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DESY 12-048ELLIPTIC HYPERGEOMETRIC INTEGRALS AND'T HOOFT ANOMALY MATCHING CONDITIONSV. P. SPIRIDONOV AND G. S. VARTANOVAbstrat. Ellipti hypergeometri integrals desribe superonformal indiesof 4d supersymmetri �eld theories. We show that all 't Hooft anomaly math-ing onditions for Seiberg dual theories an be derived from SL(3;Z)-modulartransformation properties of the kernels of dual indies.To the memory of F. A. Dolan1. Superonformal indexIn a remarkable paper [1℄ Dolan and Osborn have reognized the fat that su-peronformal indies (SCIs) of 4d supersymmetri gauge theories [2, 3, 4℄ are ex-pressed in terms of ellipti hypergeometri integrals (EHIs) [5, 6℄ (see [7℄ for areview). This observation provides urrently the most rigorous mathematial on-�rmation of N = 1 Seiberg eletri-magneti duality [8℄ through the equality ofdual indies. In a sequel of papers [9, 10, 11, 12, 13, 14, 15℄ we have systematiallystudied this interrelation between SCIs and EHIs and desribed many new N = 1physial dualities and onjetured many new identities for EHIs. Supersymmetri�eld theories on urved bakgrounds and orresponding indies modeling SCIs havebeen studied in [16, 17, 18℄. The theory of EHIs was applied also to a desriptionof the S-duality onjeture for N = 2; 4 extended supersymmetri �eld theories[19, 20, 10, 12, 21, 22℄. Several modi�ations of SCIs have been onsidered reentlysuh as the inlusion of harge onjugation [23℄, indies on lens spaes [24℄, inlusionof surfae operators [25℄ or line operators [26, 27℄. In [14℄ it was shown that SCIsof 4d theories desribe partition funtions of some novel integrable models of 2dspins systems where the Seiberg duality plays the role of Kramers-Wannier dualitytransformations.By de�nition SCIs ount BPS states proteted by one supersymmetry whih annot be ombined to form long multiplets. The N = 1 superonformal algebra ofSU(2; 2j1) spae-time symmetry group is generated by Ji; J i (Lorentz rotations),P� (translations), K�, (speial onformal transformations), H (dilatations) and R(U(1)R-rotations). In addition to the bosoni generators there are superhargesQ�; Q _� and their superonformal partners S�; S _�. Distinguishing a pair of super-harges, say, Q = Q1 and Qy = �S1, one hasfQ;Qyg = 2H; Q2 = �Qy�2 = 0; H = H � 2J3 � 3R=2: (1)The superonformal index is de�ned now by the traeI(p; q; fk) = Tr�(�1)FpR=2+J3qR=2�J3ePk fkFke��H�; R = R+ 2J3; (2)where F is the fermion number operator. Chemial potentials fk are the groupparameters of the avor symmetry group with the maximal torus generators Fk.The variables p and q are fugaities (group parameters) for the operators R=2�J31
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2 V. P. SPIRIDONOV AND G. S. VARTANOVommuting with Q and Qy. Only zero modes of H ontribute to the trae beauserelation (1) is preserved by the operators used in (2).An expliit omputation of SCIs for N = 1 theories results in the presription[4, 1℄ aording to whih one should �rst ompute the trae in (2) over the singlepartile statesind(p; q; z; y) = 2pq � p� q(1� p)(1� q)�adj(z)+ Xj (pq)Rj=2�RF ;j(y)�RG;j(z)� (pq)1�Rj=2� �RF ;j(y)� �RG;j(z)(1� p)(1� q) ;where the �rst term desribes the ontribution of gauge super�elds lying in theadjoint representation of the gauge group G. The sum over j orresponds to theontribution of hiral matter super�elds �j transforming as the gauge group rep-resentations RG;j and avor symmetry group representations RF;j . The funtions�adj(z), �RF ;j(y) and �RG;j(z) are the orresponding haraters. The exponentsRj are the �eld R-harges. To obtain the full SCI, this single partile states indexis inserted into the \plethysti" exponential with the subsequent averaging over thegauge group leading to the matrix integralI(p; q; y) = ZG d�(z) exp� 1Xn=1 1n ind�pn; qn; zn; yn��; (3)where d�(z) is the G-invariant measure.Let us take the initial Seiberg duality for SQCD [8℄ and onsider it in detail.Namely, take a 4d N = 1 SYM theory with G = SU(N) gauge group andSU(Nf )l�SU(Nf )r�U(1)B avor symmetry group. The original (eletri) theoryhas Nf left and Nf right quarks Q and eQ lying in the fundamental and antifunda-mental representation of SU(N) and having +1 and �1 baryoni harges and theR-harge R = (Nf � N)=Nf (this is the R-harge for the salar omponent, theR-harge of the fermion omponent is R � 1). The �eld ontent of the desribedtheory is summarized in the following tableSU(N) SU(Nf )l SU(Nf )r U(1)B U(1)RQ f f 1 1 Nf�NNfeQ f 1 f �1 Nf�NNfV adj 1 1 0 1Corresponding SCI is given by the following ellipti hypergeometri integral [1℄IE = �N ZTN�1 QNfi=1QNj=1 �(sizj ; t�1i z�1j ; p; q)Q1�i<j�N �(ziz�1j ; z�1i zj ; p; q) N�1Yj=1 dzj2�izj ; (4)where T denotes the unit irle with positive orientation, QNj=1 zj = 1, jsij; jt�1i j <1, and the balaning ondition reads ST�1 = (pq)Nf�N with S = QNfi=1 si; T =QNfi=1 ti: Here we introdued the parameters si and ti assi = (pq)R=2vxi; ti = (pq)�R=2vyi; (5)



'T HOOFT ANOMALY MATCHING CONDITIONS 3where v, xi and yi are fugaities for U(1)B , SU(Nf )l and SU(Nf )r groups, respe-tively, with the onstraints QNfi=1 xi =QNfi=1 yi = 1, and�N = (p; p)N�11 (q; q)N�11N! ; (a; q)1 = 1Yk=0(1� aqk):We use also onventions�(a; b; p; q) := �(a; p; q)�(b; p; q); �(az�1; p; q) := �(az; p; q)�(az�1; p; q);where �(z; p; q) = 1Yi;j=0 1� z�1pi+1qj+11� zpiqj ; jpj; jqj < 1; (6)is the (standard) ellipti gamma funtion.Aording to [8℄ the dual (magneti) theory is desribed by a 4d N = 1 SYMtheory with the gauge group eG = SU( eN), eN = Nf � N; sharing the sameavor symmetry. Here one has dual quarks q and eq lying in the fundamentaland antifundamental representation of eG with U(1)B-harges N=(Nf �N) and�N=(Nf�N) and the R-hargesN=Nf . Additionally, there are mesons { singletsof eG lying in the fundamental representation of SU(Nf )l and antifundamentalrepresentation of SU(Nf )r (M ji = Qi eQj ; i; j = 1; : : : ; Nf ). It is onvenient toollet again all �elds data in one tableSU( eN) SU(Nf )l SU(Nf )r U(1)B U(1)RM 1 f f 0 2 eNNfq f f 1 NeN NNfeq f 1 f �NeN NNfeV adj 1 1 0 1These two SQCD-type theories are dual to eah other in their infrared �xedpoints when the magneti theory has a dynamially generated superpotential [8℄,Wdyn =M ji qieqj . The SCI of the magneti theory isIM = �NfN Y1�i;j�Nf �(sit�1j ; p; q) (7)� ZTfN�1 QNfi=1Q eNj=1 �(S1= eNs�1i ezj ; T�1= eNtiez�1j ; p; q)Q1�i<j� eN �(eziez�1j ; ez�1i ezj ; p; q) eN�1Yj=1 dezj2�iezj ;where Q eNj=1 ezj = 1, and jS1= eNs�1i j; jT�1= eNtij < 1. As disovered by Dolan andOsborn [1℄, the equality of SCIs IE = IM oinides with the mathematial identityestablished for N = 2; Nf = 3; 4 in [5, 6, 7℄ and for arbitrary parameters in [28℄.In [10, 11℄ we proposed to relate known physial heks of the Seiberg duality toertain mathematial properties of EHIs:(1) 't Hooft anomaly mathing onditions for dual theories [29℄ were onje-tured to follow from the so-alled total elliptiity property for ellipti hy-pergeometri terms [7, 30℄.(2) One an redue the duality from Nf to Nf�1 avors by integrating out oneavor. At the level of SCIs this an be realized by the restrition sf t�1f = pqfor fugaities of the avor f one wants to integrate out.



4 V. P. SPIRIDONOV AND G. S. VARTANOV(3) Mathing of the moduli spaes and gauge invariant operators should orre-spond to the equality of oeÆients in the series expansions of SCIs havinga topologial meaning.The main purpose of this paper is to analyze in detail the �rst point of this list.Namely, we show that our original onjeture (1) is false, i.e. the total elliptiityondition is not suÆient to math all anomalies. Instead, all ontinuous urrentanomalies math as a onsequene of the nontrivial SL(3;Z)-modular group prop-erties of the kernels of ellipti hypergeometri integrals desribing indies. Theimportane of this modular group for dualities was announed by us in [31℄.2. The modified ellipti gamma funtionWe start from desribing the modi�ed ellipti gamma funtion [6℄ playing a keyrole in our onsiderations. Funtion (6) satis�es the following equations�(qz; p; q) = �(z; p)�(z; p; q); �(pz; p; q) = �(z; q)�(z; p; q); (8)where �(z; p) is a theta-funtion�(z; p) = (z; p)1(pz�1; p)1:This (shortened) theta funtion satis�es symmetry properties�(pz; p) = �(z�1; p) = �z�(z; p);and for any k 2 Z �(pkz; p) = (�z)�kp�k(k�1)=2�(z; p): (9)Equations (8) neessarily demand that jpj; jqj < 1, and for pn 6= qm; n;m 2Z, they de�ne �(z; p; q) uniquely as a meromorphi funtion of z 2 C � with thenormalization �(ppq; p; q) = 1.Let us take three omplex variables !1; !2; !3 and de�ne the basesp = e2�i!3=!2 ; q = e2�i!1=!2 ; r = e2�i!3=!1 (10)together with their partiular modular transformed partnersep = e�2�i!2=!3 ; eq = e�2�i!2=!1 ; er = e�2�i!1=!3 : (11)Remind now that the ellipti gamma funtion is originally related to one �nitedi�erene equation f(u+ !1) = �(e2�iu=!2 ; p)f(u); u 2 C : (12)It oinides with the �rst equation above for �(z; p; q) with z = e2�iu=!2 , but itassumes only one onstraint for bases, jpj < 1. There exist other nontrivial solutionsto (12) whih do not require jqj < 1. Namely, onsider equation (12) together withtwo additional equationsf(u+ !2) = �(e2�iu=!1 ; r)f(u); f(u+ !3) = e��iB2;2(u;!)f(u); (13)where B2;2(u;!) is a seond order Bernoulli polynomialB2;2(u;!) = u2!1!2 � u!1 � u!2 + !16!2 + !26!1 + 12 :Then for inommensurate !j 's the modi�ed ellipti gamma funtion [6℄G(u;!) = �(e2�iu=!2 ; p; q)�(re�2�iu=!1 ; eq; r) (14)



'T HOOFT ANOMALY MATCHING CONDITIONS 5de�nes the unique meromorphi solution of these three equations satisfying thenormalization ondition G(P3i=1 !i=2;!) = 1. This is a meromorphi funtionof u even for !1=!2 > 0, when jqj = 1, whih is easily seen from its anotherrepresentation G(u;!) = e��i3 B3;3(u;!)�(e�2�iu=w3 ; er; ep); (15)where B3;3 is a Bernoulli polynomial of the third orderB3;3(u;!) = 1!1!2!3�u� 12 3Xk=1!k��(u� 12 3Xk=1!k)2 � 14 3Xk=1!2k�: (16)Multiple Bernoulli polynomials are de�ned in the theory of Barnes multiple zeta-funtion [7℄ from the following expansionxmexuQmk=1(e!kx � 1) = 1Xn=0Bm;n(u;!1; : : : ; !m)xnn! :The equality of expressions (14) and (15) follows from the Jaobi theorem onabsene of nontrivial triply periodi funtions, sine both expressions satisfy threeequations and the normalization ondition indiated above. This equality representsa modular transformation law from the SL(3;Z)-group [32℄. We stress that allthree bases p; q; r are involved into the desription of G(u;!). The modi�ed elliptihypergeometri integrals built from the modi�ed ellipti gamma funtions [33℄ andthe Bernoulli polynomial (16) will play the major role in our analysis below.We shall use also the well known modular transformation properties of the thetafuntion �(e�2�iu=!1 ; e�2�i!2=!1) = e�iB2;2(u;!1;!2)�(e2�iu=!2 ; e2�i!1=!2) (17)and of the Dedekind eta-funtione� �i12� (e�2�i=� ; e�2�i=� )1 = (�i�)1=2e�i�12 (e2�i� ; e2�i� )1; (18)where p�i = e��i=4.3. The total elliptiity ondition and anomaly mathingsAnomalies. We would like to remind basi fats about the anomalies and't Hooft anomaly mathing onditions. All ontinuous symmetry anomalies areobtained from the one-loop triangular diagrams presented in Fig. 1 where looplines ontain all possible fermions and external lines are either global symmetryurrents, gauge urrents or graviton urrents (there are two suh diagrams: theseond one is obtained from Fig. 1 by reversing the fermion urrent). When allexternal lines desribe gauge urrents one gets the loal gauge invariane anomalieswhih should anel to have a onsistent theory.Calulation of the triangle diagram is the same for all anomalies, the only dif-ferene being desribed by the group-theoretial fator. The triangle diagramhja;�G jb;�G j;�G i, where ja;�G = � �ta with  being the fermion omponent of ahiral super�eld, is proportional to A(R) = Tr[taftb; tg℄ (the trae is taken overG-group matries in some representationR). The total anomaly is proportional tothe sum over all fermionsPfermionsTr[taftb; tg℄. In our eletri theory the expliitalulation boils to the equality(1)Nf + (�1)Nf + 0 = 0; (19)



6 V. P. SPIRIDONOV AND G. S. VARTANOV
J

a

J
b

J
cFigure 1. A one-loop triangle diagram desribing anomalies.sine the triple Casimir invariant of G = SU(N) for the fundamental represen-tation is A(f) = 1, for the antifundamental one A(f) = �1, and for the adjointrepresentation A(adj) = 0.In the de�nition of SCIs (2) it is assumed that all operators entering it rep-resent exat physial symmetries. This means that the orresponding urrentsare not anomalous hja;�G jb;�G j�1 i = 0, where j�1 is U(1)R or any avor symmetryurrent (in the infrared �xed point R-harge should be onserved similar to theenergy-momentum). In the U(1)R-ase this anomaly oeÆient is proportional toRTrftatbg = RT (R)Æab, where R is the R-harge. In the eletri theory one has(R � 1)2Nf 12 +N = 0; (20)sine the Casimir operators of G = SU(N) for fundamental, antifundamental,and adjoint representations are T (f) = T (f) = 1=2, and T (adj) = N, respetively.Here R � 1 is the R-harge of hiral quarks and the R-harge of gluinos is equalto 1. As a result, one �xes the R-harge of hiral super�elds, R = (Nf �N)=Nf .Similarly, gauge invariane yields hja;�G j�1 j�2 i = 0 for any onserved global symmetryurrent j�1 and j�2 .As to the anomalies assoiated only with global symmetry groups { they are notobliged to vanish. As argued by 't Hooft [29℄, for any eletri-magneti duality (in-luding the Seiberg N = 1 duality) the oeÆients of admissible triangle anomaliesshould math in dual theories. For example, in the Seiberg ase SU(Nf )3l -anomalyis desribed by hja;�SU(Nf )ljb;�SU(Nf )lj;�SU(Nf )li with ja;�SU(Nf )l = � �ta , where ta is theSU(Nf )l fundamental representation matrix. For the eletri theory the anomalyoeÆient omes only from one �eld and equals to (1)N, while in the magneti sideone has two di�erent ontributions (from dual quarks q and mesonsM) whih yieldthe oeÆient (�1)(Nf �N) +Nf = N on�rming one of the 't Hooft anomalymathing onditions.Being a quantitative hek, the 't Hooft anomaly mathing onditions providean extremely powerful tool for heking 4d N = 1 dualities. Still, one should beareful with these onditions, see e.g. [34℄, where examples of misleading anomalymathing onditions were found. Namely, there are N = 1 SYM theories with equalanomaly oeÆients, but the deformation by mass parameters argument shows that



'T HOOFT ANOMALY MATCHING CONDITIONS 7these theories are not dual to eah other. From the SCI point of view this fat isreeted in the di�erene of analytial struture of SCIs [13℄.We onsider expliitly only the original Seiberg duality assuming that otherdualities an be treated in a similar way. For a further omparison we give a fulllist of orresponding nontrivial anomaly oeÆients:SU(Nf )3l;r : N; SU(Nf )2l;rU(1)B : N2 ;SU(Nf )2l;rU(1)R : (R� 1)N 12 = � N22Nf ;U(1)2BU(1)R : (R� 1)2NfN = �2N2 ;U(1)R : (R� 1)2NfN +N2 � 1 = �N2 � 1;U(1)3R : (R� 1)32NfN +N2 � 1 = �2N4N2f +N2 � 1; (21)where R = (Nf � N)=Nf . Note that in the ase of U(1)R-urrent anomaly thetriangle diagrams involve two gravitational urrents.The total elliptiity ondition. The notion of total elliptiity was introdued�rst for ellipti hypergeometri series [7℄ whih we skip. An ellipti funtion is alledtotally ellipti if it is doubly periodi in all ontinuous variables used to parame-trize its divisor spae of maximal possible dimension. A meromorphi funtion isalled the ellipti hypergeometri term if it satis�es a homogeneous linear di�ereneequation in one of the variables with the oeÆient whih is ellipti in this variable.Ellipti hypergeometri term is alled totally ellipti if it satis�es suh equations ineah variable with the oeÆients whih are totally ellipti funtions [30℄. It is be-lieved that one an assoiate a supersymmetri duality with eah nontrivial totallyellipti hypergeometri term formed as the ratio of the kernels of two di�erentlylooking, but equal integrals [10℄.In [30℄ the total elliptiity ondition for the equality of integrals of interest (4)and (7) has been heked. We partially repeat here orresponding alulations.First, we hange variables ez in (7) to ez = S�1= eNw. Then the equality of integrals(4) and (7) is rewritten in the following wayZTN�1 �E(z; t; s)N�1Yj=1 dzj2�izj = Z(S1=fNT)fN�1 �M (w; t; s) eN�1Yj=1 dwj2�iwj ; (22)�E(z; s; t) = �N QNfi=1QNj=1 �(sizj ; t�1i z�1j ; p; q)Q1�i<j�N �(ziz�1j ; z�1i zj ; p; q) ; (23)�M (w; s; t) = � eN NfYi;j=1�(sit�1j ; p; q)QNfi=1Q eNj=1 �(s�1i wj ; pqtiw�1j ; p; q)Q1�i<j� eN �(wiw�1j ; w�1i wj ; p; q) ; (24)with QNi=1 zi = 1 and Q eNi=1 wi = S: Consider the funtion�(z; w; s; t; p; q) = �E(z; s; t)�M (w; s; t) (25)



8 V. P. SPIRIDONOV AND G. S. VARTANOVand the ratios, alled q-erti�ates,hg(z; w; s; t; q; p) = �(: : : ; qg; : : : ; p; q)�(: : : ; g; : : : ; p; q) ; g 2 fz; w; s; tg: (26)The total elliptiity ondition for �(z; w; s; t; p; q) is then formulated as the require-ment for all hg-funtions to be p-ellipti in all variables fz; w; s; t; qg, i.e. theyshould not hange under the p-shifts zi ! p�izi; wi ! p�iwi; sk ! pksk; tk !p�ktk; q ! p�q, �i; : : : ; � 2 Z; provided all the additional onstraints for fugaitiesare satis�ed. We remind that aording to the original de�nition given in [6℄, aontour integral with integration variables zi is alled the ellipti hypergeometriintegral if hzi-erti�ates built from its kernel are p-ellipti in all z, whih is a muhweaker ondition.Let m(a)j 2 Z, j = 1; : : : ; n; a = 1; : : : ;K, and �(m(a)) = �(m(a)1 ; : : : ;m(a)n ) arearbitrary Zn ! Z maps with �nite support and r� 2 Z. De�ne a meromorphifuntion of free variables xi 2 C � ; i = 1; : : : ; n;�(x1; : : : ; xn; p; q) = (p; p)r�1 (q; q)r�1 KYa=1�(xm(a)11 xm(a)22 : : : xm(a)nn ; p; q)�(m(a)): (27)The following theorem was presented in [30℄.Theorem 1 (Rains, Spiridonov, 2004). Suppose �(x; p; q) is a totally ellipti hy-pergeometri term, i.e. all its q-erti�ateshi(x; q; p) = �(: : : ; qxi; : : : ; p; q)�(x1; : : : ; xn; p; q) = KYa=1m(a)i �1Yl=0 �(ql nYk=1 xm(a)kk ; p)�(m(a))are p-ellipti funtions of q and x1; : : : ; xn. Then these q-erti�ates are also mod-ular invariant.The statements of the theorem are guaranteed beause of the following diophan-tine equations KXa=1 �(m(a))m(a)i m(a)j m(a)k = 0; (28)KXa=1 �(m(a))m(a)i m(a)j = 0; (29)KXa=1 �(m(a))m(a)i = 0: (30)The proof is elementary. The demand hi(: : : pxj : : : ; q; p) = hi(x; q; p) leads toequations (28), (29). Equation (30) emerges as a onsequene of the restritionhi(x; pq; p) = hi(x; q; p). The theorem statement follows after appliation to eahtheta funtion in hi the modular transformation (17) and use of equations (28)-(30).In the ontext of SCIs variables xi represent ombinations of hemial potentialsof symmetry groups, �-funtion is the ratio of kernels of dual indies, and r� isthe di�erene of ranks of the eletri and magneti gauge groups,r� = re � rm; re = rank G; rm = rank eG:



'T HOOFT ANOMALY MATCHING CONDITIONS 9During the heks of the total elliptiity ondition for known dualities in [10℄we have notied that some phases of the quasiperiodiity fators emerging fromp-shifts for ontributions oming from eletri (or magneti) theories oinide withthe anomaly oeÆients. This observation allowed us to onjeture that the totalelliptiity ondition guarantees 't Hooft anomalymathings. As will be shown belowthis is not the ase and the Rains-Spiridonov equations (28)-(30) do not desribe aomplete set of anomaly mathings of the Seiberg-like dual theories.It is neessary to verify that the ellipti hypergeometri term (25) belongs tothe lass (27), whih is not evident from its expliit form we have given. In orderto see this one should take de�nitions (23) and (24), replae there ti ! (pq)�1tifor i = 1; : : : ; Nf �N (to remove pq from the balaning ondition), and apply thereetion formula �(pqz; p; q) = 1=�(z�1; p; q) to ellipti gamma funtions havingthe produt pq in their arguments.We stress that the ansatz (27) does not desribe all possible forms of the elliptihypergeometri terms. In general one an have in the arguments of ellipti gammafuntions the non-removable fators (pq)R=2 for some frational numbers R (e.g.,this is so for the Kutasov-Shwimmer duality [35℄) in whih ase the total elliptiityondition should be modi�ed appropriately [30, 10℄.Elliptiity of erti�ates for zi and gauge anomalies. Take the q-erti�atesfor integration variables z obtained from (25) after resaling zi ! qzi for i 6= Nand zN ! q�1zN (i.e., we assume that zN = QN�1i=1 z�1i ) and written in termsof the initial variables (5):
hzi (z; v; x; y; q) = �(z; w; s; t; p; q)jzi!qzi;zN!q�1zN�(z; w; s; t; p; q)= �(q�2z�1i zN ; q�1z�1i zN ; p)�(qziz�1N ; ziz�1N ; p) N�1Yj=1;j 6=i �(q�1z�1i zj ; q�1z�1j zN ; p)�(ziz�1j ; zjz�1N ; p)� NfYk=1 �((pq)R=2vxkzi; (pq)R=2v�1y�1k z�1N ; p)�((pq)R=2v�1y�1k (qzi)�1; (pq)R=2vxkq�1zN ; p) : (31)

From the physial point of view, onsideration of the zi-variable erti�ate an beinterpreted as the insertion of one gauge urrent ji;�G into the triangle anomaly di-agram. In terms of equations (28)-(30) it means that we deal with their subpartdepending at least linearly on m(a)i oming from G-fugaities. Sine the depen-dene on zi in � omes only from �E , the same result is obtained if we replaein (31) � by the kernel of integral desribing eletri SCI, i.e. the properties of hzidesribe only the eletri theory. Similar situation holds for wi-variables assoiatedonly with the magneti theory.



10 V. P. SPIRIDONOV AND G. S. VARTANOVIt is easy to hek that hzi (z; v; x; y; q) is a totally p-ellipti funtion:hzi (z1; : : : ; pzi; : : : ; p�1zN ; v; x; y; q)hzi (z; v; x; y; q) = (pq)2(Nf�N)(pq)2RNf QNfi=1 x2i y�2i = 1;hzi (z1; : : : ; pz; : : : ; p�1zN ; v; x; y; q)hzi (z; v; x; y; q) = (pq)Nf�N(pq)RNf QNfi=1 xiy�1i = 1; (32)hzi (z; v; : : : ; pxb; : : : ; p�1xNf ; y; q)hzi (z; v; x; y; q) = hzi (z; v; x; : : : ; pyb; : : : ; p�1yNf ; q)hzi (z; v; x; y; q) = 1; (33)hzi (z; pv; x; y; q)hzi (z; v; x; y; q) = 1; (34)where  6= i. The most ompliate looking identity ishzi (z; pR=2v; pR(Nf�1)x1; p�Rx2; : : : ; p�RxNf ; y; pq)hzi (z; v; x; y; q) = 1; (35)and its obvious partners obtained by permutation of xj together with similar equa-tions involving yj-variables. In terms of the variables sj ; tj this symmetry looksmore ompat: one has the transformations sa ! pNf�Nsa (or ta ! pN�Nf ta)for one �xed value of a and q ! pq.If one takes an arbitrary ratio of ellipti gamma funtions whose arguments aregiven by integer powers of the fugaities v; zi; xj ; yj , then the q-erti�ates will beagain given by ratios of theta-funtions. However, p-shifts of the fugaities in theseerti�ates would produe in general arbitrary quasiperiodiity fators desribedby some powers of all fugaities (whih are all equal to 1 in our ase).Equations (32) �x the seond urrent to be again the gauge urrent sine weare taking p-shifts for the zj-variable and the resulting quasiperiodi fator phaseswill neessarily ontain m(a)j -power. The third urrent in the triangle anomalyis �xed by onsidering in the resulting phase the powers of fugaities v (for theU(1)B-urrent), xk (for the SU(Nf )l-urrent), yk (for the SU(Nf )l-urrent) andfor obtaining insertion of the U(1)R-urrent one should trae the powers (pq)R=2.Let us pik up ubi produts of mai (28) orresponding to the gauge groupfugaities and sum over a { this sum orresponds to the anomaly oeÆient forhji;�G jj;�G jk;�G i with olor indies i; j; k. It is easy to see that it vanishes, moreover,its piees oming from the gluinos (i.e., from the terms / �(ziz�1j ; z�1i zj) and thehiral �elds vanish independently. Canellation of the powers of the v-variables in(32) tells that the gauge anomaly SU(N)2U(1)B is absent, and similar situationholds for SU(N)2SU(Nf )l;r-anomalies.If the R-harge is not �xed in advane, then there emerge quasiperiodiity multi-pliers given by some powers of pq, as indiated in (32). The demand of the abseneof these multipliers �xes the R-harge in the same way as the vanishing of gaugeanomaly hja�G jb�G j�U(1)Ri = 0 does, Nf � N � RNf = 0. Absene of the asym-metry in p and q in these multipliers, despite of suh asymmetry present in (31),orresponds to the energy-momentum onservation.Equations (33) orrespond to the hoie of the seond urrent in the anomalytriangle diagram as SU(Nf )l;r-urrents sine we sale respetive fugaities. Thenthe third urrent is determined from the quasiperiodiity fators. Absene of suhfators in our ase shows that all orresponding anomalies vanish. Thus, separate



'T HOOFT ANOMALY MATCHING CONDITIONS 11vanishing of polynomials (28)-(30) for eletri and magneti theories, when at leastone of m(a)i -variables omes from gauge group fugaities, desribes anellation ofgauge anomalies and various onservation laws.One an onsider in a similar way other erti�ates and interpret orrespondingelliptiity onstraints as anomaly mathing onditions, but this onstrution is notthat luid and evident as one would want to. Moreover, sine there is no separatefugaity for U(1)R-group, there is no q-erti�ate assoiated with this group whihwould orrespond to the insertion of U(1)R-urrent alone. Therefore, it is notpossible to desribe U(1)R and U(1)3R anomalies in this way. Similar onlusionhas been reahed reently by Sudano [36℄ following our onsiderations in [30, 10℄.Let us show that the SL(3;Z)-modular properties of ellipti hypergeometri termsprodue all anomaly mathing onditions at one in a very simple way.4. SL(3;Z)-Modularity and anomaliesIn [33℄ the modi�ed versions of ellipti hypergeometri integrals have been in-trodued. They satisfy the general de�nition of ellipti hypergeometri integralsof [6℄ mentioned above, but they are built from the modi�ed ellipti gamma fun-tions. Consider modi�ations of integrals (4) and (7). For this introdue newparametrization of fugaitieszj = e2�iuj=!2 ; j = 1; : : : ; N; ezj = e2�ivj=!2 ; j = 1; : : : ; eN;si = e2�i�i=!2 ; ti = e2�i�i=!2 ; i = 1; : : : ; Nf : (36)De�ne now the following integralsImodE = �modN Z !3=2�!3=2 QNfi=1QNj=1 G(�i + uj ;��i � uj ;!)Q1�i<j�N G(ui � uj ;�ui + uj ;!) N�1Yj=1 duj!3 ; (37)where PNj=1 uj = 0, G(a; b;!) := G(a;!)G(b;!), andImodM = �modeN Y1�i;j�Nf G(�i � �j ;!) (38)� Z !3=2�!3=2 QNfi=1Q eNj=1 G(�= eN � �i + vj ;��= eN + �i � vj ;!)Q1�i<j� eN G(vi � vj ;�vi + vj ;!) eN�1Yj=1 dvj!3 ;where eN = Nf�N andP eNj=1 vj = 0. The integration in both ases goes along thestraight line segment onneting points �!3=2 and !3=2. The balaning onditionreads �� � = (Nf �N) 3Xk=1!k; � = NfXi=1 �i; � = NfXi=1 �i:Finally, �modN = �(!)N�1N! ; �(!) = �!3!2 (p; p)1(q; q)1(r; r)1(~q; ~q)1 :These integrals are obtained from (4) and (7) after replaement of �(z; p; q)with z = e2�iu=!2 by the funtion G(u;!) and some modi�ation of the integrationmeasure. Sine both ellipti gamma funtions solve the key equation (12), themodi�ed ellipti hypergeometri integrals satisfy the same �nite di�erene equationsin the shifts u ! u + !1 as the standard integrals do (and therefore modi�ed



12 V. P. SPIRIDONOV AND G. S. VARTANOVidentities an be proved similarly to the standard ones). However, they remain wellde�ned for jqj = 1 in di�erene from integrals (4) and (7).Theorem 2. Suppose that=(�i=!3);=((�= eN � �i)=!3) < 0; =(�i=!3);=((�= eN � �i)=!3) > 0:Then ImodE = ImodM :The simplest proof follows the same lines as in [33℄, where a similar identityhas been established for modi�ed ellipti hypergeometri integrals of type II onthe BCn-root system. Namely, one should substitute to (37), (38) the modulartransformed form of the modi�ed ellipti gamma funtion (15) and simplify theombination of B3;3-Bernoulli polynomials in the exponential fators. After ap-pliation of the modular transformation law for the Dedekind eta-funtion (18) toin�nite produts (p; p)1; (q; q)1; (r; r)1 these multipliers anel out ompletely.As a result the equality ImodE = ImodM redues to the equality IE = IM with thevariables sj ; tj ; p and q replaed by e�2�i�j=!3 ; e�2�i�j=!2 ; ~p and ~r, respetively. Theonstraints imposed on the variables �j and �j onvert to the restritions neededfor guaranteeing the equality of integrals.Denote as IE;M (�; �;!1; !2; !3) the SCIs IE;M (s; t; p; q) with the hange of pa-rameters (36). Then Theorem 2 states that integrals (37) and (38) are proportionalto SL(3;Z)-modular transformations (!1; !2; !3) ! (!1;�!3; !2) of the originalintegralsImodE = e'eIE(�; �;!1;�!3; !2); ImodM = e'mIM (�; �;!1;�!3; !2);and 'e = 'm. The latter equality appears to be nothing else than the 't Hooftanomaly mathing onditions! Let us prove this statement in the general setting.Given arbitrary Zn ! Z maps with �nite support m(a)j 2 Z, j = 1; : : : ; n,�(m(a)) = �(m(a)1 ; : : : ;m(a)n ); a = 1; : : : ;K, some r� 2 Z and real numbersR(a) 2 R,we de�ne a meromorphi funtion of xi 2 C � ; i = 1; : : : ; n;�(x1; : : : ; xn; p; q) = (p; p)r�1 (q; q)r�1 KYa=1��(pq)R(a)2 xm(a)11 xm(a)22 : : : xm(a)nn ; p; q��(m(a)):(39)One an demand that the powers of pq are not removable by the transformationsxj ! (pq)jxj , i.e. that there do not exist real numbers j suh that R(a)=2 +Pnj=1 jm(a)j = 0. However, we shall not require this for simpliity.Denote now xj = e2�iuj=!2 and introdue the following meromorphi funtion ofuj 2 C :�mod(u1; : : : ; un;!) = �(!)r� KYa=1G�R(a) 3Xk=1 !k2 + nXj=1 ujm(a)j ;!��(m(a)): (40)The modular transformation properties of the totally ellipti hypergeometri termswere investigated in [30℄. In the present ontext we have the following theorem.Theorem 3. The SL(3;Z)-modular transformation invariane relation�mod(u1; : : : ; un;!) = �(e�2�iu1=!3 ; : : : ; e�2�iun=!3 ; ~p; ~r) (41)



'T HOOFT ANOMALY MATCHING CONDITIONS 13leads to the following set of equationsKXa=1 �(m(a))m(a)i m(a)j m(a)k = 0; (42)KXa=1 �(m(a))m(a)i m(a)j (R(a) � 1) = 0; (43)KXa=1 �(m(a))m(a)i (R(a) � 1)2 = 0; (44)KXa=1 �(m(a))m(a)i = 0; (45)KXa=1 �(m(a))(R(a) � 1)3 + r� = 0; (46)KXa=1 �(m(a))(R(a) � 1) + r� = 0: (47)The proof is simple enough. From representation (15) is it easy to see that�mod� = �(!)r�(p; p)r�1 (q; q)r�1 KYa=1 exp"� �i�(m(a))3!1!2!3 �R(a) � 12 3Xk=1!k + nXi=1 uim(a)i �� ��R(a) � 12 3Xk=1!k + nXi=1 uim(a)i �2 � 14 3Xk=1!2k�# = 1:Sine hemial potentials ui are ontinuous independent variables, the polynomialin the exponential depending on them should vanish. Piking up the ubi termsuiujuk one obtains equation (42), the quadrati terms yield (43), there are twoterms linear in ui with the oeÆients depending on ontinuous modular parameters!k in di�erent way. Vanishing of these terms yields two equations (44) and (45).Finally, we are left with the equation"�!3(p; p)1(q; q)1(r; r)1!2(~p; ~p)1(~q; ~q)1(~r; ~r)1#r� KYa=1 exp"� �i�(m(a))24!1!2!3 ( 3Xk=1!k)� (R(a) � 1)�(R(a) � 1)2( 3Xk=1!k)2 � 3Xk=1!2k�# = 1:Applying the modular transformation formula (18) to in�nite produts and usingarbitrariness of variables !k we ome to the last two equations (46) and (47).Suppose now that the powers (pq)R(a)=2 an be removed from (39) by rede�nitionof variables xi ! (pq)ixi, i.e. that there exist some numbers i suh that R(a) =�2Pni=1 im(a)i . Substituting these onditions to (43), (44), we immediately seethat they redue to equations (29), (30), i.e. the situation beomes similar to theoriginal Seiberg duality ase. Interestingly, equations (46) and (47) are redued inthis ase to one onstraint KXa=1 �(m(a)) = r�: (48)



14 V. P. SPIRIDONOV AND G. S. VARTANOVIf the ranks of dual gauge groups are equal (e.g., for self-dual theories), one hasPKa=1 �(m(a)) = 0: Equation (48) thus ompletes equations (28)-(30) to guaranteeSL(3;Z)-modular invariane of suh ellipti hypergeometri terms [30℄.It is evident that equations (42)-(47) oinide with the 't Hooft anomaly math-ing onditions for dual theories with the �-funtion being built as the ratio ofkernels of ellipti hypergeometri integrals desribing eletri and magneti SCIs.We have heked this statement expliitly for the original Seiberg duality usingthe kernels of modi�ed ellipti hypergeometri integrals (37) and (38) with thesubstitutions �i = R(!1 + !2 + !3)=2 + � + Æi;�i = �R(!1 + !2 + !3)=2 + � + �i; i = 1; : : : ; Nf ;where � is the hemial potential for U(1)B-group, Æi and �i are hemial potentialsfor SU(Nf )l and SU(Nf )r groups, PNfi=1 Æi = PNfi=1 �i = 0. The general ruleof getting the anomaly oeÆients is very simple: expand SL(3;Z)-phase fatorand assoiate the gauge and avor group urrents with the orresponding hemialpotentials and the U(1)R-urrent with the term R(a) � 1, desribing the R-hargeof the hiral fermions and for R(a) = 0 modelling the ontribution of gluinos.Sine we have a ubi polynomial in these variables we model the triangle anomalydiagram. For instane, the plain hiral super�eld ontributes to the modular phasethe term / B3;3(R(!1 + !2 + !3)=2;!) whih is easily seen to ontain only twopiees / (R� 1)3 and / (R� 1), as needed for U(1)3R and U(1)R-anomalies.Computing the modular transformation exponential fators for the eletri the-ory alone we expliitly see emergene of all anomaly oeÆients (oiniding withthe magneti theory oeÆients):� Cubi polynomials depending on the integration variables ui or vi lead toequations (42)-(45) with at least one index i oming from the gauge groups.They vanish separately in eletri and magneti theories (this is true for anyduality, not just the Seiberg ase) leading to hja;�G j�1 j�2 i=0 for any onservedurrent j�1;2 inluding the energy momentum tensor. E.g., from equation(43) one �nds R = (Nf �N)=Nf .� The terms / ÆiÆjÆk orresponding to (42) yield the SU(Nf )3l -anomaly o-eÆient / N (with a similar result for SU(Nf )3r).� The terms / ÆiÆj� orresponding to (42) give the SU(Nf )2lU(1)B-anomalyoeÆient / N.� The terms / ÆiÆj(R � 1) orresponding to (43) give the SU(Nf )2lU(1)R-anomaly oeÆient / N2 =Nf .� The terms/ �2(R�1) orresponding to (43) give the U(1)2BU(1)R-anomalyoeÆient / N2 .� The terms / (R�1)2 orresponding to (44) are absent leading to vanishingU(1)BU(1)2R and SU(Nf )l;rU(1)2R-anomalies.� Linear terms in avor hemial potentials are absent (i.e., equations (45)are satis�ed separately for eletri and magneti theories), whih meansthat there are no U(1)B and SU(Nf )l;r-anomalies.� The eletri part of equation (46) yields preisely the U(1)3R-anomaly oef-�ient 2NfN(R� 1)3 +N(N � 1) + rank G = �2N4 =Nf +N2 � 1.� The eletri part of equation (47) yields preisely the U(1)R-anomaly oef-�ient 2NfN(R� 1) +N(N � 1) + rank G = �N2 � 1.



'T HOOFT ANOMALY MATCHING CONDITIONS 15If =(!1=!2) > 0 then one an take the limit !3 !1 and obtainlim!3!1G(u;!) = (e2�iu=!1eq; eq)1(e2�iu=!2 ; q)1 : (49)Taking this limit in the relation ImodE = ImodM one gets the equality of partitionfuntions of some 3d N = 2 theories whih is similar to the redution of standard4d SCIs to 3d partition funtions [31℄. The main diÆulty in �nding 3d Seibergdualities onsists in the absene of the anomaly mathing onditions. Starting fromknown 4d dualities and using the limit (49) one automatially and easily derives 3ddual theories whih omprise (in a hidden way) 4d anomaly mathing onditions.5. Total elliptiity and modularity. The general ase.Let us onsider the total elliptiity ondition for general ellipti hypergeometriterm (39). Corresponding q-erti�ates have the formhi(x; q; p) = KYa=1m(a)i �1Yl=0 ��ql(pq)R(a)=2 nYk=1 xm(a)kk ; p��(m(a)): (50)Reursively using relation (9) one an verify that the ondition hi(: : : pxj : : : ; q; p) =hi(x; q; p) yields equations (42) and (43) together with the onstraintKXa=1 �(m(a))m(a)i m(a)j 2 2Z (51)oming from the positive sign presription.In order to investigate p-periodiity properties of hi(x; q; p) (50) it is neessary tointrodue a new parameter L, a minimal positive integer suh that all LR(a) 2 2Z.Note that this requires an advane knowledge of some properties of R-harges,whih are presumed to be �xed from the anomaly anellation/mathing onditions.Therefore the onstraint hi(x; pLq; p) = hi(x; q; p) looks a little bit unnatural fromthe physial point of view. Nevertheless, it yields equations (44) and (45) togetherwith the onstraint L KXa=1 KXa=1 �(m(a))m(a)i (m(a)i +R(a)) 2 4Z: (52)Equations (42)-(45) and the presriptions (51), (52) were derived from the totalelliptiity ondition by the �rst author (unpublished) in a slightly di�erent formduring the work on [30℄ and more reently by Sudano in [36℄ (where one an �ndthe details of omputations).On the one hand, both equations (51) and (52) do not emerge from the SL(3;Z)-modular invariane ondition (41). On the other hand, heks of the total elliptiityondition for all known dualities performed in [10℄ show that they are satis�ed inphysial theories. In some ases it an be shown that they follow from equations(42)-(47) (e.g., for R(a) / Pni=1 im(a)i ). Therefore we onjeture that equations(51) and (52) are automatially satis�ed for ellipti hypergeometri integrals asso-iated with nontrivial eletri-magneti dualities. If it were true, one ould statethat the ondition of total elliptiity of ellipti hypergeometri terms is neessary,but not suÆient for guaranteeing the 't Hooft anomaly mathing onditions.Finally, we have a generalization of Theorem 1.



16 V. P. SPIRIDONOV AND G. S. VARTANOVCorollary. Suppose (39) is a totally ellipti hypergeometri term. Then all itsq-erti�ates hi(x; q; p) (50) are modular invariant.For proving this statement onsider the ratio of modular transformed erti�ates~hihi = KYa=1m(a)i �1Ỳ=0 �(e�2�ià=!3 ; ~p)�(m(a))�(e2�ià=!2 ; p)�(m(a)) ; à = R(a) 3Xk=1 !k2 + nXj=1 ujm(a)j + !1`:Using the modular transformation law for theta funtions (17) one easily heksthat ~hi=hi = 1 as a onsequene of equations (42)-(45).6. ConlusionIn [10℄ we formulated the onjeture that all 't Hooft anomaly mathing ondi-tions follow from the total elliptiity ondition [30℄. It was based on the observationthat some of the anomaly oeÆients emerge from the nontrivial quasiperiodiityfators appearing during the heks of elliptiity of the erti�ates (50) (in partiu-lar, triviality of some fators meant the absene of gauge anomalies). However, wedid not perform a systemati study of this relation at that time. Later in [31℄ wenotied importane of the SL(3;Z)-modularity properties for this problem.In this work we presented a systemati derivation of the triangle anomaly oeÆ-ients for general theories out of the SL(3;Z)-group modular transformation prop-erties of the kernels of dual indies. The generalized Rains-Spiridonov equations(42)-(47) are interpreted as the universal 't Hooft anomaly mathing onditions for4d supersymmetri �eld theories. In partiular, we expliitly heked emergene ofall anomaly oeÆients for the original Seiberg duality.Still, the general physial meaning of the modular transformation properties ofSCIs remains unknown. It is neessary to �nd physial derivation of the modi�edellipti hypergeometri integrals as some kind of modi�ed SCIs. Perhaps they arerelated to omputing indies in N = 1 theories quantized on T3 � R. In [37℄ 4dN = 4 SYM theories with simply laed gauge groups were onsidered on suha spae-time. One an rewrite all SCIs, in partiular, SCIs of 4d N = 4 SYMtheories listed in [12℄, as some modi�ed ellipti hypergeometri integrals and try toassoiate our SL(3;Z)-modular transformations with the natural SL(3;Z)-groupation in the taken spae-time.Atually, we have demonstrated oinidene of anomalymathing onditions withsome mathematial properties of SCIs, but we did not derive these onditions from�rst priniples. A proper mathematial onsideration of the problem should use theformal mathematial de�nition of anomalies as oyles of gauge groups (see, e.g.,[38, 39℄) yielding anomaly mathing ondition as an equality of Chern lasses of dualtheories. This should yield also the proper ohomologial meaning of the modularinvariane ondition for ellipti hypergeometri terms. From the physial side, itis neessary to ompute the e�et of SL(3;Z)-modular transformation on SCIsand demonstrate expliitly how the anomaly diagrams emerge in the orrespondinghanges of SCIs.From the group-theoretial point of view the anomaly oeÆients are desribedby ertain ombination of Casimir invariants. It seems possible to trae how theseinvariants emerge in the modular transformation phase using the group-theoretialinformation hidden in the de�nition of SCIs having the ellipti hypergeometri



'T HOOFT ANOMALY MATCHING CONDITIONS 17terms of a spei� form (e.g., r� is �xed from a piee of the haraters of ad-joint representations of gauge groups). This should also yield anomaly mathingonditions.We would like to �nish by posing an interesting mathematial problem of de-sribing universal restritions on powers m(a)i and �(m(a)) in the general elliptihypergeometri term (39) whih would fore this term to beome a ratio of twokernels of SCIs (3). Equations (42)-(47) are neessary for this, but not suÆient.Suh onstraints would provide a powerful mathematial tool for building physialdualities for supersymmetri �eld theories.Dediation. This paper is dediated to the memory of our friend and ollabora-tor Franis Dolan. We got aquainted with him beause of his beautiful work withHugh Osborn on the onnetion of superonformal indies with the ellipti hyperge-ometri integrals [1℄. From November 2008 we were exhanging with him by manye-mails, disussed various aspets of this interrelation and had vast plans for jointwork. Unfortunately, we were able to write only one joint paper [31℄. We shallremember Franis as a good friend and a brilliant sientist with original ideas, andwe miss him muh.Aknowledgments. This work is supported in part by RFBR grant no. 12-01-00242 and the Heisenberg-Landau program. The authors are indebted to H. Osbornand V. A. Rubakov for valuable disussions and helpful remarks. GV would like tothank BLTP, JINR in Dubna for hospitality in January 2012 during the workshop\Classial and Quantum Integrable Systems" where the results of this paper werepresented. Referenes[1℄ F. A. Dolan and H. Osborn, Appliations of the Superonformal Index for Proteted Operatorsand q-Hypergeometri Identities to N = 1 Dual Theories, Nul. Phys. B818 (2009), 137{178.[2℄ J. Kinney, J. M. Maldaena, S. Minwalla and S. Raju, An index for 4 dimensional superonformal theories, Commun. Math. Phys. 275 (2007), 209{254.[3℄ C. R�omelsberger, Counting hiral primaries in N = 1, d = 4 superonformal �eld theories,Nul. Phys. B747 (2006), 329{353.[4℄ C. R�omelsberger, Calulating the superonformal index and Seiberg duality, arXiv:0707.3702[hep-th℄.[5℄ V. P. Spiridonov, On the ellipti beta funtion, Uspekhi Mat. Nauk 56 (1) (2001), 181{182(Russian Math. Surveys 56 (1) (2001), 185{186).[6℄ V. P. Spiridonov, Theta hypergeometri integrals, Algebra i Analiz 15 (6) (2003), 161{215(St. Petersburg Math. J. 15 (6) (2004), 929{967); math.CA/0303205.[7℄ V. P. Spiridonov, Essays on the theory of ellipti hypergeometri funtions, Uspekhi Mat.Nauk 63 (3) (2008), 3{72 (Russian Math. Surveys 63 (3) (2008), 405{472); arXiv:0805.3135[math.CA℄.[8℄ N. Seiberg, Eletri{magneti duality in supersymmetri non-Abelian gauge theories, Nul.Phys. B435 (1995), 129{146.[9℄ V. P. Spiridonov and G. S. Vartanov, Superonformal indies for N = 1 theories with multipleduals, Nul. Phys. B824 (2010), 192{216.[10℄ V. P. Spiridonov and G. S. Vartanov, Ellipti hypergeometry of supersymmetri dualities,Commun. Math. Phys. 304 (2011), 797{874.[11℄ V. P. Spiridonov and G. S. Vartanov, Supersymmetri dualities beyond the onformal window,Phys. Rev. Lett. 105 (2010) 061603.[12℄ V. P. Spiridonov and G. S. Vartanov, Superonformal indies of N = 4 SYM �eld theories,Lett. Math. Phys. 100 (2012), 97{118; arXiv:1005.4196 [hep-th℄.[13℄ G. S. Vartanov, On the ISS model of dynamial SUSY breaking, Phys. Lett. B696 (2011),288{290.



18 V. P. SPIRIDONOV AND G. S. VARTANOV[14℄ V. P. Spiridonov, Ellipti beta integrals and solvable models of statistial mehanis, Con-temp. Math. 563 (2012), 181{211; arXiv:1011.3798 [hep-th℄.[15℄ V. P. Spiridonov and G. S. Vartanov, Ellipti hypergeometry of supersymmetri dualities II.Orthogonal groups, knots, and vorties, arXiv:1107.5788 [hep-th℄.[16℄ D. Sen, Supersymmetry in the spae-time R � S3, Nul. Phys. B284 (1987), 201{233.[17℄ G. Festuia and N. Seiberg, Rigid Supersymmetri Theories in Curved Superspae, J. HighEnergy Phys. 1106 (2011) 114.[18℄ F. A. Dolan, an e-mail message to the authors on 10 April 2011 with unpublished notes onloalization in N = 1 theories on S3 � R.[19℄ A. Gadde, E. Pomoni, L. Rastelli and S. S. Razamat, S-duality and 2d Topologial QFT,JHEP 03 (2010) 032.[20℄ A. Gadde, L. Rastelli, S. S. Razamat and W. Yan, The Superonformal Index of the E6SCFT, JHEP 08 (2010) 107.[21℄ A. Gadde, L. Rastelli, S. S. Razamat and W. Yan, The 4d Superonformal Index from q-deformed 2d Yang-Mills, Phys. Rev. Lett. 106 (2011) 241602.[22℄ A. Gadde, L. Rastelli, S. S. Razamat and W. Yan, Gauge Theories and Madonald Polyno-mials, arXiv:1110.3740 [hep-th℄.[23℄ B. I. Zwiebel, Charging the Superonformal Index, arXiv:1111.1773 [hep-th℄.[24℄ F. Benini, T. Nishioka and M. Yamazaki, 4d Index to 3d Index and 2d TQFT,arXiv:1109.0283 [hep-th℄.[25℄ Y. Nakayama, 4D and 2D superonformal index with surfae operator, JHEP 1108 (2011)084.[26℄ T. Dimofte, D. Gaiotto and S. Gukov, 3-Manifolds and 3d Indies, arXiv:1112.5179[hep-th℄.[27℄ D. Gang, E. Koh and K. Lee, Line Operator Index on S1 � S3, arXiv:1201.5539 [hep-th℄.[28℄ E. M. Rains, Transformations of ellipti hypergeometri integrals, Ann. of Math. 171 (2010),169{243.[29℄ G. 't Hooft, Naturalness, hiral symmetry, and spontaneous hiral symmetry breaking, ReentDevelopments in Gauge Theories (Eds. G. 't Hooft et. al.), Plenum Press, New York, 1980,pp. 135{157.[30℄ V. P. Spiridonov, Ellipti hypergeometri terms, SMF S�eminaire et Congr�es 23 (2011), 385{405; arXiv:1003.4491 [math.CA℄.[31℄ F. A. H. Dolan, V. P. Spiridonov and G. S. Vartanov, From 4d superonformal indies to 3dpartition funtions, Phys. Lett. B704 (2011), 234{241.[32℄ G. Felder and A. Varhenko, The ellipti gamma funtion and SL(3;Z)n Z3, Adv. Math.156 (2000), 44{76.[33℄ J. F. van Diejen and V. P. Spiridonov, Unit irle ellipti beta integrals, Ramanujan J. 10(2005), 187{204; math.CA/0309279.[34℄ J. H. Brodie, P. L. Cho and K. A. Intriligator, Misleading anomaly mathings?, Phys. Lett.B429 (1998), 319{326.[35℄ D. Kutasov and A. Shwimmer, On duality in supersymmetri Yang-Mills theory, Phys. Lett.B354 (1995), 315{321.[36℄ M. Sudano, The Romelsberger Index, Berkooz Deon�nement, and In�nite Families ofSeiberg Duals, arXiv:1112.2996 [hep-th℄.[37℄ M. Henningson and N. Wyllard, Low-energy spetrum of N = 4 super-Yang-Mills on T 3:at onnetions, bound states at threshold, and S-duality, JHEP 0706 (2007) 001.[38℄ A. G. Reiman, M. A. Semenov-Tian-Shansky and L. D. Faddeev, Quantum anomalies andoyles on gauge groups, Funkt. Analiz i ego Pril. 18 (4) (1984), 64{72 (Funt. Analysis andits Appl. 18 (4) (1984), 319{326).[39℄ J. A. Harvey, TASI 2003 letures on anomalies, hep-th/0509097.Bogoliubov Laboratory of Theoretial Physis, JINR, Dubna, Mosow Region 141980,Russia; e-mail address: spiridon�theor.jinr.ruDESY Theory, Notkestrasse 85, 22603 Hamburg, Germany; e-mail address:grigory.vartanov�desy.de


