
*∣
20
4.
22
06
*

 DESY-12-047
 TUM-HEP 830/12

ar
X

iv
:1

20
4.

22
06

v1
  [

he
p-

ph
] 

 1
0 

A
pr

 2
01

2

DESY-12-047TUM-HEP 830/12
Origin of family symmetriesHans Peter Nillesa, Mihael Ratzb, Patrik K.S. Vaudrevangea Bethe Center for Theoretial Physis and Physikalishes Institut der Universit�atBonn, Nussallee 12, 53115 Bonn, Germanyb Physik{Department T30, Tehnishe Universit�at M�unhen, James{Frank{Stra�e,85748 Garhing, Germany Deutshes Elektronen{Synhrotron DESY, Notkestra�e 85, 22607 Hamburg, Germany

AbstratDisrete (family) symmetries might play an important role in models ofelementary partile physis. We disuss the origin of suh symmetries in theframework of onsistent ultraviolet ompletions of the standard model in�eld and string theory. The symmetries an arise due to speial geometrialproperties of extra ompat dimensions and the loalization of �elds in thisgeometrial landsape. We also omment on anomaly onstraints for disretesymmetries.
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1 IntrodutionDisrete symmetries play an important role in partile physis. Apart from thefundamental spae{time symmetries P , C and T , there are various well knownexamples suh as the so{alled matter or R parity in the minimal supersymmet-ri standard model (MSSM). There are good reasons for using disrete ratherthan ontinuous symmetries. Models with spontaneously broken global ontinu-ous symmetries exhibit Goldstone bosons whih are typially phenomenologiallyunaeptable. Moreover, there are strong arguments that a ontinuous symme-try has either to be gauged or it will be broken by quantum gravity e�ets (seee.g. [1℄ for a reent disussion). In ontrast to the fundamental symmetries, disretesymmetries are often just imposed by hand for phenomenologial reasons. Whileintroduing suh symmetries an be a useful tool in bottom{up model buildingit appears worthwhile to larify the origin of a given symmetry. Given a deeperunderstanding of how suh symmetries arise, one might be able to obtain a morefundamental understanding of observations, suh as the repetition of families andthe avor struture.Disrete symmetries ome in various lasses. Various generation{dependent a-vor symmetries, have been proposed in order to explain the pattern of quark andlepton Yukawa ouplings, and to ontrol higher{dimensional operators (see e.g. [2℄for a quite reent review and other ontributions of this speial issue [3℄ for morereferenes). Apart from these there are generation{independent symmetries, in-trodued in order to ure ertain shortomings of extensions of the standard modelsuh as the MSSM. For example, dangerous proton deay operators are forbiddenby matter parity [4,5℄, baryon triality [6℄, proton hexality [7℄ and ZR4 [8℄. Further,disrete symmetries of high order an manifest themselves as aidental globalU(1) symmetries in the (trunated) low{energy e�etive theory. Suh aidentalsymmetries an be used for example in two ways: as (anomalous) Peei{Quinnsymmetry addressing the strong CP problem (f. the disussion in [9, 10℄) or as aU(1)R explaining the hierarhy between the Plank and the eletroweak sales [11℄.The purpose of this review is to larify the origin of disrete symmetries. Theyan be obtained from ontinuous symmetries by spontaneous breaking. But this isnot the only possibility. In fat, here we mainly fous on alternative possibilitiesfor the origin of disrete symmetries. In setion 2 we disuss, in the frameworkof �eld theory, how disrete symmetries an be related to the geometry of extradimensions. The disussion of higher{dimensional quantum �eld theories leavesertain questions unanswered. We therefore hange gear and present a top{downderivation of disrete symmetries in setion 3, fousing mainly on heteroti orb-1



ifolds, as they provide us with expliit andidate models for a UV ompletion ofthe standard model, and, at the same time, allow for a CFT desription and henefor a detailed understanding of the symmetries. As we shall see, the top{down set-tings are more restritive than the bottom{up models. Some of the restritions anbe thought of as originating from the requirement of anomaly freedom, whih wedisuss separately in setion 4. Finally, we summarize our disussion in setion 5.2 Geometrial origin of disrete symmetriesIn this setion we present three possible origins of disrete symmetries. Afterbriey summarizing the standard approah and its limitations in setion 2.1, wedisuss how to obtain a disrete symmetry from extra dimensions, either as thesymmetry of ompat spae (setion 2.2) or as a remnant of higher dimensionalLorentz symmetry (setion 2.3).2.1 Gauged disrete symmetries from ontinuous symme-triesThe perhaps most straightforward possibility for obtaining a disrete symmetry isby spontaneous breaking of a ontinuous gauge symmetry. As a simple example,onsider a U(1) gauge group broken by the VEV of a salar ' with harge q = 3.Here we normalize the U(1) suh that the harges are integer and have no ommondivisor. The unbroken symmetry is given by those U(1) transformations that leavethe vauum invariant, i.e.ei�(x) q h'i = e3i�(x) h'i != h'i y �(x) = 2� n3 ; (2.1)with n = 0; 1; 2. Hene, the (loal) U(1) is broken to a (loal) Z3 subgroup. Theextension of this disussion to the ase of multiple U(1) fators whih get brokenby several VEVs is given in [12℄.One may also get non{Abelian disrete symmetries by spontaneous breaking(f. e.g. [13{15℄). However, this typially involves very large representations ofthe orresponding ontinuous symmetry, whih often give rise to unwanted statesin the broken phase. Therefore, arguably, this possibility appears not to be tooattrative. In what follows, we therefore disuss alternative possibilities in whihthe disrete symmetries are related to the geometry of ompat dimensions. Aswe shall see, this sheme does not su�er from the above problems, and is realizedin expliit string{derived models of partile physis.2



2.2 Repetition of families and symmetriesDisrete family symmetries an be motivated in settings with extra ompat dimen-sions. It is not surprising that suh models o�er an explanation for the appearaneof non{Abelian disrete avor symmetries, beause the latter are symmetries ofertain geometrial solids, whih desribe the ompat dimensions. The symme-tries of internal spae govern the interations between �elds that are loalized inthe ompat dimensions and may eventually beome avor symmetries.The purpose of this subsetion is to explain that (non{Abelian) family symme-tries an, to some extent, be understood geometrially. Let us start with a verysimple example with one extra ompat dimension, the orbifold S1=Z2 (�gure 1).See appendix A.1 for a brief introdution to the onstrution of orbifolds. This
m = 1

m = 0

Figure 1: Example for one extra ompat dimension: S1=Z2 orbifold. Points whih arerelated by a reetion on the dashed line are identi�ed. The fundamental region of theorbifold is an interval with the �xed points sitting at the boundaries.orbifold possesses two geometrially equivalent �xed points. Suppose there are twostates, i.e. two families of quarks and/or leptons,  m=0 and  m=1, with identialquantum numbers, one of them loalized at eah of the �xed points. Sine the�xed points and the states  m are geometrially indistinguishable, there is an S2permutation symmetry relating them, whih manifests itself as a symmetry of thetheory.A somewhat more omplex example is the tetrahedron in two extra ompatdimensions (f. [16℄), whih an be obtained from the T2SU(3)=Z2 orbifold (�gure 2).Here the subsript SU(3) indiates that the basi translations de�ning the T2 torus3



enjoy the same relations as the simple roots of the Lie algebra of SU(3), i.e. enlose120Æ and have equal lengths.
bcb bcb

bcb bcb

(a) T2SU(3)=Z2 : (b) Tetrahedron.Figure 2: Example for two extra ompat dimensions: If the T2 lattie vetors haveequal length and enlose 120Æ, one an also fold the fundamental region of T2=Z2 (darkgray region in (a)) to the tetrahedron (b).Clearly, the tetrahedron is invariant under a disrete rotation by 120Æ aboutan axis that goes through one orner and hits the opposite surfae orthogonally.There are four operations of this type represented byT = 0BB� 1 0 0 00 0 1 00 0 0 10 1 0 0 1CCA ; T S ; T S 0 ; T S S 0 ; (2.2)in the basis where eah of the four orners is represented by a four{dimensionalvetor ei with (ei)j = Æij and i; j = 1; 2; 3; 4. Furthermore,S = 12�2 
 �1 ; (2.3a)S 0 = �1 
 12�2 (2.3b)with the standard Pauli matrix �1. T generates a Z3 and S generates a Z2. Inaddition, one may allow for orientation{hanging operations (with det = �1), forexample, generated by S 00 = diag(12�2; �1).Sine these generators do not ommute, the multipliative losure yields a non{Abelian disrete symmetry, being S4. As mentioned in [16℄, if one restrits the4



allowed operations to be ontained in proper Lorentz transformations, one arrivesat the non{Abelian avor symmetry generated by T , S and S 0, whih is A4. Wetherefore arrive at the premature onlusion that, in a model in whih eah �xedpoint arries a state, the family symmetry will be A4. However, as pointed outin [17℄ and as we shall see later in more detail the atual symmetry in UV ompletesettings is larger than that.In summary, we see that extra dimensions o�er a ompelling explanation ofnon{Abelian disrete avor symmetries. However, as the settings disussed hereare based on gauge theories in more than four dimensions, one has to address thequestion of how to omplete them in the UV. We will ome bak to this questionin setion 3, where we will see that string models indeed often exhibit non{Abeliandisrete family symmetries.2.3 Disrete R symmetriesIn supersymmetri theories there are the so{alled R symmetries whih, by def-inition, do not ommute with supersymmetries. Suh symmetries an originatefrom extra dimensions as well. Spei�ally they are (disrete) remnants of theLorentz symmetry of ompat dimensions. The perhaps simplest way of seeingthis is by realling that under Lorentz rotations spinors, vetors and salars trans-form di�erently suh that di�erent parts of super�elds have di�erent harges. Thismeans, in partiular, that R symmetries are deeply onneted to the fundamentalsymmetries of spae{time.Let us illustrate this point in more detail by disussing toy{settings with twoompat dimensions (without disussing SUSY breaking). If these dimensionswere at (and in�nite) the setup would exhibit an SO(2) rotation symmetry. Forinstane, this symmetry an be de�ned by its ation on the extra omponents ofthe gauge �elds,� A5A6 � ! � os � � sin �sin � os � � � A5A6 � : (2.4)Sine suh omponents get ombined to the salar omponent of a hiral super�eld,desribing a bulk �eld (or an untwisted setor �eld in string{derived orbifolds), itis more onvenient to reast (2.4) in omplex notation,U(1)56 : A5 + iA6 ! ei � (A5 + iA6) : (2.5)On the other hand, the spinor omponent of this `untwisted super�eld' turns out totransform di�erently under the Lorentz group. To understand this, note that the5



4D spinor � is ontained in the higher{dimensional one (	) aording to 	 = �
�, where � is a spinorial zero mode in internal spae. Realling that spinorsalways rotate half as quikly as vetors under Lorentz transformations leads to thetransformation lawU(1)56 : � ! ei �=2 � : (2.6)In the 4D super�eld� = 1p2 (A5 + iA6) +p2 ��+ �� F (2.7)the superspae oordinates � balane the transformations of the omponents (2.5)and (2.6), i.e.U(1)56 : � ! ei �=2 � : (2.8)Hene, U(1)56 originating from the 6D Lorentz symmetry denotes an R symmetry.It is also lear that typially a ompat spae does not possess the full Lorentzsymmetry. For example, orbifolds an have disrete rotational symmetries andhene an naturally provide disrete R symmetries, see setion 3.1.3 for moredetails in the ase of string ompati�ations on orbifolds.3 Orbifolds and string seletion rulesSo far, our disussion was purely bottom{up. It is, however, instrutive to om-ment on the situation in top{down models. The geometrial repetition of families,as briey disussed in setion 2.2, is a ommon feature of most string ompati�-ations.1. In heteroti orbifolds, very often families ome from so{alled twisted setors,whih orrespond to states loalized at the orbifold �xed points in the extradimensions. We will disuss the emergent family symmetries in more detailbelow.2. In D{brane models (see e.g. [18℄ for a review) the repetition of families isdue to the fat that branes an wrap yles (i.e. some diretions in the extradimensions) multiple times. Therefore, one an have non{trivial interse-tion numbers between di�erent branes, leading to otherwise equivalent hiralstates loalized at the intersetions. Therefore suh models also generially6



exhibit non{trivial family symmetries. Also F theory models have non{trivial family symmetries, whih often lead to the problem that the Yukawaouplings have rank one [19℄.In what follows, we will fous on the heteroti string ompati�ed on (toroidal)orbifolds. There are two main reasons for this hoie. First of all, the heterotiframework gives rise to expliit globally onsistent andidate models for physisbeyond the standard model [20{23℄. Seond, at the same time, this sheme issimple enough to fully understand the symmetries. Disrete symmetries an appearmainly in two ways: (i) from the ompai�ation to 4D as remnants of higherdimensional gauge/Lorentz symmetry and (ii) from going to a speial vauumon�guration where some of the �elds of the 4D e�etive theory obtain VEVs andhene indue further symmetry breaking. The situation is shematially illustratedin �gure 3.
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themselves in the four-dimensional e�etive theory. Brief introdutions to het-eroti orbifolds and to the seletion rules that govern the allowed terms of thesuperpotential are given in appendix A.3.1 Disrete symmetries from string seletion rules3.1.1 Abelian symmetriesIn general, there are two possible origins for Abelian (non{R) disrete symmetriesin heteroti orbifold ompati�ations. Either they an arise from the spae groupseletion rule disussed in appendix A.3 or as a disrete remnant of a spontaneouslybroken gauge symmetry. The seond possibility was disussed in setion 2.1, the�rst one will be presented in the following.For the sake of onreteness, we onsider the S1=Z2 orbiirle of setion 2. Inthis ase, the spae group onsists of the elements ��k; m e�, where � = �1 andk 2 f0; 1g desribe the Z2 reetion, m 2 Z, e = 2� R and R denotes the radiusof the irle S1. As illustrated in �gure 1, the integer m spei�es the loation ofthe twisted state (or `brane �eld'), whih have k = 1, as opposed to untwistedstates (or `bulk �elds') whih have k = 0. The spae group seletion rule requiresthe produt of spae{group elements of the states involved in a oupling to beongruent to identity (see appendix A.3). This gives rise to an Abelian Zk2 � Zm2symmetry, i.e.LYr=1 gr = 1 y 8>>>><>>>>: Zk2 : LXr=1 k(r) = 0 mod 2 ;Zm2 : LXr=1 m(r) = 0 mod 2 : (3.1)We will refer to the ondition on k(r) as the point group seletion rule and to theseond one on m(r) as the m{rule.3.1.2 Non{Abelian symmetriesA partiularly interesting situation arises if the two �xed points at m = 0 and 1are equivalent, whih happens to be the ase unless one introdues a non{trivialbakground �eld (either a so{alled disrete Wilson line [24℄ or the B-�eld (disretetorsion) [25℄). In this ase there is an additional S2 permutation symmetry thatinterhangesm = 0 andm = 1. As we shall disuss now, together with the Zk2�Zm28



symmetry disussed above in setion 3.1.1, this leads to a non{Abelian disretesymmetry D4 [17, 26℄.We ombine a state from the �xed point at m = 0 and a state from the oneat m = 1 into a two{dimensional vetor, i.e. a doublet. From equation 3.1 we seethat the spae group seletion rule is generated in this basis by the elements�12�2 = � �1 00 �1 � ; �3 = � 1 00 �1 � ; (3.2)i.e. the element �12�2 generates Zk2, i.e. the point group seletion rule, and �3 gen-erates Zm2 , i.e. the m{rule. The additional element that generates the permutationof the two states is given by�1 = � 0 11 0 � : (3.3)The multipliative losure of these three elements yields a non{Abelian group witheight elements f12�2;�12�2;��1;��3;�i�2g and is known as the dihedral groupD4, assoiated with the symmetry of a square.Similar to the S1=Z2 ase, theT2=Z2 orbifold without Wilson lines (see �gure 4)generially has a (D4�D4)=Z2 avor symmetry whih originates from the Abelianspae group seletion rule Z32 ombined with the permutation symmetries S and S 0of equation 2.3. It an be enhaned further for speial values of the angle and thetwo radii of T2=Z2. For example, when the orbifold geometrially is a tetrahedronthe naive geometrial S4 symmetry obtained from �eld theory onsiderations insetion 2.2 gets enhaned to SW4, whih has 192 elements, by the stringy spaegroup seletion rule [17℄. If one allows only for proper Lorentz transformations,one obtains a group with 96 elements whih is ontained in SW4. The stringdesription allows us to larify whether or not one should onsider operationswhih are not ontained in the proper Lorentz transformations. The ouplingsbetween states loalized at di�erent �xed points go like e�a T , where T denotesthe K�ahler modulus of the orresponding orbifold plane. The real part of T isproportional to R2, where R is the radius of the underlying torus. Clearly, R2does not hange under these extra reetions, suh that the absolute values ofthe oupling strengths will enjoy the larger symmetry SW4. On the other hand,the imaginary part of T , the so{alled T{axion, is related to the anti{symmetritensor �eld in ompat spae, and does hange its sign under the extra reetions.Hene, if the T{axion aquires a non{trivial VEV, the phases of the ouplingstrengths do no longer enjoy the larger symmetries. As is well known, breaking9



the reetion symmetries in internal spae an be related to CP violation in thee�etive 4D theory (f. [27, 28℄), and what we disussed here is just an examplefor this statement. Note that there are di�erent possibilities to obtain non{trivialCP phases, also based on non{Abelian disrete symmetries (f. [29℄). It shouldbe interesting to see if these also have an interpretation in terms of reetionsymmetries in ompat spae.Di�erent lower{dimensional building bloks of orbifolds lead to other non{Abelian disrete symmetries (table 3.1).orbifold avor symmetry setor string fundamental statesS1=Z2 D4 U 1T1 2T2=Z2 (D4 �D4)=Z2 U 1T1 4T2=Z3 �(54) U 1T1 3T2 �3T2=Z4 U 1(D4 � Z4)=Z2 T1 2T2 1A1 + 1B1 + 1B2 + 1A2T3 2T4=Z8 U 1T1 2(D4 � Z8)=Z2 T2 1A1 + 1B1 + 1B2 + 1A2T3 2T4 4� (1A1 + 1B1 + 1B2 + 1A2)T4=Z12 trivialT6=Z7 U 1S7 n (Z7)6 Tk 7T7�k �7Table 3.1: Survey of avor symmetries arising from building bloks of orbifolds (from[17℄). The Tk denote the various twisted setors and U the untwisted setor.The (non{Abelian) avor symmetry ould be broken in two ways: (i) expliitly:the presene of orbifold Wilson lines breaks the permutation symmetry, at leastpartially. If the permutation symmetry is ompletely broken, the remaining avor10



group is Abelian. (ii) spontaneously: by the VEV of some twisted �eld, sinetwisted �elds neessarily transform in a non{singlet representation under the avorgroup. For example, �(54) an be broken to S3 by the VEV of a triplet 3 (e.g.h3i = (v; v; v)).3.1.3 R symmetriesAs already mentioned, disrete R symmetries ould arise as disrete remnants ofthe Lorentz symmetry of ompat dimensions. This is also true for string{derivedorbifold models.What are the R harges of states loalized at the �xed points? In the frameworkof �eld theory one annot answer this question unambiguously. For instane,in many �eld{theoreti analysis the pro�les of these �elds are taken to be Æ{funtions with support at the �xed points, from whih one may onlude that thestates transform trivially under the disrete R symmetries. It turns out that thenaive �eld{theoreti expetation is inorret. However, in string theory one anaddress this question. Spei�ally, in heteroti orbifolds the R symmetries derivefrom the H{momentum onservation law and one an determine the R hargesunambiguously. We will disuss an expliit example in setion 4.2.3.2 Disrete symmetries in expliit modelsHaving seen how disrete symmetries arise in the e�etive �eld{theoreti desrip-tion, we will now disuss whih symmetries appear in expliit string models.3.2.1 Flavor symmetriesIn reent years, many MSSM andidate models have emerged from heteroti orb-ifolds [20, 30{32℄, known as the \heteroti mini{landsape". These models havea ommon avor struture: fousing on the two{torus where a Z2 ats, the twolight generations are loalized on equivalent �xed points and the third one is in thebulk. Therefore, as disussed above, there is a D4 avor symmetry, under whihthe two light generations transform as a doublet whereas the the third familytransforms trivially (Let us mention that there are also alternative models with-out this D4 [21, 33℄). This symmetry is broken in potentially realisti vaua bythe VEVs of some loalized singlets. Yet, using the D4 symmetri situation as astarting point and then onsidering orretions an have ertain advantages whendisussing the (supersymmetri) avor struture (f. [34℄). The emerging sheme11



is somewhat similar to the one of `minimal avor violation' [35{37℄. In partiular,the struture of the soft masses isem2 = 0� a 0 00 a 00 0 b 1A + terms proportional to D4 breaking VEVs : (3.4)It is known that suh an approximate form of the soft masses makes it possibleto avoid the supersymmetri avor problems. In addition, it naturally allows forsenarios in whih the third family of squarks and sleptons is substantially lighterthan the �rst two generations of superpartners (f. the disussion in [38℄).3.2.2 Flavor{independent symmetriesIn grand uni�ed models, matter or R parity an be obtained from baryon{minus{lepton{number symmetry U(1)B�L by spontaneous breaking, and the same is truein string{derived models [32℄, the only di�erene being that U(1)B�L is not inGUT normalization and no large representations (suh as 126{plets of SO(10))are required (nor available) to ahieve the breaking U(1)B�L ! ZM2 . That is,string theory avoids huge representations like the 126{plets, but still allows us toderive matter parity from a loal B � L symmetry.Similarly, proton hexality an be obtained from Pati{Salam (PS) times an extraU(1) symmetry [39℄. Expliit orbifold models from Z4�Z4 ompati�ations usinga loal GUT approah,E8 in 10D! SO(12) in 6D! PS� U(1)! SM in 4D ; (3.5)revealed 850 heteroti MSSMs (i.e. three generations of quarks and leptons plusvetor{like exotis), many of them with the orret proton hexality harge assign-ment for at least some quarks and leptons [39℄.3.2.3 R symmetriesR symmetries play an important role in string models. In partiular, approximateontinuous R symmetries, whih derive from exat disrete R symmetries, anexplain the large hierarhy between the Plank, GUT and/or string sales onthe one hand and the eletroweak and/or supersymmetry breaking sales on theother hand. It has been demonstrated that, in the presene of a ontinuous Rsymmetry, at �eld on�gurations that satisfy the F{term onstraints, the VEVof the superpotential vanishes [11℄. If there is an approximate R symmetry that12



gets expliitly broken at some high order N , the vauum expetation value of thesuperpotential, or equivalently the gravitino mass m3=2, goes likehW i � hsiN ; (3.6)where hsi denotes a typial size of a VEV of �elds that break the symmetry spon-taneously (in Plank units) and N is of the order 10 in expliit examples. Further,in the ontext of the MSSM it has been shown that in settings in whih matterharges are onsistent with grand uni�ation, the only anomaly{free symmetriesthat an forbid the � term are R symmetries [40℄. Given that hW i, or, equiva-lently m3=2, is the order parameter of R symmetry breaking, this yields a relationbetween � and m3=2 [11, 41℄, i.e. onstitutes a solution to the � problem. Thissolution does, unlike the Giudie{Masiero mehanism [42℄, not rely on a spei�struture of the K�ahler potential, rather it provides a holomorphi � term of theright size, similar to the Kim{Nilles piture [43℄.4 Anomaly Freedom4.1 Anomaly onstraints vs. embedding onstraintsHow an one derive anomaly onstraints on disrete symmetries? It is instrutiveto review how they have been derived in the past. Ib�a~nez and Ross [44℄ haveused the following strategy: they have obtained ZN symmetries from U(1) byspontaneous breaking, as disussed in setion 2.1. It is obvious that, if the U(1)is non{anomalous, and the spontaneous breaking is done onsistently, then alsoZN is anomaly{free. However, one may question whether these are in general trueanomaly onstraints or rather embedding onstraints, i.e. onstraints that restritthe hoie of the non{anomalous ontinuous gauge group into whih the disretegroup is supposed to be embedded.Araki [45℄ proposed an alternative derivation of the anomaly onstraints, whihdoes not rely on embedding the disrete symmetry into a ontinuous one, but byusing the path integral method [46℄. This strategy has been applied to the ZNase [47℄ with the result that all Ib�a~nez{Ross onstraints apply exept for the Z3Nones, whih are known not to onstitute true anomaly onstraints [40, 48℄.Also disrete anomaly onstraints for non{Abelian disrete symmetries have�rst been derived by using the embedding strategy [49℄ (see [50℄ for a more reentdisussion). While, again, these onstraints ensure anomaly freedom, they turn outto be, in general, not true anomaly onstraints but rather embedding onstraints.13



That is, if these onstraints are satis�ed, the symmetry is anomaly free, but theonverse is not neessarily true. In partiular, the onstraints an depend onthe hoie of the ontinuous symmetry into whih the disrete one is supposedto be embedded. The true onstraints an be derived with the path integralmethod [45℄, and one �nds that one only has to hek anomaly freedom for theAbelian subgroups of a given non{Abelian symmetry [45,47℄. For a disrete groupD and a ontinuous gauge symmetry G one obtains the onditions thatX(r(f);d(f)) Æ(f) � `(r(f)) != 0 mod N2 ; (4.1)where the sum `P(r(f);d(f))' is over representations whih are non{trivial w.r.t. toboth G and D. The disrete Abelian harge, denoted by Æ(f), an be expressed interms of the group elements U(d(f)) asÆ(f) = N ln detU(d(f))2� i : (4.2)For the mixed gravitational{D anomaly one �ndsXd(f) Æ(f) != 0 mod N2 ; (4.3)where the symbol `Pd(f)' means that the sum extends over all non{trivial represen-tations d(f) of D. What does it mean if a given disrete symmetry does not satisfythese onstraints? In general, one may argue that in suh a ase the symmetry willbe broken in an unontrollable way and all the preditive power of the (disrete)symmetry will be lost. For useful appliations in partile physis, reliable disretesymmetries should thus be anomaly free. There is, however, an exeption: for theanomalous symmetry the anomalies might be anelled (mirosopially) by a dis-rete Green-Shwarz mehanism. In what follows, we shall disuss this possibilityin detail.4.2 Non{perturbative \violation" of disrete symmetriesand disrete Green{Shwarz anomaly anellationAs in the ase of ontinuous symmetries, disrete anomalies an be anelled by aGreen{Shwarz (GS) mehanism (for a disussion in the path integral formalismsee [40℄). Also here this requires the presene of a salar, the GS axion, whih14



multiplies some F�� eF �� terms (with F �� denoting the �eld strength of some on-tinuous gauge symmetry of the model), and shifts under the disrete symmetry.One the axion aquires its vauum expetation value, the disrete symmetry getsbroken spontaneously. E�etively this leads to a situation in whih the (anomalouspart of the) disrete group appears to be broken by non{perturbative e�ets.1As an example, onsider the ZR4 symmetry disussed in [8,40℄. It forbids the �term and dimension 4 and 5 proton deay operators at the perturbative level. Itappears to be broken by non{perturbative e�ets to its `non{anomalous' subgroup,i.e. to ZM2 matter parity. The order parameter of this R symmetry breaking isthe vauum expetation value of the superpotential, i.e. the gravitino mass. Onetherefore has, in the ontext of gravity mediation, a � term of the orret size(f. the analogous disussion in setion 3.2.3) while dimension �ve proton deayremains far below the experimental limits.Similar to the ase of R symmetries, also non{R symmetries an appear anoma-lous and hene be broken non{perturbatively. This, again, introdues a hierarhi-ally small breaking of the disrete symmetry. It remains to be seen whether thismehanism an provide us with solutions to some of the open questions in avorphysis.5 SummaryThe avor struture of the SM remains one of the greatest puzzles in partilephysis. Flavor symmetries appear to be instrumental for solving this puzzle.Optimistially one may hope to �nd a ompelling model that explains the observedavor struture. In this ase the question where the underlying family symmetriesoriginate from is of greatest importane sine given a deeper understanding mayallow us to relate the observed fermion masses and mixing to some fundamentalproperties of our world.In this paper we have reviewed the possible origin of disrete symmetries, pay-ing partiular attention to disrete avor symmetries. Disrete symmetries anarise from ontinuous symmetries by spontaneous breaking or from extra dimen-sions. While for Abelian symmetries the �rst option is a very ommon tool in1Non{perturbative e�ets generate ouplings of the form exp(�ia)�1 : : : �n, where a denotesthe GS axion and the �i some (matter) �elds of the theory. Suh terms are invariant underthe full disrete group when one takes the shift transformation of the GS axion a into aount.But, when a obtains a vauum expetation value, the (`anomalous' part of the) disrete group isbroken spontaneously. 15



model building, we have argued that obtaining non{Abelian disrete symmetriesfrom ontinuous ones (in four dimensions) does not lead to ompelling models. Onthe other hand, non{Abelian disrete symmetries do arise in models with extradimensions, where they are deeply onneted to the explanation of the repetitionof families. In partiular, in stringy extensions of the standard model suh sym-metries often arise. Therefore they an play an important role in understandingor addressing the avor puzzle in the standard model as well as in solving avorproblems in extensions suh as the MSSM.We have also ommented on disrete anomalies, whih onstrain possible dis-rete symmetries in bottom{up model building. As we have pointed out, oneshould arefully distinguish between embedding onstraints and true anomaly on-straints. Disrete symmetries that appear anomalous open very attrative possi-bilities in model building as they appear to be broken non{perturbatively, i.e. thebreaking an be hierarhially small. This observation has been applied to the �parameter of the MSSM. It remains to be seen whether hierarhies in avor physisan have a similar explanation.AknowledgmentsOne of us (M.R.) would like to thank Mu{Chun Chen for useful disussions andthe UC Irvine, where part of this work was done, for hospitality. This work waspartially supported by the SFB{Transregio TR33 \The Dark Universe" (DeutsheForshungsgemeinshaft), the SFB 676, the European Union 7th network program\Uni�ation in the LHC era" (PITN{GA{2009{237920) and the DFG luster ofexellene \Origin and Struture of the Universe" (Deutshe Forshungsgemein-shaft).A OrbifoldsWe give a brief introdution to orbifolds following [51, 52℄. We start with thegeometrial onstrution in appendix A.1. In appendix A.2 we depit how heterotistrings are ompati�ed on orbifolds and appendix A.3 reviews string seletionrules.
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A.1 Constrution of orbifoldsFrom the geometrial point of view, a d{dimensional (toroidal) orbifold is de�nedas the quotient of Rd divided by a disrete group S, alled the spae group. ForZN orbifolds, the elements of the spae group g 2 S are given byg = ��k; n� e�� and at as g X = �kX + n� e� ; (A.1)with sum over � = 1; : : : ; d and X 2 Rd. The d (linearly independent) vetorse� generate a lattie � and hene de�ne a torus Td. The rotation � is of order N(i.e. �N = 1) and is hosen to be an automorphism of �. Then the ation of S isnot free, i.e. there are �xed points Xg 2 Rd with gXg = Xg for some g 2 S. Thespae group element g assoiated to the �xed point Xg is alled the onstrutingelement, see �gure 4. The resulting orbifold is written as Td=ZN .
(�; e1)(�; 0) (�; e1 + e2)(�; e2)

e1
e2

(�; e1)(�; e1 + e2)(�; e2)(�; 0))
a) b)

Figure 4: a) The four �xed points labeled by their onstruting elements for a two{dimensional T2=Z2 example (i.e. with � = �12�2). b) The orbifold of a) folded up to apillow{like objet with �xed points at the orners of the pillow.A.2 Strings on orbifoldsCompatifying the heteroti string on six{dimensional orbifolds yields three di�er-ent lasses of losed strings: (i) untwisted strings with onstruting element (1; 0)whih would also lose in unompati�ed spae, (ii) winding modes with on-struting elements (1; n�e�) whih would also lose on the torus and (iii) twistedstrings, loalized at the �xed points, with onstruting elements ��k; n�e�� withk 6= 0 whih only lose on the orbifold due to the � rotation. The winding modesare massive with masses near the Plank sale. Sine we are only interested in thelow{energy e�etive ation they are ignored in the following.17
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������(�; e1)(�; e1 + e2)(�; e2)(�; 0)Figure 5: Visualization of the spae group seletion rule for four twisted states, indi-ated by the four bold strings at the four �xed points, see �gure 4. The ondition(�; 0) (�; e1) (�; e2) (�; e1 + e2) = (1; (1� �)�) is satis�ed and hene the oupling is al-lowed.The geometrial ation of the spae group has to be amended by an ation onthe gauge degrees of freedom of the heteroti string in order to ful�ll the stringyonsisteny onditions of modular invariane. In the standard approah this isahieved by so alled shifts and Wilson lines. Speifying these input parametersompletely de�nes an orbifold ompati�ation and allows one to ompute themassless spetrum. An elegant way to obtain onsistent orbifold models, for ex-ample MSSM{like models, to ompute their massless spetra and to analyze theirresulting four{dimensional e�etive theories is given by the publi ode \Orb-ifolder" [53℄.A.3 String seletion rulesThe CFT desription allows one to ompute sattering amplitudes of strings onorbifolds. In the four{dimensional e�etive theory these amplitudes enter as ou-pling strengths of allowed terms in the superpotential. Their omputation is teh-nially involved. Hene, at a �rst step one is only interested in the string seletionrules determining whih oupling is allowed or forbidden. In many ases the stringseletion rules an be interpreted as a symmetry of the four{dimensional e�etivetheory. The (standard) string seletion rules are:1. Gauge invariane2. Spae group seletion rule: The spae group seletion rule reets thegeometrial possibility of orbifold strings to join. Consider L strings withonstruting elements gr = ��k(r); n(r)� e��. Then the oupling is allowed ifQLr=1 gr = 1, see �gure 5. 18



3. R harge onservation: R harge onservation is a disrete remnant of ten{dimensional Lorentz symmetry. It arises whenever the orbifoldR6=S respetssome additional rotational symmetry beside � = diag(e2�i v1 ; e2�i v2 ; e2�i v3).For example, for a fatorized orbifold, i.e. an orbifold whose lattie � is thediret produt of three two{dimensional latties � = �1��2��3, a rotationin the sublattie �i by e2�i vi is a symmetry of the theory. The rotation by viis of order Ni (i.e. Nivi 2 Z) and results in a ZR2Ni symmetryLXr=1 �2Rir = 2 mod 2Ni ; (A.2)where Rir = qish;r � ~N ir + ~N�{r with the osillator numbers ~N ir and ~N�{r (seee.g. [31℄ for their de�nition), qsh;r are the bosoni right{moving momentaand the fator �2 originates from the normalization suh that fermions havea shifted R harge by �1.If the two{dimensional lattie �i has a higher symmetry than Ni there is anadditional string seletion rule known as \rule 4". For example, the SU(3)3root lattie of a Z3 orbifold allows for Z6 sublattie rotations. If all stringsinvolved in a given interation sit at the same �xed point they feel the highersymmetry and the R symmetry is enhaned to ZR4Ni .Referenes[1℄ T. Banks and N. Seiberg, Phys.Rev. D83 (2011), 084019, arXiv:1011.5120[hep-th℄.[2℄ H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada, et al.,Prog.Theor.Phys.Suppl. 183 (2010), 1, arXiv:1003.3552 [hep-th℄.[3℄ Origin of family symmetries, editors J. Valle et al., Fortshritte der Physik(2012 to appear).[4℄ P. Fayet, Phys. Lett. B69 (1977), 489.[5℄ S. Dimopoulos, S. Raby, and F. Wilzek, Phys. Lett. B112 (1982), 133.[6℄ L. E. Ib�a~nez and G. G. Ross, Nul. Phys. B368 (1992), 3.19
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