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AbstratThe method for obtaining funtional equations, reently proposed by one of the authors[1℄, is applied to one-loop box integrals needed in alulations of radiative orretions toheavy-quark prodution and Bhabha sattering. We present relationships between theseintegrals with di�erent arguments and box integrals with all propagators being massless.It turns out that funtional equations are rather useful for �nding imaginary parts andperforming analyti ontinuations of Feynman integrals. For the box master integral neededin Bhabha sattering, a new representation in terms of hypergeometri funtions admittingone-fold integral representation is derived. The hypergeometri representation of a masterintegral for heavy-quark prodution follows from the funtional equation.PACS numbers: 02.30.Gp, 02.30.Ks, 12.20.Ds, 12.38.BxKeywords: Feynman integrals, funtional equations, Appell hypergeometri funtion, Bhabhasattering
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1 IntrodutionThe prodution of heavy quarks at hadron olliders has beome a very important �eld of researh.The very large prodution rates for both top and bottom quarks at the CERN Large HadronCollider (LHC) will allow for studies of heavy quarks with high preision. The full next-to-leading-order (NLO) radiative orretions to the hadroprodution of heavy avors was ompletedin Ref. [2℄. The theoretial NLO preditions su�er from the usual unertainty resulting fromthe freedom in the hoie of renormalization and fatorization sales of perturbative QCD.To redue suh unertainties, next-to-next-to-leading order (NNLO) alulations are needed.The omputation of NNLO orretions is ompliated due to great tehnial diÆulties, mainlyrelated to the evaluation of two-loop Feynman integrals. To overome suh diÆulties, it is ofgreat importane to develop new methods and approahes for alulating Feynman integrals.The main ompliations of these alulations are related to the fat that the integrals dependon several kinematial variables. As was noted in Ref. [3℄, the most appropriate methods foralulating suh integrals may be those based on a di�erent kind of reurrene relations. Suhmethods an be based on the solution of reurrene relations with respet to the exponent of apropagator in the integral [4℄ or on the solution of dimensional reurrenes [5, 6℄.A signi�ant simpli�ation of the omputation of Feynman integrals depending on severalkinematial variables may be ahieved by using a new type of relationships between Feynmanintegrals through funtional equations with respet to kinematial variables as proposed inRef. [1℄. As was shown in Ref. [1℄, Feynman integrals with several kinematial variables an beexpressed in terms of integrals with a lesser number of variables, whih signi�antly simpli�estheir evaluation.It is the purpose of the present paper to apply the general method for �nding funtionalequations [1℄ to integrals required in alulations of radiative orretions to important physialproesses and to use those relations for the analyti omputation of these integrals.Our paper is organized as follows. In Setion 2, we give de�nitions and notations. In Setion3, we present funtional equations for the on-shell master integrals from heavy-quark produtionand Bhabha sattering. In Setion 4, a new hypergeometri representation in terms of the Appellfuntions F1 and F3 and the Gauss hypergeometri funtion 2F1 for the one-loop box integralfrom Bhabha sattering is presented. In Setion 5, we desribe how to use funtional equationsto �nd imaginary parts of the onsidered integrals. New analyti results for the imaginary partsare presented. Using dispersion relations, we write also one-fold integral representations forreal parts of integrals. In Setion 6, we present funtional equations for master integrals fromheavy-quark prodution with one quark leg o� shell.2 De�nitions and notationsAs was shown in Ref. [1℄, funtional equations for one-loop integrals orresponding to diagramswith four external legs an be derived, for example, from the following equation obtained in
1



Refs. [5, 7℄: G4 j+I(d+2)5 (m21;m22;m23;m24;m25; fskrg)� (�j�5)I(d)5 (m21;m22;m23;m24;m25; fskrg)= (�j�1�5) I(d)4 (m22;m23;m24;m25; s23; s34; s45; s25; s35; s24)+ (�j�2�5) I(d)4 (m21;m23;m24;m25; s13; s34; s45; s15; s35; s14)+ (�j�3�5) I(d)4 (m21;m22;m24;m25; s12; s24; s45; s15; s25; s14)+ (�j�4�5) I(d)4 (m21;m22;m23;m25; s12; s23; s35; s15; s25; s13)+ (�j�5�5) I(d)4 (m21;m22;m23;m24; s12; s23; s34; s14; s24; s13); (1)where the operator j+ shifts the indies �j!�j + 1, G4 is the Gram determinant, and �5 is themodi�ed Cayley determinant, de�ned asG4 = �16 ��������p15p15 p15p25 p15p35 p15p45p15p25 p25p25 p25p35 p25p45p15p35 p25p35 p35p35 p35p45p15p45 p25p45 p35p45 p45p45 �������� ; �5 = ����������Y11 Y12 Y13 Y14 Y15Y12 Y22 Y23 Y24 Y25Y13 Y23 Y33 Y34 Y35Y14 Y24 Y34 Y44 Y45Y15 Y25 Y35 Y45 Y55
���������� ; (2)Yij = m2i +m2j � sij; sij = p2ij; pij = pi � pj; �j = ��m2j : (3)The integral I(d)5 (fm2jg; fskrg) orresponds to a diagram with �ve external legs and the integralsI(d)4 (fm2jg; fskrg) in Eq. (1) are de�ned asI(d)4 (m2n;m2j ;m2k;m2l ; snj; sjk; skl; snl; sjl; snk)= Z ddqi�d=2 1[(q � pn)2 �m2n℄[(q � pj)2 �m2j ℄[(q � pk)2 �m2k℄[(q � pl)2 �m2l ℄ : (4)The diagram orresponding to the integral I(d)4 (m21;m22;m23;m24; fsijg) is presented in Fig. 1.
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q − p4Figure 1: Diagram orresponding to the integral I(d)4 (m11;m22;m23;m24; s12; s23; s34; s14; s24; s13):In what follows, we will use the following short-hand notation for integrals needed in thealulation of the one-loop radiative orretions to the proess e+e� ! e+e�, the so-alledBhabha sattering [8℄, and heavy-quark prodution:B(s; t) = I(d)4 (0;m2; 0;m2; m2;m2;m2;m2; s; t);D2(s; t) = I(d)4 (0; 0; 0;m2; 0; 0;m2;m2; t; s): (5)2



The diagrams orresponding to these integrals are depited in Fig. 2.
s = (p12 + p41)
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Figure 2: Diagrams orresponding to the integrals D2(t; s) and B(s; t). Lines with a zero internalmass mi = 0 (for internal lines) or a zero virtuality sij = 0 (for external lines) are shown wavy.Solid lines have a non-zero internal mass or a non-zero virtuality.3 Funtional equations for the integrals B(s; t) and D2(t; s)In this setion, we present in detail the derivation of funtional equations for the salar in-tegrals B(s; t) and D2(t; s). As was proposed in Ref. [1℄, one an obtain a funtional equa-tion for the integral I(d)4 (fm2jg; fskrg) by eliminating terms with I(d)5 (fm2jg; fskrg) from Eq. (1)through an appropriate hoie of kinematial variables. The integral I(d)5 (fm2jg; fskrg) dependson 15 kinematial variables, while the integral I(d)4 (fm2jg; fskrg) depends on 10 variables. There-fore, to obtain a funtional equation for the integral I(d)4 (fm2jg; fskrg) with all 10 kinematialvariables arbitrary, we an impose onditions on some 5 variables. To eliminate terms withI(d)5 (fm2jg; fskrg) from Eq. (1), two equations must be ful�lled:G4 = 0; �j�5 = 0; (6)thus �xing two kinematial variables. There are several options to use the remaining threevariables. One option is to set these variables to some partiular values and obtain a fun-tional equation onneting the integral of interest with integrals whih are easy to evaluateand/or integrals similar to the original one but with di�erent kinematis. Another option tohoose variables is to redue the number of terms in the funtional equation by requiring somederivatives �i�j�5 to be zero. Also, one an use some ombination of these two options. Thederivation of the numerous funtional equations orresponding to the di�erent options and theirombinations desribed above was done on a omputer. We desribe the most useful funtionalequations below.To be de�nite, let us assume that our integral of interest is the last integral on the right-handside of Eq. (1). If we set in Eq. (1) m1 = m3 = 0, m22 = m24 = m2, s12 = s23 = s34 = s14 = m2,and s24 = s, s13 = t, then the last integral on the right-hand side of this equation orrespondsto our integral B(s; t).Setting m25 = 0 and hoosing di�erent partiular values of the remaining two kinematialvariables and/or requiring some seond derivatives �i�j�5 to be zero, one an get from Eq. (1)rather di�erent funtional equations for the integral B(s; t). For some spei� hoie of kinemat-ial variables, also the integral D2(s; t) appears in the funtional equation. By imposing di�erent3



onditions, we try to �nd equations onneting the integrals B(s; t) and D2(s; t) with simplerintegrals, for example, with integrals having more massless propagators and simpler externalkinematis. We would like to note that, in the present investigation, we always set m25 = 0 inorder to avoid the appearane of integrals with three propagators having nonzero mass in thefuntional equations.Substituting j = 2, m22 = m23 = m25 = 0, s12 = s23 = s34 = s14 = m2, s24 = s, and s13 = tinto Eq. (1) and hoosing s15, s25, s35, and s45 from the onditionsG4 = 0; �2�5 = 0; �1�2�5 = 0; �2�3�5 = 0; (7)we arrive at the following equation:B(s; t) = m2s (1 + �+)D2(t;m2�+) + m2s (1 + ��)D2(t;m2��); (8)where �� = 1� �s1� �s ; �s =r1� 4m2s : (9)Thus, we have a relation onneting the integral B(s; t) with an integral having only one massivepropagator, i.e. with the integral D2(s; t). It turns out that the integral D2(s; t) in Eq. (8)satis�es the following funtional equation:D2(t; s) = m2s D2�t; m4s �+ s�m2s I(d)4 �0; 0; 0; 0; 0; 0; 0; 0; (s�m2)2s ; t� ; (10)whih an be obtained from Eq. (1) by setting j = 5, m21 = m22 = m23 = m25 = s12 = s23 = 0,s34 = s14 = m24 = m2, and s24 = s; s13 = t and imposing the onditionsG4 = �5�5 = �1�5�5 = �3�5�5 = 0: (11)The last integral in Eq. (10) orresponds to the box integral with all propagators massless andthe squares of all external momenta equal to zero. By using Eq. (10) and taking into aountthe relation �+�� = 1, one an write the integral in Eq. (8) with argument �+ asD2(t;m2�+) = �� D2(t;m2��) + (1� ��) I(d)4 �0; 0; 0; 0; 0; 0; 0; 0; s� 4m2; t� : (12)Substituting this relation into Eq. (8), givesB(s; t) = (1� �s)D2(t;m2��) + �s I(d)4 (0; 0; 0; 0; 0; 0; 0; 0; s� 4m2; t): (13)We illustrate this relation in Fig. 3. From Eq. (13), the master integral from heavy-quarkprodution is found to beD2(s; t) = t+m22t B�(t+m2)2t ; s�+ t�m22t I(d)4 �0; 0; 0; 0; 0; 0; 0; 0; (t�m2)2t ; s� : (14)Here, we would like to remark that, for " = (4�d)=2 ! 0, the integral D2 has a pole proportionalto 1="2, while the leading singularity of the integral B(s; t) is 1=". The leading 1="2 singularityon the right-hand side omes from the massless integral I4.Analyti formulae for both integrals on the right-hand side of Eq. (14) are given in the nextsetions. 4



= (1− β
s
) + β

sFigure 3: A shemati depition of Eq. (13). Wavy lines orrespond to massless salar propaga-tors and solid lines to massive propagators.4 Analyti result for the integral B(s; t)Using the method of dimensional reurrenes [5, 6℄, the following hypergeometri representationfor the integral B(s; t) was obtained in Ref. [9℄:B(s; t) = (�2)mt(s� 4m2)I(d)2 (0; 0; t) F1�d� 32 ; 1; 12 ; d� 12 ; tz4 ;� t�4m2�+ 2(2 � d)t(s� 4m2)I(d)2 (0;m2; 0)� �F2�d� 32 ; 1; 1; 32 ; d� 22 ; ss� 4m2 ;�m2z�� 1d� 3� ��m2z; ��� ; (15)where z = 4ut(4m2 � s) ; � = 1� 4m2t ; u = 4m2 � s� t; (16)and I(d)2 are the one-loop propagator type integralsI(d)2 (0;m2; 0) = 1i�d=2 Z ddk1k21(k21 �m2) = ���1� d2�md�4;I(d)2 (0; 0; p2) = 1i�d=2 Z ddk1k21(k1 � p)2 = �� 32 (�p2) d2�22d�3� �d�12 � sin �d2 : (17)Here, the Appell hypergeometri funtions areF1�d� 32 ; 1; 12 ; d� 12 ;x; y� = 1Xr=0 1Xs=0 �d�32 �r+s�d�12 �r+s �12�s(1)s xrys;F2�d� 32 ; 1; 1; 32 ; d� 22 ;x; y� = 1Xr=0 1Xs=0 �d�32 �r+s�32�r �d�22 �s xrys: (18)The funtion �(x; y) is�(x; y) = F 1;2;11;1;0 � d�32 : d�32 ; 1; 1;d�12 : d�22 ; �; x; y� = 1Xr=0 1Xs=0 �d�32 �r+s�d�12 �r+s �d�32 �r�d�22 �r xrys; (19)where F 1;2;11;1;0 is the Kamp�e de F�eriet funtion [10℄. The Appell funtion F1 admits a one-fold integral representation (see Appendix). The funtions F2 and � admit two-fold integralrepresentations, and this is the reason why their " expansions are problemati.5



We disovered that both funtions an be represented in terms of the Gauss hypergeometrifuntion 2F1 and Appell funtion F3, de�ned as [10℄:F3 ��; �0; �; �0; ; x; y� = 1Xm;n=0 (�)m(�0)n(�)m(�0)n()m+n xmm! ynn! ; jxj < 1; jyj < 1: (20)We found two methods to obtain suh a representation for the � funtion. The �rst methodis as follows. We write the funtion �(x; y) as�(x; y) = 1Xr=0 �d�32 �r �d�32 �r�d�22 �r �d�12 �r xr 2F1�1; d�32 + r ;d�12 + r ; y� ; (21)and then perform an analyti ontinuation of 2F1 transforming it to two funtions 2F1 withargument 1=y. Thus, we obtain two terms. One of these terms is just the Gauss funtion 2F1and another one is the Horn funtionH2�d� 52 ; 1; 1; 1; d� 22 ; x; 1y � 1� ; (22)de�ned as [11℄H2 ��; �; ; 0; Æ; x; y� = 1Xm;n=0 (�)m�n(�)m()n(0)n(Æ)m xmm! ynn! ; 1jyj � jxj > 1; jxj; jyj < 1:(23)The Horn funtion (22) an be expressed in terms of 2F1 funtions and the Appell funtion F3using Eq. (65) on p. 295 in Ref. [12℄. Combining all terms, we arrive at the following result:�(x; y) = �(d� 3)(d � 4)(d� 5)(d � 7) 1x(1� y)F3�1; 1; 3 � d2 ; 1; 9� d2 ; 1x; 11� y�+ (3� d)� �d�22 �� �5�d2 �p� (1� y)(�x) (d�5)2 r1� 1x 2F1�1; 1 ;32 ; 1� x1� y �+ � �d�12 �� �5�d2 �(�y) d�32 2F1�1; d�32 ;d�22 ; xy � : (24)The Appell funtion F3 for this spei� set of parameters an be written as a one-fold integral:F3�1; 1; 3 � d2 ; 1; 9� d2 ; 1x; 11� y� = � �9�d2 �x(y � 1)� �32�� �3� d2� Z 10 (1� v)2� d2 arsinq v1�y(1� x� v)p1� y � v dv: (25)This formula an be obtained from the integral representation of the F3 funtion [11℄ (see alsoAppendix). The funtion �(�m2z; �) from Eq. (15) reads:�(�m2z; �) = (d� 3)��d� 52 �( ��1(s; t)p�� �2� d2�+ 12��d� 32 � (��) 3�d2 2F1�1; d�32 ;d�22 ; 4m2u(t+ u)(s+ u)�� t(u+ t)� �d2 � 1�2pm2stu � t(t+ u)4m2u � d�52 arsinr w4m2(t+ u)) ; (26)6



where �1(s; t) = Z 10 (1� v)2� d2 arsinq vt4m2h w4(u+t) � vip1� � � v dv; (27)and w = 16m4 � 4m2s� ts: (28)From this expression, it follows that any oeÆient in the " expansion of the � funtion an beexpressed in terms of one-fold integrals. Several terms of the " expansion of the funtion � aregiven in Ref. [13℄.We present also another method to represent the funtion �(x; y) in terms of the Appellfuntion F3 and the Gauss funtions 2F1. For the funtion �(x; y), one an write the followingintegral representation [13℄:�(x; y) = d� 32 1Z0 v d�521� yv 2F1�1; d�32 ;d�22 ; xv� dv : (29)From this integral representation, one an derive a di�erential equation. Di�erentiating bothsides of Eq. (29) w.r.t. x, using the following formula for the derivative of the Gauss funtion,ddz 2F1�1; b ; ; z� = (bz � + 1)z(1� z) 2F1�1; b ; ; z�+ (� 1)z(1� z) ; (30)and after some simpli�ation of the resulting integrand, one obtains the following equation [9℄:2(y � x)x��(x; y)�x = [y � (d� 3)(y � x)℄�(x; y) (31)� x(d� 3)2F1�1; d� 32 ; d� 22 ; x�+ (d� 4)y 2F1�1; d� 32 ; d� 12 ; y� :This �rst-order di�erential equation an be easily solved yielding:�(x; y) = (d� 3)(d� 2) xx� y F3�12 ; 1; 1; d� 32 ; d2 ; xx� y ; x�+� yy � x�1=2 2F1�1; d�32 ;d�12 ; y� 2F1�1; d�32 ;d�22 ; xy � : (32)As it happens in the previous ase, instead of the Kamp�e de F�eriet funtion, we obtain themore familiar Appell funtion F3, whih, for the above parameters, admits the one-fold integralrepresentation:F3�12 ; 1; 1; d� 32 ; d2 ; xx� y ; x� = � �d2� (x� y)p� � �d�32 �x(1� x) Z 10 (1� v) d�521� vxx�1 ln 1 +q xvx�y1�q xvx�y dv: (33)This relation is obtained from the integral representation given in the Appendix. By usingEqs. (32) and (33), we obtain the following expression for the funtion �(�m2z; �) from Eq. (15):�(�m2z; �) = (d� 3)� � d2 � 1� (4m2 � s)t2p� � �d�32 �w �2(s; t)+ ��1� 4m2s � �� 12 2F1�1; d�32 ;d�12 ; �� 2F1�1; d�32 ;d�22 ; 4m2u(s� 4m2)(t� 4m2)� ; (34)7



where �2(s; t) = Z 10 (1� v) d�521� 4m2uvw ln 1 +q�4m2uvts1�q�4m2uvts dv; (35)� is de�ned in Eq. (16) and w in Eq. (28).Thus, we obtained two rather di�erent hypergeometri representations for the � funtion.In both ases, the hypergeometri funtions admit one-fold integral representations, so that allthe oeÆients in the " expansion may be expressed only in terms of one-fold integrals.The Appell funtion F2 from Eq. (15) an also be expressed in terms of the Appell funtionF3 and the Gauss funtion 2F1. To obtain suh a relation, we use the formula for the analytiontinuation of the Appell funtion F3 from Ref. [11℄ and obtain:F2�d� 32 ; 1; 1; d� 22 ; 32 ;x; y� = (d� 4)(d� 5)(d � 7)xy F3�1; 1; 3 � d2 ; 12 ; 9� d2 ; 1x; 1y�� p� � �5�d2 �� �d�22 �2p�y(�x) d2�2 + � �5�d2 �� �d�22 �p� (�x) d2�2p1� x 2F1�1; 12 ;32 ; y1� x�+ p� � �5�d2 �2� �6�d2 �p�y (1� y) d2�2 2F1�1; d2 � 2 ;d2 � 1 ; x1� y� : (36)The Appell funtion F3 with this partiular set of parameters also an be expressed in terms ofthe one-fold integralF3�1; 1; 3 � d2 ; 12 ; 9� d2 ; 1x; 1y� = �� �9�d2 �p� � �3� d2� xpy1� x Z 10 (1� v) 4�d21 + vx�1 ln 1 +qvy1�qvy dv: (37)Therefore, the Appell funtion F2 from Eq. (15) reads:F2�d� 32 ; 1; 1; 32 ; d� 22 ; ss� 4m2 ;�m2z�= � �5�d2 �16p�� �2� d2� (4m2 � s)m2 �t(s� 4m2)m2u� 12 �3(s; t)+ ��5� d2 ���d2 � 1�� �st16um2 � 12 �4m2 � ss � d�32 "1 + i� ln 1 +p�ut1�p�ut #+ p� � �5�d2 �4� �3� d2� � t(4m2 � s)um2 � 12 � t(4m2 � s)w � d�42 2F1�1; d�42 ;d�22 ; � tsw � ; (38)where �3(s; t) = Z 10 (1� v) 4�d21 + (s�4m2)v4m2 ln 1 +qvt(s�4m2)4m2u1�qvt(s�4m2)4m2u dv: (39)Thus, we found that the Appell funtion F2, the funtion � and, therefore, also the integralB(s; t) are expressible in terms of hypergeometri funtions admitting one-fold integral represen-tations. Suh a representation of B(s; t) would be onvenient for obtaining higher-order terms8



in the " expansion of this integral. The �rst terms in the " expansion of the integral B(s; t) wereobtained in Ref. [14℄.In Ref. [9℄, a one-fold integral representation for a salar box integral with arbitrary masses,external momenta and spae-time dimension d was presented. To obtain the formula for B(s; t)diretly from suh a representation by setting masses and salar invariants to their spei� valueswould be not so easy beause the appropriate analyti formulae are rather lengthy, and also theanalyti ontinuations needed for the hypergeometri funtions are rather nontrivial. Our resultan be onsidered as a on�rmation that the one-fold integral representations for box integralswith physially relevant kinematis do exist.5 Imaginary parts and spetral representation for the integralD2The integral I(d)4 with all internal lines massless and external legs on shell an be alulatedanalytially. Using the method of dimensional reurrenes [6℄, we obtain the following relationfor the last integral in Eq. (13), assuming js+ tj � jsj and js+ tj � jtj:I(d)4 (0; 0; 0; 0; 0; 0; 0; 0; s; t) = �4(d� 3)st(d� 4)��I(d)2 (0; 0; t) 2F1�1; d2 � 2 ;d2 � 1 ; s+ ts �+ I(d)2 (0; 0; s) 2F1�1; d2 � 2 ;d2 � 1 ; s+ tt �� : (40)This formula is in agreement with the result obtained in Ref. [15℄ (see also Refs. [16, 17℄). Thus,Eqs. (14), (15), and (40) provide us with a hypergeometri representation for the integral D2.The " expansions of the real and imaginary parts of this integral through order "2 were givenin Ref. [18℄. We expet that, with our hypergeometri representation, one an derive a shorterresult for the "2 term in the expansion of the integral D2 than that given in Ref. [18℄.The funtional equations in Eqs. (10) and (13) an be used for �nding imaginary parts ofthe integrals in some kinematial regions. As one an see from Eq. (10), if s > m2 and t < 0,the integral I(d)4 (0; 0; 0;m2; 0; 0;m2;m2; s; t) has an imaginary part that arises only from theintegral I(d)4 with all propagators massless, whih an be easily found from Eq. (40), so thatIm D2(t; s) = 4(d� 3)(d� 4) sin �d2t(m2 � s)I(d)2 �0; 0; (s�m2)2�s � 2F1�1; d2 � 2 ;d2 � 1 ; 1 + (s�m2)2st � ;s > m2; t < 0: (41)In a similar fashion, if s > 4m2 and t < 0, the imaginary part of the integral B(s; t) an beobtained from Eq. (13). In this ase, the imaginary part originates only from the seond integralon the right-hand side of Eq. (13). Again one an use Eq. (40) to �nd:Im B(s; t) = 4(d � 3)(d� 4) �s sin �d2t(4m2 � s)I(d)2 �0; 0; 4m2 � s� 2F1�1; d2 � 2 ;d2 � 1 ; 1 + s� 4m2t � ;s > 4m2; t < 0: (42)9



One an write D2(s; t) in the �xed-t spetral representationD2(t; s) = 1� 1Zm2 dx Im D2(t; x)s� x : (43)Substituting Eq. (41) into Eq. (43) leads to the following integral representation for D2(t; s):D2(t; s) = 4(d � 3) sin �d2(d� 4)t� 1Zm2 dx(s� x)(x�m2)� I(d)2 �0; 0; (x�m2)2�x � 2F1�1; d2 � 2 ;d2 � 1 ; 1 + (x�m2)2xt � : (44)To use D2(t; s) in alulations of heavy-quark prodution, one needs to know it at t > 0 ands < 0. To perform the analyti ontinuation of D2(t; s) into the region t > 0, one an useEq. (44). Using a formula for the analyti ontinuation of the Gauss hypergeometri funtion[11℄ and introduing the new integration variablev = xt(m2 � x)2 + xt; (45)leads to the following expression:D2(t; s) = 2(d� 3) sin �d2�st4� d2 1Z0 dv1� v� I(d)2 �0; 0; v � 1v �(m2 � s1� v � (s+m2)p(1� v)(1 � v�))�� v6� d 2F1�1; 3 � d2 ;4� d2 ; v�+ �2 v d2�2 ot �d2 + i�2 v d2�2� ; (46)where � = 1 + (s�m2)2st ; (47)and � is de�ned in Eq. (16). Substituting the expression for I(d)2 in this formula, we obtain forthe imaginary part:Im D2(t; s) = �� 32 (d� 3)t d2�4s2d�4� �d�12 � �m2 � sd� 4 2F1� 1; 1 ;d�22 ;��� s+m2d� 3 F1�1; 1; 12; d� 12 ;�; ��� ;s < 0; t > 0:(48)Applying the Euler transformation to the hypergeometri funtions 2F1 and F1 (see, for example,Ref. [11℄), we �nd agreement with the expression for the imaginary part obtained in this regionfrom the analyti result for the integral B(s; t) given in Eq. (15).For the real part, one an write the following representation:Re D2(t; s) = 2(d� 3)(1 � �) d2�2(d� 4) t(s�m2) I(d)2 (0; 0;�t) 2F1�1; d�42 ;d�22 ; ��+ ot �d2 Im D2(t; s) + �(t; s);s < 0; t > 0;(49)10



where �(t; s) = 24�d p� (d� 3)(s+m2)(6� d)� � d�12 � s t4� d2 1Z0 dv1� v� v3� d2 (1� v) d�52p(1� v�) 2F1�1; 3 � d2 ;4� d2 ; v� : (50)Equations (48) and (49) are onvenient for the " expansion. Appropriate formulae for the "expansion of the Gauss hypergeometri funtion an be taken from Refs. [19, 20℄. To obtainthe " expansion of the Appell hypergeometri funtion F1, one an use a one-fold integralrepresentation (see Appendix). The �rst two terms in Eq. (49) give singular ontributionsproportional to 1="2 and 1=". The last term in Eq. (49) is regular in ". Its " expansion an bederived from integral representation of Eq. (50).In the ase when t > 0 and s < 0, the imaginary part of B(s; t) an be found from Eq. (15)and reads:Im B(s; t) = � 32 24�d t d�52m(s� 4m2)� �d�12 �F1�d� 32 ; 1; 12 ; d� 12 ; 1� t4m2 � s; 1� t4m2� : (51)The imaginary part of the integral D2(s; t) for s > 0 and t < 0 reads:Im D2(s; t) = sin �d2 I(d)2 (0; 0; � s) � 2(d� 3)(d� 4)s(m2 � t) 2F1�1; d2 � 2 ;d2 � 1 ; 1 + st(t�m2)2 �� (t+m2)mps(t�m2)2 F1�d� 32 ; 1; 12 ; d� 12 ; 1 + st(t�m2)2 ; 1� s4m2�� : (52)The �rst few terms of the " expansion of the Appell funtion F1 an be found in Refs. [9, 21℄.6 Funtional equations for D2 with one quark leg o� shellFor the omputation of the radiative orretions to heavy-quark prodution in the NNLO ap-proximation, one needs to know the integral D2 with one quark leg o� shell. This is a rathernontrivial task, whih will be onsidered in a forthoming publiation. In this setion, we justwant to outline the strategy of suh alulations. Similar to the ase of D2 with all legs on shell,one an derive the funtional equations:I(d)4 (0; 0; 0;m2; 0; 0; s34;m2; s; t)= m2s I(d)4 �0; 0; 0;m2; 0; (m2 � s34)(m2 � s)s ; s34;m2; m4s ; t�+ s�m2s I(d)4 �0; 0; 0; 0; (m2 � s34)(m2 � s)s ; 0; 0; 0; (m2 � s)2s ; t� ; (53)I(d)4 (0; 0; 0;m2; 0; 0; s34;m2; s; t)= m2s34 I(d)4 �0; 0; 0;m2; (m2 � s34)(m2 � s)s34 ; 0;m2; m4s34 ; s; tm2s34 �+ s34 �m2s34 I(d)4 �0; 0; 0; 0; tm2s34 ; (m2 � s34)2s34 ; 0; 0; (m2 � s34)(m2 � s)s34 ; t� : (54)11



Equations (53) and (54) were obtained from Eq. (1) by settingm21 =m22 = m23 = m25 = s12 = s23 = 0; m24 = s14 = m2;G4 = �5�5 = �1�5�5 = 0; (55)in both ases and additionally �3�5�5 = 0; (56)in Eq. (53) and �2�5�5 = 0; (57)in Eq. (54). The above equations are rather similar to the funtional equations for the integralD2 with all legs on shell. In some kinematial regions, the imaginary part of the integralD2(s34; s; t) arises from integrals with all propagators massless. In Eq. (53), the integral withmassless propagators an be expressed in terms of three Gauss hypergeometri funtions [15℄.The analyti expression for the massless integral in Eq. (54) for arbitrary d is not known atpresent. The �rst terms in the " expansion of both integrals may be found in Refs. [15, 16℄.We expet that, similar to the D2 integral with all legs on shell, the integral D2 with one lego� shell an be represented in terms of hypergeometri funtions admitting a one-fold integralrepresentation.7 ConlusionsThe usefulness of funtional equations turns out to be threefold. First, we obtain a hypergeomet-ri representation of the integral needed for NLO alulations of heavy-quark prodution fromthe result for the integral from Bhabha sattering. Seond, sine the "2 term in the expansionof the integral D2 is known [18℄, one an use it to obtain the "2 term for Bhabha sattering.Third, funtional equations provide a simple method to obtain imaginary parts of integrals. Forsome kinemati regions, the imaginary parts of integrals with nonzero internal masses an berelated to the integrals with all lines massless.It is also important that the funtional equations provide a tool for performing analytiontinuations of the onsidered integrals. As was already observed in Ref. [1℄ and now also inthis paper, funtional equations suitable for analyti ontinuation express the onsidered integralin terms of the same integral with transformed arguments that has no imaginary part plus simplerintegrals (usually with massless lines) giving the imaginary part of the integral. Suh analytiontinuation is ahieved by solving algebrai equations, so that the expliit analyti form of theintegral is not needed.8 AknowledgmentsWe are grateful to Z. Merebashvili for useful disussions. This work was supported in part byBMBF Grant No. HT6QUA and DFG Grant No. KN365/3-2.9 AppendixIn this appendix, we present formulae whih were used in the derivation of some equations inthe main text. 12
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