withde
reasing step size " that minimal number also in-
reases.As a 
riterion to rea
h the equilibrium of theLangevin pro
ess, we studied the behavior of theperturbative plaquette. By monitoring the highestorder of the plaquette at the lowest 
hosen step size" = 0:01, we observed that equilibrium is rea
hedafter roughly 2000 Langevin steps. To be on thesafe side we have dis
arded the �rst 5000 Langevinsteps after a \
old" start before we began mea-surements of the perturbative Wilson loops. Toin
rease statisti
s, we also 
reated new \parallel"Langevin traje
tories (keeping the same parameter") starting from a 
on�guration already in equilib-rium (given in repli
as representing all orders in g)after 
hanging the seeds for the white noise. Only inthese 
ases the strategy of averaging over indepen-dent realizations of noise has been followed. Other-wise, subsequent sequen
es of noise are 
onsideredas independent.We have observed that the auto
orrelations in-
rease on one side with in
reasing loop order andon the other side with in
reasing Wilson loop size.The perturbative Wilson loops have been measuredafter ea
h 20th Langevin step to redu
e auto
orrela-tions. The integrated auto
orrelation times are in-
luded in the error estimate of the measured quan-tities. Typi
ally for the 1�1 Wilson loop the esti-mated auto
orrelation was O(1) at the lowest loop-orders and in
reased up to O(10) at the highestloop orders. So the relative errors signi�
antly in-
rease with the loop order. As a result, we have
olle
ted the following statisti
s in measuring theperturbative Wilson loops for the di�erent 
hosen�nite Langevin steps sizes and latti
e volumes asshown in Table I. The statisti
s has to be under-stood as follows: The thermalization is not in-
luded, e.g. 21000 measurements at latti
e volumeL4 with L = 8 and " = 0:01 in the Table 
or-responds to 420000 Langevin steps in equilibrium.Those measurements are performed for all ordersin g, the rea
hed results are shown in the Figuresbelow.Let us �rst dis
uss the a

ura
y and some prob-lems we have met in performing the extrapolationto vanishing Langevin step size ". Having severaldi�erent expansion 
oeÆ
ients W (n)NM (") for vari-ous " values at a given loop order n available, we



5" L = 4 L = 6 L = 8 L = 120.010 19522 16390 21000 56720.015 12182 13366 18500 |0.020 11186 12726 18750 54640.030 10120 10210 17500 53340.040 9620 9466 17500 52000.050 9500 8500 16500 |0.070 9500 8500 16250 5476TABLE I: Number of Wilson loops measurements upto loop order 20 at various latti
e volumes L4 andLangevin time steps ".perform the extrapolation to the 
oeÆ
ient W (n)NM
orresponding to zero step size by a linear plusquadrati
 �t ansatzW (n)NM (") =W (n)NM +A(n)NM "+B(n)NM "2 : (17)The " behavior depends on the loop order n andthe Wilson loop size N�M , as well as on the lat-ti
e volume. To illustrate the overall behavior wepresent here results for the plaquette W11 and theWilson loop W33 for latti
e size L = 12.The measured perturbative plaquette valuesW (n)11 at all integer loop orders n > 0 (rememberthat W (0)NM � 1) behave in a similar way: they areall negative and tend to values di�erent from zerowhi
h 
an be determined with very good a

ura
y.Ex
ept for n = 2 the zero Langevin step size limitis approa
hed from below with de
reasing step size". The 
learly non-vanishing �t results de
reasemonotoni
ally in magnitude with in
reasing looporder. This is demonstrated in the left of Figure 1,see also the Tables in the Appendix. The 
oeÆ-
ients of odd powers of g should be zero, be
ausethe a
tion is un
hanged under g $ �g. These non-loop 
oeÆ
ients are shown in the right-hand panelof Figure 1. We observe that these 
oeÆ
ients areindeed orders of magnitude smaller than the 
oef-�
ients for even powers of g. To show the qualityof the "! 0 extrapolation we zoom into the smalland large loop number behavior of the expansion
oeÆ
ients. This is demonstrated in Figure 2. Forbetter visibility, part of the expansion 
oeÆ
ientsat low loop numbers n are multiplied by fa
torsgiven in the Figure.Now we 
onsider the Wilson loop W33. In Fig-ure 3 we show how the loop and non-loop expan-sion 
oeÆ
ients for various Langevin step sizes be-have as fun
tion of n. We observe that the noise ofthe non-loop 
oeÆ
ients is mu
h larger than in theplaquette 
ase, whi
h has to be expe
ted for Wil-

son loops with larger areas. For the smallest half-integer n the magnitude of the noise is larger thanthe a
tual (integer) loop results at mu
h larger n.But still our 
riterion is ful�lled that a Wilson loop
oeÆ
ient at a given loop order n should be largerthan the magnitude of the noise for the adja
entn� 1=2 and n+ 1=2 non-loop 
ontributions.Contrary to the plaquette 
ase, the loop expan-sion 
oeÆ
ients alternate in sign for n � 3. Inabsolute value the step-size extrapolation " ! 0approa
hes the extrapolated value from above. Forloop number n = 4 the situation is di�erent (seeleft Figure 4): The extrapolation of the expansion
oeÆ
ient to zero Langevin step starts at a posi-tive value W (4)33 (" = 0:07), 
rosses \zero" with de-
reasing " and points towards a negative valueW (4)33at zero Langevin step. Remember that near zerowe have the \noise", shown in that Figure as well,by the adja
ent non-loop 
ontributions 3:5 and 4:5.The magnitude of that noise is 
omparable to W (4)33for " = 0:03 only, and a reliable almost linear ex-trapolation to zero Langevin step is possible. Forthe next higher loop numbers n > 4 the extrapo-lation to zero Langevin step be
omes 
learly non-linear as shown in more detail in the right of Fig-ure 4 for some loop numbers n. The extrapolatedzero step size results are still 
learly distinguishablefrom the adja
ent non-loop expansion 
oeÆ
ients.Therefore, a

ording to our 
riterion, those extrap-olations 
an be 
onsidered as reliable. For largerloop numbers n � 10 the " dependen
e be
omesless non-linear again. For those n the expansion
oeÆ
ients of W33 as fun
tion of n behave similarto those of the plaquette though their slope slightlydi�ers.In Figure 5 we show some results for the loop
oeÆ
ients (extrapolated to " = 0) of elongated(W (n)N1 , left) and square (W (n)NN , right) Wilson loopsfor various size N as fun
tion of loop order n fora 124 latti
e and 
ompare them to the noise. Atlarger n, a behavior without sign 
hanges is ob-served for all 
onsidered Wilson loops that 
ouldbe interpreted as \asymptoti
". We note that thepre
ision of the extrapolated loop 
oeÆ
ients forthe larger Wilson loops drops down and also thesignal to noise ratio de
reases. Still, the signal forthe shown Wilson loops is 
learly above the noisefor all orders. For square Wilson loops with N � 4(not shown) or other larger Wilson loops the statis-ti
s was insuÆ
ient to get a 
lear signal out of thenoise for larger orders (see also Appendix). In theanalysis below we 
on
entrate on the smallest Wil-son loops.In addition we have to raise the question aboutthe in�nite volume limit of the series. In the per-
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ients W (n)33 : Left: Zoom of bothFigs. 3 in the region [3.5,11.5℄. Right: Detailed extrapolation to "! 0 for sele
ted loop numbers.whi
h des
ribes well the L-dependen
e of one- andtwo-loop 
oeÆ
ients of the perturbative Wilsonloops for various loop sizes. Those 
oeÆ
ients areknown from standard �nite volume latti
e pertur-bation theory ([16℄, the basi
 formulae have beengiven in [17℄). Note that the one- and two-loopNSPT 
oeÆ
ients reprodu
e the �nite volume lat-
ti
e perturbation theory reasonably well as shownin Table II for some examples.For lower loop orders a simple 1=L4 dependen
ewas suÆ
ient in the �ts in agreement with [17℄.Higher loop 
oeÆ
ients, however, need further 
or-re
tions whi
h we have 
hosen in the form (18). InFigure 6 we show two sele
ted extrapolations for
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FIG. 5: Sele
ted loop 
oeÆ
ients W (n)NM for L = 12 versus loop order n together with typi
al values in magnitudeof non-loop 
oeÆ
ients. Positive/negative signs of the 
oeÆ
ients are given by open/full symbols, all W (n)11 <0;W (n)21 < 0. Left: elongated Wilson loops N �1 with N = 1; : : : 6, right: square Wilson loops N �N withN = 1; : : : ; 4. WNN L NSPT (1-loop) Bali (1-loop) NSPT (2-loop) Bali (2-loop)W22 4 �0:87468(13) �0:87500 0:10404(07) 0:104066 �0:90752(12) �0:90762 0:11830(10) 0:118378 �0:91147(03) �0:91141 0:11998(02) 0:1199312 �0:91264(02) �0:91261 0:12043(01) 0:12038W33 6 �1:50088(30) �1:50093 0:60906(34) 0:608668 �1:52849(12) �1:52803 0:63654(08) 0:6363212 �1:53552(06) �1:53533 0:64388(01) 0:64360W44 8 �2:14092(23) �2:14016 1:52436(28) 1:5233112 �2:17001(10) �2:16922 1:57160(10) 1:57006TABLE II: Comparison of one- and two-loop results for NSPT and �nite volume standard latti
e perturbationtheory [16℄.the one- and ten-loop expansion 
oeÆ
ient. Fromthe volume dependen
e of all orders and sizes of theWilson loop we 
on
lude that we 
an treat the lat-ti
e volume 124 being already near to the in�nitevolume limit. Therefore, in the subsequent analysis we use that latti
e size as a reasonable approxima-tion for volume independent results of the series.In the Appendix we present the expansion 
oeÆ-
ients for all available latti
e volumes and Wilsonloop sizes.
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FIG. 6: Extrapolation L!1 for W (n)11 for loop orders n = 1 (left) and n = 10 (right).III. PERTURBATIVE SERIES OF WILSONLOOPS AT LARGE ORDERSThere is plenty of eviden
e that perturbativeseries in 
ontinuum QCD are divergent, at bestasymptoti
. This would mean that, beginning fromsome perturbative order n > n?, the 
oeÆ
ients ofthe series should grow fa
torially. The situationmight be di�erent for perturbative series on �nitelatti
es. Here we have both ultraviolet and infrared
ut-o�s and the growth 
ould be modi�ed signi�-
antly. With our 
omputed 
oeÆ
ients of the loopexpansion up to order n = 20 we are able to 
he
kthis to a so far ina

essible level.For �nite latti
es one 
ould try to use the rawNSPT 
oeÆ
ients for evaluating the 
orrespondingunderlying in�nite series. This requires to dedu
ea kind of asymptoti
 model providing the 
ompleteperturbative answer. Formally, one 
an use su
h amodel designed for �nite latti
es also in a versionadapted to the 
oeÆ
ients extrapolated to L!1.Although the extrapolation seems to yield smoothlimits, it is 
ertainly not allowed to sum a seriesbased on these extrapolated 
oeÆ
ients up to in-�nity. In this 
ase there exist at least two possibili-ties. The �rst 
onsists in taking into a

ount possi-ble renormalon e�e
ts and estimating the trun
atedtail of the series (
f. e.g. [9℄). This pro
edure, how-ever, strongly depends on whether a 
lear fa
torialgrowth of the 
oeÆ
ients in the perturbative re-gion under 
onsideration has been identi�ed. Wewill see that this is very diÆ
ult to justify from ourresults. A se
ond possibility 
onsists in applyingboosting, i.e. a rearrangement of the series, result-ing in a (rather) stable plateau of the trun
atedsum as fun
tion of the maximal perturbative or-der n� that is in
luded, and to use this as the �nal

perturbative result at given 
oupling.A. PlaquetteIn 2001, when only the �rst 10 loops of the pla-quette series as expansion in the bare 
oupling wereknown from [7℄, some of the present authors triedplotting the data in various ways in order to �nd a�t ansatz whi
h 
ould des
ribe the known data andwould be able to predi
t the unknown higher 
oef-�
ients [18℄. A logarithmi
 plot of W (n)11 against nshows a 
urve with de
reasing slope, well des
ribedby an asymptoti
 behaviorW (n)11 � n�(1+
) un; (19)i.e. an exponential in n, multiplied by a power of n(see Figure 1 and Tables in the Appendix). This isa somewhat unexpe
ted result, be
ause a series ofthis type has a �nite radius of 
onvergen
e, g2 <1=u, and sums to give a result with a power-lawsingularity of the form(1� ug2)
 : (20)A more sensitive way of showing the large n be-havior of a series is the Domb-Sykes plot [19℄. Ifthe series has the formXn 
ng2n (21)we 
al
ulate rn, the ratio of neighboring 
oeÆ-
ients, rn � 
n
n�1 ; (22)



10and plot it as a fun
tion of 1=n. The inter
ept as1=n ! 0 (if the limit exists) gives the radius of
onvergen
e. The behavior for small 1=n (i.e. largen) tells us the nature of the dominant singularity.A fun
tion with the power-law singularity (20) hasthe expansion(1� ug2)
 = 1� 
ug2 + � � �+ �(n� 
)�(n+ 1)�(�
) (ug2)n + � � � (23)whi
h leads to the ratio of neighboring 
oeÆ
ientsdepending on the parameters u and 

n
n�1 = u�1� 1 + 
n � : (24)Therefore, the Domb-Dykes plot 
n versus 1=n is astraight-line graph.The a
tual Domb-Sykes plot for the measuredperturbative plaquette showed a small 
urvature.To allow for this we added one more parameter andmade a �t of the formrn = u�1� 1 + 
n+ s� : (25)This des
ribed the data for n 2 [3; 10℄ well, withthe parameter values [18℄u = 0:961(9); 
 = 0:99(7); s = 0:44(10) : (26)We now have 10 more 
oeÆ
ients. How well do the�t parameters (26) predi
t the new data? In Fig-ure 7 we 
ompare the 
urrent data with the predi
-tion made in 2001.The data lie very near the predi
tion. We havedoubled the maximum n value without seeing anybreakdown of the behavior seen at lower n. In par-ti
ular, the series still looks like a series with a �niterange of 
onvergen
e, g2 < 1:04.B. A model for summing up the Wilson loopseriesNow we have in addition also Wilson loops largerthan the plaquette at our disposal. In Figure 8 weshow the 
oeÆ
ient ratios rn for some small sizeWilson loops for n � 5. We have seen that atlarge order n the 
oeÆ
ients in the plaquette se-ries have the asymptoti
 behavior of (19). What isthe asymptoti
 behavior of the other Wilson loops?Is it similar?A sensitive way to investigate this is to look atthe ratio between the 
oeÆ
ients of the Wilson

loops series and the plaquette series. If both havesimilar behaviors at large order nW (n)NMW (n)11 � n�(1+
0) (u0)nn�(1+
) un = n(
�
0)�u0u �n : (27)We plot the ratio (27) for variousNM values in Fig-ure 9, as a log-log plot against n. The plot showsthat at large n the ratio s
ales like a power of n,suggesting that the parameter u in (19) is the samefor all Wilson loops, but the power 
 depends onthe size of the loop. Therefore, u0 = u to a verygood approximation. This means that for all Wil-son loops the series have the same apparent radiusof 
onvergen
e, g2 < 1=u. However the 
urves fordi�erent Wilson loops have di�erent slopes at largen, indi
ating di�erent asymptoti
 powers of n, i.e.di�erent values of 
.In Figure 8 one 
learly re
ognizes that for largerloop size the ratios deviate from the almost perfe
tstraight line behavior seen for W11. This deviation
an be des
ribed rather well by a modi�
ation of(25) taking into a

ount some 
urvature, espe
iallyfor larger loop-sizes N �M . Parametrizing thesee�e
ts by an additional parameter p we make theansatzrn = 
n
n�1 = u�1� 1 + 
n �+ pn(n+ s) (28)where the �rst term is the asymptoti
 form (24)without 
urvature. Relation (28) 
an be trans-formed into a re
ursion relation,
n = ( rn 
n�1 ; if n > n0 ;
n0 ; if n = n0: (29)Here 
n0 is the input value for some lowest mea-sured perturbative 
oeÆ
ient W (n0)NM at loop ordern = n0 to begin the re
ursive re
onstru
tion. Re-lation (29) 
an be solved to
n;hyp = dn0 (� � � � 1)n (� + � � 1)n(s+ 1)n n! un ;� = 12p(
 + s+ 1)2 � 4p=u ; (30)� = s+ 3� 
2 ;with (a)n � �(a+ n)=�(a) being the Po
hhammersymbol. The 
oeÆ
ient dn0 is given bydn0 = n0! 
n0un0 Qn0i=1 (s+ i)Qn0k=1((� � 2 + k)2 � �2) : (31)A

epting su
h a parametrization one 
an followdi�erent strategies:
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FIG. 7: Current ratio data for the plaquette, 
ompared with the predi
tion of 2001 [18℄, plotted with the originalparameters. The predi
tion was based on data with n � 10, i.e. to the right of the verti
al blue bar. The se
ond�gure zooms in on the region of new data.
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FIG. 8: Domb-Sykes plots for WNM for n � 5 togetherwith the �t result using (28).� Use the raw 
oeÆ
ients 
n and/or 
n;hyp �xedby the �tted values of the parameters in theloop order range 1 � n � 20 as determinedby the NSPT 
omputation to investigate theperturbative series. This will be done in thenext Se
tion III C.� Assume that the 
oeÆ
ients 
n;hyp, found assolution of (29), belong to an in�nite seriesand try to sum up the series on a �nite latti
e.This will be dis
ussed in the following.The in�nite series we want to 
ompute is de�ned

FIG. 9: A log-log plot of the ratio (27), plotted fordi�erent sizes of Wilson loops. To guide the eyes, thedata points for the loop orders are 
onne
ted by lines.byW (n0)NM;1 = 1 + n0Xn=1 
n g2n + 1Xn=n0+1 
n;hyp g2n� 1 + 1Xn=1W (n)NM;hyp g2n ; (32)where the �rst n0 
oeÆ
ients 
n �W (n)NM are givenby the NSPT measurements and the 
n;hyp arethe solutions of (29). For later use we have in-trodu
ed the general 
oeÆ
ients W (n)NM;hyp. Themat
hing 
ondition for (32) is that at n0 we have
n0 = 
n0;hyp. Introdu
ing the hypergeometri




12fun
tion 2F12F1 (a; b; 
; t) = 1Xn=0 An tn � 1Xn=0 (a)n (b)n(
)n n! tn ;(33)we get the 
losed expressionW (n0)NM;1 = 1+ n0Xn=1 (
n � dn0An un) g2n+dn0h2F1 �� � � � 1; � + � � 1; s+ 1;u g2��1i : (34)The result expressed in terms of 2F1 �a; b; 
;u g2�has a bran
h 
ut dis
ontinuity at the positive g2-axis for g2 > 1=u. This means that the parameteru in (28) (just as well as in (25)) determines the
onvergen
e radius: for g2 < 1=u the series 
anbe summed up to n = 1 without analyti
 
on-tinuation into the 
omplex plane. All parametersu; 
; p; s depend on the 
orresponding underlyingdata set. As dis
ussed above (see also Figure 9) wewill assume that the 
onvergen
e radius is the samefor all Wilson loop sizes whi
h implies a 
ommonvalue for u.We found that Wilson loops larger in size thanthe plaquette (e.g., W21;W31;W22) give rise to ra-tios rn (for n < 5) that show a pronoun
ed os
illat-ing behavior. Therefore, we restri
t the �t of theratio fun
tion (28) to the data for n > n0 = 4 only.The �t results are shown in Figure 8 as thin lines.It should be pointed out that �tting the param-eters (u; 
; p; s) in ansatz (28) to the NSPT data isnon-trivial. We have determined the optimal valuesby minimizing the fun
tionÆ2(u; 
; p; s) = 20Xn=n0+1 [rn(u; 
; p; s)� rn(NSPT)℄2[rn(NSPT)℄2 ;(35)where rn(NSPT) are the ratios 
omputed from the
orresponding NSPT data. The most sensitive pa-rameter in (28) is s. Therefore, we vary s over a
ertain range smin < s < smax by a small in
re-ment �s as s0(k) = smin + k�s (k - integer) andminimize Æ2(u; 
; p; s0(k)) with respe
t to (u; 
; p)at every s0(k) whi
h is held �xed. The smallest ofall minimized Æ2min(u; 
; p; s0(k)) de�nes the start-ing set (u?; 
?; p?; s0(k?)) for a �nal minimization�t - now with respe
t to all parameters (u; 
; p; s).In Figure 10 we show one example for Æ2min for W22with n0 = 4. One re
ognizes a 
ouple of shallowlo
al minima (besides the absolute one) where min-imization pro
edures 
ould have been trapped. InTable III we give the results of our minimal �t fun
-
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FIG. 10: Æ2min as fun
tion of parameter s for W22.WNM Æ2min u 
 p sW11 8 � 10�6 0.9694(4) 1.13(5) 1.5+1:3�0:6 0.7+3:0�1:8W21 1 � 10�5 0.9694(5) 1.02(4) 1.6(5) �1.4(8)W31 2 � 10�5 0.9694(6) 0.91(4) 1.7(2) �3.3(2)W22 4 � 10�5 0.9694(9) 0.82(4) 1.9(2) �3.9(1)TABLE III: Minimal value of Æ2min and resulting �t pa-rameters. The �t range in n is [5; 20℄.tion and the �nal �t parameters for various Wilsonloops. The given errors (�u;�
;�p;�s) are theextreme values within the error ellipsoid obtainedfrom the relationÆ2(u? +�u; 
? +�
; p? +�p; s? +�s)= 2 Æ2(u?; 
?; p?; s?) ; (36)where (u?; 
?; p?; s?) are the best �t parameters.For extrapolation of the perturbative series we usehypergeometri
 �ts in the interval [5; 20℄. Fits tothe 
oeÆ
ients in this range are ex
ellent, with rel-ative errors � 0:5%.The hypergeometri
 �t still gives a fairly gooddes
ription of the data all the way down to n = 1.For most loop sizes a �t from n = 1 to 20 des
ribesthe data within � 5%, ex
ept for the 2�1 loop,whi
h has some errors � 10%. Given that the 
oef-�
ients vary through 4 orders of magnitude in thisinterval, an error of 5 or 10% is still impressive.All the Wilson loops show rather similar behaviorat large order n, see Figure 11. At small n they lookquite di�erent from the plaquette, with a mixtureof positive and negative terms. It is interesting thatthere is often a \not
h" just before the asymptoti
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FIG. 11: The hypergeometri
 �t to the 
oeÆ
ients W (n)NM for the four small Wilson loops. Solid symbols representpositive terms, open symbols are negative terms. The blue line is an equal weight �t, in
luding all points fromW (0)NM to W (20)NM . The agreement is remarkably good.region begins, i.e. a parti
ularly steep drop to asmall 
oeÆ
ient, followed by a jump ba
k up again.This is parti
ularly dramati
 in the 2�2 Wilsonloop, where the n = 3 
oeÆ
ient is about 600 timessmaller than the n = 2 
oeÆ
ient. The not
h givesrise to big 
hanges in rn, for example for the 2�2loop we have: : : ; r2 = �0:1319; r3 = +0:0016;r4 = �11:98; r5 = +0:9722; : : : (37)The not
h 
orresponds to the singularity in theDomb-Sykes plot. The anomalously large rn valueo

urs when n is 
lose to the pole at n = �s in(28). This is demonstrated in Figure 12 where the�t to the parameters has been extended to the rangen 2 [2; 20℄. Using this �t range one 
learly re
og-nizes the 
orresponding pole terms.Our analysis shows that we 
an reprodu
e ourNSPT data up to order n = 20 for Wilson loopsof moderate size (at least the elongated ones) with

this hypergeometri
 model suÆ
iently well. Thismeans that we do not �nd any eviden
e for a fa
-torial behavior whi
h should result in a behaviorrn � n. In Se
tion II B we showed that in therange 4 � L � 12 the volume dependen
e of ea
hindividual perturbative 
oeÆ
ient is rather smoothand already very weak at sizes like L � 12. So wedo not expe
t a signi�
ant 
hange extrapolating theresults to in�nite latti
e size.Even beyond the apparent radius of 
onvergen
e(g2
 = 1=u; �
 � 5:82) the perturbative series stillhas some information on the Wilson loops. In that
ase the terms in the series de
rease initially, beforerea
hing a minimum and then growing. Summingthe series up to the minimum term would give anapproximation to the Wilson loop. The minimumterm in the series 
an be estimated from the 
ondi-tion on the ratio of neighboring 
oeÆ
ients in (22)rnmin g2 = 1. The 
orresponding minimal numbernmin in the summation is approximately (negle
ting
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FIG. 12: Domb-Sykes plots for WNM with �ts to the parameters in the range n 2 [2; 20℄.the parameters s and p)nmin � (1 + 
)ug2ug2 � 1 = 6u (1 + 
)6u� � � 12�
 � � (38)for � < 6u. So, at � = 5:7 we would have tosum about 100 terms before rea
hing the mini-mum (assuming, of 
ourse, that the hypergeomet-ri
 form remains appli
able), and even at � = 5:2(g2 = 1:15) we would still have about 20 de
reasingterms before rea
hing the minimum term. To stayon the safe side, we have not used any data beyondthe apparent 
onvergen
e radius g
 in our analy-sis of non-perturbative Wilson loops des
ribed be-low. We have restri
ted ourselves to � � 5:85, i.e.g2 � 1:026.C. Boosted perturbation theoryIt is well-known that the bare latti
e 
oupling g isa bad expansion parameter by virtue of latti
e arte-fa
ts like tadpoles. There is hope that, by rede�n-ing the bare 
oupling g into a boosted 
oupling gband the 
orresponding rearrangement of the series,a better 
onvergen
e behavior 
an be a
hieved [20℄.For the 
ase of perturbative Wilson loops this ideahas been applied for the �rst time by Rakow [8℄.

Let us denote the perturbative Wilson loopsummed up to order n? using the bare 
ouplingg by WNM (g; n?) = 1 + n?Xn=1 W (n)NM g2n (39)and 
all in the following any series in g2 a \naiveseries". We de�ne the boosted 
oupling asg2b = g2W11(g; n?) : (40)The 
orresponding \boosted series" for an arbitraryWilson loop WNM is then given byWNM;b(gb; n?) = 1 + n?Xn=1 W (n)NM;b g2nb (41)with 
oeÆ
ients W (n)NM;b to be 
al
ulated fromW (k)NM and W (l)11 with k; l � n. SettingWNM (g; n?) =WNM;b(gb; n?) (42)and inserting (40) into the right hand side of (42),we 
an 
ompute the boosted 
oeÆ
ientsW (n)NM;b or-der by order.



15It should be emphasized that the pres
ribed pro-
edure is done by solving a hierar
hi
al set of re-
ursive equations. Espe
ially for large loop ordersn these equations involve hundreds or thousands ofterms. Using the NSPT raw data W (n)NM with theirerrors gives rise to signi�
ant numeri
al instabili-ties in the boosted result for larger n. Therefore,it turned out to be advantageous to use the 
o-eÆ
ients W (n)NM;hyp (32) as input for the re
ursiveequations. Using that form up to loop order n � 20means that we are smoothing the data of the naiveseries. In addition we are in the position to extendthe maximal loop order beyond n = 20. This leadsto a stable numeri
al result for the boosted 
oeÆ-
ients W (n)NM;b;hyp. An additional improvement 
anbe a
hieved by repla
ing the lowest order pertur-bative 
oeÆ
ients at L = 12 by the 
orrespond-ing 
oeÆ
ients of the in�nite volume limit. In theAppendix we give those numbers for the one- andtwo-loop 
oeÆ
ients obtained in the diagrammati
approa
h [21{23℄.In Figure 13 we 
ompare the perturbative 
oeÆ-
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FIG. 13: Comparison of perturbative 
oeÆ
ients for thenaive series (W (n)11 ), the boosted series from NSPT rawdata (W (n)11;b) and the boosted series using the hyperge-ometri
 model (W (n)11;b;hyp). The boosted 
oupling (40)is used, positive/negative signs of the 
oeÆ
ients aregiven by open/full symbols.
ients of the plaquette for the NSPT raw dataW (n)11with the W (n)11;b 
al
ulated from the raw data andthe W (n)11;b;hyp. The boosted 
oeÆ
ients obtainedvia the model show a smooth de
reasing behaviorwith mu
h smaller errors than the boosted 
oeÆ-
ients based on the raw data, all the way down tothe highest order n = 20. The superior result 
on-
erning the error is due to the fa
t that the errorsof the model-�tted 
oeÆ
ients are 
omputed from

the 
orrelated errors of the parameters (u; 
; p; s)as dis
ussed in the pre
eding se
tion. The errorsof the boosted 
oeÆ
ients (when 
onstru
ted fromthe raw data) are 
al
ulated with standard errorpropagation through the set of re
urren
e equationsinvolving thousands of terms. Sin
e the perturba-tive plaquette (as the non-perturbative plaquette)is less than one, W11(g; n?) < 1, it is 
lear from(40) that g2b > g2. On the other hand, we �ndjW (n)11;bj � jW (n)11 j for n > 4 as shown in Figure 13.We remark that also the boosted 
oeÆ
ients are
hara
terized by os
illating signs as fun
tion of theloop order n for smaller n (open vs. �lled symbols).The above mentioned numeri
al problems relat-ing the boosted series to the naive series obtaineddire
tly from NSPT would be less severe if we 
ouldstart from a 
oupling 
onstant whi
h was 
loser togb. Therefore in [8℄ one of us proposed a simulationwith a shifted \referen
e" 
oupling 
onstant, gref .Instead of simulating NSPT with the a
tion (3), we
ould use the slightly modi�ed a
tionSref [U ℄ = 6 1g2ref + r̂1 + r̂2 g2ref!�XP �1� 16Tr�UP + UyP�� (43)where now UP is expanded as a power series in grefrather than g. Physi
ally, the a
tion is still theusual plaquette a
tion { all we have done is to re-de�ne the 
oupling 
onstant. This modi�ed a
tionleads to 
hanges in the drift term of (4). The advan-tage is that the simulation now gives us a series forthe plaquette in terms of the 
oupling gref , relatedto the bare 
oupling by1g2 = 1g2ref + r̂1 + r̂2 g2ref : (44)If we 
hoose the parameters r̂1 and r̂2 well, the newintermediate 
oupling will be 
lose to the boosted
oupling, so the transformation from gref ! gb willbe numeri
ally stable and will not introdu
e largeun
ertainties as in the transformation from g2 !g2b .In [8℄ simulations have been performed with r̂1 =1=3; r̂2 = 0:033911. These values were 
hosen su
hthat g2b = g2ref + O(g8ref ), making the transforma-tion between the two 
ouplings numeri
ally robust.The resulting boosted series is shown in Table IV.The results are 
ompatible with those found bytransforming both the naive series from the NSPTraw data and from the hypergeometri
 model, re-spe
tively, but the error bars are now 
onsiderablyredu
ed. In parti
ular, the 
hange in the behavior



16n W (n)11;b from (43) W (n)11;b from NSPT raw data W (n)11;b from (32)1 �0:333334(42) �1=3 �1=32 0:077187(30) 0:0772001181(8) 0:0772001181(8)3 �0:016817(10) �0:0168321(4) �0:0168321(4)4 0:0030488(10) 0:0030612(3) 0:0030612(3)5 �0:0006101(14) �0:00061867(9) �0:000620(11)6 0:0000831(7) 0:000087(2) 0:0000911(14)7 �0:00002209(34) �0:000024(2) �0:0000275(89)8 �0:00000007(30) 0:0000009(28) 0:0000024(43)9 �0:00000138(11) �0:0000017(33) �0:0000024(17)10 �0:00000042(8) �0:00000029(360) �0:00000011(58)11 �0:000000201(12) �0:00000022(380) �0:00000033(18)12 �0:000000087(14) 0:000000012(3877) �0:000000073(51)TABLE IV: CoeÆ
ients for the plaquette in boosted perturbation theory, 
al
ulated using the modi�ed a
tion (43)on a 124 latti
e. They are 
ompared to the 
orresponding 
oeÆ
ients from the NSPT raw data (se
ond 
olumn)and the hypergeometri
 model data (third 
olumn). The loop order n given in the table is restri
ted by the orderused in [8℄.beyond n = 8, from an alternating series to a single-sign series is 
on�rmed in this 
al
ulation. So farwe have only applied this method to the series de-s
ribing the plaquette, but we expe
t that it wouldalso be useful for the larger Wilson loops.The su

essful hypergeometri
 model �t to theNSPT raw data (as presented in the pre
eding se
-tion) and the very smooth behavior of the boosted
oeÆ
ients based on the �t formula (34) allows usto extend the a

essible loop order for the 
oeÆ-
ients both in the naive and boosted series far be-yond n = 20 loops. In Figure 14 the 
orrespond-ing 
oeÆ
ients for W11, W21, W31 and W22 areshown throughout the extended range of loop or-ders n � 40 relying on the information 
ontainedin the set of smoothed data represented by the hy-pergeometri
 model.In Figure 15 we 
ompare the e�e
t of trun
atingthe sum at order n? for the naive and boosted series,both on the basis of the hypergeometri
 model. The
orresponding trun
ation error TNM (n?) is de�nedby TNM (n?) = ���WNM (n?)�W (n0)NM;1���W (n0)NM;1 ; (45)where WNM (n?) is either the naive (WNM (g; n?))or the boosted (WNM;b(gb; n?)) trun
ated series.As the asymptoti
 value W (n0)NM;1 we take the hy-pergeometri
 sum (32) with n0 = 4 
omputed atthe 
hosen g2 = 6=� = 1. Even though part of thede
rease in the boosted 
oeÆ
ients is \eaten" up bythe fa
t that g2b (= 1:6832) > g2(= 1), we see that

the boosted series is 
learly superior. For example,for W11 we have a trun
ation error � 10�3 at 10thorder in the boosted series, but we would have togo nearly to the 30th order in naive perturbationtheory to a
hieve the same a

ura
y.Figure 15 suggests that using the naive pertur-bative series for W11;hyp(g; n?) in (40) to 
omputeg2b for a given g2 is a poor 
hoi
e. A mu
h better
onvergen
e towards the total perturbative plaque-tte is obtained by using the 
oeÆ
ients W (n)11;b;hyp.This suggests to de�ne the boosted 
oupling g2b (g2)by solving the impli
it equationg2b = g2W11;b;hyp(gb; n?) (46)whereW11;b;hyp(gb; n?) = 1 + n?Xn=1 W (n)11;b;hyp g2nb : (47)One essential justi�
ation for 
hoosing (46) is thebehavior of the perturbative series of a Wilson loopfor large � (small g2) in 
omparison to the non-perturbative measurement: in this 
oupling rangethe Wilson loop should be dominated by the pertur-bative 
ontent. We introdu
e the relative di�eren
efWNM (�)� 1 = WNM;PT (�)�WNM;MC(�)WNM;MC(�) :(48)where the index \PT" stands for the perturbativevalue of the Wilson loop and \MC" denotes theMonte Carlo result. This quantity should tend to
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FIG. 14: CoeÆ
ients for the naive and boosted series based on the hypergeometri
 model for W11, W21 , W31 andW22 as fun
tion of the loop order n.
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FIG. 15: Trun
ation errors TNM (n?) (45) for W11 (left) and W31 (right) at L = 12 and � = 6 using the naive andthe boosted series on the basis of the hypergeometri
 model. The hypergeometri
 model values for the total sumare W (n0=4)11;1 = 0:59409(8) and W (n0=4)31;1 = 0:25337(22).zero for large �. In Figure 16 we plot fW11(�)�1 asfun
tion of �. The � dependen
e 
learly shows thatthe boosted 
oupling 
omputed from (46) gives thebest behavior for the small g2 where the plaquette from that perturbative series pra
ti
ally 
oin
ideswith the Monte Carlo value. Wilson loops withlarger loop sizes show a similar behavior.Note that the de�nitions of the boosted 
oupling
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omputed from(40); \improved boost" with W11;PT = W11;b(gb; 20)and gb 
omputed from (46). (Full/open symbols denotepositive/negative numbers.)using either (46) or (40) are 
al
ulated from a per-turbative input ex
lusively. Using boosting in stan-dard Monte Carlo measurements, the boosted 
ou-pling g2b is de�ned by dividing the bare 
ouplingsquared g2 by the measured plaquette at given �value. Numeri
ally, this 
oupling 
onstant behavesin a similar way as that obtained from (46). This isanother argument to use expression (46) as de�ni-tion for the boosted 
oupling in perturbation the-ory.IV. THE NON-PERTURBATIVE PART OFWILSON LOOPSA. Reliability of high order latti
eperturbation theoryThere is mu
h debate to whi
h extent high orderlatti
e perturbation theory 
an be trusted and howits results 
an be used to extra
t physi
al quanti-ties. In [24℄ the authors have investigated the in
u-en
e of the �nite volume on the possibility to �ndinfrared renormalons. Using the steepest des
ent(sd) method, they dedu
e an upper bound on theorder of perturbation theory nsd above whi
h pos-sible infrared e�e
ts are tamed for dimension fouroperators n < nsd � 4 logL+ 
 ; (49)where L is the latti
e size. However, it is diÆ
ult todetermine the value of 
 { in [24℄ it was estimatedas 
 = O(1).

As shown in the pre
eding Se
tion III C we foundthat boosted perturbation theory using the rawNSPT 
oeÆ
ients in the range 1 � n � 12 givesalready reliable results for the summed series. Fur-thermore, from the dis
ussion at the end of Se
tionII B (see Figure 6) we feel 
on�dent that the �nitesize e�e
ts are under 
ontrol { whi
h would not bethe 
ase if there are infrared e�e
ts.On �nite latti
es one 
annot expe
t renormalonsbe
ause of hard ultraviolet (k < 1=a) and infrared(k � 2�=La) 
ut-o�s. However, one might expe
tquadrati
 and quarti
 divergen
es. For the plaque-tte W11 one 
ould write (see, e.g. [25℄)W11 = C1(aQ) h1i+ C2(aQ) a4 hGGi ; (50)with hGGi denoting a 
ondensate of dimension four.There 
ould be a mixing between operators 1 andGG whi
h would result in an a4-
ontribution to C1:C1(aQ) = C01 (aQ) + C41 (aQ) (aQ)4 : (51)The 
oeÆ
ients Ci1(aQ) themselves diverge at mostas powers of log(aQ). The existen
e of a quarti
 di-vergen
e would spoil the determination of the 
on-densate. This type of divergen
e is 
onne
ted to apole in the Borel transform of the 
orresponding,assumed divergent perturbative series with a fa
to-rial growth of the expansion 
oeÆ
ients [26℄. Wedo not observe su
h a fa
torial growth up to looporder n = 20. This is a fa
t, whi
h we have toa

ept and appre
iate theoreti
ally [27, 28℄.B. Ratios of Wilson loopsA pre
ise separation of the non-perturbative partof Wilson loops from the 
orresponding quanti-ties measured on the latti
e requires a perturbative
omputation to very high order. From the dis
us-sion in Se
tion III C it is 
lear that boosted pertur-bation theory provides an optimal tool for that. Weuse the version of boosting in
luding the hypergeo-metri
 model to smooth the NSPT bare 
oeÆ
ientsand go beyond loop order n = 20. The boosted 
ou-pling is 
omputed from (46) with n? = 40. Addi-tionally we restri
t ourselves to moderate loop sizeswhi
h ensures that the boosted 
oeÆ
ients 
an bedetermined with suÆ
ient a

ura
y.Let us introdu
e generi
 ratios of powers of Wil-son loops (together with their boosted perturbativeexpansion) asRk;mNM;N 0M 0 = (WNM )k(WN 0M 0)m =Xn [Rk;mNM;N 0M 0 ℄(n) g2nb :(52)



19In most of the following examples we restri
t our-selves to referen
e loops of size N 0 = M 0 = 1 (pla-quette) and integer powers k;m > 0. A generaliza-tion to largerN 0;M 0 and also to non-integer powersk and m 
an be easily performed.We 
onsider now the parti
ular ratios R1;221;11 andR1;331;11. They ful�ll the area relationk � SNM = m � SN 0M 0 ; (53)where SNM is the area of the Wilson loop WNM{ in our 
ase of planar re
tangular loops we haveSNM = N�M . From 
onsiderations of naturalnesswe would expe
t the 
onvergen
e behavior of thesetypes of ratios to be better than other ratios thatare not 
onstrained by the area relation (53). We�rst 
ompare the perturbative 
oeÆ
ients of theseratios with the 
orresponding 
oeÆ
ients of Wilsonloops W (n)NM . Figure 17 shows that the 
oeÆ
ientsof the ratios behave similar to the 
oeÆ
ients of theWilson loops (shown for 
omparison as thin lineswithout errors) themselves.Now we de�ne the quantity�A = APT �AMC ; (54)where �A is then the non-perturbative value of thequantity A and the ratioeA = APTAMC : (55)In the 
ase of Wilson loops �A > 0 and �A �APT . Sin
e we know the non-perturbative pie
e tobe mu
h smaller than the perturbative one we 
anexpand eA in powers of �A. To �rst order we haveeA ' 1 + �AAPT : (56)Applying this expansion taking in pla
e of eA theratios eR for the R introdu
ed in (52) we haveeRk;mNM;N 0M 0 ' 1+k �WNMWNM;PT �m �WN0M0WN 0M 0;PT : (57)In Figure 18 we show an example for some ra-tios eRk;mNM;N 0M 0 at � = 6. We have used our ownMonte Carlo measurements of Wilson loops gener-ated at the same latti
e size [29℄. One re
ognizesthat for large n? the ratios tend to eRk;mNM;N 0M 0 ' 1.For smaller powers m and k this behavior is morepronoun
ed. Additionally, one �nds that the \non-natural" 
hoi
e (k;m) = (3; 3) leads to a signi�-
antly di�erent behavior. Thus, Figure 18 stronglysuggests to use powers (k;m) whi
h obey the arearelation (53).

Using for A in the eA de�nition (55) the quan-tity Rk;mNM;N 0M 0 (52) one 
an easily derive a formulato determine the \deviation from perturbation the-ory", �WNM , for a N�M Wilson loop as�WNM (WN 0M 0) = (58)h1� exp�� ddk log� eRk;mNM;N 0M 0��i WNM;PT ;where we made expli
it the dependen
e of �WNMon the referen
e loop WN 0M 0 . Values of (N;M; k)and (N 0M 0;m) are related by (53). Inserting theboosted perturbative series for WNM;PT and theMonte Carlo measured values WNM;MC for vari-ous values of the inverse 
oupling � into (58) oneobtains rather easily the desired a-dependent non-perturbative part �WNM (a) of WNM using one'sfavorite known relation �(a).C. Condensate of dimension four on thelatti
eOne spe
ial 
ase of the non-perturbative part ofWilson loops is �W11 = W11;PT �W11;MC whi
his dire
tly 
onne
ted to the gluon 
ondensate intro-du
ed in [1℄. There is a 
ommonly used relationbetween the Monte Carlo measured plaquette andits perturbative 
ounterpartW11;MC =W11;PT � a4�236 ��b0g3�(g) � h��GGi ;(59)whi
h de�nes the gluon 
ondensate h��GGi on thelatti
e2. In 
ontrast to (58), relation (59) allowsus to determine the gluon 
ondensate from the1� 1 Wilson loop only. An alternative 
ould beto �nd �W11 from (58) 
hoosing a suitable refer-en
e Wilson loop. As dis
ussed in Se
tion IVA thisis stri
tly valid only in the absen
e of renormalonambiguities whi
h is assumed to be the 
ase in thefollowing.In (59) it is assumed that there is only a sin-gle, non-perturbative quantity of dimension four
ontributing to the plaquette. It has been spe
u-lated [30℄ that in the di�eren
e between the pertur-bative and the latti
e Monte Carlo plaquette alsoan a2-
ontribution might be present. That di�er-en
e depends on n? denoting the trun
ation of theperturbative series as expressed by the n? depen-2 In (59) �(g) denotes the standard �-fun
tion with b0 beingits leading 
oeÆ
ient.



20
1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

5 10 15 20 25 30 35 40

B
o
o
s
t
e
d
c
o
e
ffi
c
ie
n
t
s

n

W
(n)
11

W
(n)
21

-[R12
21,11]

(n)

[R12
21,11]

(n)

1e-18

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

5 10 15 20 25 30 35 40

B
o
o
s
t
e
d
c
o
e
ffi
c
ie
n
t
s

n

W
(n)
11

W
(n)
31

−[R13
31,11]

(n)

[R13
31,11]

(n)

FIG. 17: Boosted 
oeÆ
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orresponding boosted 
oeÆ
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tively.
1

1.002

1.004

1.006

1.008

1.01

10 15 20 25 30 35 40

˜ R
m
n

21
,1
1

n⋆

R̃12
21,11

R̃24
21,11

R̃33
21,11

FIG. 18: eRk;m21;11 for (k;m) = (1; 2); (2; 4) and (3; 3)as fun
tion of loop order n? up to whi
h the ratio issummed up.den
e of the 
orresponding 
oeÆ
ients:�W11(n?) = W11;PT (n?)�W11;MC= 
2(n?) a2 + 
4(n?) a4 : (60)In [11℄ Narison and Zakharov have presented argu-ments that a non-zero value of the 
oeÆ
ient 
2(n?)is an artefa
t due to the trun
ation { above somevalue of n? that 
oeÆ
ient should vanish.For the estimate of the gluon 
ondensate we arein the position to take the most pre
ise perturba-tive values available - in our 
omputation these arethe summed series based on hypergeometri
 fun
-tions (n? ! 1) given in (34) with the parametersof Table III. So we 
an ask the question, whetherthere is a signi�
ant a2-dependen
e for the non-perturbative parts �WNM derived from (58) mak-

ing a 
orresponding ansatz as in (60).To �nd the dependen
e of the non-perturbativepart on the latti
e spa
ing a, we 
onsider the lat-ti
e 
oupling region �min � � � �max. �min = 5:85is determined by the 
onvergen
e radius of the per-turbative series. In the analysis we have used non-perturbative Wilson loops from the same latti
esize as the largest NSPT latti
e and have 
hosen�max = 6:3. To relate the di�erent latti
e 
ouplings� to a=r0, where r0 is the Sommer s
ale, we use [31℄.In the left of Figure 19 we show �W11(a) as fun
-tion of a4. One observes that there is not mu
hroom for an additional a2-dependen
e. On theother hand, we �nd a signi�
ant bending for largera(g2) whi
h 
an be parametrized as an (a4)2 
orre
-tion term. This might be a sign of breaking s
alingon the 
oarsest latti
es, or it 
ould be the signa-ture of higher-dimensional 
ondensates 
onsideredin [32℄. That 
orre
tion is relatively small for �W11 .For larger Wilson loops we �nd this deviation froma pure a4-dependen
e more pronoun
ed as shown inthe right of Figure 19. We should mention that, us-ing the summed perturbative series of the hyperge-ometri
 model, the non-perturbative parts �WNMare independent of the 
hoi
e of the referen
e loops(as indi
ated in (58)) and also agree for the plaque-tte 
ase with the simple subtra
tion s
heme (59).In Figure 20 we plot 
4(n?) for various Wilsonloops. One re
ognizes a pronoun
ed plateau forn? > 30. In Table V we give the values of the
oeÆ
ients 
4 both for the boosted series summedup to n? = 40 and as obtained from the in�niteseries, respe
tively. On dimensional grounds onewould expe
t that 
4 would be approximately pro-portional to the square of the Wilson loop area [32℄.From Table V we do see an in
rease in 
4, but it
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ient 
4 as fun
tion of the inverse looporder 1=n? for di�erent Wilson loops. The data pointsat \1=n? = 0" represent the series summed to in�nityusing the hypergeometri
 model.
4 from boosting 
4 from the hypergeometri
(n? = 40) modelW11 0:30(3) 0:31(3)W21 0:54(5) 0:56(5)W31 0:47(9) 0:49(10)W22 0:67(10) 0:70(11)TABLE V: CoeÆ
ients 
4 for the Wilson loops WNMobtained from boosted perturbation theory up to n? =40 and from the series summed to in�nity using thehypergeometri
 model.is mu
h slower than area squared (in fa
t the a4term in the 3�1 loop is smaller than the 2�1 loop,

though the error bars overlap).Introdu
ing the Sommer s
ale r0, a physi
al valuefor the 
ondensate 
an be extra
ted from the 
oeÆ-
ient 
4. If we approximate��b0 g3�(g) � � 1 in (59), weextra
t from �W11 the gluon 
ondensate as given inTable VI. This value is slightly lower than the valuer40 h��GGi h��GGi [GeV4℄�W11 1:16(12) 0:028(3)TABLE VI: Gluon 
ondensate at L = 12 (r0 = 0:5 fm).0:04(1) GeV4 found in [8℄. The main reason for thedi�eren
e is that in [8℄ the boosted series was trun-
ated at n? = 12, while in the present work wemake an estimate of the 
ontribution from higherterms in the boosted series.V. SUMMARYIn this paper we presented the result of NSPT
al
ulations for Wilson loops of various sizes usingthe Wilson gauge a
tion. Within the framework ofNSPT we were able to determine the perturbative
oeÆ
ients of those loops up to loop order n = 20for di�erent latti
e sizes as numeri
ally 
lear sig-nals.Up to that order we did not observe signs of a fa
-torial n-dependen
e as expe
ted for an asymptoti
series. Assuming that this behavior is not spoiled atlarger n, we were able to des
ribe the n dependen
e



22of the series by a simple re
ursion relating subse-quent orders. Solving that relation, the sum overall orders has been represented by a hypergeomet-ri
 fun
tion. Its bran
h 
ut dis
ontinuity de�nes a
onvergen
e radius of the series at positive g2.Using the naive perturbative series of the Wil-son loops in the bare 
oupling squared g2 = 6=�,the summed series up to n? 
onverges only slowlyto some asymptoti
 value. This has led us to ap-ply boosting { a rearrangement of the perturba-tive series in terms of the so-
alled boosted 
ou-pling as expansion parameter where we expe
t thatthe summed series rea
hes a stable plateau alreadyafter moderate loop orders. For moderate Wilsonloop sizes these plateaus have been found.The transformation from the naive perturbativeseries to the boosted series is numeri
ally deli
ate,involving large 
an
ellations. Simply transform-ing the NSPT raw expansion 
oeÆ
ients leads tovery noisy boosted 
oeÆ
ients beyond n � 8. Toget around this problem we \smoothed" the 
oef-�
ients of the naive perturbative series using thepresented hypergeometri
 model before 
al
ulat-ing the boosted series. The resulting \smoothed"boosted 
oeÆ
ients are mu
h more stable, and thisstrongly suggests that the observed rapid fall-o� ofthe boosted 
oeÆ
ients 
ontinues to large loop or-ders.We introdu
ed ratios of powers of Wilson loopswhi
h then have been treated within boosted per-turbation theory. In many 
ases the trun
ationerrors for these ratios are mu
h smaller than thetrun
ation errors for the Wilson loops themselves.The results of the boosted perturbative seriesare extremely 
lose to the Monte Carlo values ofthe Wilson loops, the same applies to their ratios.For � > 6 (g2 < 1) the di�eren
es are typi
allyin the third or fourth de
imal pla
e. Looking atthe small deviations between Monte Carlo resultsand boosted perturbation theory allows for a de-termination of the non-perturbative parts of Wil-son loops. We �nd that the dominant behavior ofthe non-perturbative part s
ales like a4.As a spe
ial 
ase we have 
al
ulated the gluon
ondensate h��GGi from the plaquette. The foundnumber is somewhat larger than that in the phe-nomenologi
al SVZ sum rule approa
h [1℄ { at leastfor our 124 latti
e. Our number agrees within er-rors with the estimate h��GGi = 0:024(8) GeV4presented by Narison in [33℄ whi
h is based on astudy of heavy quarkonia mass splittings.We have 
he
ked the regularly reappearing 
laim,that the Wilson loop has, in addition to its \
anon-i
al" a4 dependen
e, a signi�
ant part showing aa2 power dependen
e. Our results show that in

the 
hosen �{region the non-perturbative parts ofthe Wilson loops WNM 
an be well des
ribed byan a4-ansatz with an (a4)2 
orre
tion term. Forthe di�eren
e between the perturbative and the lat-ti
e Monte Carlo plaquette �W11 this 
orre
tion israther small.If in�nite or large order perturbation theory wasto re
e
t the long distan
e properties of QCD, wewould expe
t the Wilson loops to show an area-law behavior and the stati
 potential to grow lin-early with distan
e. As a result, the Borel trans-form would exhibit a pole at 1=b0 = 16�2=11, andthe 
oeÆ
ients of the perturbative series shouldshow a fa
torial growth. (Then, for 
omparison,the gluon 
ondensate would show up as a pole at2=b0 = 32�2=11.) Instead, we �ndW (R; T ) / TR (61)for R = 2; 3; 4 and T = 5, within a few per 
ent,and no sign of an infrared renormalon3. This resultholds for all 
ouplings within the radius of 
onver-gen
e of the perturbative series, 0 < g2 . 1:1.In Figure 21 we show the potential di�eren
e �V
DVHR,g2
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FIG. 21: The perturbative potential di�eren
e �V ob-tained from the perturbative Wilson loops up to looporder 20 as fun
tion of the distan
e R and g2.as fun
tion of R and g2 
al
ulated from the series3 We have nothing to add to [34℄ and to the argument of [35℄that there is no physi
al signi�
an
e to these ambiguities.



23variant of the Creutz ratio�V (R) = V (R� 1)� V (R)= logW (R; T )W (R� 1; T � 1)W (R; T � 1)W (R� 1; T ) (62)using the perturbative Wilson loops up to looporder 20. For a linearly in
reasing potential onewould expe
t �V to be a 
onstant proportional tothe string tension. In fa
t, �V de
reases with R forall g2 within the radius of 
onvergen
e 
onsistentwith the expe
ted Coulomb behavior 1=(R(R�1)).A look at the � fun
tion suggests, furthermore,that the perturbative theory is separated from thestrong 
oupling phase through a pole, similar to thesupersymmetri
 Yang-Mills theory [36℄, indi
atingthat there is no dire
t 
ontradi
tion with the strong
oupling expansion. A similar result to (61) wasfound in Monte Carlo simulations of gauge-�xednon-
ompa
t latti
e QCD [37, 38℄, whi
h as welltake into a

ount small 
u
tuations of the gauge�elds only.This leads us to 
on
lude - on the basis of ourpresent results, nota bene - that the perturbativeseries 
arry no information on the 
on�ning proper-ties of the theory and the non-trivial features of theQCD va
uum. The positive aspe
t of this result isthat the perturbative tail 
an be 
leanly separatedfrom the Monte Carlo results for the plaquette.A
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t SCHI 422/8-1 and by the EUgrant 227431 (Hadron Physi
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om-puter resour
es. AppendixWe present in Tables A1 - A7 all 
onsidered re
t-angular perturbative Wilson loops of sizes N�Mwith N;M = 1; : : : ; L=2 for di�erent sizes L of theused hyper
ubi
 latti
es L4 in the formWNM = 1 + 20Xn=1W (n)NM g2n : (63)The expansion 
oeÆ
ients W (n)NM are the result ofthe extrapolation to zero Langevin step size using

(17). The reported errors are the �t errors fromthe extrapolation " ! 0. The presented numbersfor larger Wilson loops and higher loop orders are
olle
ted irrespe
tive of possible problems with thesignal to noise ratio at a given order n as dis
ussedin Se
tion II B and have to be taken with 
are. InTable A8 we give some perturbative Wilson loopsas result of an in�nite series using the des
ribed hy-pergeometri
 model for various � values at L = 12.In Table A9 we 
olle
t the values for known looporder 
oeÆ
ients in the in�nite volume limit. ForW11 the �rst three loop order 
oeÆ
ients are givenin [22, 23℄ whereas for the larger Wilson loops onlythe �rst two loop orders are known [21℄. The �rstorder 
oeÆ
ients 
an be 
omputed to high pre
i-sion.



24n W (n)11 W (n)21 W (n)221 �0:332147(22) �0:567064(34) �0:874683(122)2 �0:033411(15) �0:004571(25) 0:104041(63)3 �0:013368(13) �0:010094(28) �0:000735(58)4 �0:006983(1) �0:006394(13) �0:002683(12)5 �0:004179(8) �0:004167(9) �0:002284(1)6 �0:002719(6) �0:002859(8) �0:001777(9)7 �0:001872(6) �0:002041(8) �0:001368(1)8 �0:001342(5) �0:001503(8) �0:001063(9)9 �0:000992(5) �0:001134(7) �0:000834(8)10 �0:000752(4) �0:000874(6) �0:000663(7)11 �0:000581(4) �0:000684(5) �0:000534(6)12 �0:000456(4) �0:000544(5) �0:000433(6)13 �0:000363(3) �0:000437(4) �0:000355(6)14 �0:000292(3) �0:000355(4) �0:000293(6)15 �0:000238(3) �0:000291(4) �0:000243(5)16 �0:000195(2) �0:000240(4) �0:000204(5)17 �0:000161(2) �0:000200(3) �0:000171(5)18 �0:000134(2) �0:000167(3) �0:000145(5)19 �0:000112(2) �0:000141(3) �0:000123(4)20 �0:000094(2) �0:000119(3) �0:000105(4)TABLE A1: Perturbative 
oeÆ
ients for L = 4.n W (n)11 W (n)21 W (n)22 W (n)31 W (n)32 W (n)331 �0:333112(15) �0:573644(44) �0:907518(112) �0:798086(71) �1:193307(174) �1:500876(291)2 �0:033829(6) �0:003938(26) 0:118297(96) 0:075949(52) 0:313019(171) 0:609060(335)3 �0:013641(4) �0:010199(9) 0:000024(16) �0:002820(12) �0:005402(37) �0:050954(108)4 �0:007202(2) �0:006571(5) �0:002375(9) �0:003622(3) �0:000139(18) �0:000273(38)5 �0:004366(3) �0:004366(6) �0:002227(12) �0:002878(6) �0:000573(8) �0:000083(34)6 �0:002881(4) �0:003047(7) �0:001813(12) �0:002190(8) �0:000684(1) �0:000138(7)7 �0:002014(4) �0:002214(7) �0:001440(12) �0:001675(8) �0:000629(13) �0:000147(12)8 �0:001467(4) �0:001661(7) �0:001151(12) �0:001303(8) �0:000551(13) �0:000156(1)9 �0:001103(4) �0:001278(6) �0:000927(1) �0:001028(7) �0:000473(1) �0:000157(8)10 �0:000850(3) �0:001004(5) �0:000755(8) �0:000824(6) �0:000404(8) �0:000150(7)11 �0:000669(3) �0:000802(4) �0:000622(6) �0:000670(5) �0:000346(6) �0:000139(6)12 �0:000535(3) �0:000650(3) �0:000518(4) �0:000551(4) �0:000298(4) �0:000126(5)13 �0:000434(2) �0:000533(3) �0:000435(3) �0:000458(3) �0:000257(2) �0:000114(5)14 �0:000356(2) �0:000442(2) �0:000368(2) �0:000384(2) �0:000222(2) �0:000102(4)15 �0:000295(2) �0:000370(2) �0:000313(2) �0:000324(2) �0:000192(2) �0:000091(4)16 �0:000247(2) �0:000312(2) �0:000268(2) �0:000276(2) �0:000167(2) �0:000080(3)17 �0:000208(2) �0:000265(2) �0:000231(2) �0:000236(2) �0:000145(2) �0:000071(3)18 �0:000177(2) �0:000227(2) �0:000200(2) �0:000203(2) �0:000127(2) �0:000063(2)19 �0:000151(2) �0:000195(2) �0:000173(2) �0:000175(2) �0:000111(2) �0:000056(2)20 �0:000130(1) �0:000169(2) �0:000151(2) �0:000152(2) �0:000098(2) �0:000050(2)TABLE A2: Perturbative 
oeÆ
ients for L = 6.



25n W (n)11 W (n)21 W (n)22 W (n)31 W (n)411 �0:333236(8) �0:574473(16) �0:911469(27) �0:800665(29) �1:023410(49)2 �0:033852(5) �0:003818(8) 0:119976(19) 0:076987(16) 0:206839(26)3 �0:013670(3) �0:010214(4) 0:000196(7) �0:002770(7) �0:002536(14)4 �0:007229(3) �0:006594(4) �0:002321(9) �0:003628(5) �0:001501(7)5 �0:004389(2) �0:004397(4) �0:002243(5) �0:002892(6) �0:001525(6)6 �0:002903(2) �0:003080(3) �0:001845(5) �0:002209(5) �0:001309(6)7 �0:002034(2) �0:002246(2) �0:001478(5) �0:001697(3) �0:001076(4)8 �0:001487(1) �0:001693(2) �0:001194(6) �0:001328(3) �0:000880(3)9 �0:001122(1) �0:001310(2) �0:000973(7) �0:001057(3) �0:000725(3)10 �0:000869(1) �0:001035(3) �0:000800(7) �0:000854(3) �0:000601(3)11 �0:000687(1) �0:000832(3) �0:000664(6) �0:000700(3) �0:000502(3)12 �0:000553(1) �0:000678(3) �0:000555(6) �0:000579(3) �0:000423(3)13 �0:000451(2) �0:000560(3) �0:000468(5) �0:000484(3) �0:000358(3)14 �0:000372(2) �0:000467(3) �0:000398(5) �0:000408(3) �0:000306(3)15 �0:000310(2) �0:000393(3) �0:000340(5) �0:000346(3) �0:000262(3)16 �0:000261(2) �0:000333(3) �0:000292(5) �0:000296(3) �0:000226(3)17 �0:000221(2) �0:000284(3) �0:000252(4) �0:000254(3) �0:000195(3)18 �0:000189(1) �0:000244(2) �0:000219(4) �0:000220(3) �0:000170(3)19 �0:000162(1) �0:000211(2) �0:000191(4) �0:000191(3) �0:000148(3)20 �0:000140(1) �0:000183(2) �0:000167(3) �0:000167(2) �0:000130(2)TABLE A3: Perturbative 
oeÆ
ients for L = 8.n W (n)32 W (n)33 W (n)42 W (n)43 W (n)441 �1:204201(52) �1:528486(114) �1:485430(97) �1:830535(174) �2:140917(228)2 0:320661(27) 0:636544(74) 0:595785(62) 1:028662(168) 1:524356(276)3 �0:005468(14) �0:055098(20) �0:048959(22) �0:174438(58) �0:396169(154)4 �0:000135(19) �0:000547(45) �0:000495(31) 0:002744(73) 0:025146(116)5 �0:000592(1) �0:000131(15) �0:000219(24) �0:000108(45) 0:000200(94)6 �0:000687(12) �0:000159(28) �0:000216(20) �0:000068(44) 0:000011(96)7 �0:000652(1) �0:000208(13) �0:000238(13) �0:000082(17) �0:000067(33)8 �0:000588(1) �0:000214(17) �0:000246(11) �0:000089(14) �0:000057(28)9 �0:000514(1) �0:000196(16) �0:000233(11) �0:000077(15) �0:000027(26)10 �0:000443(9) �0:000174(13) �0:000209(9) �0:000063(12) �0:000011(14)11 �0:000380(7) �0:000153(1) �0:000183(7) �0:000054(8) �0:000010(7)12 �0:000326(6) �0:000136(8) �0:000160(6) �0:000048(7) �0:000013(5)13 �0:000281(6) �0:000120(7) �0:000141(5) �0:000043(6) �0:000015(4)14 �0:000243(5) �0:000107(7) �0:000124(5) �0:000039(5) �0:000015(4)15 �0:000210(5) �0:000095(6) �0:000109(5) �0:000035(5) �0:000013(4)16 �0:000183(5) �0:000084(5) �0:000096(5) �0:000032(5) �0:000011(4)17 �0:000160(5) �0:000075(5) �0:000086(5) �0:000029(4) �0:000010(4)18 �0:000141(4) �0:000068(4) �0:000076(4) �0:000027(4) �0:000009(3)19 �0:000124(4) �0:000061(4) �0:000068(4) �0:000025(3) �0:000008(3)20 �0:000110(4) �0:000055(4) �0:000061(4) �0:000023(3) �0:000007(2)TABLE A4: Perturbative 
oeÆ
ients for L = 8 (
ontinued).



26n W (n)11 W (n)21 W (n)22 W (n)31 W (n)41 W (n)51 W (n)611 �0:333320(4) �0:574758(4) �0:912636(19) �0:801260(5) �1:024718(1) �1:247323(13) �1:469522(15)2 �0:033898(1) �0:003835(2) 0:120423(2) 0:077139(9) 0:207624(22) 0:387381(18) 0:616194(13)3 �0:013698(3) �0:010247(5) 0:000136(15) �0:002788(4) �0:002610(3) �0:020698(3) �0:067876(11)4 �0:007251(3) �0:006625(7) �0:002337(13) �0:003640(8) �0:001503(7) �0:000967(6) �0:000342(11)5 �0:004410(3) �0:004425(6) �0:002255(11) �0:002914(9) �0:001539(1) �0:000784(1) �0:000475(6)6 �0:002922(3) �0:003106(6) �0:001861(9) �0:002233(7) �0:001326(1) �0:000724(12) �0:000406(15)7 �0:002052(3) �0:002272(4) �0:001503(7) �0:001726(5) �0:001101(5) �0:000645(6) �0:000373(8)8 �0:001504(2) �0:001718(3) �0:001217(4) �0:001355(3) �0:000906(3) �0:000557(4) �0:000334(6)9 �0:001138(2) �0:001333(2) �0:000994(2) �0:001082(2) �0:000748(1) �0:000475(2) �0:000289(3)10 �0:000884(1) �0:001056(2) �0:000820(2) �0:000876(2) �0:000621(1) �0:000403(2) �0:000251(3)11 �0:000700(1) �0:000851(1) �0:000683(3) �0:000719(2) �0:000519(2) �0:000344(2) �0:000218(3)12 �0:000565(1) �0:000696(2) �0:000574(4) �0:000597(3) �0:000438(3) �0:000295(4) �0:000191(4)13 �0:000462(1) �0:000577(2) �0:000487(4) �0:000502(3) �0:000373(4) �0:000256(4) �0:000168(4)14 �0:000383(1) �0:000484(2) �0:000418(4) �0:000426(3) �0:000321(4) �0:000223(4) �0:000149(3)15 �0:000320(1) �0:000409(2) �0:000361(4) �0:000364(3) �0:000278(3) �0:000196(3) �0:000132(2)16 �0:000271(1) �0:000350(2) �0:000314(3) �0:000315(2) �0:000243(2) �0:000173(2) �0:000117(1)17 �0:000231(1) �0:000301(2) �0:000275(2) �0:000274(2) �0:000213(2) �0:000153(2) �0:000105(1)18 �0:000199(1) �0:000261(2) �0:000242(2) �0:000239(2) �0:000188(2) �0:000136(2) �0:000094(2)19 �0:000172(1) �0:000228(1) �0:000213(3) �0:000210(2) �0:000166(2) �0:000122(3) �0:000085(2)20 �0:000150(1) �0:000200(1) �0:000189(3) �0:000185(2) �0:000147(3) �0:000109(3) �0:000077(2)TABLE A5: Perturbative 
oeÆ
ients for L = 12.n W (n)32 W (n)33 W (n)42 W (n)43 W (n)44 W (n)52 W (n)531 �1:207005(31) �1:535522(52) �1:491384(41) �1:845142(72) �2:170005(100) �2:148586(117) �0:000077(2)2 0:322694(4) 0:643882(9) 0:601963(23) 1:048051(37) 1:571598(94) 1:538376(110) �0:000077(2)3 �0:005740(18) �0:056823(24) �0:050320(9) �0:181032(13) �0:418636(81) �0:404144(11) �0:000077(2)4 �0:000112(19) �0:000446(44) �0:000514(12) 0:003334(36) 0:028597(70) 0:027039(50) �0:000077(2)5 �0:000592(11) �0:000136(15) �0:000182(2) �0:000224(12) �0:000196(13) �0:000207(18) �0:000077(2)6 �0:000685(9) �0:000113(15) �0:000197(8) �0:000059(18) �0:000019(16) 0:000003(30) �0:000077(2)7 �0:000663(7) �0:000178(12) �0:000241(6) �0:000074(13) �0:000064(18) �0:000054(20) �0:000077(2)8 �0:000598(4) �0:000196(5) �0:000248(4) �0:000074(11) �0:000031(14) �0:000043(20) �0:000077(2)9 �0:000523(2) �0:000192(5) �0:000234(5) �0:000067(9) �0:000024(4) �0:000027(11) �0:000077(2)10 �0:000453(3) �0:000177(3) �0:000210(3) �0:000059(1) �0:000013(8) �0:000015(8) �0:000077(2)11 �0:000391(5) �0:000161(7) �0:000188(6) �0:000056(8) �0:000015(11) �0:000018(14) �0:000077(2)12 �0:000339(6) �0:000148(9) �0:000170(7) �0:000058(11) �0:000023(7) �0:000025(12) �0:000077(2)13 �0:000297(6) �0:000137(9) �0:000155(7) �0:000059(8) �0:000029(5) �0:000028(7) �0:000077(2)14 �0:000261(5) �0:000126(7) �0:000141(5) �0:000058(5) �0:000030(5) �0:000029(4) �0:000077(2)15 �0:000230(4) �0:000116(5) �0:000128(3) �0:000055(4) �0:000026(8) �0:000026(6) �0:000077(2)16 �0:000204(3) �0:000106(5) �0:000116(3) �0:000051(6) �0:000023(11) �0:000023(8) �0:000077(2)17 �0:000182(3) �0:000096(7) �0:000105(4) �0:000047(8) �0:000020(12) �0:000021(9) �0:000077(2)18 �0:000162(4) �0:000087(8) �0:000095(5) �0:000043(9) �0:000018(11) �0:000020(9) �0:000077(2)19 �0:000145(5) �0:000078(9) �0:000086(6) �0:000040(9) �0:000017(9) �0:000020(8) �0:000077(2)20 �0:000130(5) �0:000071(9) �0:000077(6) �0:000037(8) �0:000016(6) �0:000018(6) �0:000077(2)TABLE A6: Perturbative 
oeÆ
ients for L = 12 (
ontinued).
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oeÆ
ients for L = 12 (
ontinued).� W111 W121 W131 W1225:85 0:57595(14) 0:36021(22) 0:22936(28) 0:16659(41)5:9 0:58254(11) 0:36901(16) 0:23814(21) 0:17557(29)5:95 0:588518(92) 0:37692(13) 0:24602(17) 0:18354(24)6 0:594092(80) 0:38429(11) 0:25337(14) 0:19095(20)6:05 0:599358(71) 0:39125(10) 0:26034(12) 0:19797(17)6:1 0:604372(63) 0:397894(90) 0:26702(11) 0:20469(15)6:15 0:609172(57) 0:404260(81) 0:273454(99) 0:21118(14)6:2 0:613784(52) 0:410391(75) 0:279676(89) 0:21745(12)6:25 0:618228(48) 0:416313(67) 0:285714(81) 0:22355(11)6:3 0:622521(44) 0:422047(62) 0:291587(74) 0:22949(10)6:35 0:626675(41) 0:427612(57) 0:297310(68) 0:235295(94)6:4 0:630703(38) 0:433020(53) 0:302895(63) 0:240961(87)6:45 0:634612(35) 0:438283(49) 0:308354(58) 0:246508(80)6:5 0:638412(33) 0:443412(45) 0:313694(54) 0:251941(75)6:55 0:642108(31) 0:448415(44) 0:318922(50) 0:257270(70)6:6 0:645708(29) 0:453299(40) 0:324046(47) 0:262499(65)6:65 0:649216(27) 0:458071(37) 0:329071(44) 0:267634(61)6:7 0:652637(25) 0:462737(35) 0:334001(41) 0:272680(57)6:75 0:655977(23) 0:467302(33) 0:338842(39) 0:277641(54)6:8 0:659239(22) 0:471771(31) 0:343596(36) 0:282521(50)TABLE A8: Summed series of perturbative Wilson loops at L = 12 using the des
ribed hypergeometri
 model asfun
tion of �.



28WNM W (1)NM;1 W (2)NM;1 W (3)NM;1W11 [22, 23℄ �1=3 �0:0339109931(3) �0:0137063(2)W21 [21℄ �0:57483367 �0:003857(17)W31 [21℄ �0:80146372 0:07717(5)W22 [21℄ �0:91287436 0:12040(7)TABLE A9: CoeÆ
ients of lowest loop orders in thein�nite volume limit.
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