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Abstra
tDis
rete (family) symmetries might play an important role in models ofelementary parti
le physi
s. We dis
uss the origin of su
h symmetries in theframework of 
onsistent ultraviolet 
ompletions of the standard model in�eld and string theory. The symmetries 
an arise due to spe
ial geometri
alproperties of extra 
ompa
t dimensions and the lo
alization of �elds in thisgeometri
al lands
ape. We also 
omment on anomaly 
onstraints for dis
retesymmetries.
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1 Introdu
tionDis
rete symmetries play an important role in parti
le physi
s. Apart from thefundamental spa
e{time symmetries P , C and T , there are various well knownexamples su
h as the so{
alled matter or R parity in the minimal supersymmet-ri
 standard model (MSSM). There are good reasons for using dis
rete ratherthan 
ontinuous symmetries. Models with spontaneously broken global 
ontinu-ous symmetries exhibit Goldstone bosons whi
h are typi
ally phenomenologi
allyuna

eptable. Moreover, there are strong arguments that a 
ontinuous symme-try has either to be gauged or it will be broken by quantum gravity e�e
ts (seee.g. [1℄ for a re
ent dis
ussion). In 
ontrast to the fundamental symmetries, dis
retesymmetries are often just imposed by hand for phenomenologi
al reasons. Whileintrodu
ing su
h symmetries 
an be a useful tool in bottom{up model buildingit appears worthwhile to 
larify the origin of a given symmetry. Given a deeperunderstanding of how su
h symmetries arise, one might be able to obtain a morefundamental understanding of observations, su
h as the repetition of families andthe 
avor stru
ture.Dis
rete symmetries 
ome in various 
lasses. Various generation{dependent 
a-vor symmetries, have been proposed in order to explain the pattern of quark andlepton Yukawa 
ouplings, and to 
ontrol higher{dimensional operators (see e.g. [2℄for a quite re
ent review and other 
ontributions of this spe
ial issue [3℄ for morereferen
es). Apart from these there are generation{independent symmetries, in-trodu
ed in order to 
ure 
ertain short
omings of extensions of the standard modelsu
h as the MSSM. For example, dangerous proton de
ay operators are forbiddenby matter parity [4,5℄, baryon triality [6℄, proton hexality [7℄ and ZR4 [8℄. Further,dis
rete symmetries of high order 
an manifest themselves as a

idental globalU(1) symmetries in the (trun
ated) low{energy e�e
tive theory. Su
h a

identalsymmetries 
an be used for example in two ways: as (anomalous) Pe

ei{Quinnsymmetry addressing the strong CP problem (
f. the dis
ussion in [9, 10℄) or as aU(1)R explaining the hierar
hy between the Plan
k and the ele
troweak s
ales [11℄.The purpose of this review is to 
larify the origin of dis
rete symmetries. They
an be obtained from 
ontinuous symmetries by spontaneous breaking. But this isnot the only possibility. In fa
t, here we mainly fo
us on alternative possibilitiesfor the origin of dis
rete symmetries. In se
tion 2 we dis
uss, in the frameworkof �eld theory, how dis
rete symmetries 
an be related to the geometry of extradimensions. The dis
ussion of higher{dimensional quantum �eld theories leaves
ertain questions unanswered. We therefore 
hange gear and present a top{downderivation of dis
rete symmetries in se
tion 3, fo
using mainly on heteroti
 orb-1



ifolds, as they provide us with expli
it 
andidate models for a UV 
ompletion ofthe standard model, and, at the same time, allow for a CFT des
ription and hen
efor a detailed understanding of the symmetries. As we shall see, the top{down set-tings are more restri
tive than the bottom{up models. Some of the restri
tions 
anbe thought of as originating from the requirement of anomaly freedom, whi
h wedis
uss separately in se
tion 4. Finally, we summarize our dis
ussion in se
tion 5.2 Geometri
al origin of dis
rete symmetriesIn this se
tion we present three possible origins of dis
rete symmetries. Afterbrie
y summarizing the standard approa
h and its limitations in se
tion 2.1, wedis
uss how to obtain a dis
rete symmetry from extra dimensions, either as thesymmetry of 
ompa
t spa
e (se
tion 2.2) or as a remnant of higher dimensionalLorentz symmetry (se
tion 2.3).2.1 Gauged dis
rete symmetries from 
ontinuous symme-triesThe perhaps most straightforward possibility for obtaining a dis
rete symmetry isby spontaneous breaking of a 
ontinuous gauge symmetry. As a simple example,
onsider a U(1) gauge group broken by the VEV of a s
alar ' with 
harge q = 3.Here we normalize the U(1) su
h that the 
harges are integer and have no 
ommondivisor. The unbroken symmetry is given by those U(1) transformations that leavethe va
uum invariant, i.e.ei�(x) q h'i = e3i�(x) h'i != h'i y �(x) = 2� n3 ; (2.1)with n = 0; 1; 2. Hen
e, the (lo
al) U(1) is broken to a (lo
al) Z3 subgroup. Theextension of this dis
ussion to the 
ase of multiple U(1) fa
tors whi
h get brokenby several VEVs is given in [12℄.One may also get non{Abelian dis
rete symmetries by spontaneous breaking(
f. e.g. [13{15℄). However, this typi
ally involves very large representations ofthe 
orresponding 
ontinuous symmetry, whi
h often give rise to unwanted statesin the broken phase. Therefore, arguably, this possibility appears not to be tooattra
tive. In what follows, we therefore dis
uss alternative possibilities in whi
hthe dis
rete symmetries are related to the geometry of 
ompa
t dimensions. Aswe shall see, this s
heme does not su�er from the above problems, and is realizedin expli
it string{derived models of parti
le physi
s.2



2.2 Repetition of families and symmetriesDis
rete family symmetries 
an be motivated in settings with extra 
ompa
t dimen-sions. It is not surprising that su
h models o�er an explanation for the appearan
eof non{Abelian dis
rete 
avor symmetries, be
ause the latter are symmetries of
ertain geometri
al solids, whi
h des
ribe the 
ompa
t dimensions. The symme-tries of internal spa
e govern the intera
tions between �elds that are lo
alized inthe 
ompa
t dimensions and may eventually be
ome 
avor symmetries.The purpose of this subse
tion is to explain that (non{Abelian) family symme-tries 
an, to some extent, be understood geometri
ally. Let us start with a verysimple example with one extra 
ompa
t dimension, the orbifold S1=Z2 (�gure 1).See appendix A.1 for a brief introdu
tion to the 
onstru
tion of orbifolds. This
m = 1

m = 0

Figure 1: Example for one extra 
ompa
t dimension: S1=Z2 orbifold. Points whi
h arerelated by a re
e
tion on the dashed line are identi�ed. The fundamental region of theorbifold is an interval with the �xed points sitting at the boundaries.orbifold possesses two geometri
ally equivalent �xed points. Suppose there are twostates, i.e. two families of quarks and/or leptons,  m=0 and  m=1, with identi
alquantum numbers, one of them lo
alized at ea
h of the �xed points. Sin
e the�xed points and the states  m are geometri
ally indistinguishable, there is an S2permutation symmetry relating them, whi
h manifests itself as a symmetry of thetheory.A somewhat more 
omplex example is the tetrahedron in two extra 
ompa
tdimensions (
f. [16℄), whi
h 
an be obtained from the T2SU(3)=Z2 orbifold (�gure 2).Here the subs
ript SU(3) indi
ates that the basi
 translations de�ning the T2 torus3



enjoy the same relations as the simple roots of the Lie algebra of SU(3), i.e. en
lose120Æ and have equal lengths.
bcb bcb

bcb bcb

(a) T2SU(3)=Z2 : (b) Tetrahedron.Figure 2: Example for two extra 
ompa
t dimensions: If the T2 latti
e ve
tors haveequal length and en
lose 120Æ, one 
an also fold the fundamental region of T2=Z2 (darkgray region in (a)) to the tetrahedron (b).Clearly, the tetrahedron is invariant under a dis
rete rotation by 120Æ aboutan axis that goes through one 
orner and hits the opposite surfa
e orthogonally.There are four operations of this type represented byT = 0BB� 1 0 0 00 0 1 00 0 0 10 1 0 0 1CCA ; T S ; T S 0 ; T S S 0 ; (2.2)in the basis where ea
h of the four 
orners is represented by a four{dimensionalve
tor ei with (ei)j = Æij and i; j = 1; 2; 3; 4. Furthermore,S = 12�2 
 �1 ; (2.3a)S 0 = �1 
 12�2 (2.3b)with the standard Pauli matrix �1. T generates a Z3 and S generates a Z2. Inaddition, one may allow for orientation{
hanging operations (with det = �1), forexample, generated by S 00 = diag(12�2; �1).Sin
e these generators do not 
ommute, the multipli
ative 
losure yields a non{Abelian dis
rete symmetry, being S4. As mentioned in [16℄, if one restri
ts the4



allowed operations to be 
ontained in proper Lorentz transformations, one arrivesat the non{Abelian 
avor symmetry generated by T , S and S 0, whi
h is A4. Wetherefore arrive at the premature 
on
lusion that, in a model in whi
h ea
h �xedpoint 
arries a state, the family symmetry will be A4. However, as pointed outin [17℄ and as we shall see later in more detail the a
tual symmetry in UV 
ompletesettings is larger than that.In summary, we see that extra dimensions o�er a 
ompelling explanation ofnon{Abelian dis
rete 
avor symmetries. However, as the settings dis
ussed hereare based on gauge theories in more than four dimensions, one has to address thequestion of how to 
omplete them in the UV. We will 
ome ba
k to this questionin se
tion 3, where we will see that string models indeed often exhibit non{Abeliandis
rete family symmetries.2.3 Dis
rete R symmetriesIn supersymmetri
 theories there are the so{
alled R symmetries whi
h, by def-inition, do not 
ommute with supersymmetries. Su
h symmetries 
an originatefrom extra dimensions as well. Spe
i�
ally they are (dis
rete) remnants of theLorentz symmetry of 
ompa
t dimensions. The perhaps simplest way of seeingthis is by re
alling that under Lorentz rotations spinors, ve
tors and s
alars trans-form di�erently su
h that di�erent parts of super�elds have di�erent 
harges. Thismeans, in parti
ular, that R symmetries are deeply 
onne
ted to the fundamentalsymmetries of spa
e{time.Let us illustrate this point in more detail by dis
ussing toy{settings with two
ompa
t dimensions (without dis
ussing SUSY breaking). If these dimensionswere 
at (and in�nite) the setup would exhibit an SO(2) rotation symmetry. Forinstan
e, this symmetry 
an be de�ned by its a
tion on the extra 
omponents ofthe gauge �elds,� A5A6 � ! � 
os � � sin �sin � 
os � � � A5A6 � : (2.4)Sin
e su
h 
omponents get 
ombined to the s
alar 
omponent of a 
hiral super�eld,des
ribing a bulk �eld (or an untwisted se
tor �eld in string{derived orbifolds), itis more 
onvenient to re
ast (2.4) in 
omplex notation,U(1)56 : A5 + iA6 ! ei � (A5 + iA6) : (2.5)On the other hand, the spinor 
omponent of this `untwisted super�eld' turns out totransform di�erently under the Lorentz group. To understand this, note that the5



4D spinor � is 
ontained in the higher{dimensional one (	) a

ording to 	 = �
�, where � is a spinorial zero mode in internal spa
e. Re
alling that spinorsalways rotate half as qui
kly as ve
tors under Lorentz transformations leads to thetransformation lawU(1)56 : � ! ei �=2 � : (2.6)In the 4D super�eld� = 1p2 (A5 + iA6) +p2 ��+ �� F (2.7)the superspa
e 
oordinates � balan
e the transformations of the 
omponents (2.5)and (2.6), i.e.U(1)56 : � ! ei �=2 � : (2.8)Hen
e, U(1)56 originating from the 6D Lorentz symmetry denotes an R symmetry.It is also 
lear that typi
ally a 
ompa
t spa
e does not possess the full Lorentzsymmetry. For example, orbifolds 
an have dis
rete rotational symmetries andhen
e 
an naturally provide dis
rete R symmetries, see se
tion 3.1.3 for moredetails in the 
ase of string 
ompa
ti�
ations on orbifolds.3 Orbifolds and string sele
tion rulesSo far, our dis
ussion was purely bottom{up. It is, however, instru
tive to 
om-ment on the situation in top{down models. The geometri
al repetition of families,as brie
y dis
ussed in se
tion 2.2, is a 
ommon feature of most string 
ompa
ti�-
ations.1. In heteroti
 orbifolds, very often families 
ome from so{
alled twisted se
tors,whi
h 
orrespond to states lo
alized at the orbifold �xed points in the extradimensions. We will dis
uss the emergent family symmetries in more detailbelow.2. In D{brane models (see e.g. [18℄ for a review) the repetition of families isdue to the fa
t that branes 
an wrap 
y
les (i.e. some dire
tions in the extradimensions) multiple times. Therefore, one 
an have non{trivial interse
-tion numbers between di�erent branes, leading to otherwise equivalent 
hiralstates lo
alized at the interse
tions. Therefore su
h models also generi
ally6



exhibit non{trivial family symmetries. Also F theory models have non{trivial family symmetries, whi
h often lead to the problem that the Yukawa
ouplings have rank one [19℄.In what follows, we will fo
us on the heteroti
 string 
ompa
ti�ed on (toroidal)orbifolds. There are two main reasons for this 
hoi
e. First of all, the heteroti
framework gives rise to expli
it globally 
onsistent 
andidate models for physi
sbeyond the standard model [20{23℄. Se
ond, at the same time, this s
heme issimple enough to fully understand the symmetries. Dis
rete symmetries 
an appearmainly in two ways: (i) from the 
ompa
i�
ation to 4D as remnants of higherdimensional gauge/Lorentz symmetry and (ii) from going to a spe
ial va
uum
on�guration where some of the �elds of the 4D e�e
tive theory obtain VEVs andhen
e indu
e further symmetry breaking. The situation is s
hemati
ally illustratedin �gure 3.
10D N = 1 super Poincaré symmetry E8 × E8 gauge symmetry

compactification
non–trivial

gauge embedding

4D N = 1

super Poincaré

symmetry

discrete R

and non–R

symmetries

continuous

gauge

symmetries

non–trivial VEVs

4D N = 1

super Poincaré

symmetry

discrete R

and non–R

symmetries

continuous

gauge

symmetriesFigure 3: Origin of symmetries in heteroti
 orbifold 
ompa
ti�
ations. By 
ompa
t-i�
ation of six dimensions and appropriate gauge embedding the 10D super Poin
ar�eand E8 � E8 symmetries get broken to the 4D super Poin
ar�e, a 4D gauge and variousdis
rete R and non{R symmetries. The latter two get further broken to subgroups bynon{trivial VEVs of 
ertain 
harged �elds.Orbifolds are six{dimensional 
ompa
t spa
es whi
h, in 
ontrast to a generalCalabi{Yau 
ompa
ti�
ation, have additional dis
rete symmetries whi
h manifest7



themselves in the four-dimensional e�e
tive theory. Brief introdu
tions to het-eroti
 orbifolds and to the sele
tion rules that govern the allowed terms of thesuperpotential are given in appendix A.3.1 Dis
rete symmetries from string sele
tion rules3.1.1 Abelian symmetriesIn general, there are two possible origins for Abelian (non{R) dis
rete symmetriesin heteroti
 orbifold 
ompa
ti�
ations. Either they 
an arise from the spa
e groupsele
tion rule dis
ussed in appendix A.3 or as a dis
rete remnant of a spontaneouslybroken gauge symmetry. The se
ond possibility was dis
ussed in se
tion 2.1, the�rst one will be presented in the following.For the sake of 
on
reteness, we 
onsider the S1=Z2 orbi
ir
le of se
tion 2. Inthis 
ase, the spa
e group 
onsists of the elements ��k; m e�, where � = �1 andk 2 f0; 1g des
ribe the Z2 re
e
tion, m 2 Z, e = 2� R and R denotes the radiusof the 
ir
le S1. As illustrated in �gure 1, the integer m spe
i�es the lo
ation ofthe twisted state (or `brane �eld'), whi
h have k = 1, as opposed to untwistedstates (or `bulk �elds') whi
h have k = 0. The spa
e group sele
tion rule requiresthe produ
t of spa
e{group elements of the states involved in a 
oupling to be
ongruent to identity (see appendix A.3). This gives rise to an Abelian Zk2 � Zm2symmetry, i.e.LYr=1 gr = 1 y 8>>>><>>>>: Zk2 : LXr=1 k(r) = 0 mod 2 ;Zm2 : LXr=1 m(r) = 0 mod 2 : (3.1)We will refer to the 
ondition on k(r) as the point group sele
tion rule and to these
ond one on m(r) as the m{rule.3.1.2 Non{Abelian symmetriesA parti
ularly interesting situation arises if the two �xed points at m = 0 and 1are equivalent, whi
h happens to be the 
ase unless one introdu
es a non{trivialba
kground �eld (either a so{
alled dis
rete Wilson line [24℄ or the B-�eld (dis
retetorsion) [25℄). In this 
ase there is an additional S2 permutation symmetry thatinter
hangesm = 0 andm = 1. As we shall dis
uss now, together with the Zk2�Zm28



symmetry dis
ussed above in se
tion 3.1.1, this leads to a non{Abelian dis
retesymmetry D4 [17, 26℄.We 
ombine a state from the �xed point at m = 0 and a state from the oneat m = 1 into a two{dimensional ve
tor, i.e. a doublet. From equation 3.1 we seethat the spa
e group sele
tion rule is generated in this basis by the elements�12�2 = � �1 00 �1 � ; �3 = � 1 00 �1 � ; (3.2)i.e. the element �12�2 generates Zk2, i.e. the point group sele
tion rule, and �3 gen-erates Zm2 , i.e. the m{rule. The additional element that generates the permutationof the two states is given by�1 = � 0 11 0 � : (3.3)The multipli
ative 
losure of these three elements yields a non{Abelian group witheight elements f12�2;�12�2;��1;��3;�i�2g and is known as the dihedral groupD4, asso
iated with the symmetry of a square.Similar to the S1=Z2 
ase, theT2=Z2 orbifold without Wilson lines (see �gure 4)generi
ally has a (D4�D4)=Z2 
avor symmetry whi
h originates from the Abelianspa
e group sele
tion rule Z32 
ombined with the permutation symmetries S and S 0of equation 2.3. It 
an be enhan
ed further for spe
ial values of the angle and thetwo radii of T2=Z2. For example, when the orbifold geometri
ally is a tetrahedronthe naive geometri
al S4 symmetry obtained from �eld theory 
onsiderations inse
tion 2.2 gets enhan
ed to SW4, whi
h has 192 elements, by the stringy spa
egroup sele
tion rule [17℄. If one allows only for proper Lorentz transformations,one obtains a group with 96 elements whi
h is 
ontained in SW4. The stringdes
ription allows us to 
larify whether or not one should 
onsider operationswhi
h are not 
ontained in the proper Lorentz transformations. The 
ouplingsbetween states lo
alized at di�erent �xed points go like e�a T , where T denotesthe K�ahler modulus of the 
orresponding orbifold plane. The real part of T isproportional to R2, where R is the radius of the underlying torus. Clearly, R2does not 
hange under these extra re
e
tions, su
h that the absolute values ofthe 
oupling strengths will enjoy the larger symmetry SW4. On the other hand,the imaginary part of T , the so{
alled T{axion, is related to the anti{symmetri
tensor �eld in 
ompa
t spa
e, and does 
hange its sign under the extra re
e
tions.Hen
e, if the T{axion a
quires a non{trivial VEV, the phases of the 
ouplingstrengths do no longer enjoy the larger symmetries. As is well known, breaking9



the re
e
tion symmetries in internal spa
e 
an be related to CP violation in thee�e
tive 4D theory (
f. [27, 28℄), and what we dis
ussed here is just an examplefor this statement. Note that there are di�erent possibilities to obtain non{trivialCP phases, also based on non{Abelian dis
rete symmetries (
f. [29℄). It shouldbe interesting to see if these also have an interpretation in terms of re
e
tionsymmetries in 
ompa
t spa
e.Di�erent lower{dimensional building blo
ks of orbifolds lead to other non{Abelian dis
rete symmetries (table 3.1).orbifold 
avor symmetry se
tor string fundamental statesS1=Z2 D4 U 1T1 2T2=Z2 (D4 �D4)=Z2 U 1T1 4T2=Z3 �(54) U 1T1 3T2 �3T2=Z4 U 1(D4 � Z4)=Z2 T1 2T2 1A1 + 1B1 + 1B2 + 1A2T3 2T4=Z8 U 1T1 2(D4 � Z8)=Z2 T2 1A1 + 1B1 + 1B2 + 1A2T3 2T4 4� (1A1 + 1B1 + 1B2 + 1A2)T4=Z12 trivialT6=Z7 U 1S7 n (Z7)6 Tk 7T7�k �7Table 3.1: Survey of 
avor symmetries arising from building blo
ks of orbifolds (from[17℄). The Tk denote the various twisted se
tors and U the untwisted se
tor.The (non{Abelian) 
avor symmetry 
ould be broken in two ways: (i) expli
itly:the presen
e of orbifold Wilson lines breaks the permutation symmetry, at leastpartially. If the permutation symmetry is 
ompletely broken, the remaining 
avor10



group is Abelian. (ii) spontaneously: by the VEV of some twisted �eld, sin
etwisted �elds ne
essarily transform in a non{singlet representation under the 
avorgroup. For example, �(54) 
an be broken to S3 by the VEV of a triplet 3 (e.g.h3i = (v; v; v)).3.1.3 R symmetriesAs already mentioned, dis
rete R symmetries 
ould arise as dis
rete remnants ofthe Lorentz symmetry of 
ompa
t dimensions. This is also true for string{derivedorbifold models.What are the R 
harges of states lo
alized at the �xed points? In the frameworkof �eld theory one 
annot answer this question unambiguously. For instan
e,in many �eld{theoreti
 analysis the pro�les of these �elds are taken to be Æ{fun
tions with support at the �xed points, from whi
h one may 
on
lude that thestates transform trivially under the dis
rete R symmetries. It turns out that thenaive �eld{theoreti
 expe
tation is in
orre
t. However, in string theory one 
anaddress this question. Spe
i�
ally, in heteroti
 orbifolds the R symmetries derivefrom the H{momentum 
onservation law and one 
an determine the R 
hargesunambiguously. We will dis
uss an expli
it example in se
tion 4.2.3.2 Dis
rete symmetries in expli
it modelsHaving seen how dis
rete symmetries arise in the e�e
tive �eld{theoreti
 des
rip-tion, we will now dis
uss whi
h symmetries appear in expli
it string models.3.2.1 Flavor symmetriesIn re
ent years, many MSSM 
andidate models have emerged from heteroti
 orb-ifolds [20, 30{32℄, known as the \heteroti
 mini{lands
ape". These models havea 
ommon 
avor stru
ture: fo
using on the two{torus where a Z2 a
ts, the twolight generations are lo
alized on equivalent �xed points and the third one is in thebulk. Therefore, as dis
ussed above, there is a D4 
avor symmetry, under whi
hthe two light generations transform as a doublet whereas the the third familytransforms trivially (Let us mention that there are also alternative models with-out this D4 [21, 33℄). This symmetry is broken in potentially realisti
 va
ua bythe VEVs of some lo
alized singlets. Yet, using the D4 symmetri
 situation as astarting point and then 
onsidering 
orre
tions 
an have 
ertain advantages whendis
ussing the (supersymmetri
) 
avor stru
ture (
f. [34℄). The emerging s
heme11



is somewhat similar to the one of `minimal 
avor violation' [35{37℄. In parti
ular,the stru
ture of the soft masses isem2 = 0� a 0 00 a 00 0 b 1A + terms proportional to D4 breaking VEVs : (3.4)It is known that su
h an approximate form of the soft masses makes it possibleto avoid the supersymmetri
 
avor problems. In addition, it naturally allows fors
enarios in whi
h the third family of squarks and sleptons is substantially lighterthan the �rst two generations of superpartners (
f. the dis
ussion in [38℄).3.2.2 Flavor{independent symmetriesIn grand uni�ed models, matter or R parity 
an be obtained from baryon{minus{lepton{number symmetry U(1)B�L by spontaneous breaking, and the same is truein string{derived models [32℄, the only di�eren
e being that U(1)B�L is not inGUT normalization and no large representations (su
h as 126{plets of SO(10))are required (nor available) to a
hieve the breaking U(1)B�L ! ZM2 . That is,string theory avoids huge representations like the 126{plets, but still allows us toderive matter parity from a lo
al B � L symmetry.Similarly, proton hexality 
an be obtained from Pati{Salam (PS) times an extraU(1) symmetry [39℄. Expli
it orbifold models from Z4�Z4 
ompa
ti�
ations usinga lo
al GUT approa
h,E8 in 10D! SO(12) in 6D! PS� U(1)! SM in 4D ; (3.5)revealed 850 heteroti
 MSSMs (i.e. three generations of quarks and leptons plusve
tor{like exoti
s), many of them with the 
orre
t proton hexality 
harge assign-ment for at least some quarks and leptons [39℄.3.2.3 R symmetriesR symmetries play an important role in string models. In parti
ular, approximate
ontinuous R symmetries, whi
h derive from exa
t dis
rete R symmetries, 
anexplain the large hierar
hy between the Plan
k, GUT and/or string s
ales onthe one hand and the ele
troweak and/or supersymmetry breaking s
ales on theother hand. It has been demonstrated that, in the presen
e of a 
ontinuous Rsymmetry, at �eld 
on�gurations that satisfy the F{term 
onstraints, the VEVof the superpotential vanishes [11℄. If there is an approximate R symmetry that12



gets expli
itly broken at some high order N , the va
uum expe
tation value of thesuperpotential, or equivalently the gravitino mass m3=2, goes likehW i � hsiN ; (3.6)where hsi denotes a typi
al size of a VEV of �elds that break the symmetry spon-taneously (in Plan
k units) and N is of the order 10 in expli
it examples. Further,in the 
ontext of the MSSM it has been shown that in settings in whi
h matter
harges are 
onsistent with grand uni�
ation, the only anomaly{free symmetriesthat 
an forbid the � term are R symmetries [40℄. Given that hW i, or, equiva-lently m3=2, is the order parameter of R symmetry breaking, this yields a relationbetween � and m3=2 [11, 41℄, i.e. 
onstitutes a solution to the � problem. Thissolution does, unlike the Giudi
e{Masiero me
hanism [42℄, not rely on a spe
i�
stru
ture of the K�ahler potential, rather it provides a holomorphi
 � term of theright size, similar to the Kim{Nilles pi
ture [43℄.4 Anomaly Freedom4.1 Anomaly 
onstraints vs. embedding 
onstraintsHow 
an one derive anomaly 
onstraints on dis
rete symmetries? It is instru
tiveto review how they have been derived in the past. Ib�a~nez and Ross [44℄ haveused the following strategy: they have obtained ZN symmetries from U(1) byspontaneous breaking, as dis
ussed in se
tion 2.1. It is obvious that, if the U(1)is non{anomalous, and the spontaneous breaking is done 
onsistently, then alsoZN is anomaly{free. However, one may question whether these are in general trueanomaly 
onstraints or rather embedding 
onstraints, i.e. 
onstraints that restri
tthe 
hoi
e of the non{anomalous 
ontinuous gauge group into whi
h the dis
retegroup is supposed to be embedded.Araki [45℄ proposed an alternative derivation of the anomaly 
onstraints, whi
hdoes not rely on embedding the dis
rete symmetry into a 
ontinuous one, but byusing the path integral method [46℄. This strategy has been applied to the ZN
ase [47℄ with the result that all Ib�a~nez{Ross 
onstraints apply ex
ept for the Z3Nones, whi
h are known not to 
onstitute true anomaly 
onstraints [40, 48℄.Also dis
rete anomaly 
onstraints for non{Abelian dis
rete symmetries have�rst been derived by using the embedding strategy [49℄ (see [50℄ for a more re
entdis
ussion). While, again, these 
onstraints ensure anomaly freedom, they turn outto be, in general, not true anomaly 
onstraints but rather embedding 
onstraints.13



That is, if these 
onstraints are satis�ed, the symmetry is anomaly free, but the
onverse is not ne
essarily true. In parti
ular, the 
onstraints 
an depend onthe 
hoi
e of the 
ontinuous symmetry into whi
h the dis
rete one is supposedto be embedded. The true 
onstraints 
an be derived with the path integralmethod [45℄, and one �nds that one only has to 
he
k anomaly freedom for theAbelian subgroups of a given non{Abelian symmetry [45,47℄. For a dis
rete groupD and a 
ontinuous gauge symmetry G one obtains the 
onditions thatX(r(f);d(f)) Æ(f) � `(r(f)) != 0 mod N2 ; (4.1)where the sum `P(r(f);d(f))' is over representations whi
h are non{trivial w.r.t. toboth G and D. The dis
rete Abelian 
harge, denoted by Æ(f), 
an be expressed interms of the group elements U(d(f)) asÆ(f) = N ln detU(d(f))2� i : (4.2)For the mixed gravitational{D anomaly one �ndsXd(f) Æ(f) != 0 mod N2 ; (4.3)where the symbol `Pd(f)' means that the sum extends over all non{trivial represen-tations d(f) of D. What does it mean if a given dis
rete symmetry does not satisfythese 
onstraints? In general, one may argue that in su
h a 
ase the symmetry willbe broken in an un
ontrollable way and all the predi
tive power of the (dis
rete)symmetry will be lost. For useful appli
ations in parti
le physi
s, reliable dis
retesymmetries should thus be anomaly free. There is, however, an ex
eption: for theanomalous symmetry the anomalies might be 
an
elled (mi
ros
opi
ally) by a dis-
rete Green-S
hwarz me
hanism. In what follows, we shall dis
uss this possibilityin detail.4.2 Non{perturbative \violation" of dis
rete symmetriesand dis
rete Green{S
hwarz anomaly 
an
ellationAs in the 
ase of 
ontinuous symmetries, dis
rete anomalies 
an be 
an
elled by aGreen{S
hwarz (GS) me
hanism (for a dis
ussion in the path integral formalismsee [40℄). Also here this requires the presen
e of a s
alar, the GS axion, whi
h14



multiplies some F�� eF �� terms (with F �� denoting the �eld strength of some 
on-tinuous gauge symmetry of the model), and shifts under the dis
rete symmetry.On
e the axion a
quires its va
uum expe
tation value, the dis
rete symmetry getsbroken spontaneously. E�e
tively this leads to a situation in whi
h the (anomalouspart of the) dis
rete group appears to be broken by non{perturbative e�e
ts.1As an example, 
onsider the ZR4 symmetry dis
ussed in [8,40℄. It forbids the �term and dimension 4 and 5 proton de
ay operators at the perturbative level. Itappears to be broken by non{perturbative e�e
ts to its `non{anomalous' subgroup,i.e. to ZM2 matter parity. The order parameter of this R symmetry breaking isthe va
uum expe
tation value of the superpotential, i.e. the gravitino mass. Onetherefore has, in the 
ontext of gravity mediation, a � term of the 
orre
t size(
f. the analogous dis
ussion in se
tion 3.2.3) while dimension �ve proton de
ayremains far below the experimental limits.Similar to the 
ase of R symmetries, also non{R symmetries 
an appear anoma-lous and hen
e be broken non{perturbatively. This, again, introdu
es a hierar
hi-
ally small breaking of the dis
rete symmetry. It remains to be seen whether thisme
hanism 
an provide us with solutions to some of the open questions in 
avorphysi
s.5 SummaryThe 
avor stru
ture of the SM remains one of the greatest puzzles in parti
lephysi
s. Flavor symmetries appear to be instrumental for solving this puzzle.Optimisti
ally one may hope to �nd a 
ompelling model that explains the observed
avor stru
ture. In this 
ase the question where the underlying family symmetriesoriginate from is of greatest importan
e sin
e given a deeper understanding mayallow us to relate the observed fermion masses and mixing to some fundamentalproperties of our world.In this paper we have reviewed the possible origin of dis
rete symmetries, pay-ing parti
ular attention to dis
rete 
avor symmetries. Dis
rete symmetries 
anarise from 
ontinuous symmetries by spontaneous breaking or from extra dimen-sions. While for Abelian symmetries the �rst option is a very 
ommon tool in1Non{perturbative e�e
ts generate 
ouplings of the form exp(�ia)�1 : : : �n, where a denotesthe GS axion and the �i some (matter) �elds of the theory. Su
h terms are invariant underthe full dis
rete group when one takes the shift transformation of the GS axion a into a

ount.But, when a obtains a va
uum expe
tation value, the (`anomalous' part of the) dis
rete group isbroken spontaneously. 15



model building, we have argued that obtaining non{Abelian dis
rete symmetriesfrom 
ontinuous ones (in four dimensions) does not lead to 
ompelling models. Onthe other hand, non{Abelian dis
rete symmetries do arise in models with extradimensions, where they are deeply 
onne
ted to the explanation of the repetitionof families. In parti
ular, in stringy extensions of the standard model su
h sym-metries often arise. Therefore they 
an play an important role in understandingor addressing the 
avor puzzle in the standard model as well as in solving 
avorproblems in extensions su
h as the MSSM.We have also 
ommented on dis
rete anomalies, whi
h 
onstrain possible dis-
rete symmetries in bottom{up model building. As we have pointed out, oneshould 
arefully distinguish between embedding 
onstraints and true anomaly 
on-straints. Dis
rete symmetries that appear anomalous open very attra
tive possi-bilities in model building as they appear to be broken non{perturbatively, i.e. thebreaking 
an be hierar
hi
ally small. This observation has been applied to the �parameter of the MSSM. It remains to be seen whether hierar
hies in 
avor physi
s
an have a similar explanation.A
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strings are 
ompa
ti�ed on orbifolds and appendix A.3 reviews string sele
tionrules.
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A.1 Constru
tion of orbifoldsFrom the geometri
al point of view, a d{dimensional (toroidal) orbifold is de�nedas the quotient of Rd divided by a dis
rete group S, 
alled the spa
e group. ForZN orbifolds, the elements of the spa
e group g 2 S are given byg = ��k; n� e�� and a
t as g X = �kX + n� e� ; (A.1)with sum over � = 1; : : : ; d and X 2 Rd. The d (linearly independent) ve
torse� generate a latti
e � and hen
e de�ne a torus Td. The rotation � is of order N(i.e. �N = 1) and is 
hosen to be an automorphism of �. Then the a
tion of S isnot free, i.e. there are �xed points Xg 2 Rd with gXg = Xg for some g 2 S. Thespa
e group element g asso
iated to the �xed point Xg is 
alled the 
onstru
tingelement, see �gure 4. The resulting orbifold is written as Td=ZN .
(�; e1)(�; 0) (�; e1 + e2)(�; e2)

e1
e2

(�; e1)(�; e1 + e2)(�; e2)(�; 0))
a) b)

Figure 4: a) The four �xed points labeled by their 
onstru
ting elements for a two{dimensional T2=Z2 example (i.e. with � = �12�2). b) The orbifold of a) folded up to apillow{like obje
t with �xed points at the 
orners of the pillow.A.2 Strings on orbifoldsCompa
tifying the heteroti
 string on six{dimensional orbifolds yields three di�er-ent 
lasses of 
losed strings: (i) untwisted strings with 
onstru
ting element (1; 0)whi
h would also 
lose in un
ompa
ti�ed spa
e, (ii) winding modes with 
on-stru
ting elements (1; n�e�) whi
h would also 
lose on the torus and (iii) twistedstrings, lo
alized at the �xed points, with 
onstru
ting elements ��k; n�e�� withk 6= 0 whi
h only 
lose on the orbifold due to the � rotation. The winding modesare massive with masses near the Plan
k s
ale. Sin
e we are only interested in thelow{energy e�e
tive a
tion they are ignored in the following.17
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������(�; e1)(�; e1 + e2)(�; e2)(�; 0)Figure 5: Visualization of the spa
e group sele
tion rule for four twisted states, indi-
ated by the four bold strings at the four �xed points, see �gure 4. The 
ondition(�; 0) (�; e1) (�; e2) (�; e1 + e2) = (1; (1� �)�) is satis�ed and hen
e the 
oupling is al-lowed.The geometri
al a
tion of the spa
e group has to be amended by an a
tion onthe gauge degrees of freedom of the heteroti
 string in order to ful�ll the stringy
onsisten
y 
onditions of modular invarian
e. In the standard approa
h this isa
hieved by so 
alled shifts and Wilson lines. Spe
ifying these input parameters
ompletely de�nes an orbifold 
ompa
ti�
ation and allows one to 
ompute themassless spe
trum. An elegant way to obtain 
onsistent orbifold models, for ex-ample MSSM{like models, to 
ompute their massless spe
tra and to analyze theirresulting four{dimensional e�e
tive theories is given by the publi
 
ode \Orb-ifolder" [53℄.A.3 String sele
tion rulesThe CFT des
ription allows one to 
ompute s
attering amplitudes of strings onorbifolds. In the four{dimensional e�e
tive theory these amplitudes enter as 
ou-pling strengths of allowed terms in the superpotential. Their 
omputation is te
h-ni
ally involved. Hen
e, at a �rst step one is only interested in the string sele
tionrules determining whi
h 
oupling is allowed or forbidden. In many 
ases the stringsele
tion rules 
an be interpreted as a symmetry of the four{dimensional e�e
tivetheory. The (standard) string sele
tion rules are:1. Gauge invarian
e2. Spa
e group sele
tion rule: The spa
e group sele
tion rule re
e
ts thegeometri
al possibility of orbifold strings to join. Consider L strings with
onstru
ting elements gr = ��k(r); n(r)� e��. Then the 
oupling is allowed ifQLr=1 gr = 1, see �gure 5. 18



3. R 
harge 
onservation: R 
harge 
onservation is a dis
rete remnant of ten{dimensional Lorentz symmetry. It arises whenever the orbifoldR6=S respe
tssome additional rotational symmetry beside � = diag(e2�i v1 ; e2�i v2 ; e2�i v3).For example, for a fa
torized orbifold, i.e. an orbifold whose latti
e � is thedire
t produ
t of three two{dimensional latti
es � = �1��2��3, a rotationin the sublatti
e �i by e2�i vi is a symmetry of the theory. The rotation by viis of order Ni (i.e. Nivi 2 Z) and results in a ZR2Ni symmetryLXr=1 �2Rir = 2 mod 2Ni ; (A.2)where Rir = qish;r � ~N ir + ~N�{r with the os
illator numbers ~N ir and ~N�{r (seee.g. [31℄ for their de�nition), qsh;r are the bosoni
 right{moving momentaand the fa
tor �2 originates from the normalization su
h that fermions havea shifted R 
harge by �1.If the two{dimensional latti
e �i has a higher symmetry than Ni there is anadditional string sele
tion rule known as \rule 4". For example, the SU(3)3root latti
e of a Z3 orbifold allows for Z6 sublatti
e rotations. If all stringsinvolved in a given intera
tion sit at the same �xed point they feel the highersymmetry and the R symmetry is enhan
ed to ZR4Ni .Referen
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