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DESY 12-048ELLIPTIC HYPERGEOMETRIC INTEGRALS AND'T HOOFT ANOMALY MATCHING CONDITIONSV. P. SPIRIDONOV AND G. S. VARTANOVAbstra
t. Ellipti
 hypergeometri
 integrals des
ribe super
onformal indi
esof 4d supersymmetri
 �eld theories. We show that all 't Hooft anomaly mat
h-ing 
onditions for Seiberg dual theories 
an be derived from SL(3;Z)-modulartransformation properties of the kernels of dual indi
es.To the memory of F. A. Dolan1. Super
onformal indexIn a remarkable paper [1℄ Dolan and Osborn have re
ognized the fa
t that su-per
onformal indi
es (SCIs) of 4d supersymmetri
 gauge theories [2, 3, 4℄ are ex-pressed in terms of ellipti
 hypergeometri
 integrals (EHIs) [5, 6℄ (see [7℄ for areview). This observation provides 
urrently the most rigorous mathemati
al 
on-�rmation of N = 1 Seiberg ele
tri
-magneti
 duality [8℄ through the equality ofdual indi
es. In a sequel of papers [9, 10, 11, 12, 13, 14, 15℄ we have systemati
allystudied this interrelation between SCIs and EHIs and des
ribed many new N = 1physi
al dualities and 
onje
tured many new identities for EHIs. Supersymmetri
�eld theories on 
urved ba
kgrounds and 
orresponding indi
es modeling SCIs havebeen studied in [16, 17, 18℄. The theory of EHIs was applied also to a des
riptionof the S-duality 
onje
ture for N = 2; 4 extended supersymmetri
 �eld theories[19, 20, 10, 12, 21, 22℄. Several modi�
ations of SCIs have been 
onsidered re
entlysu
h as the in
lusion of 
harge 
onjugation [23℄, indi
es on lens spa
es [24℄, in
lusionof surfa
e operators [25℄ or line operators [26, 27℄. In [14℄ it was shown that SCIsof 4d theories des
ribe partition fun
tions of some novel integrable models of 2dspins systems where the Seiberg duality plays the role of Kramers-Wannier dualitytransformations.By de�nition SCIs 
ount BPS states prote
ted by one supersymmetry whi
h 
annot be 
ombined to form long multiplets. The N = 1 super
onformal algebra ofSU(2; 2j1) spa
e-time symmetry group is generated by Ji; J i (Lorentz rotations),P� (translations), K�, (spe
ial 
onformal transformations), H (dilatations) and R(U(1)R-rotations). In addition to the bosoni
 generators there are super
hargesQ�; Q _� and their super
onformal partners S�; S _�. Distinguishing a pair of super-
harges, say, Q = Q1 and Qy = �S1, one hasfQ;Qyg = 2H; Q2 = �Qy�2 = 0; H = H � 2J3 � 3R=2: (1)The super
onformal index is de�ned now by the tra
eI(p; q; fk) = Tr�(�1)FpR=2+J3qR=2�J3ePk fkFke��H�; R = R+ 2J3; (2)where F is the fermion number operator. Chemi
al potentials fk are the groupparameters of the 
avor symmetry group with the maximal torus generators Fk.The variables p and q are fuga
ities (group parameters) for the operators R=2�J31
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2 V. P. SPIRIDONOV AND G. S. VARTANOV
ommuting with Q and Qy. Only zero modes of H 
ontribute to the tra
e be
auserelation (1) is preserved by the operators used in (2).An expli
it 
omputation of SCIs for N = 1 theories results in the pres
ription[4, 1℄ a

ording to whi
h one should �rst 
ompute the tra
e in (2) over the singleparti
le statesind(p; q; z; y) = 2pq � p� q(1� p)(1� q)�adj(z)+ Xj (pq)Rj=2�RF ;j(y)�RG;j(z)� (pq)1�Rj=2� �RF ;j(y)� �RG;j(z)(1� p)(1� q) ;where the �rst term des
ribes the 
ontribution of gauge super�elds lying in theadjoint representation of the gauge group G
. The sum over j 
orresponds to the
ontribution of 
hiral matter super�elds �j transforming as the gauge group rep-resentations RG;j and 
avor symmetry group representations RF;j . The fun
tions�adj(z), �RF ;j(y) and �RG;j(z) are the 
orresponding 
hara
ters. The exponentsRj are the �eld R-
harges. To obtain the full SCI, this single parti
le states indexis inserted into the \plethysti
" exponential with the subsequent averaging over thegauge group leading to the matrix integralI(p; q; y) = ZG
 d�(z) exp� 1Xn=1 1n ind�pn; qn; zn; yn��; (3)where d�(z) is the G
-invariant measure.Let us take the initial Seiberg duality for SQCD [8℄ and 
onsider it in detail.Namely, take a 4d N = 1 SYM theory with G
 = SU(N
) gauge group andSU(Nf )l�SU(Nf )r�U(1)B 
avor symmetry group. The original (ele
tri
) theoryhas Nf left and Nf right quarks Q and eQ lying in the fundamental and antifunda-mental representation of SU(N
) and having +1 and �1 baryoni
 
harges and theR-
harge R = (Nf � N
)=Nf (this is the R-
harge for the s
alar 
omponent, theR-
harge of the fermion 
omponent is R � 1). The �eld 
ontent of the des
ribedtheory is summarized in the following tableSU(N
) SU(Nf )l SU(Nf )r U(1)B U(1)RQ f f 1 1 Nf�N
NfeQ f 1 f �1 Nf�N
NfV adj 1 1 0 1Corresponding SCI is given by the following ellipti
 hypergeometri
 integral [1℄IE = �N
 ZTN
�1 QNfi=1QN
j=1 �(sizj ; t�1i z�1j ; p; q)Q1�i<j�N
 �(ziz�1j ; z�1i zj ; p; q) N
�1Yj=1 dzj2�izj ; (4)where T denotes the unit 
ir
le with positive orientation, QN
j=1 zj = 1, jsij; jt�1i j <1, and the balan
ing 
ondition reads ST�1 = (pq)Nf�N
 with S = QNfi=1 si; T =QNfi=1 ti: Here we introdu
ed the parameters si and ti assi = (pq)R=2vxi; ti = (pq)�R=2vyi; (5)



'T HOOFT ANOMALY MATCHING CONDITIONS 3where v, xi and yi are fuga
ities for U(1)B , SU(Nf )l and SU(Nf )r groups, respe
-tively, with the 
onstraints QNfi=1 xi =QNfi=1 yi = 1, and�N
 = (p; p)N
�11 (q; q)N
�11N
! ; (a; q)1 = 1Yk=0(1� aqk):We use also 
onventions�(a; b; p; q) := �(a; p; q)�(b; p; q); �(az�1; p; q) := �(az; p; q)�(az�1; p; q);where �(z; p; q) = 1Yi;j=0 1� z�1pi+1qj+11� zpiqj ; jpj; jqj < 1; (6)is the (standard) ellipti
 gamma fun
tion.A

ording to [8℄ the dual (magneti
) theory is des
ribed by a 4d N = 1 SYMtheory with the gauge group eG
 = SU( eN
), eN
 = Nf � N
; sharing the same
avor symmetry. Here one has dual quarks q and eq lying in the fundamentaland antifundamental representation of eG
 with U(1)B-
harges N
=(Nf �N
) and�N
=(Nf�N
) and the R-
hargesN
=Nf . Additionally, there are mesons { singletsof eG
 lying in the fundamental representation of SU(Nf )l and antifundamentalrepresentation of SU(Nf )r (M ji = Qi eQj ; i; j = 1; : : : ; Nf ). It is 
onvenient to
olle
t again all �elds data in one tableSU( eN
) SU(Nf )l SU(Nf )r U(1)B U(1)RM 1 f f 0 2 eN
Nfq f f 1 N
eN
 N
Nfeq f 1 f �N
eN
 N
NfeV adj 1 1 0 1These two SQCD-type theories are dual to ea
h other in their infrared �xedpoints when the magneti
 theory has a dynami
ally generated superpotential [8℄,Wdyn =M ji qieqj . The SCI of the magneti
 theory isIM = �NfN
 Y1�i;j�Nf �(sit�1j ; p; q) (7)� ZTfN
�1 QNfi=1Q eN
j=1 �(S1= eN
s�1i ezj ; T�1= eN
tiez�1j ; p; q)Q1�i<j� eN
 �(eziez�1j ; ez�1i ezj ; p; q) eN
�1Yj=1 dezj2�iezj ;where Q eN
j=1 ezj = 1, and jS1= eN
s�1i j; jT�1= eN
tij < 1. As dis
overed by Dolan andOsborn [1℄, the equality of SCIs IE = IM 
oin
ides with the mathemati
al identityestablished for N
 = 2; Nf = 3; 4 in [5, 6, 7℄ and for arbitrary parameters in [28℄.In [10, 11℄ we proposed to relate known physi
al 
he
ks of the Seiberg duality to
ertain mathemati
al properties of EHIs:(1) 't Hooft anomaly mat
hing 
onditions for dual theories [29℄ were 
onje
-tured to follow from the so-
alled total ellipti
ity property for ellipti
 hy-pergeometri
 terms [7, 30℄.(2) One 
an redu
e the duality from Nf to Nf�1 
avors by integrating out one
avor. At the level of SCIs this 
an be realized by the restri
tion sf t�1f = pqfor fuga
ities of the 
avor f one wants to integrate out.



4 V. P. SPIRIDONOV AND G. S. VARTANOV(3) Mat
hing of the moduli spa
es and gauge invariant operators should 
orre-spond to the equality of 
oeÆ
ients in the series expansions of SCIs havinga topologi
al meaning.The main purpose of this paper is to analyze in detail the �rst point of this list.Namely, we show that our original 
onje
ture (1) is false, i.e. the total ellipti
ity
ondition is not suÆ
ient to mat
h all anomalies. Instead, all 
ontinuous 
urrentanomalies mat
h as a 
onsequen
e of the nontrivial SL(3;Z)-modular group prop-erties of the kernels of ellipti
 hypergeometri
 integrals des
ribing indi
es. Theimportan
e of this modular group for dualities was announ
ed by us in [31℄.2. The modified ellipti
 gamma fun
tionWe start from des
ribing the modi�ed ellipti
 gamma fun
tion [6℄ playing a keyrole in our 
onsiderations. Fun
tion (6) satis�es the following equations�(qz; p; q) = �(z; p)�(z; p; q); �(pz; p; q) = �(z; q)�(z; p; q); (8)where �(z; p) is a theta-fun
tion�(z; p) = (z; p)1(pz�1; p)1:This (shortened) theta fun
tion satis�es symmetry properties�(pz; p) = �(z�1; p) = �z�(z; p);and for any k 2 Z �(pkz; p) = (�z)�kp�k(k�1)=2�(z; p): (9)Equations (8) ne
essarily demand that jpj; jqj < 1, and for pn 6= qm; n;m 2Z, they de�ne �(z; p; q) uniquely as a meromorphi
 fun
tion of z 2 C � with thenormalization �(ppq; p; q) = 1.Let us take three 
omplex variables !1; !2; !3 and de�ne the basesp = e2�i!3=!2 ; q = e2�i!1=!2 ; r = e2�i!3=!1 (10)together with their parti
ular modular transformed partnersep = e�2�i!2=!3 ; eq = e�2�i!2=!1 ; er = e�2�i!1=!3 : (11)Remind now that the ellipti
 gamma fun
tion is originally related to one �nitedi�eren
e equation f(u+ !1) = �(e2�iu=!2 ; p)f(u); u 2 C : (12)It 
oin
ides with the �rst equation above for �(z; p; q) with z = e2�iu=!2 , but itassumes only one 
onstraint for bases, jpj < 1. There exist other nontrivial solutionsto (12) whi
h do not require jqj < 1. Namely, 
onsider equation (12) together withtwo additional equationsf(u+ !2) = �(e2�iu=!1 ; r)f(u); f(u+ !3) = e��iB2;2(u;!)f(u); (13)where B2;2(u;!) is a se
ond order Bernoulli polynomialB2;2(u;!) = u2!1!2 � u!1 � u!2 + !16!2 + !26!1 + 12 :Then for in
ommensurate !j 's the modi�ed ellipti
 gamma fun
tion [6℄G(u;!) = �(e2�iu=!2 ; p; q)�(re�2�iu=!1 ; eq; r) (14)



'T HOOFT ANOMALY MATCHING CONDITIONS 5de�nes the unique meromorphi
 solution of these three equations satisfying thenormalization 
ondition G(P3i=1 !i=2;!) = 1. This is a meromorphi
 fun
tionof u even for !1=!2 > 0, when jqj = 1, whi
h is easily seen from its anotherrepresentation G(u;!) = e��i3 B3;3(u;!)�(e�2�iu=w3 ; er; ep); (15)where B3;3 is a Bernoulli polynomial of the third orderB3;3(u;!) = 1!1!2!3�u� 12 3Xk=1!k��(u� 12 3Xk=1!k)2 � 14 3Xk=1!2k�: (16)Multiple Bernoulli polynomials are de�ned in the theory of Barnes multiple zeta-fun
tion [7℄ from the following expansionxmexuQmk=1(e!kx � 1) = 1Xn=0Bm;n(u;!1; : : : ; !m)xnn! :The equality of expressions (14) and (15) follows from the Ja
obi theorem onabsen
e of nontrivial triply periodi
 fun
tions, sin
e both expressions satisfy threeequations and the normalization 
ondition indi
ated above. This equality representsa modular transformation law from the SL(3;Z)-group [32℄. We stress that allthree bases p; q; r are involved into the des
ription of G(u;!). The modi�ed ellipti
hypergeometri
 integrals built from the modi�ed ellipti
 gamma fun
tions [33℄ andthe Bernoulli polynomial (16) will play the major role in our analysis below.We shall use also the well known modular transformation properties of the thetafun
tion �(e�2�iu=!1 ; e�2�i!2=!1) = e�iB2;2(u;!1;!2)�(e2�iu=!2 ; e2�i!1=!2) (17)and of the Dedekind eta-fun
tione� �i12� (e�2�i=� ; e�2�i=� )1 = (�i�)1=2e�i�12 (e2�i� ; e2�i� )1; (18)where p�i = e��i=4.3. The total ellipti
ity 
ondition and anomaly mat
hingsAnomalies. We would like to remind basi
 fa
ts about the anomalies and't Hooft anomaly mat
hing 
onditions. All 
ontinuous symmetry anomalies areobtained from the one-loop triangular diagrams presented in Fig. 1 where looplines 
ontain all possible fermions and external lines are either global symmetry
urrents, gauge 
urrents or graviton 
urrents (there are two su
h diagrams: these
ond one is obtained from Fig. 1 by reversing the fermion 
urrent). When allexternal lines des
ribe gauge 
urrents one gets the lo
al gauge invarian
e anomalieswhi
h should 
an
el to have a 
onsistent theory.Cal
ulation of the triangle diagram is the same for all anomalies, the only dif-feren
e being des
ribed by the group-theoreti
al fa
tor. The triangle diagramhja;�G jb;�G j
;�G i, where ja;�G = � 
�ta with  being the fermion 
omponent of a
hiral super�eld, is proportional to A(R) = Tr[taftb; t
g℄ (the tra
e is taken overG
-group matri
es in some representationR). The total anomaly is proportional tothe sum over all fermionsPfermionsTr[taftb; t
g℄. In our ele
tri
 theory the expli
it
al
ulation boils to the equality(1)Nf + (�1)Nf + 0 = 0; (19)
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J

a

J
b

J
cFigure 1. A one-loop triangle diagram des
ribing anomalies.sin
e the triple Casimir invariant of G
 = SU(N
) for the fundamental represen-tation is A(f) = 1, for the antifundamental one A(f) = �1, and for the adjointrepresentation A(adj) = 0.In the de�nition of SCIs (2) it is assumed that all operators entering it rep-resent exa
t physi
al symmetries. This means that the 
orresponding 
urrentsare not anomalous hja;�G jb;�G j�1 i = 0, where j�1 is U(1)R or any 
avor symmetry
urrent (in the infrared �xed point R-
harge should be 
onserved similar to theenergy-momentum). In the U(1)R-
ase this anomaly 
oeÆ
ient is proportional toRTrftatbg = RT (R)Æab, where R is the R-
harge. In the ele
tri
 theory one has(R � 1)2Nf 12 +N
 = 0; (20)sin
e the Casimir operators of G
 = SU(N
) for fundamental, antifundamental,and adjoint representations are T (f) = T (f) = 1=2, and T (adj) = N
, respe
tively.Here R � 1 is the R-
harge of 
hiral quarks and the R-
harge of gluinos is equalto 1. As a result, one �xes the R-
harge of 
hiral super�elds, R = (Nf �N
)=Nf .Similarly, gauge invarian
e yields hja;�G j�1 j�2 i = 0 for any 
onserved global symmetry
urrent j�1 and j�2 .As to the anomalies asso
iated only with global symmetry groups { they are notobliged to vanish. As argued by 't Hooft [29℄, for any ele
tri
-magneti
 duality (in-
luding the Seiberg N = 1 duality) the 
oeÆ
ients of admissible triangle anomaliesshould mat
h in dual theories. For example, in the Seiberg 
ase SU(Nf )3l -anomalyis des
ribed by hja;�SU(Nf )ljb;�SU(Nf )lj
;�SU(Nf )li with ja;�SU(Nf )l = � 
�ta , where ta is theSU(Nf )l fundamental representation matrix. For the ele
tri
 theory the anomaly
oeÆ
ient 
omes only from one �eld and equals to (1)N
, while in the magneti
 sideone has two di�erent 
ontributions (from dual quarks q and mesonsM) whi
h yieldthe 
oeÆ
ient (�1)(Nf �N
) +Nf = N
 
on�rming one of the 't Hooft anomalymat
hing 
onditions.Being a quantitative 
he
k, the 't Hooft anomaly mat
hing 
onditions providean extremely powerful tool for 
he
king 4d N = 1 dualities. Still, one should be
areful with these 
onditions, see e.g. [34℄, where examples of misleading anomalymat
hing 
onditions were found. Namely, there are N = 1 SYM theories with equalanomaly 
oeÆ
ients, but the deformation by mass parameters argument shows that



'T HOOFT ANOMALY MATCHING CONDITIONS 7these theories are not dual to ea
h other. From the SCI point of view this fa
t isre
e
ted in the di�eren
e of analyti
al stru
ture of SCIs [13℄.We 
onsider expli
itly only the original Seiberg duality assuming that otherdualities 
an be treated in a similar way. For a further 
omparison we give a fulllist of 
orresponding nontrivial anomaly 
oeÆ
ients:SU(Nf )3l;r : N
; SU(Nf )2l;rU(1)B : N
2 ;SU(Nf )2l;rU(1)R : (R� 1)N
 12 = � N2
2Nf ;U(1)2BU(1)R : (R� 1)2NfN
 = �2N2
 ;U(1)R : (R� 1)2NfN
 +N2
 � 1 = �N2
 � 1;U(1)3R : (R� 1)32NfN
 +N2
 � 1 = �2N4
N2f +N2
 � 1; (21)where R = (Nf � N
)=Nf . Note that in the 
ase of U(1)R-
urrent anomaly thetriangle diagrams involve two gravitational 
urrents.The total ellipti
ity 
ondition. The notion of total ellipti
ity was introdu
ed�rst for ellipti
 hypergeometri
 series [7℄ whi
h we skip. An ellipti
 fun
tion is 
alledtotally ellipti
 if it is doubly periodi
 in all 
ontinuous variables used to parame-trize its divisor spa
e of maximal possible dimension. A meromorphi
 fun
tion is
alled the ellipti
 hypergeometri
 term if it satis�es a homogeneous linear di�eren
eequation in one of the variables with the 
oeÆ
ient whi
h is ellipti
 in this variable.Ellipti
 hypergeometri
 term is 
alled totally ellipti
 if it satis�es su
h equations inea
h variable with the 
oeÆ
ients whi
h are totally ellipti
 fun
tions [30℄. It is be-lieved that one 
an asso
iate a supersymmetri
 duality with ea
h nontrivial totallyellipti
 hypergeometri
 term formed as the ratio of the kernels of two di�erentlylooking, but equal integrals [10℄.In [30℄ the total ellipti
ity 
ondition for the equality of integrals of interest (4)and (7) has been 
he
ked. We partially repeat here 
orresponding 
al
ulations.First, we 
hange variables ez in (7) to ez = S�1= eN
w. Then the equality of integrals(4) and (7) is rewritten in the following wayZTN
�1 �E(z; t; s)N
�1Yj=1 dzj2�izj = Z(S1=fN
T)fN
�1 �M (w; t; s) eN
�1Yj=1 dwj2�iwj ; (22)�E(z; s; t) = �N
 QNfi=1QN
j=1 �(sizj ; t�1i z�1j ; p; q)Q1�i<j�N
 �(ziz�1j ; z�1i zj ; p; q) ; (23)�M (w; s; t) = � eN
 NfYi;j=1�(sit�1j ; p; q)QNfi=1Q eN
j=1 �(s�1i wj ; pqtiw�1j ; p; q)Q1�i<j� eN
 �(wiw�1j ; w�1i wj ; p; q) ; (24)with QN
i=1 zi = 1 and Q eN
i=1 wi = S: Consider the fun
tion�(z; w; s; t; p; q) = �E(z; s; t)�M (w; s; t) (25)



8 V. P. SPIRIDONOV AND G. S. VARTANOVand the ratios, 
alled q-
erti�
ates,hg(z; w; s; t; q; p) = �(: : : ; qg; : : : ; p; q)�(: : : ; g; : : : ; p; q) ; g 2 fz; w; s; tg: (26)The total ellipti
ity 
ondition for �(z; w; s; t; p; q) is then formulated as the require-ment for all hg-fun
tions to be p-ellipti
 in all variables fz; w; s; t; qg, i.e. theyshould not 
hange under the p-shifts zi ! p�izi; wi ! p�iwi; sk ! p
ksk; tk !p�ktk; q ! p�q, �i; : : : ; � 2 Z; provided all the additional 
onstraints for fuga
itiesare satis�ed. We remind that a

ording to the original de�nition given in [6℄, a
ontour integral with integration variables zi is 
alled the ellipti
 hypergeometri
integral if hzi-
erti�
ates built from its kernel are p-ellipti
 in all z, whi
h is a mu
hweaker 
ondition.Let m(a)j 2 Z, j = 1; : : : ; n; a = 1; : : : ;K, and �(m(a)) = �(m(a)1 ; : : : ;m(a)n ) arearbitrary Zn ! Z maps with �nite support and r� 2 Z. De�ne a meromorphi
fun
tion of free variables xi 2 C � ; i = 1; : : : ; n;�(x1; : : : ; xn; p; q) = (p; p)r�1 (q; q)r�1 KYa=1�(xm(a)11 xm(a)22 : : : xm(a)nn ; p; q)�(m(a)): (27)The following theorem was presented in [30℄.Theorem 1 (Rains, Spiridonov, 2004). Suppose �(x; p; q) is a totally ellipti
 hy-pergeometri
 term, i.e. all its q-
erti�
ateshi(x; q; p) = �(: : : ; qxi; : : : ; p; q)�(x1; : : : ; xn; p; q) = KYa=1m(a)i �1Yl=0 �(ql nYk=1 xm(a)kk ; p)�(m(a))are p-ellipti
 fun
tions of q and x1; : : : ; xn. Then these q-
erti�
ates are also mod-ular invariant.The statements of the theorem are guaranteed be
ause of the following diophan-tine equations KXa=1 �(m(a))m(a)i m(a)j m(a)k = 0; (28)KXa=1 �(m(a))m(a)i m(a)j = 0; (29)KXa=1 �(m(a))m(a)i = 0: (30)The proof is elementary. The demand hi(: : : pxj : : : ; q; p) = hi(x; q; p) leads toequations (28), (29). Equation (30) emerges as a 
onsequen
e of the restri
tionhi(x; pq; p) = hi(x; q; p). The theorem statement follows after appli
ation to ea
htheta fun
tion in hi the modular transformation (17) and use of equations (28)-(30).In the 
ontext of SCIs variables xi represent 
ombinations of 
hemi
al potentialsof symmetry groups, �-fun
tion is the ratio of kernels of dual indi
es, and r� isthe di�eren
e of ranks of the ele
tri
 and magneti
 gauge groups,r� = re � rm; re = rank G
; rm = rank eG
:



'T HOOFT ANOMALY MATCHING CONDITIONS 9During the 
he
ks of the total ellipti
ity 
ondition for known dualities in [10℄we have noti
ed that some phases of the quasiperiodi
ity fa
tors emerging fromp-shifts for 
ontributions 
oming from ele
tri
 (or magneti
) theories 
oin
ide withthe anomaly 
oeÆ
ients. This observation allowed us to 
onje
ture that the totalellipti
ity 
ondition guarantees 't Hooft anomalymat
hings. As will be shown belowthis is not the 
ase and the Rains-Spiridonov equations (28)-(30) do not des
ribe a
omplete set of anomaly mat
hings of the Seiberg-like dual theories.It is ne
essary to verify that the ellipti
 hypergeometri
 term (25) belongs tothe 
lass (27), whi
h is not evident from its expli
it form we have given. In orderto see this one should take de�nitions (23) and (24), repla
e there ti ! (pq)�1tifor i = 1; : : : ; Nf �N
 (to remove pq from the balan
ing 
ondition), and apply there
e
tion formula �(pqz; p; q) = 1=�(z�1; p; q) to ellipti
 gamma fun
tions havingthe produ
t pq in their arguments.We stress that the ansatz (27) does not des
ribe all possible forms of the ellipti
hypergeometri
 terms. In general one 
an have in the arguments of ellipti
 gammafun
tions the non-removable fa
tors (pq)R=2 for some fra
tional numbers R (e.g.,this is so for the Kutasov-S
hwimmer duality [35℄) in whi
h 
ase the total ellipti
ity
ondition should be modi�ed appropriately [30, 10℄.Ellipti
ity of 
erti�
ates for zi and gauge anomalies. Take the q-
erti�
atesfor integration variables z obtained from (25) after res
aling zi ! qzi for i 6= N
and zN
 ! q�1zN
 (i.e., we assume that zN
 = QN
�1i=1 z�1i ) and written in termsof the initial variables (5):
hzi (z; v; x; y; q) = �(z; w; s; t; p; q)jzi!qzi;zN
!q�1zN
�(z; w; s; t; p; q)= �(q�2z�1i zN
 ; q�1z�1i zN
 ; p)�(qziz�1N
 ; ziz�1N
 ; p) N
�1Yj=1;j 6=i �(q�1z�1i zj ; q�1z�1j zN
 ; p)�(ziz�1j ; zjz�1N
 ; p)� NfYk=1 �((pq)R=2vxkzi; (pq)R=2v�1y�1k z�1N
 ; p)�((pq)R=2v�1y�1k (qzi)�1; (pq)R=2vxkq�1zN
 ; p) : (31)

From the physi
al point of view, 
onsideration of the zi-variable 
erti�
ate 
an beinterpreted as the insertion of one gauge 
urrent ji;�G into the triangle anomaly di-agram. In terms of equations (28)-(30) it means that we deal with their subpartdepending at least linearly on m(a)i 
oming from G
-fuga
ities. Sin
e the depen-den
e on zi in � 
omes only from �E , the same result is obtained if we repla
ein (31) � by the kernel of integral des
ribing ele
tri
 SCI, i.e. the properties of hzides
ribe only the ele
tri
 theory. Similar situation holds for wi-variables asso
iatedonly with the magneti
 theory.



10 V. P. SPIRIDONOV AND G. S. VARTANOVIt is easy to 
he
k that hzi (z; v; x; y; q) is a totally p-ellipti
 fun
tion:hzi (z1; : : : ; pzi; : : : ; p�1zN
 ; v; x; y; q)hzi (z; v; x; y; q) = (pq)2(Nf�N
)(pq)2RNf QNfi=1 x2i y�2i = 1;hzi (z1; : : : ; pz
; : : : ; p�1zN
 ; v; x; y; q)hzi (z; v; x; y; q) = (pq)Nf�N
(pq)RNf QNfi=1 xiy�1i = 1; (32)hzi (z; v; : : : ; pxb; : : : ; p�1xNf ; y; q)hzi (z; v; x; y; q) = hzi (z; v; x; : : : ; pyb; : : : ; p�1yNf ; q)hzi (z; v; x; y; q) = 1; (33)hzi (z; pv; x; y; q)hzi (z; v; x; y; q) = 1; (34)where 
 6= i. The most 
ompli
ate looking identity ishzi (z; pR=2v; pR(Nf�1)x1; p�Rx2; : : : ; p�RxNf ; y; pq)hzi (z; v; x; y; q) = 1; (35)and its obvious partners obtained by permutation of xj together with similar equa-tions involving yj-variables. In terms of the variables sj ; tj this symmetry looksmore 
ompa
t: one has the transformations sa ! pNf�N
sa (or ta ! pN
�Nf ta)for one �xed value of a and q ! pq.If one takes an arbitrary ratio of ellipti
 gamma fun
tions whose arguments aregiven by integer powers of the fuga
ities v; zi; xj ; yj , then the q-
erti�
ates will beagain given by ratios of theta-fun
tions. However, p-shifts of the fuga
ities in these
erti�
ates would produ
e in general arbitrary quasiperiodi
ity fa
tors des
ribedby some powers of all fuga
ities (whi
h are all equal to 1 in our 
ase).Equations (32) �x the se
ond 
urrent to be again the gauge 
urrent sin
e weare taking p-shifts for the zj-variable and the resulting quasiperiodi
 fa
tor phaseswill ne
essarily 
ontain m(a)j -power. The third 
urrent in the triangle anomalyis �xed by 
onsidering in the resulting phase the powers of fuga
ities v (for theU(1)B-
urrent), xk (for the SU(Nf )l-
urrent), yk (for the SU(Nf )l-
urrent) andfor obtaining insertion of the U(1)R-
urrent one should tra
e the powers (pq)R=2.Let us pi
k up 
ubi
 produ
ts of mai (28) 
orresponding to the gauge groupfuga
ities and sum over a { this sum 
orresponds to the anomaly 
oeÆ
ient forhji;�G jj;�G jk;�G i with 
olor indi
es i; j; k. It is easy to see that it vanishes, moreover,its pie
es 
oming from the gluinos (i.e., from the terms / �(ziz�1j ; z�1i zj) and the
hiral �elds vanish independently. Can
ellation of the powers of the v-variables in(32) tells that the gauge anomaly SU(N
)2U(1)B is absent, and similar situationholds for SU(N
)2SU(Nf )l;r-anomalies.If the R-
harge is not �xed in advan
e, then there emerge quasiperiodi
ity multi-pliers given by some powers of pq, as indi
ated in (32). The demand of the absen
eof these multipliers �xes the R-
harge in the same way as the vanishing of gaugeanomaly hja�G jb�G j�U(1)Ri = 0 does, Nf � N
 � RNf = 0. Absen
e of the asym-metry in p and q in these multipliers, despite of su
h asymmetry present in (31),
orresponds to the energy-momentum 
onservation.Equations (33) 
orrespond to the 
hoi
e of the se
ond 
urrent in the anomalytriangle diagram as SU(Nf )l;r-
urrents sin
e we s
ale respe
tive fuga
ities. Thenthe third 
urrent is determined from the quasiperiodi
ity fa
tors. Absen
e of su
hfa
tors in our 
ase shows that all 
orresponding anomalies vanish. Thus, separate



'T HOOFT ANOMALY MATCHING CONDITIONS 11vanishing of polynomials (28)-(30) for ele
tri
 and magneti
 theories, when at leastone of m(a)i -variables 
omes from gauge group fuga
ities, des
ribes 
an
ellation ofgauge anomalies and various 
onservation laws.One 
an 
onsider in a similar way other 
erti�
ates and interpret 
orrespondingellipti
ity 
onstraints as anomaly mat
hing 
onditions, but this 
onstru
tion is notthat lu
id and evident as one would want to. Moreover, sin
e there is no separatefuga
ity for U(1)R-group, there is no q-
erti�
ate asso
iated with this group whi
hwould 
orrespond to the insertion of U(1)R-
urrent alone. Therefore, it is notpossible to des
ribe U(1)R and U(1)3R anomalies in this way. Similar 
on
lusionhas been rea
hed re
ently by Sudano [36℄ following our 
onsiderations in [30, 10℄.Let us show that the SL(3;Z)-modular properties of ellipti
 hypergeometri
 termsprodu
e all anomaly mat
hing 
onditions at on
e in a very simple way.4. SL(3;Z)-Modularity and anomaliesIn [33℄ the modi�ed versions of ellipti
 hypergeometri
 integrals have been in-trodu
ed. They satisfy the general de�nition of ellipti
 hypergeometri
 integralsof [6℄ mentioned above, but they are built from the modi�ed ellipti
 gamma fun
-tions. Consider modi�
ations of integrals (4) and (7). For this introdu
e newparametrization of fuga
itieszj = e2�iuj=!2 ; j = 1; : : : ; N
; ezj = e2�ivj=!2 ; j = 1; : : : ; eN
;si = e2�i�i=!2 ; ti = e2�i�i=!2 ; i = 1; : : : ; Nf : (36)De�ne now the following integralsImodE = �modN
 Z !3=2�!3=2 QNfi=1QN
j=1 G(�i + uj ;��i � uj ;!)Q1�i<j�N
 G(ui � uj ;�ui + uj ;!) N
�1Yj=1 duj!3 ; (37)where PN
j=1 uj = 0, G(a; b;!) := G(a;!)G(b;!), andImodM = �modeN
 Y1�i;j�Nf G(�i � �j ;!) (38)� Z !3=2�!3=2 QNfi=1Q eN
j=1 G(�= eN
 � �i + vj ;��= eN
 + �i � vj ;!)Q1�i<j� eN
 G(vi � vj ;�vi + vj ;!) eN
�1Yj=1 dvj!3 ;where eN
 = Nf�N
 andP eN
j=1 vj = 0. The integration in both 
ases goes along thestraight line segment 
onne
ting points �!3=2 and !3=2. The balan
ing 
onditionreads �� � = (Nf �N
) 3Xk=1!k; � = NfXi=1 �i; � = NfXi=1 �i:Finally, �modN
 = �(!)N
�1N
! ; �(!) = �!3!2 (p; p)1(q; q)1(r; r)1(~q; ~q)1 :These integrals are obtained from (4) and (7) after repla
ement of �(z; p; q)with z = e2�iu=!2 by the fun
tion G(u;!) and some modi�
ation of the integrationmeasure. Sin
e both ellipti
 gamma fun
tions solve the key equation (12), themodi�ed ellipti
 hypergeometri
 integrals satisfy the same �nite di�eren
e equationsin the shifts u ! u + !1 as the standard integrals do (and therefore modi�ed



12 V. P. SPIRIDONOV AND G. S. VARTANOVidentities 
an be proved similarly to the standard ones). However, they remain wellde�ned for jqj = 1 in di�eren
e from integrals (4) and (7).Theorem 2. Suppose that=(�i=!3);=((�= eN
 � �i)=!3) < 0; =(�i=!3);=((�= eN
 � �i)=!3) > 0:Then ImodE = ImodM :The simplest proof follows the same lines as in [33℄, where a similar identityhas been established for modi�ed ellipti
 hypergeometri
 integrals of type II onthe BCn-root system. Namely, one should substitute to (37), (38) the modulartransformed form of the modi�ed ellipti
 gamma fun
tion (15) and simplify the
ombination of B3;3-Bernoulli polynomials in the exponential fa
tors. After ap-pli
ation of the modular transformation law for the Dedekind eta-fun
tion (18) toin�nite produ
ts (p; p)1; (q; q)1; (r; r)1 these multipliers 
an
el out 
ompletely.As a result the equality ImodE = ImodM redu
es to the equality IE = IM with thevariables sj ; tj ; p and q repla
ed by e�2�i�j=!3 ; e�2�i�j=!2 ; ~p and ~r, respe
tively. The
onstraints imposed on the variables �j and �j 
onvert to the restri
tions neededfor guaranteeing the equality of integrals.Denote as IE;M (�; �;!1; !2; !3) the SCIs IE;M (s; t; p; q) with the 
hange of pa-rameters (36). Then Theorem 2 states that integrals (37) and (38) are proportionalto SL(3;Z)-modular transformations (!1; !2; !3) ! (!1;�!3; !2) of the originalintegralsImodE = e'eIE(�; �;!1;�!3; !2); ImodM = e'mIM (�; �;!1;�!3; !2);and 'e = 'm. The latter equality appears to be nothing else than the 't Hooftanomaly mat
hing 
onditions! Let us prove this statement in the general setting.Given arbitrary Zn ! Z maps with �nite support m(a)j 2 Z, j = 1; : : : ; n,�(m(a)) = �(m(a)1 ; : : : ;m(a)n ); a = 1; : : : ;K, some r� 2 Z and real numbersR(a) 2 R,we de�ne a meromorphi
 fun
tion of xi 2 C � ; i = 1; : : : ; n;�(x1; : : : ; xn; p; q) = (p; p)r�1 (q; q)r�1 KYa=1��(pq)R(a)2 xm(a)11 xm(a)22 : : : xm(a)nn ; p; q��(m(a)):(39)One 
an demand that the powers of pq are not removable by the transformationsxj ! (pq)
jxj , i.e. that there do not exist real numbers 
j su
h that R(a)=2 +Pnj=1 
jm(a)j = 0. However, we shall not require this for simpli
ity.Denote now xj = e2�iuj=!2 and introdu
e the following meromorphi
 fun
tion ofuj 2 C :�mod(u1; : : : ; un;!) = �(!)r� KYa=1G�R(a) 3Xk=1 !k2 + nXj=1 ujm(a)j ;!��(m(a)): (40)The modular transformation properties of the totally ellipti
 hypergeometri
 termswere investigated in [30℄. In the present 
ontext we have the following theorem.Theorem 3. The SL(3;Z)-modular transformation invarian
e relation�mod(u1; : : : ; un;!) = �(e�2�iu1=!3 ; : : : ; e�2�iun=!3 ; ~p; ~r) (41)



'T HOOFT ANOMALY MATCHING CONDITIONS 13leads to the following set of equationsKXa=1 �(m(a))m(a)i m(a)j m(a)k = 0; (42)KXa=1 �(m(a))m(a)i m(a)j (R(a) � 1) = 0; (43)KXa=1 �(m(a))m(a)i (R(a) � 1)2 = 0; (44)KXa=1 �(m(a))m(a)i = 0; (45)KXa=1 �(m(a))(R(a) � 1)3 + r� = 0; (46)KXa=1 �(m(a))(R(a) � 1) + r� = 0: (47)The proof is simple enough. From representation (15) is it easy to see that�mod� = �(!)r�(p; p)r�1 (q; q)r�1 KYa=1 exp"� �i�(m(a))3!1!2!3 �R(a) � 12 3Xk=1!k + nXi=1 uim(a)i �� ��R(a) � 12 3Xk=1!k + nXi=1 uim(a)i �2 � 14 3Xk=1!2k�# = 1:Sin
e 
hemi
al potentials ui are 
ontinuous independent variables, the polynomialin the exponential depending on them should vanish. Pi
king up the 
ubi
 termsuiujuk one obtains equation (42), the quadrati
 terms yield (43), there are twoterms linear in ui with the 
oeÆ
ients depending on 
ontinuous modular parameters!k in di�erent way. Vanishing of these terms yields two equations (44) and (45).Finally, we are left with the equation"�!3(p; p)1(q; q)1(r; r)1!2(~p; ~p)1(~q; ~q)1(~r; ~r)1#r� KYa=1 exp"� �i�(m(a))24!1!2!3 ( 3Xk=1!k)� (R(a) � 1)�(R(a) � 1)2( 3Xk=1!k)2 � 3Xk=1!2k�# = 1:Applying the modular transformation formula (18) to in�nite produ
ts and usingarbitrariness of variables !k we 
ome to the last two equations (46) and (47).Suppose now that the powers (pq)R(a)=2 
an be removed from (39) by rede�nitionof variables xi ! (pq)
ixi, i.e. that there exist some numbers 
i su
h that R(a) =�2Pni=1 
im(a)i . Substituting these 
onditions to (43), (44), we immediately seethat they redu
e to equations (29), (30), i.e. the situation be
omes similar to theoriginal Seiberg duality 
ase. Interestingly, equations (46) and (47) are redu
ed inthis 
ase to one 
onstraint KXa=1 �(m(a)) = r�: (48)



14 V. P. SPIRIDONOV AND G. S. VARTANOVIf the ranks of dual gauge groups are equal (e.g., for self-dual theories), one hasPKa=1 �(m(a)) = 0: Equation (48) thus 
ompletes equations (28)-(30) to guaranteeSL(3;Z)-modular invarian
e of su
h ellipti
 hypergeometri
 terms [30℄.It is evident that equations (42)-(47) 
oin
ide with the 't Hooft anomaly mat
h-ing 
onditions for dual theories with the �-fun
tion being built as the ratio ofkernels of ellipti
 hypergeometri
 integrals des
ribing ele
tri
 and magneti
 SCIs.We have 
he
ked this statement expli
itly for the original Seiberg duality usingthe kernels of modi�ed ellipti
 hypergeometri
 integrals (37) and (38) with thesubstitutions �i = R(!1 + !2 + !3)=2 + � + Æi;�i = �R(!1 + !2 + !3)=2 + � + �i; i = 1; : : : ; Nf ;where � is the 
hemi
al potential for U(1)B-group, Æi and �i are 
hemi
al potentialsfor SU(Nf )l and SU(Nf )r groups, PNfi=1 Æi = PNfi=1 �i = 0. The general ruleof getting the anomaly 
oeÆ
ients is very simple: expand SL(3;Z)-phase fa
torand asso
iate the gauge and 
avor group 
urrents with the 
orresponding 
hemi
alpotentials and the U(1)R-
urrent with the term R(a) � 1, des
ribing the R-
hargeof the 
hiral fermions and for R(a) = 0 modelling the 
ontribution of gluinos.Sin
e we have a 
ubi
 polynomial in these variables we model the triangle anomalydiagram. For instan
e, the plain 
hiral super�eld 
ontributes to the modular phasethe term / B3;3(R(!1 + !2 + !3)=2;!) whi
h is easily seen to 
ontain only twopie
es / (R� 1)3 and / (R� 1), as needed for U(1)3R and U(1)R-anomalies.Computing the modular transformation exponential fa
tors for the ele
tri
 the-ory alone we expli
itly see emergen
e of all anomaly 
oeÆ
ients (
oin
iding withthe magneti
 theory 
oeÆ
ients):� Cubi
 polynomials depending on the integration variables ui or vi lead toequations (42)-(45) with at least one index i 
oming from the gauge groups.They vanish separately in ele
tri
 and magneti
 theories (this is true for anyduality, not just the Seiberg 
ase) leading to hja;�G j�1 j�2 i=0 for any 
onserved
urrent j�1;2 in
luding the energy momentum tensor. E.g., from equation(43) one �nds R = (Nf �N
)=Nf .� The terms / ÆiÆjÆk 
orresponding to (42) yield the SU(Nf )3l -anomaly 
o-eÆ
ient / N
 (with a similar result for SU(Nf )3r).� The terms / ÆiÆj� 
orresponding to (42) give the SU(Nf )2lU(1)B-anomaly
oeÆ
ient / N
.� The terms / ÆiÆj(R � 1) 
orresponding to (43) give the SU(Nf )2lU(1)R-anomaly 
oeÆ
ient / N2
 =Nf .� The terms/ �2(R�1) 
orresponding to (43) give the U(1)2BU(1)R-anomaly
oeÆ
ient / N2
 .� The terms / (R�1)2 
orresponding to (44) are absent leading to vanishingU(1)BU(1)2R and SU(Nf )l;rU(1)2R-anomalies.� Linear terms in 
avor 
hemi
al potentials are absent (i.e., equations (45)are satis�ed separately for ele
tri
 and magneti
 theories), whi
h meansthat there are no U(1)B and SU(Nf )l;r-anomalies.� The ele
tri
 part of equation (46) yields pre
isely the U(1)3R-anomaly 
oef-�
ient 2NfN
(R� 1)3 +N
(N
 � 1) + rank G
 = �2N4
 =Nf +N2
 � 1.� The ele
tri
 part of equation (47) yields pre
isely the U(1)R-anomaly 
oef-�
ient 2NfN
(R� 1) +N
(N
 � 1) + rank G
 = �N2
 � 1.



'T HOOFT ANOMALY MATCHING CONDITIONS 15If =(!1=!2) > 0 then one 
an take the limit !3 !1 and obtainlim!3!1G(u;!) = (e2�iu=!1eq; eq)1(e2�iu=!2 ; q)1 : (49)Taking this limit in the relation ImodE = ImodM one gets the equality of partitionfun
tions of some 3d N = 2 theories whi
h is similar to the redu
tion of standard4d SCIs to 3d partition fun
tions [31℄. The main diÆ
ulty in �nding 3d Seibergdualities 
onsists in the absen
e of the anomaly mat
hing 
onditions. Starting fromknown 4d dualities and using the limit (49) one automati
ally and easily derives 3ddual theories whi
h 
omprise (in a hidden way) 4d anomaly mat
hing 
onditions.5. Total ellipti
ity and modularity. The general 
ase.Let us 
onsider the total ellipti
ity 
ondition for general ellipti
 hypergeometri
term (39). Corresponding q-
erti�
ates have the formhi(x; q; p) = KYa=1m(a)i �1Yl=0 ��ql(pq)R(a)=2 nYk=1 xm(a)kk ; p��(m(a)): (50)Re
ursively using relation (9) one 
an verify that the 
ondition hi(: : : pxj : : : ; q; p) =hi(x; q; p) yields equations (42) and (43) together with the 
onstraintKXa=1 �(m(a))m(a)i m(a)j 2 2Z (51)
oming from the positive sign pres
ription.In order to investigate p-periodi
ity properties of hi(x; q; p) (50) it is ne
essary tointrodu
e a new parameter L, a minimal positive integer su
h that all LR(a) 2 2Z.Note that this requires an advan
e knowledge of some properties of R-
harges,whi
h are presumed to be �xed from the anomaly 
an
ellation/mat
hing 
onditions.Therefore the 
onstraint hi(x; pLq; p) = hi(x; q; p) looks a little bit unnatural fromthe physi
al point of view. Nevertheless, it yields equations (44) and (45) togetherwith the 
onstraint L KXa=1 KXa=1 �(m(a))m(a)i (m(a)i +R(a)) 2 4Z: (52)Equations (42)-(45) and the pres
riptions (51), (52) were derived from the totalellipti
ity 
ondition by the �rst author (unpublished) in a slightly di�erent formduring the work on [30℄ and more re
ently by Sudano in [36℄ (where one 
an �ndthe details of 
omputations).On the one hand, both equations (51) and (52) do not emerge from the SL(3;Z)-modular invarian
e 
ondition (41). On the other hand, 
he
ks of the total ellipti
ity
ondition for all known dualities performed in [10℄ show that they are satis�ed inphysi
al theories. In some 
ases it 
an be shown that they follow from equations(42)-(47) (e.g., for R(a) / Pni=1 
im(a)i ). Therefore we 
onje
ture that equations(51) and (52) are automati
ally satis�ed for ellipti
 hypergeometri
 integrals asso-
iated with nontrivial ele
tri
-magneti
 dualities. If it were true, one 
ould statethat the 
ondition of total ellipti
ity of ellipti
 hypergeometri
 terms is ne
essary,but not suÆ
ient for guaranteeing the 't Hooft anomaly mat
hing 
onditions.Finally, we have a generalization of Theorem 1.



16 V. P. SPIRIDONOV AND G. S. VARTANOVCorollary. Suppose (39) is a totally ellipti
 hypergeometri
 term. Then all itsq-
erti�
ates hi(x; q; p) (50) are modular invariant.For proving this statement 
onsider the ratio of modular transformed 
erti�
ates~hihi = KYa=1m(a)i �1Ỳ=0 �(e�2�i
à=!3 ; ~p)�(m(a))�(e2�i
à=!2 ; p)�(m(a)) ; 
à = R(a) 3Xk=1 !k2 + nXj=1 ujm(a)j + !1`:Using the modular transformation law for theta fun
tions (17) one easily 
he
ksthat ~hi=hi = 1 as a 
onsequen
e of equations (42)-(45).6. Con
lusionIn [10℄ we formulated the 
onje
ture that all 't Hooft anomaly mat
hing 
ondi-tions follow from the total ellipti
ity 
ondition [30℄. It was based on the observationthat some of the anomaly 
oeÆ
ients emerge from the nontrivial quasiperiodi
ityfa
tors appearing during the 
he
ks of ellipti
ity of the 
erti�
ates (50) (in parti
u-lar, triviality of some fa
tors meant the absen
e of gauge anomalies). However, wedid not perform a systemati
 study of this relation at that time. Later in [31℄ wenoti
ed importan
e of the SL(3;Z)-modularity properties for this problem.In this work we presented a systemati
 derivation of the triangle anomaly 
oeÆ-
ients for general theories out of the SL(3;Z)-group modular transformation prop-erties of the kernels of dual indi
es. The generalized Rains-Spiridonov equations(42)-(47) are interpreted as the universal 't Hooft anomaly mat
hing 
onditions for4d supersymmetri
 �eld theories. In parti
ular, we expli
itly 
he
ked emergen
e ofall anomaly 
oeÆ
ients for the original Seiberg duality.Still, the general physi
al meaning of the modular transformation properties ofSCIs remains unknown. It is ne
essary to �nd physi
al derivation of the modi�edellipti
 hypergeometri
 integrals as some kind of modi�ed SCIs. Perhaps they arerelated to 
omputing indi
es in N = 1 theories quantized on T3 � R. In [37℄ 4dN = 4 SYM theories with simply la
ed gauge groups were 
onsidered on su
ha spa
e-time. One 
an rewrite all SCIs, in parti
ular, SCIs of 4d N = 4 SYMtheories listed in [12℄, as some modi�ed ellipti
 hypergeometri
 integrals and try toasso
iate our SL(3;Z)-modular transformations with the natural SL(3;Z)-groupa
tion in the taken spa
e-time.A
tually, we have demonstrated 
oin
iden
e of anomalymat
hing 
onditions withsome mathemati
al properties of SCIs, but we did not derive these 
onditions from�rst prin
iples. A proper mathemati
al 
onsideration of the problem should use theformal mathemati
al de�nition of anomalies as 
o
y
les of gauge groups (see, e.g.,[38, 39℄) yielding anomaly mat
hing 
ondition as an equality of Chern 
lasses of dualtheories. This should yield also the proper 
ohomologi
al meaning of the modularinvarian
e 
ondition for ellipti
 hypergeometri
 terms. From the physi
al side, itis ne
essary to 
ompute the e�e
t of SL(3;Z)-modular transformation on SCIsand demonstrate expli
itly how the anomaly diagrams emerge in the 
orresponding
hanges of SCIs.From the group-theoreti
al point of view the anomaly 
oeÆ
ients are des
ribedby 
ertain 
ombination of Casimir invariants. It seems possible to tra
e how theseinvariants emerge in the modular transformation phase using the group-theoreti
alinformation hidden in the de�nition of SCIs having the ellipti
 hypergeometri
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i�
 form (e.g., r� is �xed from a pie
e of the 
hara
ters of ad-joint representations of gauge groups). This should also yield anomaly mat
hing
onditions.We would like to �nish by posing an interesting mathemati
al problem of de-s
ribing universal restri
tions on powers m(a)i and �(m(a)) in the general ellipti
hypergeometri
 term (39) whi
h would for
e this term to be
ome a ratio of twokernels of SCIs (3). Equations (42)-(47) are ne
essary for this, but not suÆ
ient.Su
h 
onstraints would provide a powerful mathemati
al tool for building physi
aldualities for supersymmetri
 �eld theories.Dedi
ation. This paper is dedi
ated to the memory of our friend and 
ollabora-tor Fran
is Dolan. We got a
quainted with him be
ause of his beautiful work withHugh Osborn on the 
onne
tion of super
onformal indi
es with the ellipti
 hyperge-ometri
 integrals [1℄. From November 2008 we were ex
hanging with him by manye-mails, dis
ussed various aspe
ts of this interrelation and had vast plans for jointwork. Unfortunately, we were able to write only one joint paper [31℄. We shallremember Fran
is as a good friend and a brilliant s
ientist with original ideas, andwe miss him mu
h.A
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