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DESY 12-042ZMP-HH/12-4Anisotropi hydrodynamis, holography and the hiral magneti e�etIlmar Gahramanov, Tigran Kalaydzhyan, and Ingo KirshDESY Hamburg, Theory Group, Notkestrasse 85, D-22607 Hamburg, Germany andZentrum f�ur Mathematishe Physik, Universit�at Hamburg, Bundesstrasse 55, D-20146 Hamburg(Dated: June 28, 2012)We disuss a possible dependene of the hiral magneti e�et (CME) on the ellipti ow oeÆ-ient v2. We �rst study this in a hydrodynami model for a stati anisotropi plasma with multipleanomalous U(1) urrents. In the ase of two harges, one axial and one vetor, the CME formallyappears as a �rst-order transport oeÆient in the vetor urrent. We ompute this transport oef-�ient and show its dependene on v2. We also determine the CME oeÆient from �rst-order or-retions to the dual anti-de Sitter bakground using the uid-gravity duality. For small anisotropies,we �nd numerial agreement with the hydrodynami result.PACS numbers: 11.15.-q, 47.75.+f, 11.25.Tq, 12.38.MhI. INTRODUCTIONIn the last ouple of years the hiral magneti ef-fet (CME) has attrated muh attention as a andi-date for the explanation of an experimentally observedharge asymmetry in heavy-ion ollisions, as seen by theSTAR [1℄, PHENIX [2℄ and ALICE [3℄ ollaborations.The CME is a hypothetial phenomenon whih statesthat, in the presene of a magneti �eld ~B, an eletriurrent is generated along ~B in the bakground of topo-logially nontrivial gluon �elds [4, 5℄. Analogous e�etswere found earlier in neutrino [6℄, eletroweak [7℄ andondensed matter physis [8℄. Lattie QCD results [9{11℄suggest the existene of the e�et, although the magni-tude of the CME-indued harge asymmetry may be toosmall to explain the observed harge asymmetry [12℄.In a reent experiment, the harge separation is mea-sured as a funtion of the ellipti ow oeÆient v2 [13℄.The data is taken from (rare) Au+Au ollisions with20 � 40% entrality but di�erent v2. In this way v2 isvaried while at the same time the number of partiipat-ing nuleons (and therefore the magneti �eld) is kept al-most onstant. The plots in [13℄ suggest that the hargeseparation is proportional to v2. If this holds true, theharge separation will depend on the event anisotropy.In this paper we address the question of whether andhow the CME depends on the ellipti ow v2. We studythis both in hydrodynamis and in terms of a holographigravity dual. The hydrodynamial approah to the CMEand CME-related phenomena was proposed in [14{20℄.There, the CME appears in form of a nonvanishing trans-port oeÆient in the eletri urrent, ~j = �B ~B, whihmeasures the response of the system to an external mag-neti �eld [14, 21℄. In [20℄, the hiral magneti ondu-tivity in an isotropi uid was determined as�B = C�5�1� ���+ P � : (1)The �rst term is the standard term for the CME anddepends only on the axial anomaly oeÆient C and theaxial hemial potential �5. The seond term propor-
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FIG. 1. Sketh of the time evolution of the momentumanisotropy "p (based on [22℄). The small �gure shows theorientation of PL and PT with respet to the reation plane.tional to the fator ��+P depends on the dynamis of theuid and has a hane to depend on v2 in the anisotropiase.In the �rst part of the paper we study this in a hydro-dynami model for an anisotropi uid with multipleanomalous U(1) harges (This model extends those in[23{25℄). We ompute the CME oeÆient �B and ex-press the result in terms of the momentum anisotropy "p[26℄ de�ned as "p = hPT � PLihPT + PLi ; (2)where PT and PL are the pressures in the plane transverseto the beam line (In our onventions the indies L and Trefer to the longitudinal and transverse diretion with re-spet to an anisotropy vetor v� normal to the reationplane, see Fig. 1). A sketh of "p as a funtion of theproper time � is shown in Fig. 1. "p desribes the build-up of the ellipti ow in o�-entral ollisions. Our modeldesribes a state after thermalization with unequal pres-sures PT 6= PL. At freeze-out "p roughly equals v2, andwe �nd that for small anisotropies the CME-oeÆient�B inreases linearly with v2.
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2In the seond part of the paper we perform a holo-graphi omputation of �B in the dual gravity model. Asimilar omputation was previously done in [20℄ for theSTU model [27℄, a string-theory-inspired prototype of an(isotropi) anti-de Sitter (AdS) blak hole solution withthree U(1) harges. Other holographi approahes to theCME an be found in [28{38℄.In the anisotropi ase, we �rst need to onstrut anappropriate gravity bakground. As an ansatz, we hoosea multiply harged AdS blak hole solution with some ad-ditional funtions wL and wT inserted whih will makethe bakground anisotropi and "p-dependent. Sine ana-lytial solutions for harged anisotropi bakgrounds arenotoriously diÆult to �nd, we will use shooting teh-niques to �nd a numerial solution. Other AdS bak-grounds dual to anisotropi uids are onstruted in [39{41℄.As the AdS solution in [39℄, the bakground is statiand does not desribe the proess of isotropization. Eventhough suh models have some limitations [39℄, they arenevertheless useful for the omputation of transport o-eÆients. We show this, following [20℄, by determining�B from the �rst-order orretions to this bakground us-ing the uid-gravity duality [42℄. For small anisotropies,we �nd numerial agreement with the hydrodynami re-sult for �B . Other (dissipative) transport oeÆientsin strongly-oupled anisotropi plasmas are disussed in[43{45℄.The paper is organized as follows. In Se. II we re-view the hydrodynamis of an anisotropi relativistiuid with several U(1) harges and triangle anomalies.We then ompute the vortial and magneti ondutivi-ties of suh a uid by extending the method of Son andSurowka [14℄ to the anisotropi ase. In Se. III we on-strut the dual gravity bakground and present a numer-ial solution for its gauge �eld and metri funtions. InSe. IV we use this bakground to perform a holographiomputation of the vortial and magneti ondutivities.II. HYDRODYNAMICS OF ANISOTROPICFLUIDS WITH TRIANGLE ANOMALIESThe hydrodynami regime of isotropi relativisti u-ids with triangle anomalies has been studied in [14{19℄,and muh an be taken over to the anisotropi ase. Suhuids typially ontain n anomalous U(1) harges whihommute with eah other. The anomaly oeÆients aregiven by a totally symmetri rank-3 tensor Cab. Thehydrodynami equations are��T�� = F a��ja� ; ��ja� = CabEb � B ; (3)where Ea� = F a��u� , Ba� = 12 �����u�F a�� (a = 1; :::; n)are eletri and magneti �elds, and F a�� = ��Aa� ���Aa�denotes the gauge �eld strengths. As in [14℄, we expandthe onstitutive equations for T�� and j� up to �rst or-der, taking Aa� � O(p0) and F a�� � O(p). The gauge�elds Aa� are nondynamial.

In anisotropi relativisti uids, the hydrodynamiequations are again given by (3) but the stress-energytensor T �� and U(1) urrents ja� now have the moregeneral form1T�� = (�+ PT )u�u� + PT g�� ��v�v� + ��� ; (4)ja� = �au� + �a� ; (5)where � is the energy density, �a are the U(1) hargedensities, � = PT � PL, and PT and PL denote thetransverse and longitudinal pressures, respetively [23{25℄. g�� is the metri with signature (�;+;+;+). ���and �a� denote higher-gradient orretions, for whih werequire u���� = 0 and u��a� = 0.The four-vetors u� and v� desribe the ow of theuid and the diretion of the longitudinal axis, respe-tively. The vetor v� is spaelike and orthogonal to u�,u�u� = �1 ; v�v� = 1 ; u�v� = 0 : (6)It is onvenient to de�ne the proper time � by �� ln � �v���v� [24℄. In the rest frame of the uid, u� = (1; 0; 0; 0)and v� = (0; 0; 0; 1), the stress-energy tensor beomesdiagonal, T�� = 0B� � 0 0 00 PT 0 00 0 PT 00 0 0 PL 1CA : (7)In onformal uids, the stress-energy tensor is traeless,T �� = 0, and � = 2PT + PL. Clearly, the isotropi aseorresponds to equal pressures PT and PL, P = PT = PL.For simpliity, we restrit to the ase of a single hargein Ses. II A and II B, n = 1. In Ses. II C and IID wegeneralize our �ndings to arbitrary n and disuss the asen = 2, whih is relevant for the CME.A. Thermodynamis of an anisotropi uid withhemial potential (n = 1)Hydrodynamimodels for an anisotropi uid (withouthemial potential) have been studied in [23{25℄. Follow-ing these works, we derive some thermodynami identi-ties, now for the ase of a uid with a hemial poten-tial �.These identities an be found by omputing the quan-tity I0 = u���T�� + ���j� at zeroth order. Sine theright-hand side of (3) an be dropped at order O(p0), wehave I0 = 0. Using ��(su�) = 0, we getu���T�� = �u����� (�+ PT )��u� ��u��� ln �= �u����+ �+ PTs u���s� �� u���� ; (8)���j� = �(���)u� � ��s u���s : (9)1 The symmetries allow in priniple for more general urrentsja� = �au� + av� + �a� with some oeÆients a. Here weswith o� all the `eletri' bakground urrents, a = 0.



3As in [24℄, we onsider a generalized energy density� = �(s; �; �), whih depends not only on the entropydensity s and partile density � but also on the new vari-able � . Its di�erential isd� = ����s��;� ds+� �����s;� d�+� ���� �s;� d� ; (10)with����s��;�= T ; � �����s;�= � ; � ���� �s;�= ��� : (11)The temperature and the hemial potential are de�nedin the usual way. If we also impose (��=��)s;� = ��=�and substitute (10) into (8), then I0 = 0 implies thefollowing thermodynamial identities for an anisotropiuid: �+ PT = Ts+ �� ; (12)dPT = �� d� + sdT + �d� ; (13)d� = Tds+ �d�� �� d� ; (14)in agreement with [24℄ for � = 0.B. Vortial and magneti oeÆients (n = 1)We now disuss orretions to the U(1) urrentj� � j1� (n = 1). In anisotropi uids the transport o-eÆients are usually promoted to tensors suh that oneshould onsider �rst-derivative orretions of the type�� = (�!)��!� + (�B)��B� ; (15)where !� = 12�����u���u� is the vortiity, and B� isan external magneti �eld. In Landau frame u��� = 0and therefore u�(�!)��!� = 0 (and similar for (�B)��).This is satis�ed e.g. for (�!)�� = �!Æ�� , sine u�!� = 0(We do not onsider other omponents of �! here). Wetherefore restrit to onsider orretions of the type�� = �!!� + �BB� ; (16)as in the isotropi ase [14℄. Our goal is to ompute thevortial and magneti ondutivities �! and �B . Thesetransport oeÆients an be found by assuming the exis-tene of an entropy urrent s� with a non-negative deriva-tive, ��s� � 0. The omputation losely follows thatof [14℄.The hydrodynami Eqs. (3) imply that the quantityI1 = u���T�� + ���j� +E��� � �CE�B� (17)vanishes at �rst order, I1 = 0. Substituting the expliitexpressions for the stress-energy tensor and U(1) urrents

into I1 and using the thermodynamial identities (12)and (14), we �nd�� �su� � �T ��� = � 1T ��u���� � ����� �T � E�T �� C �T E �B ; (18)whih is exatly the same equation for the entropy pro-dution as in the isotropi ase [14℄.In the following, we will need the identities��!� = � 2�+ PT !�(��PT ���� ln � � �E�) ; (19)��B� = �2!�E� � B��+ PT (��PT ���� ln � � �E�) ;whih we derived from ideal hydrodynamis in Ap-pendix A. In deriving these identities we assumed thatthe uid satis�es��v� = 0 ; v���� = 0 : (20)The �rst equation is basially a \ontinuity equation"for the vetor v�. There are no soures for the genera-tion of anisotropy. The seond equation imposes an or-thogonality relation between the gradient of the pressuredi�erene � = PT � PL and v�.As in [14℄, we assume a generalized entropy urrent ofthe form s� = su� � �T �� +D!� +DBB�; (21)where �!, �B , D, and DB are funtions of T , � and � .We now ompute ��s�, using (18) and (19) and impose��s� � 0. Sine the oeÆients in front of !�, B�, !�E�and E�B� inside ��s� an have either sign, we requirethem to vanish and obtain the following four di�erentialequations:��D � 2D�+ PT (��PT ���� ln �)� �!�� �T = 0 ; (22)��DB � DB�+ PT (��PT ���� ln �) � �B�� �T = 0 ; (23)2�D�+ PT � 2DB + �!T = 0 ; (24)�DB�+ PT + �BT � C �T = 0 : (25)For � = 0, these equations redue to those in theisotropi ase [14℄.In Appendix B we solve (22){(25) for D, DB , �!and �B . As a result, we �nd the vortial and magnetiondutivities�! = C ��2 � 23 ��3�+ PT �+O(T 2) ;�B = C ��� 12 ��2�+ PT �+O(T 2) ; (26)



4where O(T 2) denotes terms proportional to T 2, see (B14)in Appendix B. These terms are related to gravitationaltriangle anomalies [18, 46℄ and may, in the anisotropiase, depend on the proper time � . In the absene ofgravitational anomalies, whih we do not disuss in thispaper, the ondutivities do not depend on � . Apartfrom these hanges in O(T 2), the relations have the sameform as in the isotropi ase but with P replaed by thetransverse pressure PT .C. Multiple harge ase (n arbitrary)The generalization of the previous omputation to auid with multiple anomalousU(1) harges is straightfor-ward, and we only state the result here. The orretions�a� of the urrents ja� in (5) are�a� = �a!!� + �abB Bb� ; (27)with [terms of order O(T 2) ignored℄�a! = Cab�b� � 23�aCbd�b��d�+ PT ; (28)�abB = Cab� � 12�aCbd ��d�+ PT : (29)These are simple generalizations of the orrespondingondutivities in the isotropi ase [14, 18℄.D. Chiral magneti and vortial e�et (n = 2)Physially, the most interesting ase is that involvingtwo harges (n = 2) [16, 17, 20℄. The hiral magnetie�et [4℄ an be desribed by one axial and one vetorU(1), denoted by U(1)A�U(1)V . A onvenient notationfor the gauge �elds and urrents is (a; b; ::: = 1; 2)AA� = A1� ; AV� = A2� ;j�5 = j1� ; j� = j2� : (30)Let us now derive the hiral magneti and vortiale�ets from (28) and (29). C�parity allows for twoanomalous triangle diagrams, (AAA) and (AVV), shownin Fig. 2, while diagrams of the type (VVV) and (VAA)vanish. Aordingly, the anomaly oeÆients areC121 = C211 = C112 = 0 ; (V AA)C222 = 0 ; (V V V )C111 6= 0 ; (AAA)C122 = C221 = C212 6= 0 : (AV V ) (31)The hydrodynami Eqs. (3) then imply nononservedvetor and axial urrents��j� = � 14 (C212FA�� ~F V �� + C221F V�� ~FA��) ;��j�5 = � 14 (C111FA�� ~FA�� + C122F V�� ~F V ��) ; (32)

(AAA) (AVV)

FIG. 2. Anomalous diagrams orresponding to C111(left) andto C122 = C221 = C212 (right). Dashed (wavy) lines denotethe axial (vetor) urrents/�elds.where we rewrote Eb � B = � 14F b�� ~F  �� (with ~F a�� =12"����F a��).To restore onservation of the vetor urrent, we addthe (topologial) Bardeen term to the boundary theory,SB = B Z d4x �����AA�AV� F V�� : (33)Combining the orresponding Bardeen urrentsj�B = B"����(AV� FA�� � 2AA� F V��) ;j�5;B = B"����AV� F V�� ; (34)with the vetor and axial urrents,j0� � j� + j�B ; j0�5 � j�5 + j�5;B ; (35)we obtain the anomaly equations��j0� = ��C1222 + B�F V�� ~FA�� ; (36)��j0�5 = �C1114 FA�� ~FA�� ��C1224 � B�F V�� ~F V �� :The eletri urrent j0� is onserved if B = �C122=2.Setting C111 = C122 � C=3, the hydrodynami Eqs. (3)beome ��T�� = F V ��j0� + FA��j05� ;��j0� = 0 ;��j0�5 = CE � B + (C=3)E5 �B5 : (37)Using the derivative expansionj0� = �u� + �!!� + �BB� + �5;BB�5 ; (38)where �! � �2! , �B � �22B and �5;B � �21B , we obtain from(28) and (29) the ondutivities (�5 � �1, � � �2)�! = 2C�5��� ��+ PT ��2 + �253 �� ;�B = C�5�1� ���+ PT � ;�5;B = C��1� 12 ���+ PT �1 + �253�2 �� : (39)



5There are analogous transport oeÆients in the axialurrent j�5 [20℄. The axial �elds E5� and B5� are notneeded and an now be swithed o�. The �rst term in �Band �!, �B = C�5 and �! = 2C��5, is the leading termin the hiral magneti (CME) [4, 5℄ and hiral vortiale�et [47℄, respetively.2 They are in agreement withthose found in the isotropi ase [16, 17, 20℄. The seondterm proportional to �=(�+PT ) atually depends on thedynamis of the uid3 and therefore on "p.The dependene of �B on "p an be made more visibleby introduing an average pressure �P = (2PT + PL)=3suh that � = 3 �P . Assuming "p to be small (see Fig. 1),we expand the CME-oeÆient �B to linear order in "p,�B � C�5�1� ���+ �P h1� "p6 i� : (40)At freeze-out the ellipti ow oeÆient v2 � "p=2 [26℄.For small momentum anisotropies, the CME thus in-reases linearly in v2.III. FLUID-GRAVITY MODELIn this setion we onstrut the gravity dual of a statianisotropi plasma with diagonal stress-energy momen-tum T�� = diag(�; PT ; PT ; PL) and harge densities �a.We start from a �ve-dimensional U(1)n Einstein-Maxwell theory in an asymptoti AdS spae. The ationis S = 116�G5 Z d5xp�g �R� 2�� F aMNF aMN (41)+ Sab6p�g "PKLMNAaPF bKLF MN� ;where � = �6 is the osmologial onstant. As usual,the U(1) �eld strengths are de�ned byF aMN = �MAaN � �NAaM ; (42)where M;N; ::: = 0; :::; 4 and a = 1; :::; n. The Chern-Simons term A ^ F ^ F enodes the information of thetriangle anomalies in the �eld theory [14℄. In fat, theChern-Simons oeÆients Sab are related to the anomalyoeÆients Cab byCab = Sab=(4�G5) : (43)The orresponding equations of motion are given bythe ombined system of Einstein-Maxwell and Maxwell2 �5;B represents another e�et, whih we added for ompleteness,but it seems not to be realized in heavy-ion ollisions.3 In [15℄ this term was onsidered as a one-loop orretion in an ef-fetive theory and (�+P )=� was interpreted as the orrespondinginfrared uto� in the energy/momentum integration.

equations,GMN � 6gMN = TMN ; (44)rMF aMP = � Sab8p�g "PMNKLF bMNF KL ; (45)where the energy-momentum tensor TMN isTMN = �2�F aMRF aRN + 14gMNF aSRF aSR� : (46)A. AdS blak hole with multiple U(1) hargesA gravity dual to an isotropi uid (� = 3P ) with mul-tiple hemial potentials �a (a = 1; :::; n) at �nite tem-perature T is given by an AdS blak hole solution withmass m and multiple U(1) harges qa. In Eddington-Finkelstein oordinates, the metri and U(1) gauge �eldsof this solution areds2 = �f(r)dt2 + 2drdt+ r2d~x2 ;Aa = �Aa0(r)dt ; (47)where f(r) = r2 � mr2 +Xa (qa)2r4 ;Aa0(r) = �a1 + p3qa2r2 : (48)The onstants �a1 an be �xed suh that the gauge�elds vanish at the horizon. In ase of a single harge(n = 1), the bakground redues to an ordinary Reissner-Nordstr�m blak hole solution in AdS5 [48℄.The temperature T and hemial potentials �a of theuid are de�ned byT = �2� = f 0(r+)4� = 2r6+ �Pa(qa)22�r5+ ; (49)�a = Aa0(r+)�Aa0(r1) ; (50)where r+ is the outer horizon de�ned by the maximalsolution of f(r) = 0, and r1 indiates the loationof the boundary. The temperature of the uid is theHawking temperature of the blak hole and is omputedfrom the surfae gravity � = p�M j�j�M j�jjr+ , wherej�j = (��M�M )(1=2) is the norm of the timelike Killingvetor �M = ÆM0 [here j�j =pf(r)℄.B. Anisotropi AdS geometry with multiple U(1)hargesWe now onstrut a solution for an anisotropi uid(� = 2PT + PL). An ansatz for an anisotropi AdS blak



6hole solution is given byds2 = �f(r)dt2 + 2drdt+ r2(wT (r)dx2 + wT (r)dy2 + wL(r)dz2) ;Aa = �Aa0(r)dt : (51)The anisotropies are realized via wT (r) and wL(r), whihare funtions of the momentum anisotropy "p as de�nedin (2), "p = hPT � PLihPT + PLi : (52)In the isotropi ase ("p = 0), these funtions are requiredto be one, wT (r) = wL(r) = 1, and the bakground re-dues to the AdS blak hole geometry (47).An analytial solution of the type (51) is diÆult to�nd, and we resort to numeris in the next subsetion.For this, we need to know the solution lose to the bound-ary. An asymptoti solution (r !1) is given by the fourfuntions Aa0(r) = �a1 + p3qa2r2 +O(r�8) ;f(r)=r2 = 1� mr4 +Xa (qa)2r6 +O(r�8) ;wT (r) = 1 + w(4)Tr4 +O(r�8) ;wL(r) = 1 + w(4)Lr4 +O(r�8) ; (53)where w(4)L = �2w(4)T = �m�=2, �a1 = onst:, and � isrelated to the momentum anisotropy "p by� = 2"p"p + 3 : (54)The funtions wT (r) and wL(r) have been intro-dued in view of the struture of the anisotropi uidstress-energy tensor. More preisely, in (53) we �xedthe r�4 oeÆients w(4)T and w(4)L suh that the uidstress-energy tensor is of the diagonal form (7), T �� =diag(�; PT ; PT ; PL) with � = 2PT + PL. Computing thestress-energy tensor in the standard way from the asymp-toti solution (53) via the extrinsi urvature, see e.g.[49℄, we �nd the transverse and longitudinal pressuresPT = m� 4w(4)T � 4w(4)L16�G5 = m(1 + �)16�G5 ; (55)PL = m� 8w(4)T16�G5 = m(1� 2�)16�G5 : (56)Note that if (54) holds true, the pressures PT and PLsatisfy (52). Likewise, the harge densities are�a = p3qa16�G5 : (57)

From these relations, we �nd the useful identity�a�+ PT = p3qa4m(1 + 14�) ; (58)whih we will need later.Numerial solutionWe now use shooting tehniques to solve the systemof ordinary di�erential equations (ODE) whih followsfrom the equations of motion (44) and (45) upon substi-tuting the ansatz (51). The idea is to vary the metriand gauge �elds at some minimal value r+ in the radialdiretion, integrate outwards and �nd solutions with theorret asymptoti behavior (53). A similar method waspreviously applied in [41℄.We �rst need to study the asymptoti solution near r+and near the boundary at r1 � r+ (we hoose r1 = 50in our numeris). We de�ne r+ by the maximal solutionof f(r+) = 0 (59)and use sale invariane to set r+ = 1. We then ex-pand the funtions in the metri and gauge �elds nearr+ in powers of the parameter " = rr+ � 1 � 1 andsubstitute them into the equations of motion. In thisway, we �nd that the only independent variables areff 0(r+); wT (r+); wL(r+); w0L(r+)g sine the gauge �eldparameters Aa0(r+) an be set to zero using gauge in-variane, Aa0(r+) = 0. The other parameters at r+an be expressed in terms of these four parameters, e.g.w0T (r+) = wT (r+)w0L(r+)=wL(r+).The near-boundary solution is given by (51) with (53)and is parameterized by the values (�;m; qa; �a1). The�nal set of data is summarized in the following table:r = r+ = 1 r = r1 � r+Aa0(r+) = 0 �a1f(r+) = 0 f(r1)f 0(r+) = �xed Aa00 (r1)wL(r+) = var wL(r1)wT (r+) = var wT (r1)w0L(r+) = varParameters not listed are related to those in the table bythe equations of motion.To integrate the equations we proeed as follows. We�x � and vary three parameters at r+, namely wT (r+),wL(r+) and w0L(r+), by hoosing a grid with suitablenumber of sites (in our ase 203�403). The value f 0(r+)an be thought of as the temperature of the system andwill simply be �xed to some value. It turns out that theform of the funtions wL;T (r) does not depend on thisparameter. For eah site in the grid we numerially solvethe system of ODEs and determine the pair (m; qa) from



7the known asymptotis of Aa00 (r = r1) and f(r = r1).This ensures that the analytial and numerial values forthese quantities oinide.We then alulate the ombined residualres1[wT (r+); wL(r+); w0L(r+))℄= (w#L (r1)� w�L(r1))2 + (w#T (r1)� w�T (r1))2; (60)where w#L;T (r1) are the numerial values, and w�L;T (r1)are the analytial values given by (53). We interpolatethe residual by a pieewise linear funtion and �nd itsglobal minimum by the simulated annealing method [50℄.The result of the minimization is shown in Fig. 3, whihdepits numerial plots of f(r), A0(r), wT (r) and wL(r)for n = 1.
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FIG. 3. Numerial plots of f(r), A0(r), wT (r) and wL(r) for� = 10 (r+ = 1). We get wL(r+) = 12:42.We onlude this setion with a omment on r+. Inthe isotropi ase, r+ is simply the size of the hori-zon of the AdS blak hole geometry. For nonvanishinganisotropies and vanishing U(1) harges, a naked sin-gularity was found at r+ [39℄, implying that the statibakground does not exist inde�nitely. The singularity ismild in the sense that there is a notion of ingoing bound-ary onditions and possible instabilities are absent at thelinear level in the anisotropy parameter [39℄. This be-havior may persist even for nonvanishing U(1) harges,even though it was diÆult to see the singularity in our

numeris, f. Figure 4. Despite this subtlety, we showin the next setion that, at least for small anisotropieswhere the bulk geometry approximates a blak hole so-lution, the singular geometry may be used to omputesome transport oeÆients of the uid.

FIG. 4. Numerial plots of (RMNPQ)2 for � = 10, q 6= 0 (red),� = 10, q = 0 (orange), and � = 0, q = 0 (blue).IV. HOLOGRAPHIC VORTICAL ANDMAGNETIC CONDUCTIVITIESWe will now ompute the hiral vortial and magnetiondutivities �a! and �abB from �rst-order orretions tothe numerial AdS geometry (51) using the uid-gravityorrespondene [42℄.A. First-order orreted bakgroundIn order to beome a dual to a multiply harged uid,the AdS geometry (51) must be boosted along the four-veloity of the uid u� (� = 0; :::; 3). The boosted versionof (51) isds2 = �r2wT (r)P�� � f(r)u�u�� dx�dx� � 2u�dx�dr� r2(wT (r)� wL(r))v�v�dx�dx� ;Aa = (Aa0(r)u� +Aa�)dx� ; (61)where P �� = g�� + u�u� , and f(r), Aa0(r), wT (r) andwL(r) are numerially known funtions. As in hydro-dynamis, the four-vetor v� determines the diretionof the longitudinal axis, f. Se. 2. Following [14, 20℄,we have formally introdued onstant bakground gauge�elds Aa� to model external eletromagneti �elds, suhas the magneti �elds Ba� needed for the hiral magnetie�et.The transport oeÆients �a! and �abB an now be om-puted using standard uid-gravity tehniques [42℄. Welosely follow [14, 20, 51℄, in whih these transport oef-�ients were determined for an isotropi uid with one



8and three harges (n = 1; 3). We work in the stati frameu� = (�1; 0; 0; 0), v� = (0; 0; 0; 1), and onsider vanishingbakground �elds Aa� (at x� = 0). The transport oeÆ-ients �a! and �abB measure the response of the system torotation and the perturbation by an external magneti�eld. We therefore slowly vary the veloity u� and thebakground �elds Aa� up to �rst order asu� = (�1; x���ui) ; Aa� = (0; x���Aai ) : (62)We may also vary m and q in this way, but it turns outthat varying these parameters has no inuene on thetransport oeÆients �a! and �abB .Beause of the dependene on x�, the bakground (61)is no longer an exat solution of the equations of mo-tion. Instead with varying parameters the solution (61)reeives higher-order orretions, whih are in this aseof �rst order in the derivatives.An ansatz for the �rst-order orreted metri andgauge �elds is given byds2 = (�f(r) + ~gtt) dt2 + 2 (1 + ~gtr) dtdr+ r2(wT (r)dx2 + wT (r)dy2 + wL(r)dz2)+ ~gijdxidxj � 2x���uidrdxi+ 2 ��f(r)� r2�x���ui + ~gti� dtdxi ;Aa = ��Aa0(r) + ~Aat� dt+ �Aa0(r)x���ui + x���Aai + ~Aai � dxi ; (63)where the �rst-order orretions are denoted by~gMN = ~gMN (r) ; ~AaM = ~AaM (r) : (64)As in [51℄, we work in the gauge~grr = 0 ; ~gr� � u� ; ~Aar = 0 ; 3Xi=1 ~gii = 0 : (65)The �rst-order orretions an be obtained by substi-tuting the ansatz (63) into the equations of motion(44) and (45). The omputation is straight-forward butlengthy and has been shifted to Appendix C [we set�a1 = Aa0(r1) = 0 there, see Se. II C for a disussion℄.As a result, we �nd the following orretions:~gtr = ~gtt = ~Aat = 0 ;~gti(r) = f(r) Z r1 dr0 1wL(r0)1=2r0 (f(r0))2 (66)� Z r0r+ dr00 I(r00)� wL(r+)1=2r+f 0(r+)Ci! ;~Aai (r) = Z r1 dr0 1r0f(r0)wL(r0)1=2 [Qai (r0)�Qai (r+)� Cir+Aa0 0(r+)wL(r+)1=2 + r0~gti(r0)Aa0 0(r0)i ;

withI(r) = nXa=1 4Aa0 0(r)�Qai (r) �Qai (r+)� Cir+wL(r+)1=2Aa0 0(r+)� ;Qia � 12SabAb0A0�ijk (�juk) + SabAb0�ijk (�jAk) ;Ci = 4(r+)wL(r+)1=2� 13SabAa0(r+)Ab0(r+)A0(r+)�ijk (�juk)+ 12SabAa0(r+)Ab0(r+)�ijk (�jAk)! ;(r+) = 1r+(f 0(r+)� 4PaAa0(r+)Aa0 0(r+)) ;and r+ as de�ned around (59) [~gij an be obtained bysolving (C2) in Appendix C but will not be needed here℄.B. Holographi ondutivitiesOn the boundary of the asymptoti AdS spae (63),the metri and gauge �elds ouple to the uid stress-energy tensor and U(1) urrents, respetively. Holo-graphi renormalization [52℄ provides relations betweenthese urrents and the near-boundary behavior of theirdual bulk �elds. For the magneti and vortial e�ets,we need the U(1) urrents ja�, whih are related to thebulk gauge �elds Aa� by [52, 53℄ja� = limr!1 r28�G5 ���Aa�(r) : (67)Expanding the solution in 1r and substituting only theorretions ~Aa�, we get the urrents~ja� = limr!1 r28�G5 ��� ~Aa�(r)= 116�G5 ��� (Qa�(r+) + r+Aa0 0(r+)C�) : (68)Note that, in the isotropi ase (wL = 1, PT = PL =P ), the prefator of the seond term of (68) is simplyr+Aa00 (r+)(r+) = p34mqa ; (69)as an be seen by substituting the Reissner-Nordstr�msolution (48) into the left-hand-side of this equation. Inthe anisotropi ase, we need to show thatr+Aa00 (r+)(r+) � wL(r+)�1=2 = p3qa4m � 11 + 14� ; (70)
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FIG. 5. Values of wL(r+) as a funtion of the anisotropy �.The numerially determined values for wL(r+) lie on the solidurve, whih represents the funtion (1 + 14�)2.whih, by (58), is equivalent to �a=(�+ PT ). This equa-tion holds in partiular if the �rst and seond fatorson both sides agree individually. The �rst fators orre-spond to (69), whih is expeted to hold, at least approx-imately for small anisotropies �. The seond fators areidential if wL(r+; �) = (1 + 14�)2. We �nd numerially(for n = 1) that wL(r+) indeed satis�es this equation,see Fig. 5. Thus (70) holds numerially, at least in thelimit of small �.Comparing (68) with the general expansion~ja� = �a! !� + �abB Bb�= �a! 12�����u���u� + �abB �����u���Ab� ; (71)we �nally obtain the oeÆients�a! = 416�G5 Sab�b� � 23 �a�+ PT Sbd�b��d! ; (72)�abB = 416�G5 Sab� � 12 �a�+ PT Sbd��d! ; (73)with �a � Aa0(r+) [sine Aa0(1) = 0℄. Using the re-lation (43), we �nd that the holographially omputedtransport oeÆients (72) and (73) oinide exatly withthose found in hydrodynamis, (28) and (29).C. Subtleties in holographi desriptions of theCMEThe onservation of the eletromagneti urrent re-quires the introdution of the Bardeen ounterterm intothe ation. In AdS/QCD models of the CME, this typ-ially leads to a vanishing result for the eletromagnetiurrent [30, 32℄. The problem is related to the diÆultyof introduing a hemial potential onjugated to a non-onserved hiral harge [30, 31℄. It is possible to modify

the ation to obtain a onserved hiral harge [30℄. Thisharge is however only gauge-invariant when integratedover all spae in homogeneous on�gurations.In AdS blak hole models of the CME, one usuallyintrodues a hiral hemial potential dual to a gauge-invariant urrent, despite it being anomalous [20, 31℄.The prize to pay is the appearane of a singular bulkgauge �eld at the horizon, a phenomenon whih seems tobe generi in AdS blak hole models of the CME.Careful holographi renormalization shows that, in thepresene of Chern-Simons terms, there is an additionalterm on the right-hand side of (67) [53℄. This term is ofthe form ĵ�a = � Sab8�G5 �����A(0)b� (x)��A(0)� (x) ; (74)where A(0)a� (x) are the 0th-order oeÆients in a 1r ex-pansion of the bulk gauge �elds Aa�(r; x). In (62) weexpanded the bakground gauge �elds Aa� around zeroand set Aa(0)� = �a1u� = 0. This allowed us to ignoreterms in (67) oming from (74) (at least to �rst order inthe derivatives).Problems arise if �a1 6= 0. To see this, let us restritagain to two harges (n = 2) as in Se. II C and de�neaxial and vetor gauge �elds by AA� = A1� and AV� = A2�.Then ĵ� = ĵ�2 gives rise to additional ontributions of thetype ĵ� � "����AA(0)� (x)F V (0)�� (x) ; (75)whih are forbidden by eletromagneti gauge invari-ane [30℄, unless AA(0)� (x) = 0. However, in generalAA(0)� (x) = �15 u� (at x = 0) with some onstant �15 .We should thus set �15 = 0 [Note that this does not im-ply �5 = AA0 (r1)� AA0 (r+) = 0℄. This orresponds to anonvanishing gauge �eld at the horizon, as notied alsoin [20, 31℄. V. CONCLUSIONSOur main result is (40), whih gives the hiral magnetiondutivity �B for an anisotropi plasma. It expliitlyshows the dependene on the momentum anisotropy "p.We also omputed the CME oeÆient in the holographidual model and found numerial agreement with the hy-drodynami result for small anisotropies.ACKNOWLEDGMENTSWe thank Johanna Erdmenger, Patrik Kerner andAndreas Sh�afer for disussions and helpful omments.I. K. is grateful to Berndt M�uller for pointing out Ref. [13℄and Quan Wang for answering questions related to themeasurement of the harge separation as a funtion of v2.I. G. would like to thank Shi Pu for email orrespondene.



10APPENDIXAppendix A: Computation of ��!� and ��B�In the following we will use the identitiesu�u���!� = �12��!� ; (A1)u�u���B� = ��B� + 2!�E� : (A2)To �nd an expliit expression for ��!�, we ompute theterm !���T�� in two ways. First, using the hydrody-nami equations, we get!���T�� = !�F ��j� = �!�F ��u� = �!�E� : (A3)Next, substituting the stress-energy tensor (4) in this ex-pression, we �nd!���T��= (�+ PT )u�!���u� + !�g����PT ��!�v���v�� v�!�v������v�!���v�= �(�+ PT )u�u���!� + !���PT ��!��� ln �� v�!�v������v�!���v� : (A4)Using the identity (A1), we �nd��!� = � 2�+ PT !�(��PT ���� ln � � �E�� v�v������v���v�) : (A5)Similar manipulations of the term B���T�� lead toB���T �� = B�F ��j� = �B�E� ; (A6)B���T �� = �(�+ PT )u�u���B� +B���PT��B�v���v� �B�v�v������B�v���v�= �(�+ PT )(��B� � 2!�E�)��B��� ln ��B�v�v������B�v���v� ; (A7)where we used (A2). From (A6) and (A7) we obtain thefollowing expression:��B� = �2!�E� � B��+ PT (��PT ���� ln � � �E�� v�v������v���v�) : (A8)The last two terms in (A5) and (A8) vanish providedthe uid satis�es��v� = 0 ; v���� = 0 : (A9)Then (A5) and (A8) beome idential to the expressionsin (19).Appendix B: Computation of the transportoeÆients �! and �BIn this appendix we ompute the ondutivities �!and �B by solving the system of Eqs. (22)-(25). Fol-lowing [14℄, we hange variables from ln � , �, T to ln � ,

�� = �=T and PT . From (12) and (13), we derive thethermodynami expressions� ����T �PT ; ln � = ��+ PT�T 2 ; (B1)��PT�T ���; ln � = �+ PTT ; (B2)�� ln ��T ���; PT = � 1� �+ PTT : (B3)Using��D = �D�PT ��PT + �D��� ����+ �D� ln � �� ln � ; (B4)��DB = �DB�PT ��PT + �DB��� ����+ �DB� ln � �� ln � ; (B5)the �rst two equations, (22) and(23), an be rewritten as��! + �D��� = 0 ; ��B + �DB��� = 0 ; (B6)�D�PT � 2D�+ PT = 0 ; �DB�PT � DB�+ PT = 0 ; (B7)�D� ln � + 2�D�+ PT = 0 ; �DB� ln � + �DB�+ PT = 0 : (B8)Note that (B7) and (B8) are related by the thermody-nami identities (B2) and (B3). Using the ansatzD = T 2d(��; ln �) ; DB = TdB(��; ln �) ; (B9)and (B1), we obtain two di�erential equations from (24)and (25),0 = 2�D�+ PT � 2DB + �!T= T (���d(��; ln �)� 2dB(��; ln �))) ; (B10)0 = �DB�+ PT + �BT � C ��= ���dB(��; ln �)� C �� : (B11)These equations an be integrated to givedB(��; ln �) = 12C ��2 + �(ln �) ; (B12)d(��; ln �) = 13C ��3 + 2���(ln �) + (ln �) ; (B13)where �(ln �) and (ln �) are arbitrary funtions of ln � .Substituting this bak into (24), (25), we get the ondu-tivities�! = C ��2 � 23 ��3�+ PT �+ 2T 2�(ln �)� 2�T 3�+ PT (2���(ln �) + (ln �)) ;�B = C ��� 12 ��2�+ PT �� T 2�+ PT �(ln �) : (B14)The funtion (ln �) is forbidden by CPT invariane [37℄.



11Appendix C: First-order orreted bakgroundgeometryIn this appendix we ompute the �rst-order orretionsto the bakground (61) using the ansatz (63). The om-putation follows that for the three-harge STU model [27℄presented in [51℄ and [20℄.We begin by substituting the ansatz (63) into the equa-tions of motion (44) and (45). We denote the resultingMaxwell equations, Eqs. (45) by MaN (a = 1; :::; n) andthe omponents of the Einstein equation, Eqn. (44) byEMN M;N = 0; :::; 4 [xM = (t; x1; x2; x3; r)℄. Then, fromgrtEti + grrEri = 0, we �nd �tui = 0, and Ett, Ert, Err,Ett, Mat , and Mar are solved by�iui = ~gtr = ~gtt = ~Aat = 0 : (C1)The remaining equations are Eij , Eti, Mai .From Eij we get��r �r3f(r)�r � ~gij(r)r2 �� = 3r2(�iuj + �jui) : (C2)From Eti we get"f 0(r)f(r) �2r + w0T (r)wT (r)�+ 43f(r)  nXa=1Aa0 0(r)2 � 6!#~gti(r)+�1r + w0L(r)2wL(r)� ~g0ti(r) + ~g00ti(r) = 4 nXa=1Aa0 0(r) ~Aai 0(r) ;(C3)where a prime denotes the partial derivative �r with re-spet to r.From Mai we get�r hwL(r)1=2r �f(r) ~Aai 0 � ~gti(r)Aa0 0�i= �r �12SabAb0A0�ijk (�juk) + SabAb0�ijk (�jAk)�� �rQai (r) : (C4)Equation (C2) depends only on ~gij(r) and an easilybe solved. The integration of (C4) leads towL(r)1=2 �rf(r) ~Aai 0(r)� r~gti(r)Aa0 0(r)�= Qai (r) + Cai : (C5)Here Cai are some integration onstants, whih an be�xed asCai = �Qai (r+)� CiwL(r+)1=2r+Aa0 0(r+) ; (C6)with r+ as in (59) and Ci = ~gti(r+). This an be solvedfor ~Aai (r),~Aai (r) = Z r1 dr0 1r0f(r0)wL(r0)1=2 hQai (r0)�Qai (r+)� Cir+Aa0 0(r+)wL(r+)1=2 + r0~gti(r0)Aa0 0(r0)i :(C7)

We still need to determine the onstants Ci. Using(C5), we replae ~Aai 0 in (C3) and obtain"f 0(r)f(r) �2r + w0T (r)wT (r)�� 83f(r)  nXa=1Aa0 0(r)2 + 3!# ~gti(r)+�1r + w0L(r)2wL(r)� ~g0ti(r) + ~g00ti(r) = 1wL(r)1=2rf(r) I(r) ;(C8)where I(r) = nXa=1 4Aa0 0(r)�Qai (r) �Qai (r+)� Cir+wL(r+)1=2Aa0 0(r+)� : (C9)A homogeneous solution of this equation ~gti(r) =g(0)tt (r) = f(r) an be generated by the in�nitesimal o-ordinate transformationdt! dt� �(dx+ dy + dz) ; dz ! dz + � drr2wL ;dx! dz + � drr2wT ; dy ! dy + � drr2wT : (C10)Then, using this homogeneous solution and Appendix D[P (r) = f(r) and E(r) = rwL(r)1=2 there℄, we bring (C8)to the integrable form�r �wL(r)1=2rf2(r)�r � ~gti(r)f(r) �� = I(r) : (C11)Solving this equation for ~gti(r) and �xing the integrationonstants at r+, we get~gti(r) = f(r) Z r1 dr0 1wL(r0)1=2r0 (f(r0))2�Z r0r+ dr00 I(r00)� wL(r+)1=2r+f 0(r+)Ci� : (C12)In the Landau frame we require u���� = 0, whihin partiular implies the absene of orretions to T ti.Holographi renormalization [52℄ translates this into aonstraint for the r�2 oeÆient of ~gti(r) whih is pro-portional to the �rst orretion of T ti,limr!1 r2 ~gti(r) = 0 : (C13)In the limit r !1, we have the asymptotisf(r) = O(r2) ; wL(r) = O(1) ;Z rr+ dr0 I(r0) = O(1) ; (C14)and, from the vanishing of the r�2-oeÆient of ~gti(r),we obtain the following equation for Ci:wL(r+)1=2r+f 0(r+)Ci = Z 1r+ dr0 I(r0) � I1 + I2 � Ci ;(C15)



12where we de�ned the integralsI1 � 4 Z 1r+ dr0 nXa=1Aa0 0(r0) (Qai (r0)�Qai (r+))= 43SabAa0(r+)Ab0(r+)A0(r+)�ijk (�juk)+ 2SabAa0(r+)Ab0(r+)�ijk (�jAk) (C16)andI2 � 4 Z 1r+ dr0 nXa=1Aa0 0(r0)��wL(r+)1=2r+Aa0 0(r+)�= 4wL(r+)1=2r+ nXa=1Aa0(r+)Aa0 0(r+) : (C17)Solving this for Ci, we eventually getCi = 4r+(f 0(r+)� 4PaAa0(r+)Aa0 0(r+)) � 1wL(r+)1=2� 13SabAa0(r+)Ab0(r+)A0(r+)�ijk (�juk)+ 12SabAa0(r+)Ab0(r+)�ijk (�jAk)! : (C18)Appendix D: Integrable form of a linear ordinarydi�erential equationIn this appendix we present a method to bring an arbi-trary linear ODE of seond order to an integrable form.Let us onsider a general form of this equationG(g00; g0; g; r) � g00(r) + a(r)g0(r) + b(r)g(r) = (r):(D1)

If we know a homogeneous solution P (r) of this equation,i.e. G(P 00; P 0; P; r) = 0 ; (D2)then we an make the substitutiong(r)! P (r)Q(r); Q0(r) ! u(r) (D3)and lower the order of the di�erential operator (D1)G = P (r)�u0(r) + �a(r) + 2P 0(r)P (r) �u(r)�� P (r)(u0(r) + F (r)u(r)) : (D4)The term in the brakets an be represented asu0(r) + F (r)u(r) = 1A(r)�r (A(r)u(r)) ; (D5)whereA(r) = exp�Z F (r)dr� = P (r)2 exp�Z a(r)dr� :(D6)Taking into aount (D3), we �nally bring (D1) to thefollowing integrable form1P (r)E(r)�r �P (r)2E(r)�r � g(r)P (r)�� = (r) : (D7)where we de�nedE(r) � exp�Z a(r)dr� : (D8)
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