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Abstract

We revisit the definition of the6j symbols from the modular double ofUq(sl(2,R)), referred

to as b-6j symbols. Our new results are (i) the identification of particularly natural normal-

ization conditions, and (ii) new integral representationsfor this object. This is used to briefly

discuss possible applications to quantum hyperbolic geometry, and to the study of certain

supersymmetric gauge theories. We show, in particular, that the b-6j symbol has leading

semiclassical asymptotics given by the volume of a non-ideal tetrahedron. We furthermore

observe a close relation with the problem to quantize natural Darboux coordinates for moduli

spaces of flat connections on Riemann surfaces related to theFenchel-Nielsen coordinates.

Our new integral representations finally indicate a possible interpretation of the b-6j symbols

as partition functions of three-dimensionalN = 2 supersymmetric gauge theories.

1. Introduction

Analogs of the Racah-Wigner6j-symbols coming from the study of a non-compact quantum

group have been introduced in [PT1]. The quantum group in question is related toUq(sl(2,R))

and is often referred to as the modular double ofUq(sl(2,R)). The6j-symbols of this quantum

group, which will be called b-6j symbols, play an important role for the harmonic analysis ofthe

modular double [PT2], quantum Liouville theory [T01] and quantum Teichmüller theory [T03].

The terminology b-6j symbol is partly motivated by the fact that it is useful to parameterize the

deformation parameterq of Uq(sl(2,R)) in terms of a parameterb asq = eπib2 .

However, the precise definition of the b-6j depends on the normalization of the Clebsch-

Gordan maps. Similar normalization issues arise in Liouville theory and in quantum Teich-

müller theory. In the case of Liouville theory it is relatedto the issue to fix normalizations

for bases in the space of conformal blocks. In quantum Teichmüller theory it is related to the

precise definition of the representations in which a maximalcommuting set of geodesic length
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operators is diagonal. The normalizations chosen in the references above were somewhat adhoc.

One of our first goals in this paper is to discuss natural ways to fix this issue.

We will show that there exists very natural normalizations which also appear to be very nat-

ural from the point of view of Liouville- and the quantum Teichmüller theory. In the latter con-

text, one of the normalizations defining our b-6j symbols will be shown to define a quantization

of the Fenchel-Nielsen coordinates. Somewhat strikingly,we will find that the b-6j symbols

defined in this way exactly reproduce the hyperbolic volume of a non-ideal tetrahedron with

given dihedral angles in the classical limitb → 0. This strongly suggests that Turaev-Viro type

[TuVi] state-sum models built from the b-6j symbols are related to three-dimensional quantum

gravity with negative cosmological constant, which can be seen as an analog of earlier obser-

vations for the cases of zero [PR] and positive cosmologicalconstants [MT], respectively. The

b-6j symbols are also natural building blocks for combinatorialapproaches to the quantization

of SL(2,R)-Chern-Simons theory or of its complexification.

One of our main technical results will be new integral representations for the b-6j symbols.

One of them strongly resembles the formulae for the usual6j symbols. The new integral rep-

resentations will be obtained from the formula for the b-6j symbols obtained in [PT2] by a

sequence of nontrivial integral transformations that follow from an identity satisfied by Spiri-

donov’s elliptic hypergeometric integrals [S01, S03] (fora review see [S08]) in certain limits.

We will point out that one of these integral representationsadmits an interpretation as a par-

tition function for a three-dimensional supersymmetric gauge theory. This, and the relations

to three-dimensional Chern-Simons theories mentioned above suggest that the b-6j symbols

could play a key role in the currently investigated program to identify correspondences between

three-dimensional supersymmetric gauge theories and noncompact Chern-Simons theories on

suitable three-manifolds [TY, DiGu, DiGG].

2. Racah-Wigner 6j symbols for the modular double

2.1 Self-dual representations ofUq(sl(2,R)) and the modular double

We will be considering the Hopf-algebraUq(sl(2,R)) which has generatorsE, F andK subject

to the usual relations. This algebra has a one-parameter family of representationsPα

Eα ≡ πα(E) := e+πbx cosh πb(p− s)

sin πb2
e+πbx ,

Fα ≡ πα(F ) := e−πbx cosh πb(p+ s)

sin πb2
e−πbx ,

Kα ≡ πα(K) := e−πbp , (2.1)

wherep andx are operators acting on functionsf(x) aspf(x) = (2πi)−1 ∂
∂x
f(x) andxf(x) =

xf(x), respectively. In the definitions (2.1) we are parameterizing q asq = eπib2 , and write the
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parameterα asα = Q/2 + is. There is a maximal dense subspacePα ⊂ L2(R) on which all

polynomials formed out ofEα, Fα andKα are well-defined [BT2, Appendix B].

These representations are distinguished by a remarkable self-duality property: It is automat-

ically a representation of the quantum groupUq̃(sl(2,R)), whereq̃ = eπi/b2 if q = eπib2 . This

representation is generated from operatorsẼα, F̃α andK̃α which are defined by formulae ob-

tained from those in (2.1) by replacingb→ b−1. The subspacePα is simultaneously a maximal

domain for the polynomial functions of̃Eα, F̃α andK̃α [BT2, Appendix B].

This phenomenon was observed independently in [PT1] and in [F99]. It is closely related to

the fact thatEα, Fα andKα arepositiveself-adjoint generators which allows one to construct

Ẽα, F̃α andK̃α asE1/b2

α F
1/b2

α , K1/b2

α [BT1].

It was proposed in [PT1, BT1] to construct a noncompact quantum group which has ascom-

pleteset of tempered representations the self-dual representationsPα. It’s gradually becoming

clear how to realize this suggestion precisely. Relevant steps in this direction were taken in

[BT1] by defining co-product, R-operator and Haar-measure of such a quantum group. Further

important progress in this direction was recently made in [Ip]. Following [F99], we will in the

following call this noncompact quantum group the modular double ofUq(sl(2,R)).

2.2 Normalized Clebsch-Gordan coefficients for the modulardouble

The Clebsch-Gordan mapsCα3

α2,α1
: Pα2

⊗Pα1
→ Pα3

were constructed in [PT2]. The defining

intertwining property is

Cα3

α2,α1
· (πα2

⊗ πα1
)(∆(X)) = πα3

· Cα3

α2,α1
. (2.2)

In [PT2] it was found that theCα3

α2,α1
can be represented as integral operators of the form

(Cα3

α2,α1
ψ)(x3) =

∫

R2

dx1dx2
(
α3

x3
| α2

x2

α1

x1

)
b
ψ(x2, x1) , (2.3)

The intertwining property (2.2) will be satisfied if we take
(
α3

x3
| α2

x2

α1

x1

)
=
(
α3

x3
| α2

x2

α1

x1

)an
b

, with
(
α3

x3
| α2

x2

α1

x1

)an
b

= e−πi(∆α3
−∆α1

−∆α2
)/2D− i

2
(α1+α2+α3−Q)

(
x2 − x1 − i α3

2

)
(2.4)

×D
− i

2
(Q+α2−α3−α1)

(
x2 − x3 − i α1

2

)
D

− i
2
(Q+α1−α3−α2)

(
x3 − x1 − i α2

2

)
.

In (2.4) we are using the notations∆α = α(Q− α) with Q = b+ b−1 and

Diα(x) =
Sb(Q/2− ix+ α)

Sb(Q/2− ix− α)
. (2.5)

Sb(x) is the so-called double Sine-function which is closely related to the functions called quan-

tum dilogarithm in [FK2] hyperbolic gamma function in [Ru],and quantum exponential func-

tion in [Wo]. Definition and relevant properties are recalled in Appendix A.
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One should note, however, that our definition of the3j coefficients (2.4) is not canonical, we

might equally well use
(
α3

x3
| α2

x2

α1

x1

)′
b

in (2.3), with

(
α3

x3
| α2

x2

α1

x1

)′
b
:=M(α3, α2, α1)

(
α3

x3
| α2

x2

α1

x1

)an
b
. (2.6)

This will satisfy (2.2) for arbitrary functionsM(α3, α2, α1). A natural choice forM(α3, α2, α1)

can be determined by requiring the Weyl-invariance of the Clebsch-Gordan maps. In order to

formulate this requirement, we will need the intertwining operatorRα : Pα → PQ−α which can

be represented explicitly as integral operator [PT2]

(Rαf)(x) := Sb(2α)

∫

R

dx′ D−iα(x− x′)f(x) . (2.7)

We may now require that

Cα3

α2,α1
· (1⊗ RQ−α1

) = Cα3

α2,Q−α1
,

Cα3

α2,α1
· (RQ−α2

⊗ 1) = Cα3

Q−α2,α1
,

Rα3
· Cα3

α2,α1
= CQ−α3

α2,α1
. (2.8)

We claim that (2.8) is satisfied if we choose chooseM(α3, α2, α1) as

M(α3, α2, α1) = (2.9)

=
(
Sb(2Q− α1 − α2 − α3)Sb(Q− α1 − α2 + α3)Sb(α1 + α3 − α2)Sb(α2 + α3 − α1)

)− 1

2 .

To prove this claim let us consider, for example, the first of the equations in (2.8), which

would follow from the identity

Sb(2ᾱ1)

∫

R

dx′1
(
α3

x3
| α2

x2

α1

x′

1

)an
b
D−iᾱ1

(x′1 − x1) = ξ
(
α3

x3
| α2

x2

ᾱ1

x1

)an
b
, (2.10)

where we use abbreviation̄α = Q−α andξ = Sb(α2 + α3 −α1)Sb(2Q−α1 − α2 −α3). This

identity can easily be rewritten in the form [BT1, Equation (A.34)] in which it is recognized as

the famous star-triangle relation, see e.g. [BMS1]. Proofscan be found in [K2, V]. It can also

be derived easily from the so-called elliptic beta-integral [S01] following the strategy discussed

in Appendix B.

We will denote the Clebsch-Gordan coefficients defined by (2.6) with functionM(α3, α2, α1)

given in (2.9) as
(
α3

x3
| α2

x2

α1

x1

)
b
. We would like to stress that both

(
α3

x3
| α2

x2

α1

x1

)an
b

and
(
α3

x3
| α2

x2

α1

x1

)
b

both have their virtues. While
(
α3
x3

| α2
x2

α1
x1

)
b

has more natural symmetry properties, the virtue of(
α3

x3
| α2

x2

α1

x1

)an
b

is to have particularly nice analytic properties in all of its variables.
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2.3 Normalized b-6j symbols for the modular double

The composition of Clebsch-Gordan maps allows us to define two natural families of projection

operators

(sCα4

α3,α2,α1
(αs)Ψ)(x4) =

∫

R3

dx1dx2dx3 E (s)
αs

(A|X)ψ(x3, x2, x1) , (2.11)

(tCα4

α3,α2,α1
(αt)Ψ)(x4) =

∫

R3

dx1dx2dx3 E (t)
αt
(A|X)ψ(x3, x2, x1) , (2.12)

with integral kernelsE (s)
αs (A|X) andE (t)

αt (A|X) given as

E (s)
αs

(A|X) =

∫
dxs

(
α4

x4
| α3

x3

αs

xs

)
b

(
αs

xs
| α2

x2

α1

x1

)
b
, (2.13)

E (t)
αt
(A|X) =

∫
dxt

(
α4

x4
| αt

xt

α1

x1

)
b

(
αt

xt
| α3

x3

α2

x2

)
b
. (2.14)

The b-6j symbols
{

α1

α3

α2

α4
| αs
αt

}
b

are then defined by the relations

E (s)
αs

(A|Z) =

∫

Q/2+iR
dµ(αt)

{
α1

α3

α2

α4
| αs

αt

}
b
E (t)
αt
(A|Z) , (2.15)

where the Plancherel measuredµ(α) is explicitly given by the expression

dµ(α) = dα M(α) , M(α) := |Sb(2α)|2 . (2.16)

It is clear that the explicit expression for the b-6j symbols depends on the normalization chosen

for the Clebsch-Gordan maps. We will denote the6j symbols corresponding to
(
α3

x3
| α2

x2

α1

x1

)an
b

and
(
α3

x3
| α2

x2

α1

x1

)
b

by
{

α1

α3

α2

α4
| αs
αt

}an
b

and
{

α1

α3

α2

α4
| αs
αt

}
b
, respectively.

The b-6j symbols
{

α1
α3

α2
α4

| αs
αt

}an
b

were calculated in [PT2]1,

{
α1

α3

α2

ᾱ4
| αs

αt

}an
b

=
Sb(α2 + αs − α1)Sb(αt + α1 − α4)

Sb(α2 + αt − α3)Sb(αs + α3 − α4)
(2.17)

×
∫

C

du Sb(−α2 ± (α1 −Q/2) + u)Sb(−α4 ± (α3 −Q/2) + u)

× Sb(α2 + α4 ± (αt −Q/2)− u)Sb(Q± (αs −Q/2)− u) .

The following notation has been usedSb(α± u) := Sb(α+ u)Sb(α− u). The integral in (2.17)

will be defined forαk ∈ Q/2 + iR by using a contourC that approachesQ + iR near infinity,

and passes the real axis in(Q/2, Q), and for other values ofαk by analytic continuation.

The b-6j symbols corresponding to the normalization defined above are then given by the

formula {
α1

α3

α2

α4
| αs

αt

}
b
= M(αs,α2,α1)M(α4,α3,αs)

M(αt,α3,α2)M(α4,αt,α1)

{
α1

α3

α2

α4
| αs

αt

}an
b
. (2.18)

with M(α3, α2, α1) being defined in (2.9).

1The formula below coincides with equation (228) in [T01] after shiftings → s− αs −Q/2. We have moved

a factor|Sb(2αt)|2 into the measure of integration in (2.15).
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2.4 3j symbols for the modular double

3j coefficients describe invariants in tensor products of three representations. Such invariants

may be constructed from the Clebsch-Gordon maps and the invariant bilinear formB : Pα ⊗
PQ−α → C defined by [PT2]

B(f, g) :=
∫

R

dx f(x)g(x− iQ/2) . (2.19)

We may thereby construct an invariant trilinear formCα3,α2,α1
: Pα3

⊗ Pα2
⊗Pα1

→ C as

Cα3,α2,α1
(f3, f2, f1) := B

(
f3 , C

Q−α3

α2,α1
· f2 ⊗ f1

)
. (2.20)

The formCα3,α2,α1
can be represented as

Cα3,α2,α1
(f3, f2, f1) =

∫

R3

dx3dx2dx1
(
α3

x3

α2

x2

α1

x1

)
f3(x3)f2(x2)f1(x1) (2.21)

with 3j-symbols
(
α3

x3

α2

x2

α1

x1

)
given in terms of the Clebsch-Gordan coefficients

(
α3

x3
| α2

x2

α1

x1

)
as

(
α3

x3

α2

x2

α1

x1

)
=
(
Q−α3

x3−iQ/2 | α2

x2

α1

x1

)
. (2.22)

We may similarly define

sCαs

α4,α3,α2,α1
(f4, f3, f2, f1) := B

(
f4 ,

sCQ−α4

α3,α2,α1
(αs) · f3 ⊗ f2 ⊗ f1

)
,

tCαt

α4,α3,α2,α1
(f4, f3, f2, f1) := B

(
f4 ,

tCQ−α4

α3,α2,α1
(αt) · f3 ⊗ f2 ⊗ f1

)
.

(2.23)

The b-6j symbols
{

α1

α3

α2

α4

αs
αt

}
are then defined by the relation

sCαs

α4,α3,α2,α1
=

∫

Q/2+iR
dµ(αt)

{
α1

α3

α2

α4

αs

αt

}
b
tCαt

α4,α3,α2,α1
. (2.24)

It follows that
{

α1

α3

α2

α4

αs

αt

}
b
=
{

α1

α3

α2

ᾱ4
| αs

αt

}
b
, ᾱ4 := Q− α4. (2.25)

The b-6j symbols satisfy the following identities [PT1]

∫

Q/2+iR+

dµ(δ1)
{

α1

α3

α2

β2

β1

δ1

}
b

{
α1

α4

δ1
α5

β2

γ2

}
b

{
α2

α4

α3

γ2
δ1
γ1

}
b
=
{

β1

α4

α3

α5

β2

γ1

}
b

{
α1

γ1
α2

α5

β1

γ2

}
b
,

∫

Q/2+iR+

dµ(αs)
{

α1

α3

α2

α4

αs

αt

}∗
b

{
α1

α3

α2

α4

αs

α′

t

}
b
= (M(αt))

−1δ(αt − α′
t) .

(2.26)

The explicit expression will again depend on the chosen normalization of the Clebsch-Gordan

maps, giving us two versions,
{

α1

α3

α2

α4

αs
αt

}
b

and
{

α1

α3

α2

α4

αs
αt

}an
b

, respectively.
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2.5 A new integral formula for the b-6j symbols

One of our main results will be the following formula for the b-6j symbols:

{
α1

α3

α2

α4

αs

αt

}
b
= ∆(αs, α2, α1)∆(α4, α3, αs)∆(αt, α3, α2)∆(α4, αt, α1) (2.27)

×
∫

C

du Sb(u− α12s)Sb(u− αs34)Sb(u− α23t)Sb(u− α1t4)

× Sb(α1234 − u)Sb(αst13 − u)Sb(αst24 − u)Sb(2Q− u) .

The expression involves the following ingredients:

• We have used the notationsαijk = αi + αj + αk, αijkl = αi + αj + αk + αl.

• ∆(α3, α2, α1) is defined as

∆(α3, α2, α1) =

(
Sb(α1 + α2 + αs −Q)

Sb(α1 + α2 − αs)Sb(α1 + αs − α2)Sb(α2 + αs − α1)

) 1

2

.

• The integral is defined in the cases thatαk ∈ Q/2 + iR by a contourC which approaches

2Q+ iR near infinity, and passes the real axis in the interval(3Q/2, 2Q). For other values

of the variablesαk it is defined by analytic continuation.

The reader may notice how closely the structure of the expression in (2.27) resembles the well-

known formulae for the classical6j symbols.

For establishing this relation, the main step is contained in the following integral identity:

{
α1

α3

α2

ᾱ4
| αs

αt

}an
b

= C(α)
∫

C′

du Sb(u− α12s)Sb(u− αs34)Sb(u− α23t)Sb(u− α1t4) (2.28)

×Sb(α1234 − u)Sb(αst13 − u)Sb(αst24 − u)Sb(2Q− u),

where the contourC′ in (2.28) runs between2Q− i∞ and2Q+ i∞, andα is shorthand notation

for the tuple(α1, α2, α3, α4, αs, αt). The prefactorC(α) is explicitly given by the expression

C(α) =Sb(−Q + α1 + α4 + αt)Sb(Q− α1 − α2 + αs)

×Sb(−Q + α2 + α3 + αt)Sb(Q− α2 + α3 − αt)Sb(Q + α2 − α3 − αt) (2.29)

×Sb(Q− α3 + α4 − αs)Sb(Q− α3 − α4 + αs)Sb(Q + α3 − α4 − αs).

The proof of identity (2.28) is nontrivial. It is described in Appendix B, based on recent ad-

vances in the theory of elliptic generalizations of the hypergeometric functions [S01, S03, S08].
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3. Relations to three-dimensional hyperbolic geometry

Our goal in this section is to demonstrate by direct calculation that the b-6j symbols reproduce

the volume of non-ideal tetrahedra in the classical limit. Asecond, perhaps more conceptual

proof of this fact will be outlined in section 5 below.

Similar observations concerning relations between the semiclassical behavior of the noncom-

pact quantum dilogarithm and hyperbolic volumes have previously been made in [Hi1, Hi2, Hi3,

BMS1, BMS2, DGLZ, AK]. It would be interesting to understandthe precise relations to our

result below.

3.1 Volumes of non-ideal tetrahedra

We are considering non-ideal tetrahedra which are completely defined by the collection of six

dihedral anglesη1, . . . , η6. In order to formulate the formula for their volumes from [MY], let

us use the notationAk = eiηk , and define

U(u,A) =Li2(u) + Li2(Ast13u) + Li2(Ast24u) + Li2(A1234u) (3.1)

− Li2(−A12su)− Li2(−As34u)− Li2(−A4t1u)− Li2(−A32tu) ,

whereAijk := AiAjAk,Aijkl := AiAjAkAl, along with

∆(A) = logAsAt + logA2A4 + logA1A3 (3.2)

+ ∆̃(As, A1, A2) + ∆̃(As, A3, A3) + ∆̃(At, A1, A4) + ∆̃(At, A2, A3) ,

where

∆̃(A1, A2, A3) = −1

2

(
Li2(−A1A2A

−1
3 ) + Li2(−A1A

−1
2 A3) + Li2(−A−1

1 A2A3)

+ Li2(−A−1
1 A−1

2 A−1
3 ) + log2A1 + log2A2 + log2A3

)
.

The following formula was found in [MY, Theorem 2]

Vol(A) =
1

2
Im
[
U(u+, A) + ∆(A)

]
= −1

2
Im
[
U(u−, A) + ∆(A)

]
, (3.3)

whereu± are the two roots of the equation

dU(u,A)

du
= −2πi

u
. (3.4)

It can be shown [MY] that equation (3.4) is a quadratic equation which has two solutionsu±
which are pure phase,|u±| = 1.
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3.2 Semiclassical limit

In the following we will assume thatαk ∈ R, 0 < αk < Q/2. In order to study the quasi-

classical limit of (2.27) let us write the right hand side of (2.27) in the form

I := E(α)

∫

C

du I(a, b; u) . (3.5)

The integrandI(a, b; u) may be written as

I(a, b; u) =
∏4

i=1 Sb(ai + u)

Sb(−Q + u)
∏3

i=1 Sb(Q− bi + u)
du, (3.6)

where

a ≡ [a1, a2, a3, a4] = [−αs − α1 − α2,−αs − α3 − α4,−αt − α1 − α4,−αt − α2 − α3],

b ≡ [b1, b2, b3] = [αs + αt + α1 + α3, αs + αt + α2 + α4, α1 + α2 + α3 + α4]. (3.7)

The quasi-classical limit ofI(a, b; u) is easily determined with the help of formula (A.17) in

Appendix A. In order to write the result in an convenient formlet us reparameterize variables

e−2πibαk+πi ≡ Ak , k ∈ {1, 2, 3, 4, s, t} .

Introducing the integration variablesv := 2πb(u−Q/2) we get an integral of the form

I = D(α)

∫

C−Q/2

dv

2πb
J (a, b; v) (3.8)

whose integrandJ (a, b; v) has quasi-classical asymptotics

J (a, b; v) = exp

(
1

2πb2
U(eiv, A)

)(
1 +O(b2)

)
, (3.9)

with U(eiv, A) given by the formula (3.1). The quasiclassical asymptoticsof the prefactor in

(3.8) is

Dcl(A) = exp

(
1

2πib2

(
∆(A)− 5

3
π2
))

, (3.10)

where∆(A) was defined in (3.2) above.

Now we are ready to perform the saddle-point approximation for the integral (3.5). The

saddle points are the solutions of the equation (3.4). The values of the b-6j at these points are

exp

(
1

2πib2
W±(A)

)
, where W±(A) = U(z±, A) + ∆(A)− 5

3
π2 + 2πi log u±.

Sinceu± = e±πiφ, φ ∈ R as noted above, we find that

W±(A) = U(z±, A) + ∆(A)− 5

3
π2 ∓ 2π2φ. (3.11)

Taking the imaginary part of (3.11) one sees that we are getting the volume of a hyperbolic

tetrahedron (3.3).
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4. Relation to Liouville theory and the representation theory of Diff(S1)

In this section we want to explain that the normalization leading to the definition of the b-6j

symbols is also very natural from the point of view of Liouville theory. This is closely related to

the interpretation of b-6j symbols as6j symbols for the the infinite-dimensional groupDiff(S1).

4.1 Fusion kernel

Recall that the fusion kernel is usually defined in terms of the conformal blocks appearing in

the holomorphically factorized form of the four-point functions,

〈 Vα4
(z4, z̄4)Vα3

(z3, z̄3)Vα2
(z2, z̄2)Vα1

(z1, z̄1) 〉 =

=

∫

Q/2+iR
dαs C(α4, α3, αs)C(Q− αs, α2, α1)F (s)

αs
(A|Z)F (s)

αs
(A|Z̄) (4.1)

=

∫

Q/2+iR
dαt C(α4, αt, α1)C(Q− αt, α3, α2)F (t)

αt
(A|Z)F (t)

αt
(A|Z̄) (4.2)

whereA = (α1, α2, α3, α4), Z = (z1, z2, z3, z4), and

C(α1, α2, α3) = (πµγ(b2)b2−2b2)
1

b
(Q−α1−α2−α3)× (4.3)

× Υ0Υ(2α1)Υ(2α2)Υ(2α3)

Υ(α1 + α2 + α3 −Q)Υ(α1 + α3 − α2)Υ(α1 + α2 − α3)Υ(α2 + α3 − α1)
,

hereµ is the so-called cosmological constant in Liouville field theory andγ(x) = Γ(x)/Γ(1−
x). We also usedΥ(x) = (Γb(x)Γb(Q− x))−1, Υ0 =

dΥ(x)
dx

|x=0 where the functionΓb(x) is the

Barnes double Gamma function. Appendix A lists the definition and the relevant properties of

Γb(x).

The first expression (4.1) for the four-point functions represents the operator product expan-

sion of the fieldsVα2
(z2, z̄2) andVα1

(z1, z̄1), while the second expression (4.2) represents the

operator product expansion of the fieldsVα3
(z3, z̄3) andVα2

(z2, z̄2). The equality of the two

expressions (4.1) and (4.2) follows from the validity of therelations

F (s)
αs

(A|Z) =

∫

Q/2+iR
dαt Fαsαt

[
α3

α4

α2

α1

]
F (t)

αt
(A|Z) , (4.4)

which were established in [T01]. The following formula was found in [PT1, T01],

Fαsαt

[
α3

α4

α2

α1

]
=

N(αs, α2, α1)N(α4, α3, αs)

N(αt, α3, α2)N(α4, αt, α1)

{
α1

α3

α2

α4
| αs

αt

}
PT
, (4.5)

where

N(α3, α2, α1) = (4.6)

=
Γb(2Q− 2α3)Γb(2α2)Γb(2α1)

Γb(2Q− α1 − α2 − α3)Γb(Q− α1 − α2 + α3)Γb(α1 + α3 − α2)Γb(α2 + α3 − α1)
.
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4.2 Unitary normalization

The expressions (4.1) and (4.2) strongly suggest to redefinethe conformal blocks by absorbing

the three-point functionsC(α3, α2, α1) into the definition,

G(s)
αs
(A|Z) :=

(
C(α4, α3, αs)C(Q− αs, α2, α1)

) 1

2F (s)
αs

(A|Z) ,

G(t)
αt
(A|Z) :=

(
C(α4, αt, α1)C(Q− αt, α3, α2)

) 1

2F (t)
αt
(A|Z) .

(4.7)

This corresponds to normalizing the conformal blocks associated to the three-punctured sphere

in such a way that their scalar product is always unity. This normalization may be called the

unitary normalization. We then have

〈Vα4
(z4, z̄4)Vα3

(z3, z̄3)Vα2
(z2, z̄2)Vα1

(z1, z̄1) 〉 = (4.8)

=

∫

Q

2
+iR

dαs G(s)
αs
(A|Z)G(s)

αs
(A|Z̄) =

∫

Q

2
+iR

dαt G(t)
αt
(A|Z)G(t)

αt
(A|Z̄) ,

the second equation being a consequence of the unitarity of the change of basis

G(s)
αs
(A|Z) =

∫

Q/2+iR
dαt Gαsαt

[
α3

α4

α2

α1

]
G(t)
αt
(A|Z) . (4.9)

The normalized fusion coefficientsGαsαt

[
α3

α4

α2

α1

]
are related to theFαsαt

[
α3

α4

α2

α1

]
as

Gαsαt

[
α3

α4

α2

α1

]
=
√

C(α4,α3,αs)C(Q−αs,α2,α1)
C(α4,αt,α1)C(Q−αt,α3,α2)

Fαsαt

[
α3

α4

α2

α1

]
. (4.10)

The fusion coefficientsGαsαt

[
α3

α4

α2

α1

]
have a simple expression in terms of the b-6j symbols,

Gαsαt

[
α3

α4

α2

α1

]
=
√

M(αt)
M(αs)

{
α1

α3

α2

α4

αs

αt

}
b
. (4.11)

Indeed, formula (4.11) is a straightforward consequence ofequations (4.10), (4.5) and (2.18)

above.

4.3 6j symbols ofDiff(S1)

It is known that Liouville theory is deeply related to the representation theory of the group

Diff(S1) of diffeomorphisms of the unit circle [T08]. The operator product expansion from

conformal field theory leads to the definition of a suitable generalization of the tensor product

operation for representations of infinite-dimensional groups likeDiff(S1). One may therefore

interpret the chiral vertex-operators from conformal fieldtheory as analogs of the Clebsch-

Gordan maps, and the fusion coefficients as analog of6j-symbols [MS, T01, T08].

A similar issue arises here as pointed out above in our discussion of the modular double: To

find particularly natural normalization conditions. The normalization defined in (4.7) above,
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while being natural from the physical point of view, is not a direct counterpart of the normal-

ization condition used to define the6j symbols of the modular double above. Such a normal-

ization condition can naturally be defined by requiring invariance under the Weyl-reflections

αi → Q− αi. Due to the factorsΥ(2αi) in the definition ofC(α3, α2, α1), the symmetry under

αi → Q− αi is spoiled by the change of normalization (4.7).

However, it is easy to restore this symmetry by replacing thenormalization factor

C(α3, α2, α1) entering the definition (4.7) by

D(α1, α2, α3) =
|Γb(2α1)Γb(2α2)Γb(2α3)|−2

Υ(2α1)Υ(2α2)Υ(2α3)
C(α3, α2, α1) .

ReplacingC by D in (4.7) leads to the definition of normalized conformal blocks K(s)
αs (A|Z)

andK(t)
αt (A|Z) which can be interpreted as analogs of invariants in tensor products of four

representations ofDiff(S1). The kernel appearing in the relation

K(s)
αs
(A|Z) =

∫

Q/2+iR
dαt

{
α1

α3

α2

α4

αs

αt

}
Diff(S1)

K(t)
αt
(A|Z) . (4.12)

is naturally interpreted as an analog of the6j symbols forDiff(S1). It coincides exactly with

the b-6j symbols,
{

α1

α3

α2

α4

αs

αt

}
Diff(S1)

=
{

α1

α3

α2

α4

αs

αt

}
b
. (4.13)

as can easily be checked by straightforward calculations.

5. Application to two-dimensional quantum hyperbolic geometry

It is known that the Racah-Wigner symbols of the modular double play an important role when

the quantum Teichmüller theory [Fo97, Ka98, CF99] is studied in the length representation

[T03, T05]. Having fixed a particular normalization in our definition of the b-6j symbols above

naturally leads to question what it corresponds to in this context. We are going to show that the

definition of the b-6j symbols corresponds to the quantization of a particular choice of Darboux-

coordinates for the classical Teichmüller spaces. The Teichmüller spacesT (C) are well-known

to be related to a connected component in the moduli space of flat SL(2,R)-connections on

Riemann surfaces. Natural Darboux coordinates for this space have recently been discussed in

[NRS].

The quantization of the Teichmüller spaces will be discussed in terms of the Darboux coor-

dinates of [NRS] in a self-contained manner in [TeVa]. In thefollowing we will collect some

relevant observations that can fairly easily be extracted from the existing literature.
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5.1 Classical Teichm̈uller theory of the four-holed sphere

To be specific, let us restrict attention to four-holed spheresC0,4. The holes are assumed to be

represented by geodesics with lengthsL = (l1, . . . , l4). There are three simple closed curves

γs, γt, andγu encircling pairs of points(z1, z2), (z2, z3) and (z1, z3), respectively. A set of

useful coordinate functions are defined in terms of the hyperbolic cosinesLσ = 2 cosh lσ
2

,

σ ∈ {s, t, u}, of the geodesic length functionslσ onT0,4 ≡ T (C0,4). lσ is defined as the length

of the geodesicγσ, defined by means of the constant negative curvature metric onC0,4.

The well-known relations between Teichmüller spacesT (C) and the moduli spacesMG(C)

of flatG = SL(2,R)-connections on Riemann surfaces imply that the geodesic length functions

Lσ are related to the holonomiesgσ alongγσ asLσ = −Tr(gσ). This allows us to use the

description given in [NRS], which may be briefly summarized as follows. The structure of

MG(C0,4) as an algebraic variety is expressed by the fact that the three coordinate functions

Ls, Lt andLu satisfy one algebraic relation of the formPL(Ls, Lt, Lt) = 0. The Poisson

bracket{Lσ1
, Lσ2

} defined by the Weil-Petersson symplectic form is also algebraic in the length

variablesLσ, and can be written elegantly in the form

{Ls , Lt } =
∂

∂Lu
PL(Ls, Lt, Lt) . (5.1)

As shown in [NRS] one may representLs, Lt andLu in terms of Darboux-coordinatesls andks
which have Poisson bracket{ls, ks} = 2. The expressions forLs andLt are, in particular,

Ls = 2 cosh(ls/2) , (5.2)

Lt(L
2
s − 4) = 2(L2L3 + L1L4) + Ls(L1L3 + L2L4) + 2 cosh(ks)

√
c12(Ls)c34(Ls) ,

whereLi = 2 cosh li
2
, andcij(Ls) is defined as

cij(Ls) = L2
s + L2

i + L2
j + LsLiLj − 4 (5.3)

= 2 cosh
ls+li+lj

4
2 cosh

ls+li−lj
4

2 cosh
ls−li+lj

4
2 cosh

ls−li−lj
4

.

Together with a similar formula forLu, these expressions ensure that both the algebraic relation

PL(Ls, Lt, Lt) = 0 and the Poisson structure (5.1) are satisfied. These Darbouxcoordinates are

identical to the Fenchel-Nielsen length-twist coordinates well-known in hyperbolic geometry.2

Similar Darboux coordinates(lt, kt) and(lu, ku) can be associated to the curvesγt andγu,

respectively. The change of coordinates between the Darboux-coordinates(ls, ks) and(lt, kt) is

represented by a generating functionSst
L (ls, lt) such that

∂

∂ls
Sst
L (ls, lt) = −ks ,

∂

∂lt
Sst
L (ls, lt) = kt . (5.4)

2This can be inferred from [ALPS]. We thank T. Dimofte for pointing this reference out to us
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Other natural sets of Darboux-coordinates(lσ, k
′
σ) can be obtained by means of canonical

transformationsk′σ = kσ + f(lσ). By a suitable choice off(σ), one gets Darboux coordinates

(ls, k
′
s) in which the expression forLt in (5.2) is replaced by

Lt(L
2
s − 4) = 2(L2L3 + L1L4) + Ls(L1L3 + L2L4) (5.5)

+ 2 cosh ls+l1−l2
4

2 cosh ls+l2−l1
4

2 cosh ls+l3−l4
4

2 cosh ls+l4−l3
4

e+k′s

+ 2 cosh ls+l1+l2
4

2 cosh ls−l1−l2
4

2 cosh ls+l3+l4
4

2 cosh ls−l3−l4
4

e−k′s .

The Darboux coordinates(ls, k′s) are equally good to represent the Poisson structure of

MG(C0,4), but they have the advantage that the expressions forLσ do not contain square-roots.

This will later turn out to be important.

5.2 The quantization problem

The quantum Teichmüller theory [Fo97, Ka98, CF99, CF00] constructs a non-commutative

algebraAb deforming the Poisson-algebra of geodesic length functions on Teichmüller space.

In the so-called length representation [T03, T05] one may construct natural representations of

this algebra associated to pants decompositions of the Riemann surface under consideration.

For the case under consideration, the aim is to construct a one-parameter family of non-

commutative deformationsAb of the Poisson-algebra of functions onT0,4 ≡ T (C0,4) which has

generatorsLs, Lt, Lu corresponding to the functionsLσ, σ ∈ {s, t, u}, respectively. There is

one algebraic relation that should be satisfied among the three generatorsLs, Lt, Lu.

Natural representationsπσ, σ ∈ {s, t, u}, of Ab by operators on suitable spaces of functions

ψσ(lσ) can be constructed in terms of the quantum counterparts of the Darboux variableslσ, kσ,

now represented by the operatorslσ, kσ defined as

lσ ψσ(lσ) := lσ ψσ(lσ) , ks ψσ(lσ) := 4πb2
1

i
∂

∂ls
ψσ(lσ) . (5.6)

The operatorπσ(Lσ) acts as operator of multiplication in the representationπσ, πσ(Lσ) ≡
2 cosh(lσ)/2. The remaining two generators ofAb are then represented as difference operators.

Considering the representationπs, for example, we will find thatπs(Lt) can be represented in

the form

πs(Lt)ψs(ls) =
[
D+(ls)e

+ks +D0(ls) +D−(ls)e
−ks
]
ψs(ls) . (5.7)

This formula should of course reproduce (5.2) or (5.5) in theclassical limit, but due to ordering

issues and other possible quantum corrections it is a priorifar from obvious how to define the

coefficientsDǫ(ls), ǫ = −, 0,+.
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Note, in particular, that the requirement thatπs(Ls) acts as multiplication operator leaves a

large freedom. A gauge transformation

ψs(ls) = eiχ(ls)ψ′
s(ls) , (5.8)

would lead to a representationπ′
s of the form (5.7) withks replaced by

k′s := ks + 4πb2 ∂lsχ(ls) . (5.9)

This is nothing but the quantum version of a canonical transformation(ls, ks) → (ls, ks+f(ls)).

The representationπ′
s(Lt) may then be obtained from (5.7) by replacingDǫ(ls) → Eǫ(ls) with

Eǫ(ls) equal toei(χ(ls−4ǫiπb2)−χ(ls))Dǫ(ls) for ǫ = −1, 0, 1. Fixing a particular set of Darboux

coordinates corresponds to fixing a particular choice of thecoefficientsDǫ(ls) in (5.7).

5.3 Transitions between representation

The transition between any pair of representationsπσ1
andπσ2

can be represented as an integral

transformation of the form

ψσ1
(lσ1

) =

∫
dlσ2

Aσ1σ2

L (lσ1
, lσ2

)ψσ2
(lσ2

) . (5.10)

The relations (
πs(kt)ψs

)
(ls) = 4πb2

∫
dlt A

st
L (ls, lt)

1

i
∂

∂lt
ψt(lt) ,

4πb2
1

i
∂

∂ls
ψs(ls) =

∫
dlt A

st
L (ls, lt)

(
πt(ks)ψt

)
(lt) ,

(5.11)

describing the quantum change of Darboux coordinates are direct consequences.

It is important to note that the problem to find the proper quantum representation of the

generatorsπσ(Lσ′) is essentially equivalent to the problem to find the kernelsAσ1σ2

L (lσ1
, lσ2

) in

(5.10). Indeed, the requirement thatπσ(Lσ) ≡ 2 cosh(lσ)/2 implies difference equations for the

kernelAσ1σ2

L (lσ1
, lσ2

) such as

πσ1
(Lσ2

) · Aσ1σ2

L (lσ1
, lσ2

) = 2 cosh(lσ2
/2)Aσ1σ2

L (lσ1
, lσ2

) . (5.12)

The difference operator on the left is of course understood to act on the variablelσ1
only. Under

certain natural conditions one may show that the differenceequations (5.12) determine the

kernelsAσ1σ2

L (lσ1
, lσ2

) uniquely. Conversely, knowingAσ1σ2

L (lσ1
, lσ2

), one may show [TeVa]

that it satisfies relations of the form (5.12), and thereby deduce the explicit form ofπσ1
(Lσ2

).

Considering the generalization to Riemann spheresC0,n with more than four holes it is natural

to demand that the full theory can be built in a uniform mannerfrom the local pieces associated
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to the four-holed spheres that appear in a pants decomposition of C0,n. This leads to severe

restrictions on the kernelsAst
L (ls, lt) known as the pentagon- and hexagon equations [T05]. We

claim that the resulting constraints determineAst
L (ls, lt) essentially uniquely up to changes of

the normalization associated to pairs of pants.

Solutions of these conditions are clearly given by the b-6j-symbols. It is important to note,

however, that a change of normalization of the form (2.18) will be equivalent to a gauge trans-

formation (5.8). This means that different normalizationsof the b-6j symbols are in one-to-one

correspondence with choices of Darboux-coordinates(l′σ, k
′
σ) obtained from(lσ, kσ) by canon-

ical transformations of the forml′σ = lσ, k′σ = kσ + f(lσ). Only a very particular normalization

for the b-6j symbols can correspond to the quantization of the Fenchel-Nielsen coordinates.

5.4 Quantization of Fenchel-Nielsen coordinates

The main observation we want to make here may be summarized inthe following two state-

ments:

1) The geodesic length operators can be represented in termsof the quantized Fenchel-Nielsen

coordinates as follows:

πcan
s (Ls) = 2 cosh(ls/2) , (5.13a)

πcan
s (Lt) =

1

2(cosh ls − cos 2πb2)

(
2 cosπb2(L2L3 + L1L4) + Ls(L1L3 + L2L4)

)

+
1√

2 sinh(ls/2)
e+ks/2

√
c12(Ls)c34(Ls)

2 sinh(ls/2)
e+ks/2

1√
2 sinh(ls/2)

(5.13b)

+
1√

2 sinh(ls/2)
e−ks/2

√
c12(Ls)c34(Ls)

2 sinh(ls/2)
e−ks/2

1√
2 sinh(ls/2)

,

whereLs = 2 cosh(ls/2) ≡ πs(Ls) andcij(Ls) was defined in (5.3). The formulae defining the

other representationsπt andπu are obtained by simple permutations of indices.

2) The kernel describing the transition between representationπs andπt is given in terms of the

b-6j symbols as

Ast
L (ls, lt) =

√
M(αt)
M(αs)

{
α1

α3

α2

α4

αs

αt

}
b

if αi =
Q

2
+ i

li
4πb

, (5.14)

for i = 1, 2, 3, 4, s, t. The formulae for other pairs of representations are again found by per-

mutations of indices.

The relations between Liouville theory and quantum Teichm¨uller theory found in [T03] allow

one to shortcut the forthcoming self-contained derivation[TeVa] of the claims above. In [T03] it

was found in particular that the conformal blocksF (s)
αs (A|Z) represent particular wave-functions
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in some representationπLiou
s ,

ψs(ls) = F (s)
αs

(A|Z) if αs =
Q

2
+ i

ls
4πb

. (5.15)

This relation fixes a specific representationπLiou
s . The generatorLt is represented inπLiou

s as

in (5.7) with coefficientsDLiou
ǫ (ls) that can be extracted from [AGGTV, DGOT]3. Redefining

the conformal blocks as in (4.7) is equivalent to a gauge transformation (5.8) which transforms

the representationπLiou
s to the representation denotedπcan

s . It is straightforward to calculate

the coefficientsDǫ(ls) fromDLiou
ǫ (ls) using (4.7) and (4.3). A related observation was recently

made in [IOT]. The case of the one-holed torus was discussed along similar lines in [DiGu].

Other normalizations for the b-6j symbols will correspond to different choices of Darboux-

coordinates. In the normalization used in [DGOT], for example, one would find

π′
s(Lt) =

1

2(cosh ls − cos 2πb2)

(
2 cosπb2(L2L3 + L1L4) + Ls(L1L3 + L2L4)

)

+
4

sinh(ls/2)
e+k′s/2

cosh ls+l1−l2
4

cosh ls+l2−l1
4

cosh ls+l3−l4
4

cosh ls+l4−l3
4

sinh(ls/2)
e+k′s/2

+
4

sinh(ls/2)
e−k′s/2

cosh ls+l1+l2
4

cosh ls−l1−l2
4

cosh ls+l3+l4
4

cosh ls−l3−l4
4

sinh(ls/2)
e−k′s/2 .

As the analytic properties of the coefficientsDǫ(ls) in (5.7) are linked with the analytic prop-

erties of the kernelsAst
L (ls, lt) via (5.12), it is no surprise that the kernelsA′st

L (ls, lt) associated

to the representationπ′
s have much better analytic properties thanAst

L (ls, lt) as given by (5.14).

One may see see these analytic properties as a profound consequence of the structure of the

moduli spacesMG(C) as algebraic varieties.

5.5 Classical limit

The classical counterpart of the expression (5.13b) is found by replacingls andks by commuting

variablesls andks, respectively, and sendingb→ 0. The formulae for the operatorsπcan
s (Ls) and

πcan
s (Lt) given above are thereby found to be related to the formulae (5.2) forLs andLt in terms

of the Darboux coordinatesls andks for T0,4. We conclude that the representationπcan
s is the

representation associated to the Darboux coordinates discussed in [NRS]. The representation

π′
s reproduces (5.5).

Furthermore, by analyzing the classical limit of the relations the relations (5.11) with the help

of the saddle-point method one may see that the functionSst
L (ls, lt) which describes the leading

semiclassical asymptotics of the kernelAst
L (ls, lt) via

Ast
L (ls, lt) = exp

(
1

4πib2
Sst
L (ls, lt)

)(
1 +O(b2)

)
, (5.17)

3Our generatorLt corresponds to2 cos(πbQ)L(γ2,0) in [DGOT].
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must coincide with the generating function for the canonical transformation between the

Darboux-coordinates(ls, ks) and(lt, kt). As this function is known [NRS] to be equal to the

volume of the hyperbolic tetrahedron specified by the lengths(l1, l2, l3, l4, ls, lt), we have found

a second proof of the statement that the semiclassical limitof the b-6j symbols is given by the

volume of such tetrahedra.

6. Applications to supersymmetric gauge theories

6.1 Three-dimensional gauge theories on duality walls

Recently remarkable relations between a certain classS of N = 2 supersymmetric four-

dimensional gauge theories and two-dimensional conformalfield theories have been discovered

in [AGT]. One of the simplest examples for such relations arerelations between the partition

functions of certain gauge theories onS4 [Pe] and physical correlation functions in Liouville

theory. The partition function of theN = 2 SYM theory withSU(2) gauge group andNf = 4

hypermultiplets, for example, has a very simple expressionin terms of the four-point func-

tion (4.1) in Liouville theory. The partition function of the S-dual theory would be given by

the four-point function (4.2), and the equality between thetwo expressions [T01] represents a

highly nontrivial check of theS-duality conjecture.

Interesting generalizations of such relations were recently suggested in [DrGG]: one may

consider two four-dimensional theories from classS on the upper- and lower semispheres of

S4, respectively, coupled to a three-dimensional theory on the defectS3 separating the two

semi-spheres. Choosing the two theories to be theNf = 4 theory and itsS-dual, for example,

the arguments from [DrGG] suggest that the partition function of the full theory should be given

by an expression of the form
∫

(Q/2+iR)2
dαsdαt (G(s)

αs
(A|Z))∗Gαsαt

[
α3

α4

α2

α1

]
G(t)
αt
(A|Z ′) , (6.1)

using the notations from Section 4. The interpretation in terms of two four-dimensional theories

coupled by a defect suggests [DrGG] that the kernelGαsαt

[
α3

α4

α2

α1

]
in (6.1) can be interpreted as

the partition function of a three-dimensional supersymmetric gauge theory onS3 which repre-

sents a boundary condition for both of the four-dimensionalgauge theories on the semi-spheres

of S4.

The identification of the three-dimensional gauge theoriesliving on the duality walls may be

seen as part of a larger program [TY, DiGu, DiGG] which aims todevelop a three-dimensional

version of the relations discovered in [AGT]. Roughly speaking, the idea is that there should

exist a duality between certain families of three-dimensional supersymmetric gauge theories and
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Chern-Simons theories on suitable three-manifolds. A procedure was described in [DiGG] for

the geometric construction of relevant three-dimensionalgauge theories from simple building

blocks associated to ideal tetrahedra.

In the simpler case where theNf = 4 theory is replaced by theN = 4-supersymmetric

gauge theory, an ansatz for the relevant three-dimensionaltheory was suggested by the work

[GW], where this theory was calledT [SU(2)]. In subsequent work [HLP, HHL2] it was explicit

checked that the analog of the kernelGαsαt
for this case is given by the partition function

of the T [SU(2)] theory. A natural mass-deformation exists for theT [SU(2)]-theory, and it

was also shown in [HLP, HHL2] that its partition function would essentially coincide with the

counterpart of the kernel which would appear in the case of the so-calledN = 2∗-theory rather

than theNf = 4-theory. However, so far no three-dimensional gauge theorywhich would have

the b-6j symbols as its partition function has been identified yet.

6.2 Partition functions of three-dimensional supersymmetric gauge theories

Let us briefly review the general form of the partition functions for3d supersymmetric field

theories. According to [HHL1, HHL2], following [KWY], the partition function for3d N = 2

SYM theory with gauge groupG and flavor symmetry groupF defined on a squashed three

sphere has the form

Z(f) =

∫ i∞

−i∞

rankG∏

j=1

duj J(u)Z
vec(u)

∏

I

Zchir
ΦI

(f, u). (6.2)

Herefk are the chemical potentials for the flavor symmetry groupF while uj-variables are

associated with the Weyl weights for the Cartan subalgebra of the gauge groupG. For Chern-

Simons theories one hasJ(u) = e−πik
∑rankG

j=1 u2
j , wherek is the level of CS-term, and for SYM

theories one hasJ(u) = e2πiλ
∑

rankG
j=1

uj , whereλ is the Fayet-Illiopoulos term. There are two

different contributions to the partition function (6.2):Zvec(u) which comes from vector super-

fields andZchir
ΦI

(f, u) arising from the matter fields. All these terms are expressedin terms of

noncompact quantum dilogarithms. The contribution of vector superfield forG = SU(2) which

we are interested in coincides with the Plancherel measure (2.16) introduced above,

Zvec(u) = M(Q/2 + iu) , (6.3)

as follows from [HHL2, Equation (5.33)] using (A.15) and (A.16). For each chiral superfield

ΦI the contribution to the partition function isSb(α) whereα is some linear combination of

theR-charge and mass parameters which can be derived from the group representation of the

matter content (see, for example, [DSV]).
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6.3 The b-6j symbols as a partition function

Although expression (2.28) for b-6j symbol resembles the partition functions of3d SYM the-

ory withU(1) gauge group, it cannot easily be interpreted as partition function for some three-

dimensional gauge theory since the parameters entering itsexpression are subject to the con-

dition that their sum equals2Q, while the parameters entering partitions functions are not re-

stricted.

In the course of the derivation of the new formula (2.28) for the b-6j symbols, as described in

Appendix B.2, we have found a few other integral representations for these objects, including

A1I

( Q−αt−α1−α4

2
+ αs

3Q−αt−α1−α4

2
− αs

Q+α1−α4+αt

2
− α3

−Q−α1+α4+αt

2
+ α2

Q−α1+α4+αt

2
− α2

−Q+α1−α4+αt

2
+ α3

)
, (6.4)

where we define the integralI(µ) as

I(µ) =
1

2

∫ i∞

−i∞

∏6
i=1 Sb(µi ± u)

Sb(±2u)
du , [µ] =

[
µ1 µ2 µ3

µ4 µ5 µ6

]
, (6.5)

and the prefactor in (6.4) is explicitly given as

A1 =
Sb(α2 + α3 − αt)Sb(α1 − α2 + αs)Sb(−Q + α1 + α4 + αt)

Sb(±(Q− 2αt))Sb(α2 + αt − α3)Sb(α3 + αt − α2)Sb(α3 − α4 + αs)
.

We would like to point out that this expression, as opposed to(2.28), admits an interpretation

as a partition function of the form (6.2) for a certain three-dimensional SYM theory. Namely,

the expression (6.4) without coefficientA1 can be interpreted as the partition function of three-

dimensionalN = 2 SYM theory defined on a squashed three-sphere withSU(2) gauge group

and6 quarks in the fundamental representation of the gauge group. The flavor symmetry group

is SU(6) × U(1)A × U(1)R. The total axial mass ismA = 1
6

∑6
i=1 µ6 while the masses of 6

chiral multiplets then ismi = µi − 1
6

∑6
k=1 µk, i = 1, . . . , 6 (constrained to

∑6
i=1mi = 0).

We also take theR-charge in UV to be 0. Considering (6.4) as the partition function for 3d

N = 2 SYM theory one obtains a whole series of Seiberg dualities which can be derived from

[DSV] by takingN = 1 there. Keeping in mind the coefficientA1 in (6.4) one sees that the

corresponding theory has8 more singlet chiral fields and the flavor symmetry group is broken

toU(1)5 × U(1)A × U(1)R.

We would also like to remark that the identification of the b-6j symbols as partition functions

works straightforwardly only for the b-6j symbol
{

α1
α3

α2
α4

| αs
αt

}an
b

. The square-roots appearing in

the expression for
{

α1

α3

α2

α4
| αs
αt

}
b

seem to prevent a similar interpretation.
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6.4 Applications to the geometric construction of three-dimensional gauge theories?

It is interesting to observe that the example of (mass-deformed)T [SU(2)] considered explicitly

in [HLP, HHL2], after applications of the same type of identities, can be brought to3d N = 2

CS theory withSU(2) gauge group at level1, 4 quarks and some singlet chiral fields. The above

statement can be derived from the following integral identity [SV11]

∫ i∞

−i∞

Sb(Q/4− µ+m/2± z)

Sb(3Q/4− µ−m/2± z)
e4πiξzdz (6.6)

=
1

2
e2πi(ξ2−(Q

4
+m

2
)2+µ2)Sb(Q/2−m± 2ξ)

∫ i∞

−i∞

∏4
i=1 Sb(

Q
4
+ m

2
± µ± ξ ± y)

Sb(±2y)
e−2πiy2dy .

These two observations suggest that there may be an analog ofthe geometric construction of

three-dimensional supersymmetric gauge theories discussed in [DiGG] which is based on build-

ing blocks withSU(2) gauge symmetry rather thanU(1) gauge symmetry. Indeed, the two

three-dimensional partition functions discussed above can be identified with the kernels for the

fusion moveA and for the modular transformation of the one-punctured torusS, respectively.

Together with the braiding, the two kernels above generate arepresentation of the modular

groupoid [T08]. This is what one needs to apply standard methods for the combinatorial quan-

tization of Chern-Simons theories to the case ofSL(2,R)-Chern-Simons theory. It is also

suggestive to point out that the number of quarks of the theory whose partition function gives

(6.4) nicely matches with the number of angles defining the generic hyperbolic tetrahedron.

We take these observations above as a hint that three-dimensionalN = 2 SYM theory with

SU(2) gauge group and6 quarks plus some number of singlets could be associated to the non-

ideal hyperbolic tetrahedron in a future generalization ofthe constructions in [DiGG], where

the triangulations of three-manifold by ideal tetrahedra are replaced by triangulations by non-

ideal tetrahedra. This raises several interesting questions which should be clarified, including,

in particular, the interpretation of normalization changes for b-6j symbols (2.18) from the point

of view of supersymmetric gauge theories.

AcknowledgementsWe would like to thank T. Dimofte, S. Gukov, R. Kashaev and S.

Shatashvili for useful discussions on related topics.



22

A. Special functions

A.1 The function Γb(x)

The functionΓb(x) is a close relative of the double Gamma function studied in [Br]. It can be

defined by means of the integral representation

log Γb(x) =

∞∫

0

dt

t

(
e−xt − e−Qt/2

(1− e−bt)(1− e−t/b)
− (Q− 2x)2

8et
− Q− 2x

t

)
. (A.1)

Important properties ofΓb(x) are

functional equation Γb(x+ b) =
√
2πbbx−

1

2Γ−1(bx)Γ(x). (A.2)

analyticity Γb(x) is meromorphic,

poles:x = −nb −mb−1, n,m ∈ Z
≥0. (A.3)

A useful reference for further properties is [Sp].

A.2 Double Sine function

The special functions used in this note are all build from theso-called double Sine-function.

This function is closely related to the special function here denotedeb(x), which was introduced

under the name ofquantum dilogarithmin [FK2]. These special functions are simply related

to the Barnes double Gamma function [Br], and were also introduced in studies of quantum

groups and integrable models in [F2, Ru, Wo, V].

In the strip|Im(x)| < Q
2

, functioneb(x) has the following integral representation

eb(x) = exp

{
−
∫

R+i0

dt

4 t

e−2itx

sinh bt sinh t
b

}
, (A.4)

where the integration contour goes around the polet = 0 in the upper half–plane. The function

sb(x) is then related toeb(x) as follows

sb(x) = e
iπ
2
x2+ iπ

24
(b2+b−2)eb(x) . (A.5)

The analytic continuation ofsb(x) to the entire complex plane is a meromorphic function with
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the following properties

functional equation
sb(x+

i
2
b±1)

sb(x− i
2
b±1)

= 2 cosh(πb±1x) , (A.6)

reflection property sb(x) sb(−x) = 1 , (A.7)

complex conjugation sb(x) = sb(−x̄) , (A.8)

zeros / poles (sb(x))
±1 = 0 ⇔ ±x ∈

{
iQ
2
+nb+mb−1;n,m ∈ Z

≥0
}
, (A.9)

residue Res
x=−i Q

2

sb(x) =
i
2π

, (A.10)

asymptotics sb(x) ∼
{
e−

iπ
2
(x2+ 1

12
(b2+b−2)) for |x| → ∞, |arg(x)| < π

2
,

e+
iπ
2
(x2+ 1

12
(b2+b−2)) for |x| → ∞, |arg(x)| > π

2
.

(A.11)

Of particular importance for us is the behavior forb→ 0, which is given as

eb

( v

2πb

)
= exp

(
− 1

2πb2
Li2(−ev)

)(
1 +O(b2)

)
. (A.12)

In our paper we mainly use the special functionSb(x) defined by

Sb(x) := sb(ix− i
2
Q) (A.13)

and has the properties

self–duality Sb(x) = Sb−1(x) , (A.14)

functional equation Sb(x+ b±1) = 2 sin(πb±1x)Sb(x) , (A.15)

reflection property Sb(x)Sb(Q− x) = 1 . (A.16)

The behavior ofSb(x) for b→ 0 is then given as

Sb

( ν

2πb

)
= e−

i
2πb2

( 1
4
ν2−π

2
ν+ 1

6
π2) exp

(
− 1

2πb2
Li2(e

iν)

)(
1 +O(b2)

)
. (A.17)

In terms ofΓb(x) the double Sine-function is given as

Sb(x) =
Γb(x)

Γb(Q− x)
.

A.3 The elliptic Gamma function

The second class of special functions we need here is the elliptic gamma function which ap-

peared implicitly in [Bx] and was introduced in [Ru]

Γ(z; p, q) =

∞∏

i,j=0

1− z−1pi+1qj+1

1− zpiqj
, (A.18)
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satisfying the following properties

symmetry Γ(z; p, q) = Γ(z; q, p) , (A.19)

functional equations Γ(qz; p, q) = θ(z; p)Γ(z; p, q), (A.20)

Γ(pz; p, q) = θ(z; q)Γ(z; p, q) , (A.21)

reflection property Γ(z; p, q) Γ(
pq

z
; p, q) = 1 , (A.22)

zeros z ∈
{
pi+1qj+1; i, j ∈ Z

≥0
}
, (A.23)

poles z ∈
{
p−iq−j ; i, j ∈ Z

≥0
}
, (A.24)

residue Res
z=1

Γ(z; p, q) = − 1

(p; p)∞(q; q)∞
. (A.25)

Hereθ(z; p) is a theta-functionθ(z; p) = (z; p)∞(pz−1; p)∞.

B. Proof of identity (2.28)

B.1 The master integral identity

Let us start from theV -function [S03] which is the example from Spiridonov’ theory of elliptic

hypergeometric integrals [S01, S03]4 defined by

V (s) = κ

∫

T

∏8
i=1 Γ(siz

±1; p, q)

Γ(z±2; p, q)

dz

2πiz
, (B.1)

where
∏8

i=1 si = (pq)2 is the so-called balancing condition and

κ =
(p; p)∞(q; q)∞

2

with (z; q)∞ =
∏∞

i=0(1− zqi). The main building block is the elliptic gamma function defined

in (A.18) above.

Theorem 1. [S03]

V (s) =
∏

1≤i<j≤4

Γ(sisj; p, q)Γ(si+4sj+4; p, q)V (t), (B.2)

where

ti = εsi, i = 1, 2, 3, 4; ti = ε−1si, i = 5, 6, 7, 8,

4From physical point of view this integral is the so-called superconformal index for four-dimensional SQCD

theory withSU(2) gauge group andNf = 4 flavors. The integral transformations forV -function describe the

multiple duality effect for the above theory [SV10].
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and

ε =

√
pq

s1s2s3s4
=

√
s5s6s7s8
pq

.

The integral identities used in this paper will be obtained from (B.2) by limiting procedures

[DS] which reduce the elliptic gamma functions to double Sine functions. First, we reduceV -

function to the level of hyperbolicq-hypergeometric integrals using the reparameterization of

variables

z = e2πiru, si = e2πirµi , i = 1, . . . , 8, p = e2πibr, q = e2πir/b, (B.3)

and the subsequent limitr → 0. In this limit the elliptic gamma function has the following

asymptotics

Γ(e2πirz; e2πirb, e2πir/b) =
r→0

e−πi(2z−b−1/b)/12rSb(z).

Using it in the reduction, one obtains an integral lying on the top of a list of integrals emerg-

ing as degenerations of theV -function (we omit some simple diverging exponential multiplier

appearing in this limit together with−i),

Ih(µ1, . . . , µ8) =
1

2

∫ i∞

−i∞

∏8
i=1 Sb(µi ± u)

Sb(±2u)
du, (B.4)

with the balancing condition
∑8

i=1 µi = 2(b+ b−1). It has the following symmetry transforma-

tion formula descending from the elliptic one

Ih(µ1, . . . , µ8) =
∏

1≤i<j≤4

Sb(µi + µj)
∏

5≤i<j≤8

Sb(µi + µj)Ih(ν1, . . . , ν8), (B.5)

whereνi = µi + ξ, νi+4 = µi+4 − ξ, i = 1, 2, 3, 4, and the parameterξ is

2ξ =
8∑

i=5

µi − b− b−1 = b+ b−1 −
4∑

i=1

µi.

Formula (B.5) will be our main tool in the following.

B.2 Useful corollaries.

For proving the main transformation formula which allows usto get from (2.17) the expression

(2.28) we need following corollaries.

Corollary 1.

I(µ) = Sb(µ5 + µ6)Sb(2Q−
6∑

i=1

µ6)
∏

1≤i<j≤4

Sb(µi + µj)I(ν), (B.6)
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where we define the integralI(µ) as

I(µ) =
1

2

∫ i∞

−i∞

∏6
i=1 Sb(µi ± u)

Sb(±2u)
du. (B.7)

Here we have

[ν1, ν2, ν3, ν4, ν5, ν6] = [µ1 + ξ, µ2 + ξ, µ3 + ξ, µ4 + ξ, µ5 − ξ, µ6 − ξ]

and

2ξ = Q−
4∑

i=1

µi .

Later it will be convenient to write 6 variablesµ in the following way

[µ] =

[
µ1 µ2 µ3

µ4 µ5 µ6

]
.

Corollary 2. :

J(µ, ν) =
3∏

i=1

Sb(µi + ν4)Sb(νi + µ4)I(ρ), (B.8)

with

J(µ, ν) =

∫ i∞

−i∞

4∏

i=1

Sb(µi − u)Sb(νi + u)du, (B.9)

which hasU(1) gauge symmetry, and the balancing condition
∑4

i=1(µi + νi) = 2Q. Here we

have

[ρ1, ρ2, ρ3, ρ4, ρ5, ρ6] = [µ1 + ξ, µ2 + ξ, µ3 + ξ, ν1 − ξ, ν2 − ξ, ν3 − ξ]

and

2ξ = Q− ν4 −
3∑

i=1

µi = −Q + µ4 +

3∑

i=1

νi.

Again it is useful to have the following notation

[µ, ν] =

[
µ1 µ2 µ3 µ4

ν1 ν2 ν3 ν4

]
,

The inversion of Corollary 2 is the following

Corollary 3.

I(ρ) =
∏

1≤i<j≤3

Sb(ρi + ρj)Sb(ρi+3 + ρj+3)J(µ, ν), (B.10)
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and the balancing condition
∑4

i=1 µi + νi = 2Q. Here we have

[
µ1 µ2 µ3 µ4

ν1 ν2 ν3 ν4

]
=

[
ρ1 − x ρ2 − x ρ3 − x Q− ρ456 − x

ρ4 + x ρ5 + x ρ6 + x Q− ρ123 + x

]
,

whereρ123 = ρ1 + ρ2 + ρ3, ρ456 = ρ4 + ρ5 + ρ6, andx is arbitrary.

Corollary 4. :

I(µ) = Sb(2Q−
6∑

i=1

µi)
∏

1≤i<j≤6

Sb(µi + µj)I(Q/2− µ). (B.11)

To get the desired transformation formulas one should use the following asymptotic formulas

when some of the parameters go to infinity

lim
u→∞

e
πi
2
B2,2(u)Sb(u) = 1, for argb < argu < arg1/b+ π,

lim
u→∞

e−
πi
2
B2,2(u)Sb(u) = 1, for argb− π < argu < arg1/b.

By taking different restrictions for the parameters one canget lots of identities from the integral

identity (B.5). Let us take

µ1 → µ1 + µ; µ5 → µ5 − µ

with the following limitµ→ ∞. The left hand-side of (B.5) gives

Ih(µ2, µ3, µ4, µ6, µ7, µ8) =
1

2

∫ i∞

−i∞

∏4
i=2 Sb(µi ± z)Sb(µi+4 ± z)

Sb(±2z)
dz, (B.12)

without any restrictions for parametersµ2, µ3, µ4, µ6, µ7, µ8 and in the right hand-side one needs

to shift the integration variablez → z − µ/2 and afterwards taking the limitµ → ∞ which

gives

∏

2≤i<j≤4

Sb(µi + µj)Sb(µi+4 + µj+4) (B.13)

×
∫ i∞

−i∞
dz Sb(ξ + z + (µ1 + µ5)/2)Sb((µ1 + µ5)/2− ξ − z)

×
4∏

i=2

Sb(µi + ξ − (µ1 + µ5)/2− z)Sb(µi+4 − ξ + (µ1 + µ5)/2 + z)dz,

and2ξ = Q−∑4
i=2 µi.

Inverting now the equality (B.12)=(B.13) one gets Corollary 3. To get Corollary 1 one takes

the limit µ7, µ8 → ∞ such thatµ7 − µ8 = O(1) in (B.5).
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Application of (B.2) twice and thrice gives new integral transformations formulas for (B.1)

while further application of (B.2) does not lead to new integral transformations. It can be shown

[S08]

V (s1, . . . , s8) =
∏

1≤i<j≤8

Γ(sisj; p, q) V

(√
pq

s1
, . . . ,

√
pq

s8

)
, (B.14)

the reduction to the hyperbolic level of which brings to Corollary 4.

In [SV11] other reductions ofV -functions were considered in connections with the so-called

state integral for41 knot [Hi1] and with the kernel ofS-move [T03].

B.3 Derivation of the indentity (2.28)

Let us start from the expression (2.17) and apply Corollary 2taking parameters as

[µ, ν] =

[
Q± (αs − Q

2
) α2 + α4 + αt − Q

2
α2 + α4 − αt +

Q
2

−α4 ± (α3 − Q
2
) Q

2
− α1 − α2 −Q

2
+ α1 − α2

]
,

one gets

A1I

( Q−αt−α1−α4

2
+ αs

3Q−αt−α1−α4

2
− αs

Q+α1−α4+αt

2
− α3

−Q−α1+α4+αt

2
+ α2

Q−α1+α4+αt

2
− α2

−Q+α1−α4+αt

2
+ α3

)
(B.15)

with

A1 =
Sb(α2 + α3 − αt)Sb(α1 − α2 + αs)Sb(−Q + α1 + α4 + αt)

Sb(±(Q− 2αt))Sb(α2 + αt − α3)Sb(α3 + αt − α2)Sb(α3 − α4 + αs)
.

The integral in (B.15) is defined forαk ∈ Q/2 + iR by using a contour̃C that approaches
Q
4
+ iR near infinity, and passes the real axis in(−Q

4
, Q
4
), and for other values ofαk ∈ Q

2
+ iR

by analytic continuation.

Applying Corollary 1 to (B.15) (with the order of parametersas staying in (B.15)) one obtains

A2 I

(
αs +

α3−α2−αt

2
Q− αs +

α3−α2−αt

2
α1 +

αt−α2−α3

2

α4 −Q+ α2+α3+αt

2
Q− α1 +

αt−α2−α3

2
−α4 +

α2+α3+αt

2

)
, (B.16)

defined by the contour̃C and where

A2 =
Sb(α2 + α3 − αt)Sb(−α1 + α2 + αs)Sb(α1 + α4 − αt)Sb(2Q− α3 − α4 − αs)

Sb(±(Q− 2αt))Sb(α3 − α4 + αs)Sb(α3 + α4 − αs)
.

On the next step we apply Corollary 4 to (B.16) and get

A3 I

(
−αs +

Q+α2−α3+αt

2
αs +

−Q+α2−α3+αt

2
−α1 +

Q+α2+α3−αt

2

−α4 +
3Q−α2−α3−αt

2
α1 +

−Q+α2+α3−αt

2
α4 +

Q−α2−α3−αt

2

)
, (B.17)
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with the same contour̃C and

A3 =
Sb(α1 − α2 + αs)Sb(α1 − α4 + αt)Sb(α1 + α4 − αt)

Sb(±(Q− 2αt))Sb(α2 − α3 + αt)Sb(α1 + α2 − αs)Sb(2Q− α1 − α4 − αt)

× Sb(2Q− α1 − α2 − αs)Sb(−α1 + α4 + αt)

Sb(−α3 + α4 + αs)Sb(2Q− α2 − α3 − αt)Sb(α1 + α4 − αt)Sb(−α2 + α3 + αt)
.

Finally, we apply Corollary 3 for (B.17) with slightly permuted parameters (since the integral

hasS6 permutation symmetry over parameters)

A3 I

(
αs +

−Q+α2−α3+αt

2
α1 +

−Q+α2+α3−αt

2
−α4 +

3Q−α2−α3−αt

2

−αs +
Q+α2−α3+αt

2
−α1 +

Q+α2+α3−αt

2
α4 +

Q−α2−α3−αt

2

)
,

together with taking

x = −Q+α2+α3+αt

2
− α4

to get (2.28) which proves the identity (2.28) in the main part of the text.
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